
Altova XMLSpy 2024 Enterprise Edition

User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2024

© 2018-2024 Altova GmbH

Altova XMLSpy 2024 Enterprise Edition
User & Reference Manual

3Altova XMLSpy 2024 Enterprise Edition

Table of Contents

1 About XMLSpy and This Documentation 28

.. 291.1 New Features 2024

.. 301.1.1 Version 2023

.. 301.1.2 Version 2022

.. 311.1.3 Version 2021

.. 321.1.4 Version 2020

.. 341.2 Windows File Paths

.. 351.3 About RaptorXML Server

2 XMLSpy Tutorial 36

.. 372.1 XMLSpy Interface

.. 382.1.1 The Views

.. 392.1.2 The Windows

.. 412.1.3 Menus and Toolbars

.. 432.1.4 Text View Settings

.. 462.1.5 Application Options

.. 482.2 XML Schemas: Basics

.. 482.2.1 Creating a New XML Schema File

.. 502.2.2 Defining Namespaces

.. 512.2.3 Defining a Content Model

.. 562.2.4 Adding Elements with Drag-and-Drop

.. 572.2.5 Configuring the Content Model View

.. 592.2.6 Completing the Basic Schema

.. 632.3 XML Schemas: Advanced

.. 632.3.1 Working with Complex Types and Simple Types

.. 712.3.2 Referencing Global Elements

.. 732.3.3 Attributes and Attribute Enumerations

.. 762.4 XML Schemas: XMLSpy Features

.. 762.4.1 Schema Navigation

Altova XMLSpy 2024 Enterprise Edition4

.. 782.4.2 Schema Documentation

.. 832.5 XML Documents

.. 832.5.1 Creating a New XML File

.. 852.5.2 Specifying the Type of an Element

.. 872.5.3 Entering Data in Grid View

.. 882.5.4 Entering Data in Text View

.. 932.5.5 Validating the Document

.. 972.5.6 Adding Elements and Attributes

.. 992.5.7 Editing in Table Display

.. 1022.5.8 Modifying the Schema

.. 1042.6 XSLT Transformations

.. 1042.6.1 Assigning an XSLT File

.. 1052.6.2 Transforming the XML File

.. 1062.6.3 Modifying the XSL File

.. 1082.7 Project Management

.. 1082.7.1 Benefits of Projects

.. 1082.7.2 Building a Project

.. 1112.8 That's It

3 GUI and Environment 112

.. 1133.1 The Graphical User Interface (GUI)

.. 1143.1.1 Main Window

.. 1163.1.2 Project Window

.. 1183.1.3 Info Window

.. 1183.1.4 Entry Helpers

.. 1193.1.5 Output Window: Messages

.. 1213.1.6 Output Window: XPath/XQuery

.. 1223.1.7 Output Window: XSL Outline

.. 1233.1.8 Output Window: HTTP

.. 1233.1.9 Output Window: Find in Files

.. 1253.1.10 Output Window: Find in Schemas

.. 1253.1.11 Output Window: Find in XBRL

.. 1263.1.12 Output Window: Charts

.. 1283.1.13 Output Window: XULE

5Altova XMLSpy 2024 Enterprise Edition

.. 1283.1.14 Menu Bar, Toolbars, Status Bar

.. 1303.2 The Application Environment

.. 1303.2.1 Settings and Customization

.. 1333.2.2 Tutorials, Projects, Examples

.. 1333.2.3 XMLSpy Features and Help, and Altova Products

4 Editing Views 135

.. 1374.1 Automatic Backup of Files

.. 1394.2 Text View

.. 1404.2.1 Formatting in Text View

.. 1424.2.2 Displaying the Document

.. 1454.2.3 Editing in Text View

.. 1484.2.4 Navigating the Document

.. 1514.2.5 Entry Helpers in Text View

.. 1524.2.6 Split View

.. 1534.2.7 Text View Shortcuts

.. 1554.3 Grid View

.. 1564.3.1 Document Display

.. 1644.3.2 Document Structure

.. 1654.3.3 Document Content

.. 1694.3.4 Split View

.. 1714.3.5 Entry Helpers

.. 1724.3.6 Table Display (XML)

.. 1764.3.7 Table Display (JSON)

.. 1814.3.8 Drag-and-Drop (XML)

.. 1834.3.9 Drag-and-Drop (JSON)

.. 1864.3.10 Formulas (XML)

.. 1894.3.11 Formulas (JSON)

.. 1934.3.12 Filters

.. 1964.3.13 Images

.. 1984.3.14 Charts

.. 2044.3.15 Context Menu

.. 2074.3.16 Grid View Settings

.. 2134.4 Schema View

Altova XMLSpy 2024 Enterprise Edition6

.. 2154.4.1 XSD Mode: XSD 1.0 or 1.1

.. 2194.4.2 Schema Overview

.. 2314.4.3 Content Model View

.. 2524.4.4 Attributes, Assertions, and Identity Constraints

.. 2674.4.5 Entry Helpers in Schema View

.. 2774.4.6 Validation and Smart Fixes

.. 2784.4.7 Assertion Messages

.. 2814.4.8 Base Type Modification

.. 2824.4.9 Smart Restrictions

.. 2874.4.10 xml:base, xml:id, xml:lang, xml:space

.. 2884.4.11 Back and Forward: Moving through Positions

.. 2904.5 WSDL View

.. 2914.5.1 Main Window

.. 2954.5.2 Overview Entry Helper

.. 3014.5.3 Details Entry Helper

.. 3024.6 XBRL View

.. 3024.6.1 Main Window: Elements Tab

.. 3064.6.2 Main Window: Definitions, Presentation, Calculation, Formula, Table Tabs

.. 3094.6.3 Entry Helpers in XBRL View

.. 3144.6.4 XBRL View Settings

.. 3154.7 Authentic View

.. 3164.8 Browser View

.. 3184.9 Archive View

.. 3204.10 Common Shortcuts

5 XML 322

.. 3235.1 Creating, Opening, and Saving XML Documents

.. 3255.2 Assigning Schemas and Validating

.. 3275.3 XML in Text View

.. 3305.4 XML in Grid View

.. 3315.5 XML in Authentic View

.. 3335.6 Entry Helpers (Text View, Authentic View)

.. 3345.7 Validating XML Documents

.. 3365.8 Whitespace

7Altova XMLSpy 2024 Enterprise Edition

.. 3385.9 Inserting XML Fragments

.. 3405.10 Processing with XSLT and XQuery

.. 3425.11 PDF Fonts

.. 3455.12 Charts

.. 3485.12.1 Creating a Chart

.. 3525.12.2 Source XPath

.. 3555.12.3 X-Axis Selection

.. 3605.12.4 Y-Axis Selection

.. 3645.12.5 Chart Data

.. 3655.12.6 Overlays

.. 3665.12.7 Chart Settings: Quick Reference

.. 3695.12.8 Chart Settings and Appearance

.. 3945.12.9 Export

.. 3945.12.10 Chart Example: Simple

.. 3965.12.11 Chart Example: Advanced

.. 4025.12.12 Chart Example: Candlestick

.. 4065.13 XML Signatures

.. 4085.13.1 Creating XML Signatures

.. 4115.13.2 Verifying XML Signatures

.. 4145.13.3 Working with Certificates

.. 4185.14 Additional Features

6 DTDs and XML Schemas 419

.. 4206.1 Schema Manager

.. 4236.1.1 Run Schema Manager

.. 4256.1.2 Status Categories

.. 4276.1.3 Patch or Install a Schema

.. 4286.1.4 Uninstall a Schema, Reset

.. 4296.1.5 Command Line Interface (CLI)

.. 4366.2 DTDs

.. 4396.3 XML Schemas

.. 4406.4 Schema Subsets

.. 4446.5 Schema Rules

.. 4446.5.1 Managing Rule Sets

Altova XMLSpy 2024 Enterprise Edition8

.. 4466.5.2 Defining a Rule Set

.. 4516.6 Catalogs in XMLSpy

.. 4516.6.1 How Catalogs Work

.. 4526.6.2 Catalog Structure in XMLSpy

.. 4536.6.3 Customizing Your Catalogs

.. 4556.6.4 Environment Variables

.. 4576.7 Working with SchemaAgent

.. 4586.7.1 Connecting to SchemaAgent Server

.. 4606.7.2 Opening Schemas Found in the Search Path

.. 4616.7.3 Using IIRs

.. 4656.7.4 Viewing Schemas in SchemaAgent

.. 4656.7.5 SchemaAgent Validation

.. 4686.8 Find in Schemas

.. 4706.8.1 Search Term

.. 4716.8.2 Components

.. 4736.8.3 Properties

.. 4766.8.4 Scope

.. 4776.8.5 Find and Replace Commands

.. 4796.8.6 Results and Information

.. 4806.8.7 Finding and Renaming Globals

7 XSLT 482

.. 4837.1 XSLT Documents

.. 4857.2 XSLT Processing

.. 4887.3 XSL Outline

.. 4897.3.1 XSL Outline Window

.. 4927.3.2 Info Window

.. 4957.4 XSL Speed Optimizer

8 XQuery 497

.. 4998.1 Editing XQuery Documents

.. 5008.1.1 XQuery Documents

.. 5018.1.2 XQuery Entry Helpers

9Altova XMLSpy 2024 Enterprise Edition

.. 5018.1.3 XQuery Syntax Coloring

.. 5038.1.4 XQuery Intelligent Editing

.. 5068.2 XQuery Evaluation

.. 5078.3 XQuery Validation

.. 5088.4 XQuery/Update Execution

.. 5118.5 XQuery Update Facility

.. 5118.5.1 Previewing and Applying Updates

.. 5148.5.2 Update Operations and Syntax

.. 5188.6 XQuery and XML Databases

9 XSLT/XQuery Debugger and Profiler 522

.. 5239.1 XSLT and XQuery Debugger

.. 5249.1.1 Mechanism and Interface

.. 5269.1.2 Commands and Toolbar Icons

.. 5289.1.3 Breakpoints

.. 5309.1.4 Tracepoints

.. 5349.1.5 Information Windows

.. 5419.1.6 Debugger Settings

.. 5439.2 XSLT and XQuery Profiler

.. 5489.2.1 XSLT Profiling

.. 5529.2.2 XQuery Profiling

.. 5559.2.3 Profiler Results: Exports and Charts

10 XPath/XQuery Expressions 558

.. 55910.1 About the XPath/XQuery Window

.. 56110.2 Evaluating the Expression

.. 56710.3 Debugging the Expression

.. 57510.4 Expression Builder

.. 57810.5 XQuery Expressions for JSON

.. 58110.6 Points to Note

11 Authentic 583

.. 58511.1 Authentic View Tutorial

Altova XMLSpy 2024 Enterprise Edition10

.. 58611.1.1 Opening an XML Document in Authentic View

.. 58711.1.2 The Authentic View Interface

.. 59011.1.3 Node Operations

.. 59311.1.4 Entering Data in Authentic View

.. 59511.1.5 Entering Attribute Values

.. 59611.1.6 Adding Entities

.. 59711.1.7 Printing the Document

.. 59811.2 Authentic View Interface

.. 59811.2.1 Overview of the GUI

.. 59911.2.2 Authentic View Toolbar Icons

.. 60211.2.3 Authentic View Main Window

.. 60411.2.4 Authentic View Entry Helpers

.. 60811.2.5 Authentic View Context Menus

.. 61111.3 Editing in Authentic View

.. 61111.3.1 Basic Editing

.. 61611.3.2 Tables in Authentic View

.. 62311.3.3 Editing a DB

.. 62911.3.4 Working with Dates

.. 63111.3.5 Defining Entities

.. 63311.3.6 XML Signatures

.. 63411.3.7 Images in Authentic View

.. 63511.3.8 Keystrokes in Authentic View

.. 63611.4 Authentic Scripting

12 HTML and CSS 638

.. 63912.1 HTML

.. 64112.2 CSS

13 JSON, JSON Schema 646

.. 64913.1 JSON Data

.. 65213.2 JSON Schema

.. 65413.3 JSON Lines and JSON Comments

.. 65513.4 JSON Text View

11Altova XMLSpy 2024 Enterprise Edition

.. 66013.5 JSON Grid View

.. 66313.6 JSON Schema View

.. 66413.6.1 JSON Schema Version

.. 66613.6.2 Adding Global Definitions

.. 66713.6.3 Entry Helpers: Overview, Details, Constraints

.. 67013.6.4 Global and Local Definitions

.. 67213.6.5 Design View

.. 67313.6.6 Objects and Properties

.. 67713.6.7 Unspecified Properties

.. 68013.6.8 Objects and Dependencies

.. 68413.6.9 Arrays

.. 68613.6.10 Atomic Types

.. 68813.6.11 Type Selectors (Any, Multiple, etc)

.. 69013.6.12 BSON (Binary JSON) for MongoDB

.. 69413.6.13 Operators

.. 69613.6.14 Conditionals

.. 69713.6.15 Configuring Design View

.. 69813.6.16 Generating JSON Schema Documentation

.. 70113.7 Validate JSON Documents

.. 70313.8 Insert JSON Fragments

.. 70513.9 JSON Transformations with XSLT/XQuery

.. 70713.10 XQuery Expressions for JSON

.. 70913.11 Generate JSON Schema from JSON Instance

.. 71213.12 Generate JSON Instance from JSON Schema

.. 71313.13 Convert between JSON and XML

14 Avro, Avro Schema 714

.. 71614.1 Avro Schema

.. 71914.2 Avro Data in JSON Format

.. 72014.3 Avro View: a Grid View of Avro Binaries

15 YAML 722

.. 72315.1 Create and Validate YAML Documents

Altova XMLSpy 2024 Enterprise Edition12

.. 72515.2 YAML Text View

.. 72615.3 Generate JSON Schema from YAML Document

.. 72915.4 Generate YAML Document from JSON Schema

.. 73015.5 Convert between YAML and JSON/XML

16 WSDL and SOAP 731

.. 73216.1 WSDL Tutorial

.. 73216.1.1 Creating a New Document

.. 73316.1.2 Creating a PortType

.. 73516.1.3 Creating a Binding

.. 73716.1.4 Creating a Service and Ports

.. 73816.1.5 Validating the WSDL Document

.. 73816.1.6 Connecting to a Web Service and Opening Files

.. 74016.1.7 Sending a SOAP Request from the WSDL File

.. 74116.1.8 Creating WSDL Documentation

.. 74316.1.9 Converting to WSDL 2.0

.. 74416.2 SOAP

.. 74416.2.1 SOAP Validation

.. 74516.2.2 SOAP Debugger

17 HTTP 761

.. 76217.1 Sending the Request

.. 76717.2 Importing a Request to Send

.. 76917.3 Receiving the Response

18 XBRL 773

.. 77418.1 Taxonomy Manager

.. 77718.1.1 Run Taxonomy Manager

.. 78018.1.2 Status Categories

.. 78118.1.3 Patch or Install a Taxonomy

.. 78218.1.4 Uninstall a Taxonomy, Reset

.. 78318.1.5 Command Line Interface (CLI)

.. 79018.2 Basic Procedures

13Altova XMLSpy 2024 Enterprise Edition

.. 79018.2.1 Taxonomies: New and Existing

.. 79118.2.2 Taxonomy Files Overview

.. 79318.2.3 Create a New Taxonomy

.. 79518.2.4 Import a Base Taxonomy

.. 79818.2.5 Namespaces

.. 80018.2.6 Taxonomy Files

.. 80218.2.7 Add Elements to a Taxonomy

.. 80618.2.8 Relationships and Linkroles

.. 80718.2.9 Creating Relationships: Part 1

.. 81018.2.10 Creating Relationships: Part 2

.. 81318.3 Additional Procedures

.. 81318.3.1 Preferred Labels

.. 81418.3.2 Typed Domains

.. 81518.3.3 Duplicate Detection and De-Duplication

.. 81618.3.4 Inline XBRL

.. 81718.4 XBRL Formula Editor

.. 81718.4.1 Formula Linkbases and Link Roles

.. 81918.4.2 Formula Components

.. 83518.4.3 Editing Component Properties and Content

.. 83618.4.4 Formula Component Relationships

.. 83718.4.5 Formula Parameters

.. 83918.4.6 Finding Formula Components

.. 84118.5 XBRL Table Definitions Editor

.. 84218.5.1 Table Linkbases and Link Roles

.. 84418.5.2 Table Structure

.. 85818.5.3 Table Components

.. 86318.5.4 Editing Component Properties and Content

.. 86418.5.5 Table Component Relationships

.. 86518.5.6 Table Parameters

.. 86918.5.7 Table Layout Preview

.. 87218.5.8 Finding Table Components

.. 87418.6 XULE

.. 87418.6.1 XULE Documents

.. 87718.6.2 XULE Window

.. 88018.6.3 XULE Execution

Altova XMLSpy 2024 Enterprise Edition14

.. 88218.7 Find in XBRL

.. 88218.7.1 Search Term

.. 88518.7.2 Command Execution

.. 88718.7.3 Results and Information

.. 88818.8 OIM

.. 88918.9 Validating XBRL Instances and Taxonomies

19 Office Open XML, ZIP, EPUB 890

.. 89219.1 Working with OOXML Files

.. 89419.2 OOXML Example Files

.. 89619.3 ZIP Files

.. 89819.4 EPUB Files

20 Databases 902

.. 90420.1 Connecting to a Data Source

.. 90520.1.1 Start Database Connection Wizard

.. 90720.1.2 Database Drivers Overview

.. 91020.1.3 ADO Connection

.. 91620.1.4 ADO.NET Connection

.. 92320.1.5 ODBC Connection

.. 92620.1.6 JDBC Connection

.. 93020.1.7 SQLite Connection

.. 93320.1.8 Native Connection

.. 93420.1.9 Global Resources

.. 93520.1.10 Database Connection Examples

.. 99020.2 Supported Databases

21 Altova Global Resources 991

.. 99221.1 Defining Global Resources

.. 99421.1.1 Files

.. 99921.1.2 Folders

.. 100121.1.3 Databases

.. 100321.2 Using Global Resources

15Altova XMLSpy 2024 Enterprise Edition

.. 100321.2.1 Assigning Files and Folders

.. 100621.2.2 Assigning Databases

.. 100721.2.3 Changing the Active Configuration

22 Projects 1009

.. 101022.1 Creating and Editing Projects

.. 101422.2 Using Projects

23 RaptorXML(+XBRL) Server 1016

.. 101723.1 Adding Servers and Server Configurations

.. 102123.2 Validating with RaptorXML Server

.. 102223.3 Validation Options

.. 102223.3.1 Common Options

.. 102323.3.2 XML with DTD

.. 102323.3.3 DTD

.. 102423.3.4 XML with W3C Schema

.. 102523.3.5 W3C Schema

.. 102523.3.6 Inline XBRL Instance

.. 102723.3.7 XBRL Instance

.. 102923.3.8 XBRL Taxonomy

.. 103023.3.9 XBRL Taxonomy Package

.. 103123.3.10 XBRL Versioning Report

.. 103123.3.11 XSLT

.. 103223.3.12 XQuery

.. 103323.3.13 JSON

.. 103423.3.14 JSON Schema

.. 103423.3.15 AVRO

.. 103523.3.16 AVRO JSON

.. 103523.3.17 AVRO Schema

.. 103523.3.18 EDGAR

.. 103823.4 XSLT and XQuery with RaptorXML Server

24 File/Directory Comparisons 1040

Altova XMLSpy 2024 Enterprise Edition16

.. 104124.1 File Comparisons

.. 104224.2 Directory Comparisons

25 Source Control 1044

.. 104625.1 Setting Up Source Control

.. 104725.2 Supported Source Control Systems

.. 104925.3 Local Workspace Folder

.. 105025.4 Application Project

.. 105225.5 Add to Source Control

.. 105425.6 Working with Source Control

.. 105425.6.1 Add to, Remove from Source Control

.. 105525.6.2 Check Out, Check In

.. 105725.6.3 Getting Files as Read-Only

.. 105925.6.4 Copying and Sharing from Source Control

.. 106225.6.5 Changing Source Control

.. 106425.7 Source Control with Git

.. 106525.7.1 Enabling Git Source Control with GIT SCC Plug-in

.. 106525.7.2 Adding a Project to Git Source Control

.. 106725.7.3 Cloning a Project from Git Source Control

26 XMLSpy in Visual Studio 1069

.. 107026.1 Installing the XMLSpy Plugin

.. 107126.2 Differences with XMLSpy Standalone

.. 107326.3 XMLSpy's Debuggers in Visual Studio

27 XMLSpy in Eclipse 1074

.. 107527.1 Install the Integration Package for Eclipse

.. 107727.2 XMLSpy Perspective in Eclipse

.. 108027.3 Other XMLSpy Entry Points in Eclipse

.. 108227.4 XMLSpy's Debugger Perspectives

28 Code Generator 1083

17Altova XMLSpy 2024 Enterprise Edition

.. 108628.1 Generate Code from XML Schemas or DTDs

.. 108928.1.1 About Schema Wrapper Libraries (C++)

.. 109128.1.2 About Schema Wrapper Libraries (C#)

.. 109328.1.3 About Schema Wrapper Libraries (Java)

.. 109528.1.4 Integrate Schema Wrapper Libraries

.. 109828.1.5 Example: Book Library

.. 112228.1.6 Example: Purchase Order

.. 113028.2 Generated Classes (C++)

.. 113028.2.1 altova::DateT ime

.. 113328.2.2 altova::Duration

.. 113528.2.3 altova::DayT imeDuration

.. 113628.2.4 altova::YearMonthDuration

.. 113628.2.5 altova::meta::Attribute

.. 113728.2.6 altova::meta::ComplexType

.. 113828.2.7 altova::meta::Element

.. 113828.2.8 altova::meta::SimpleType

.. 114028.2.9 [YourSchema]::[CDoc]

.. 114228.2.10 [YourSchema]::[ElementType]

.. 114328.2.11 [YourSchema]::MemberAttribute

.. 114428.2.12 [YourSchema]::MemberElement

.. 114528.3 Generated Classes (C#)

.. 114528.3.1 Altova.Types.DateT ime

.. 114828.3.2 Altova.Types.DateT imeFormat

.. 114928.3.3 Altova.Types.Duration

.. 115228.3.4 Altova.Xml.Meta.Attribute

.. 115228.3.5 Altova.Xml.Meta.ComplexType

.. 115328.3.6 Altova.Xml.Meta.Element

.. 115428.3.7 Altova.Xml.Meta.SimpleType

.. 115528.3.8 [YourSchema].[Doc]

.. 115728.3.9 [YourSchema].[ElementType]

.. 115828.3.10 [YourSchemaType].MemberAttribute

.. 115828.3.11 [YourSchemaType].MemberElement

.. 116028.4 Generated Classes (Java)

.. 116028.4.1 com.altova.types.DateT ime

.. 116428.4.2 com.altova.types.Duration

Altova XMLSpy 2024 Enterprise Edition18

.. 116828.4.3 com.altova.xml.meta.Attribute

.. 116828.4.4 com.altova.xml.meta.ComplexType

.. 116928.4.5 com.altova.xml.meta.Element

.. 116928.4.6 com.altova.xml.meta.SimpleType

.. 117028.4.7 com.[YourSchema].[Doc]

.. 117228.4.8 com.[YourSchema].[ElementType]

.. 117328.4.9 com.[YourSchema].[YourSchemaType].MemberAttribute

.. 117328.4.10 com.[YourSchema].[YourSchemaType].MemberElement

.. 117528.5 SPL Reference

.. 117628.5.1 Basic SPL structure

.. 117628.5.2 Declarations

.. 117828.5.3 Variables

.. 117928.5.4 Predefined variables

.. 118028.5.5 Creating output files

.. 118228.5.6 Operators

.. 118328.5.7 Conditions

.. 118428.5.8 Collections and foreach

.. 118528.5.9 Subroutines

.. 118828.5.10 Built in Types

29 Menu Commands 1193

.. 119429.1 File Menu

.. 119429.1.1 New

.. 119929.1.2 Open

.. 120429.1.3 Reload

.. 120429.1.4 Encoding

.. 120529.1.5 Close, Close All, Close All But Active

.. 120529.1.6 Save, Save As, Save All

.. 121029.1.7 Send by Mail

.. 121129.1.8 Print

.. 121329.1.9 Print Preview, Print Setup

.. 121429.1.10 Recent Files, Exit

.. 121529.2 Edit Menu

.. 121629.2.1 Undo, Redo

19Altova XMLSpy 2024 Enterprise Edition

.. 121629.2.2 Cut, Copy, Paste, Delete

.. 121729.2.3 Copy as XML/JSON Text

.. 121829.2.4 Copy as Tab-Separated Text

.. 121829.2.5 Copy as Image

.. 121929.2.6 Copy XPath

.. 121929.2.7 Copy XPointer/JSON-Pointer

.. 121929.2.8 Insert

.. 122329.2.9 Save as Image

.. 122429.2.10 Pretty-Print

.. 122429.2.11 Strip Whitespaces

.. 122429.2.12 Select All

.. 122429.2.13 Find, Find Next

.. 123029.2.14 Replace

.. 123129.2.15 Find in Files

.. 123329.2.16 Bookmark Commands

.. 123429.2.17 Comment In/Out

.. 123529.3 Project Menu

.. 123729.3.1 New Project

.. 123829.3.2 Open Project

.. 123829.3.3 Reload Project

.. 123829.3.4 Close Project

.. 123829.3.5 Save Project, Save Project As

.. 123929.3.6 Source Control

.. 125229.3.7 Add Files to Project

.. 125329.3.8 Add Global Resource to Project

.. 125329.3.9 Add URL to Project

.. 125329.3.10 Add Active File to Project

.. 125329.3.11 Add Active And Related Files to Project

.. 125429.3.12 Add Project Folder to Project

.. 125429.3.13 Add External Folder to Project

.. 125629.3.14 Add External Web Folder to Project

.. 126029.3.15 Script Settings

.. 126129.3.16 Properties

.. 126429.3.17 Most Recently Used Projects

.. 126529.4 XML Menu

Altova XMLSpy 2024 Enterprise Edition20

.. 126629.4.1 Type

.. 126629.4.2 Insert After/Before

.. 126629.4.3 Append, Add Child

.. 126629.4.4 Wrap in Element

.. 126629.4.5 Edit as Raw Text

.. 126729.4.6 Move Up/Down/Left/Right

.. 126729.4.7 Display as Table

.. 126729.4.8 Ascending/Descending Sort

.. 126729.4.9 Flip Rows/Columns

.. 126829.4.10 Evaluate XPath

.. 126829.4.11 Check Well-Formedness

.. 126929.4.12 Validate XML

.. 127329.4.13 Validate XML on Server (high-performance)

.. 127429.4.14 Validating WSDL Files

.. 127529.4.15 Validate on Edit

.. 127529.4.16 Update Entry Helpers

.. 127529.4.17 Namespace Prefix

.. 127529.4.18 Create XML Signature

.. 127829.4.19 Verify XML Signature

.. 128129.5 JSON Menu

.. 128229.5.1 Type

.. 128229.5.2 Insert After/Before, Append, Add Child

.. 128229.5.3 Wrap in Array/Object

.. 128329.5.4 Move

.. 128329.5.5 Display as Table

.. 128329.5.6 Ascending/Descending Sort

.. 128329.5.7 Flip Rows/Columns

.. 128429.5.8 Remove Comments, Re-evaluate All

.. 128529.6 DTD/Schema Menu

.. 128529.6.1 Assign DTD

.. 128629.6.2 Assign Schema

.. 128729.6.3 Include Another DTD

.. 128829.6.4 Go to DTD

.. 128829.6.5 Go to Schema

.. 128829.6.6 Go to Definition

21Altova XMLSpy 2024 Enterprise Edition

.. 128929.6.7 Generate DTD/Schema

.. 129129.6.8 Flatten DTD

.. 129129.6.9 Convert DTD to Schema

.. 129429.6.10 Flatten Schema

.. 129429.6.11 Convert Schema to DTD

.. 129529.6.12 Convert to UML

.. 129629.6.13 Generate XML from DB, Excel, EDI with MapForce

.. 129629.6.14 Design HTML/PDF/Word Output with StyleVision...

.. 129629.6.15 Generate Sample XML/JSON File

.. 130029.6.16 Generate Program Code

.. 130229.6.17 Flush Memory Cache

.. 130329.7 Schema Design Menu

.. 130329.7.1 Schema Settings

.. 130629.7.2 Save Diagram

.. 130629.7.3 Generate Documentation

.. 131229.7.4 Configure View

.. 131529.7.5 Zoom

.. 131529.7.6 Display All Globals

.. 131529.7.7 Display Diagram

.. 131629.7.8 Schema Extensions for Databases

.. 132029.7.9 Connect to SchemaAgent Server

.. 132129.7.10 Disconnect from SchemaAgent Server

.. 132129.7.11 Show in SchemaAgent

.. 132129.7.12 SchemaAgent Validation

.. 132229.7.13 Create Schema Subset

.. 132329.7.14 Flatten Schema

.. 132529.8 XSL/XQuery Menu

.. 132729.8.1 XSL Transformation

.. 132729.8.2 XSL Speed Optimizer

.. 132829.8.3 XSL-FO Transformation

.. 132929.8.4 XSL Parameters / XQuery Variables

.. 133229.8.5 XQuery/Update Execution

.. 133329.8.6 Enable Back-Mapping

.. 133529.8.7 Enable XSLT/XQuery Profiling

.. 133529.8.8 Assign XSL

Altova XMLSpy 2024 Enterprise Edition22

.. 133629.8.9 Assign XSL-FO

.. 133629.8.10 Assign Sample XML File

.. 133629.8.11 Go to XSL

.. 133729.8.12 Go to Source Instruction

.. 133729.8.13 Go to Context Node

.. 133729.8.14 Start Debugger / Go

.. 133729.8.15 Stop Debugger

.. 133829.8.16 Restart Debugger

.. 133829.8.17 End Debugger Session

.. 133829.8.18 Step Into

.. 133829.8.19 Step Out

.. 133929.8.20 Step Over

.. 133929.8.21 Show Current Execution Node

.. 133929.8.22 Insert/Remove Breakpoint

.. 133929.8.23 Insert/Remove Tracepoint

.. 134029.8.24 Enable/Disable Breakpoint

.. 134029.8.25 Enable/Disable Tracepoint

.. 134029.8.26 Breakpoints/Tracepoints

.. 134129.8.27 Debug Windows

.. 134229.8.28 Debug Settings

.. 134329.9 Authentic Menu

.. 134429.9.1 New Document

.. 134529.9.2 Edit Database Data

.. 134529.9.3 Assign a StyleVision Stylesheet

.. 134629.9.4 Edit StyleVision Stylesheet

.. 134629.9.5 Select New Row with XML Data for Editing

.. 134729.9.6 XML Signature

.. 134929.9.7 Define XML Entities

.. 135129.9.8 View Markup

.. 135129.9.9 RichEdit

.. 135229.9.10 Append/Insert/Duplicate/Delete Row

.. 135229.9.11 Collapse/Expand Markup

.. 135229.9.12 Move Row, Delete Row

.. 135329.9.13 Generate HTML, RTF, PDF, Word 2007+ Document

.. 135329.9.14 Trusted Locations

23Altova XMLSpy 2024 Enterprise Edition

.. 135529.10 DB Menu

.. 135529.10.1 Query Database

.. 137129.10.2 IBM DB2

.. 137629.10.3 SQL Server

.. 137929.10.4 Oracle XML DB

.. 138429.11 Convert Menu

.. 138429.11.1 Import Text File

.. 138729.11.2 Import Database Data

.. 139229.11.3 Import Microsoft Word Document

.. 139229.11.4 Create XML Schema from DB Structure

.. 139729.11.5 DB Import Based on XML Schema

.. 139829.11.6 Create DB Structure from XML Schema

.. 140129.11.7 Export to Text Files

.. 140429.11.8 Export to a Database

.. 140729.11.9 Convert XML Instance to/from JSON/YAML

.. 141029.11.10 Convert XML Schema to/from JSON Schema

.. 141329.11.11 Convert JSON to/from YAML

.. 141329.11.12 Convert to OIM xBRL-XML

.. 141329.11.13 Convert to OIM xBRL-JSON

.. 141329.11.14 Convert to OIM xBRL-CSV

.. 141529.12 View Menu

.. 141529.12.1 Text View

.. 141629.12.2 Enhanced Grid View

.. 141629.12.3 Schema Design View

.. 141629.12.4 WSDL Design View

.. 141729.12.5 XBRL Taxonomy View

.. 141729.12.6 Authentic View

.. 141729.12.7 Browser View

.. 141829.12.8 Expand

.. 141829.12.9 Collapse

.. 141829.12.10 Expand Fully

.. 141829.12.11 Collapse Unselected

.. 141829.12.12 Optimal Widths

.. 141929.12.13 Word Wrap

.. 141929.12.14 Go to Line/Character

Altova XMLSpy 2024 Enterprise Edition24

.. 141929.12.15 Go to File

.. 142029.12.16 Text View Settings

.. 142229.13 Browser Menu

.. 142329.14 WSDL Menu

.. 142329.14.1 WSDL 1.1 Components

.. 142629.14.2 WSDL 2.0 Components

.. 143029.14.3 Types, Save Diagram

.. 143129.14.4 Generate Documentation

.. 143529.14.5 Reparse WSDL Document

.. 143529.14.6 Convert to WSDL 2.0

.. 143529.14.7 Generate WSDL Program Code with MapForce

.. 143629.15 SOAP Menu

.. 143629.15.1 Create New SOAP Request

.. 143829.15.2 Send Request to Server

.. 143929.15.3 SOAP Request Settings

.. 144329.15.4 SOAP Debugger Session

.. 144429.15.5 Go

.. 144529.15.6 Single Step

.. 144529.15.7 Break on Next Request

.. 144529.15.8 Break on Next Response

.. 144529.15.9 Stop the Proxy Server

.. 144529.15.10 SOAP Debugger Options

.. 144729.16 XBRL Menu

.. 144729.16.1 Arcroles

.. 144929.16.2 Linkroles

.. 145129.16.3 Namespace Prefixes

.. 145229.16.4 Set Target Namespace

.. 145229.16.5 Parameter Values

.. 145329.16.6 Import/Reference

.. 145529.16.7 Find Component by ID

.. 145529.16.8 Generate Documentation

.. 145829.16.9 View Settings

.. 145929.16.10 Generate XBRL from DB, Excel, CSV with MapForce

.. 146029.16.11 Present XBRL as HTML/PDF/Word with StyleVision

.. 146029.16.12 Execute Formula (on Server)

25Altova XMLSpy 2024 Enterprise Edition

.. 146329.16.13 Generate Table (on Server)

.. 146529.16.14 Detect Duplicates (on Server)

.. 146629.16.15 Execute XULE

.. 146729.16.16 Transform Inline XBRL

.. 146829.16.17 Validate EDGAR on Server

.. 146829.16.18 Processing Options

.. 147029.17 Tools Menu

.. 147129.17.1 Spelling

.. 147429.17.2 Spelling Options

.. 147829.17.3 Scripting Editor

.. 147829.17.4 Macros

.. 147929.17.5 Comparisons

.. 148929.17.6 User-Defined Tools

.. 148929.17.7 Global Resources

.. 149029.17.8 Active Configuration

.. 149129.17.9 Manage Raptor Servers

.. 149429.17.10 Raptor Servers and Configurations

.. 149429.17.11 XBRL Taxonomy Manager

.. 149429.17.12 XML Schema Manager

.. 149529.17.13 Customize

.. 151329.17.14 Restore Toolbars and Windows

.. 151329.17.15 Options

.. 156229.18 Window Menu

.. 156529.19 Help Menu

.. 156529.19.1 Help

.. 156529.19.2 Keyboard Map

.. 156629.19.3 Activation, Order Form, Registration, Updates

.. 157029.19.4 Other Commands

.. 157129.20 Command Line

30 Programmers' Reference 1572

.. 157430.1 Scripting Editor

.. 157530.1.1 Creating a Scripting Project

.. 158830.1.2 Built-in Commands

Altova XMLSpy 2024 Enterprise Edition26

.. 159830.1.3 Enabling Scripts and Macros

.. 160130.2 IDE Plugins

.. 160130.2.1 Registration of IDE PlugIns

.. 160230.2.2 ActiveX Controls

.. 160230.2.3 Configuration XML

.. 160530.2.4 ATL Sample Files

.. 161030.2.5 IXMLSpyPlugIn

.. 161630.3 Application API

.. 161730.3.1 Overview

.. 165330.3.2 Interfaces

.. 190530.3.3 Interfaces (obsolete)

.. 194230.3.4 Enumerations

.. 195630.3.5 Application API for Java (obsolete)

.. 200730.4 ActiveX Integration

.. 200730.4.1 Prerequisites

.. 200830.4.2 Adding the ActiveX Controls to the Toolbox

.. 201030.4.3 Integration at Application Level

.. 201230.4.4 Integration at Document Level

.. 201530.4.5 ActiveX Integration Examples

.. 202830.4.6 Command Reference

.. 204730.4.7 Object Reference

31 Appendices 2070

.. 207131.1 XSLT and XQuery Engine Information

.. 207131.1.1 XSLT 1.0

.. 207131.1.2 XSLT 2.0

.. 207331.1.3 XSLT 3.0

.. 207431.1.4 XQuery 1.0

.. 207731.1.5 XQuery 3.1

.. 207931.2 XSLT and XPath/XQuery Functions

.. 208031.2.1 Altova Extension Functions

.. 216831.2.2 Miscellaneous Extension Functions

.. 218631.3 Datatypes in DB-Generated XML Schemas

.. 218631.3.1 ADO

27Altova XMLSpy 2024 Enterprise Edition

.. 218731.3.2 MS Access

.. 218831.3.3 MS SQL Server

.. 218831.3.4 MySQL

.. 218931.3.5 ODBC

.. 219031.3.6 Oracle

.. 219131.3.7 Sybase

.. 219231.4 Datatypes in DBs Generated from XML Schemas

.. 219231.4.1 MS Access

.. 219331.4.2 MS SQL Server

.. 219531.4.3 MySQL

.. 219731.4.4 Oracle

.. 220031.5 Technical Data

.. 220031.5.1 OS and Memory Requirements

.. 220031.5.2 Altova Engines

.. 220131.5.3 Unicode Support

.. 220131.5.4 Internet Usage

.. 220231.6 License Information

.. 220231.6.1 Electronic Software Distribution

.. 220331.6.2 Software Activation and License Metering

.. 220431.6.3 Altova End-User License Agreement

Index 2205

28 About XMLSpy and This Documentation

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1 About XMLSpy and This Documentation

Altova XMLSpy 2024 Enterprise Edition is the most advanced XML and JSON editor available for designing,
editing, and debugging enterprise-class applications involving JSON, XML, XML Schema, XSLT, XQuery,
SOAP, WSDL, Web services, OOXML, and XBRL technologies. XMLSpy runs on Windows 10, Windows 11,
and Windows Server 2016 or newer. XMLSpy is available in 64-bit and 32-bit versions and as part of the value-
priced Altova MissionKit tool suite.

This documentation is organized into the following main sections:

· A tutorial to get you started
· Descriptions of XMLSpy features, organized by technology or XMLSpy-specific feature
· Descriptions of menu commands
· A programmers' reference
· Appendices , which include information about XMLSpy's (i) XSLT and XQuery engines, and (ii)

Altova's XPath/XQuery extension functions

Last updated: 8 April 2024

36

1193

1572

2070

https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/missionkit

© 2018-2024 Altova GmbH

New Features 2024 29About XMLSpy and This Documentation

Altova XMLSpy 2024 Enterprise Edition

1.1 New Features 2024

Version 2024r2

· An XBRL Report Package is a single ZIP file that contains an XBRL or iXBRL report together with its
supporting documents. Support has been added for the new report package file types: .xbri and .xbr.

· Report package files can be opened in Text View , Grid View , and Browser View , and
instance can be validated.

· Settings for report packages provide options for handling the files in XMLSpy.
· A new XBRL validation option enables you to select which set of additional EBA filing rules to use

for validation.
· Verification of XML signatures has been enhanced to provide signature verification details and ignore

certificate errors. This enables you to verify signatures created with old certificates and to find out
which signature is unverified, if any, in a document that has multiple signatures.

· New YAML conformance types have been added to enable the display and editing of YAML
documents . Their default file extensions are .yaml and .yml.

· Text View now supports the hierarchical viewing and intelligent editing of YAML documents .
· You can define the pretty-printing format of YAML documents in the Options dialog .
· YAML documents can be validated against JSON schemas .
· JSON Schemas can be generated from YAML documents .
· YAML instance documents can be generated JSON Schemas .
· YAML documents can be converted to and from JSON instance documents .
· The dialog to assign a schema to a document has been enhanced to now also directly install and

assign schema packages. The feature is available in the following commands: File | New ,
DTD/Schema | Assign DTD , and DTD/Schema | Assign Schema .

· In the context menu of a Main Window tab , a new command enables you to directly open the
containing archive of the active file if the file is part of a zip archive. The archive is opened in Archive
View .

· Database support has been extended to SQLite 3.45, MariaDB 11.2, MySQL 8.2 and 8.3,
PostgreSQL 16.

· Eclipse support has been updated to cover the following versions: 2024-03; 2023-12; 2023-09; 2023-
06.

Version 2024

· A new AI-Assistant (Window | AI-Assistant) offers Artificial Intelligence help with various XMLSpy
tasks. After you enter your OpenAI API key in the Options dialog , you can access the AI-Assistant
to request AI help with your XML-related task or your XMLSpy-related question.

· In Grid View, in addition to being able to set up sibling nodes to be displayed into sibling groups of
100, 1k, or 10k nodes, you can also specify that sibling nodes be displayed without grouping.

· Support has been added for the Markdown text format and the .md file extension . Text View

supports the editing of Markdown files with syntax highlighting . When a text with Markdown
formatting is switched from Text View to Browse View , the Markdown formatting is converted to
simple HTML formatting and the document is rendered in Browse View as an HTML Page.

· The HTTP output window now supports the saving and direct loading of HTTP requests.
· Images in XML Schema and JSON Schema diagrams and documentation can now be generated

in SVG format—additionally to them being available for generation in PNG format.
· Database support has been extended to SQLite 3.38.5.

139 155 316

1555

1550

411

722

722

725

1521 1521

723

726

729

730

1194

1285 1286

114

318

990

1074

1562

1561

207

1516

1535

316

316

761

1306 1308

990

https://www.xbrl.org/Specification/report-package/REC-2023-09-22/report-package-REC-2023-09-22.html

30 About XMLSpy and This Documentation New Features 2024

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Eclipse support has been updated to cover the following versions: 2023-09; 2023-06; 2023-03; 2022-
12.

1.1.1 Version 2023

Version 2023r2

· The Help system has been reorganized to provide Online Help by default, with an option to use the
locally installed PDF user manual as the alternative default.

· Grid View has been enhanced with Split Views . This provides you with two views of a document
that you are editing. As a result you can see and edit different parts of a long document side-by-side—
instead of having to scroll a single view to refer to another part of the document.

· Settings have been added to define network settings .
· Database support has been extended to: PostGreSQL 15.1, Microsoft SQL Server 2022.

Version 2023

· You can select a classic, light, or dark theme for the application. When a theme is active, its text
display can be formatted separately for document type and view in the Options dialog .

· An XMLSpy theme can also be selected for XMLSpy integrations in Eclipse and Visual Studio .
· The new Altova SchemaManager component enables you to install commonly used DTDs and XML

Schemas and integrate them for use with XMLSpy and other Altova products. You can access the
Schema Manager dialog via the menu command Tools | XML Schema Manager .

· You can now choose Microsoft Edge WebView2 as the browser to be used in Browser View . This
is the newer alternative to using Internet Explorer as the browser engine in Browser View .

· If you are using the newer Microsoft Edge WebView2 browser engine for Browser View , then you
can use the browser engine's developer tools to debug and test your HTML code.

· Inline XBRL validation has an option to check the document's conformance with the European Single
Electronic Format (ESEF) Reporting Manual. The option is an Inline XBRL setting in the Options
dialog .

· The HTTP Output Window has been enhanced with a log pane and information about proxy
settings .

· Database support has been extended to: SQLite 3.38.5.
· Eclipse support has been updated to cover the following versions: 2022-09; 2022-06; 2022-03; 2021-

12.

1.1.2 Version 2022

Version 2022r2

· An application-wide setting enables the pretty-printing of XML and JSON documents to be switched
on automatically when these are loaded in Text View.

· In the Options dialog , you can specify the default treatment of files when they are opened in
XMLSpy. This treatment will apply to files which have an extension that is not among those for which
treatment has been defined.

1074

1565

1561

169

1558

990

1562

1513

1074 1069

420

1494

1528

316

316

316

1551

123 761

762

990

1074

1521

1516

https://www.esma.europa.eu/sites/default/files/library/esma32-60-254_esef_reporting_manual.pdf
https://www.esma.europa.eu/sites/default/files/library/esma32-60-254_esef_reporting_manual.pdf

© 2018-2024 Altova GmbH

New Features 2024 31About XMLSpy and This Documentation

Altova XMLSpy 2024 Enterprise Edition

· When generating sample XML documents from a schema, you can specify the nesting level up to
which non-mandatory elements will be generated .

· Conversion of an XML Schema to a JSON Schema now supports the definition of types within a
JSON object. This is an alternative to defining the type by referencing it.

· Images that are stored as Base64-encoded strings in XML and JSON documents can be saved
as images. This feature is available in both the Text View (see for XML , for JSON) and Grid
View (see for XML , for JSON) of these documents.

· The Project Window now has a toolbar to quickly access frequently used project commands.
· When you hover over an image file that has been placed in a project folder (of the Project Window), a

preview of the image is displayed.
· Eclipse support has been updated to the most recent versions: 2021-12, 2021-09; 2021-06; 2021-

03.
· Visual Studio support has been extended to version 2022 (64-bit).
· Support for C++ and C# code generation has been extended to Visual Studio 2022 and .NET 6.
· Database support has been extended to: PostGreSQL 14.1, SQLite 3.37.2, MariaDB 10.6.5,

MySQL 8.0.28.

Version 2022

· Support for BSON schema editing .
· Support for conversion of XBRL data to OIM formats and validation of OIM xBRL documents as

XBRL documents.
· For JSON Schemas of version draft-2019-09 and later, a schema component can both reference

another schema definition as well as contain its own local definitions. This is different than it was in
earlier definitions, where either a reference or local definitions were allowed, but not both. JSON
Schema View has been updated for handling such extended references .

· Whitespace handling has been improved.
· Grid View has been enhanced so that when you scroll down a document, a header bar is displayed

that will contain ancestor nodes of the node currently displayed at the top of Grid View.
· Limits for the number of validation messages to display can be set separately for errors, warnings,

and XBRL inconsistencies.
· Exit mode options enable you to choose how unsaved changes and open documents are handled

when XMLSpy exits.
· In the XPath/XQuery Window, you can load/save XPath/XQuery snippets from/to an XQuery file.

This provides flexibility in reusing XPath/XQuery expressions and snippets.
· New Altova extension functions to access schema information : Unix Time (or Epoch Time)

functions .
· Database support has been extended to: PostGreSQL 13, IBM DB2 11.5, and MySQL 8.0.25.
· Eclipse support has been updated so that it now covers the following versions: 2021-09; 2021-06;

2021-03; 2020-12.

1.1.3 Version 2021

Version 2021r3

· Support for JSON Schemas has been extended to versions 2020-12 and 2019-09.
· Eclipse support has been extended so that it now covers the following versions: 2021-03, 2020-12;

2020-09; 2020-06.
· The Grid View of XML documents and JSON documents has been enhanced and improved.

1296

1410

322 646

327 655

196 196

116

1074

1069

990

690

888 888

663 670

336

155

1526

1514

575

2120

2100

990

1074

652

1074

https://www.altova.com/manual/en/xmlspyenterprise/2024.2/xsxml_gridview.html
https://www.altova.com/manual/en/xmlspyenterprise/2024.2/xsjson_gridview.html

32 About XMLSpy and This Documentation New Features 2024

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Version 2021r2

· The Grid View of XML documents has been enhanced with a number of new features.
· Commands and settings related to the Grid View of XML documents have also been reorganized for

ease of use: see Grid View Settings and the Options dialog .
· Settings of the Grid View of JSON documents have been reorganized for ease of use: see Grid

View Settings and the Options dialog .
· The Grid View of DTD documents has been enhanced with new features.
· The new drag overlay feature in XML Grid View and JSON Grid View provides valuable

information that facilitates the use of drag-and-drop in Grid View.
· New functionality to easily and quickly add XML fragments and JSON fragments from external

sources.
· In Grid View, additional components (such as XML comments) can be given component-specific

formatting . Each component type will then be displayed in Grid View with the formatting assigned
to it. So, comments, for example, can be displayed with a yellow highlight in Grid View.

· A new feature to validate documents as you edit can be toggled on/off.
· Eclipse support has been extended so that it now covers the following versions: 2020-12; 2020-09;

2020-06; 2020-03.

Version 2021

· An XBRL Taxonomy Manager tool, which enables you to easily install, upgrade, and manage
taxonomies for use with XMLSpy.

· The JSON menu offers the following JSON Grid View enhancements: select a Grid View component
and insert an item before or after it; move the selected Grid View component up/down or left/right;
remove all comment from the document.

· New JSON Grid View features: (i) the context menu has been simplified; (ii) the grid can be
zoomed ; (iii) multiple sibling components can be expanded/collapsed together ; (iv) cells
containing strings can have their reading direction set to right-to-left (useful for languages with this
reading direction, such as Arabic and Hebrew); the Copy command has been enhanced.

· JSON Schema Validation takes the $id property into consideration.

· New Altova extension functions to access schema information .
· Eclipse support has been extended so that it now covers: 2020.06; 2020.03; 2019.12; 2019.09.

1.1.4 Version 2020

Version 2020 Release 2

· Files that are being edited are backed up automatically and can be restored in case of an
unexpected program termination. You can set whether to run automatic backups and with what
frequency.

· The Validate on Edit feature flags validation and well-formed errors as you type in Text View and
JSON Grid View . This feature can be switched on/off in the program options , as well as via a
toolbar icon.

· In Schema View , the Go to Type Definition command in various context menus enables you to
jump to a component's type definition (simple or complex).

330

330

207 1521

660

207 1521

436

181 183

338 703

1537

1275

1074

774

1281

204

156 156

204

663

2120

1074

137

1514

334 334

165 1514

213 239

© 2018-2024 Altova GmbH

New Features 2024 33About XMLSpy and This Documentation

Altova XMLSpy 2024 Enterprise Edition

· New JSON Grid View options enable you: (i) to determine whether filters and formulas are saved to
an application-wide JSON metadata file automatically, on request, or never, and (ii) to specify the
location of this JSON metadata file. The metadata file can be used subsequently to apply the stored
filters and formulas on the associated JSON files across multiple instances of XMLSpy, thus providing
portability of filters and formulas. (Note: Removed in version 2021r2.)

· JSON Grid View : The context menu provides commands (i) to collapse all unselected components,
and (ii) to remove all comments from the document including, optionally, formulas (which are stored as
comments).

· JSON Grid View : Improved Find functionality.
· Settings to specify handling of whitespace in Inline XBRL .
· New methods for code generation.

Version 2020

· JSON Grid View provides additional editing features: (i) automatic type detection, (ii) in-cell
commands, (iii) XQuery filters for modifying the view, and (iv) XQuery formulas for generating additional
output from JSON data.

· Validation and editing support for JSON Lines and JSON Comments .
· In JSON Grid View images can be displayed and charts can be created and displayed .
· The Options dialog (Tools | Options) provides settings for JSON Grid View and for pretty-printing

JSON documents in Text View. (Note: Moved to the Grid View Settings dialog and the Pretty Printing
section of the Options dialog.)

· A XULE validator and XULE processor have been added. XULE is a query language for XBRL instance
documents. See the section XBRL > XULE for an overview of the new XULE features.

· A XULE Window enables you to interactively query XBRL instance documents.
· Editing help for XULE documents .
· Multiple Inline XBRL documents can be processed as a set—as opposed to, previously, processing

each document separately.
· The Evaluator and Expression Builder of the XPath/XQuery Window have been re-designed for ease

of use.
· The XPath Debugger functionality of the XPath/XQuery Window has been enhanced with a

number of new features: (i) Watch expressions, (ii) improved interface for better overview, and (iii) more
powerful analytics. As a result of these new features, it is even easier for you to test and debug
XPath/XQuery expressions against XML and JSON files.

· Previously, the default editing view of files with different filetypes was selected in the Options dialog .
The default editing view can now, additionally, be chosen directly in the editing view itself .

· Support for the integration of XMLSpy in Visual Studio has been extended to Visual Studio 2019.
· Support for the integration of XMLSpy in Eclipse has been extended to Eclipse 4.11 and 4.12.

193

204

660

1551

660

654

196 198

1513

874

877

874

816

558

567 121

1516

135

1069

1074

34 About XMLSpy and This Documentation Windows File Paths

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1.2 Windows File Paths

File paths in Windows
File paths given in this documentation will not be the same for all operating systems. You should note the
following correspondences:

· (My) Documents folder: Located by default at the following locations. Example files are located in a
sub-folder of this folder.

Windows 7/8/10/11 C:\Users\<username>\Documents

· Application folder: The Application folder is the folder where your Altova application is located. The path
to the Application folder is, by default, the following.

Windows 7/8/10/11 C:\Program Files\Altova\

32-bit version on 64-bit OS C:\Program Files (x86)\Altova\

Note: XMLSpy is also supported on Windows Server 2016 or newer.

© 2018-2024 Altova GmbH

About RaptorXML Server 35About XMLSpy and This Documentation

Altova XMLSpy 2024 Enterprise Edition

1.3 About RaptorXML Server

Altova RaptorXML(+XBRL) Server (also called Raptor or RaptorXML for short) is Altova's third-generation, hyper-
fast XML (and XBRL) processor. It has been built to optimally utilize the latest standards and parallel computing
environments. It can be used on multiple platforms, and takes advantage of today’s ubiquitous multi-core
computers to deliver lightning fast processing of XML and XBRL data.

RaptorXML is available in two editions:

· RaptorXML Server, which can be accessed over a network and can transform multiple files at a time.
· RaptorXML+XBRL Server edition, which can be accessed over a network, can transform multiple files at

a time, and additionally supports XBRL validation.

RaptorXML can be run from the command line and has interfaces for COM, Java, .NET, and Python. A Raptor
server can also be run from within the XMLSpy interface .

Altova website: XML validation server, XML validator

1016

https://www.altova.com/raptorxml
https://www.altova.com/raptorxml

36 XMLSpy Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2 XMLSpy Tutorial

This tutorial provides an overview of XML and takes you through a number of key XML tasks. In the process you
will learn how to use some of XMLSpy's most powerful features.

The tutorial is divided into the following parts:

· XMLSpy Interface , which helps you to familiarize yourself with the applications's graphical user
interface (GUI).

· Creating an XML Schema . You will learn how to create an XML Schema in XMLSpy's intuitive
Schema View, how to create complex content models using drag-and-drop mechanisms, and how to
configure Schema View.

· Using Schema View features to create complex and simple types, global element references, and
attribute enumerations.

· Learning how to navigate schemas in Schema View, and how to generate documentation of
schemas .

· Creating an XML document . You will learn how to assign a schema for an XML document, edit an
XML document in Grid View and Text View, and validate XML documents using XMLSpy's built-in
validator.

· Transforming an XML file using an XSLT stylesheet . This involves assigning an XSLT file and
carrying out the transformation using XMLSpy's built-in XSLT engines.

· Working with XMLSpy projects , which enable you to easily organize your XML documents.

Installation and configuration
This tutorial assumes that you have successfully installed XMLSpy on your computer and received a free
evaluation key-code, or are a registered user. The evaluation version of XMLSpy is fully functional but limited to
a 30-day period. You can request a regular license from our secure web server or through any one of our
resellers.

Tutorial example files
The tutorial files are available in the application folder:

C:\Documents and Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Tutorial

The Examples folder contains various XML files for you to experiment with, while the Tutorial folder contains

all the files used in this tutorial.

The Template folder in the application folder (typically in C:\Program Files\Altova) contains all the XML

template files that are used whenever you select the menu option File | New. These files supply the necessary
data (namespaces and XML declarations) for you to start working with the respective XML document
immediately.

37

48

63

76

76

83

104

108

© 2018-2024 Altova GmbH

XMLSpy Interface 37XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

2.1 XMLSpy Interface

In this section of the tutorial, you will start XMLSpy and get to know the interface.

Starting XMLSpy
To start XMLSpy, double-click the XMLSpy icon on your desktop or use the Start | All Programs menu to
access the XMLSpy program. XMLSpy is started with no documents open in the interface. Open XMLSpy now.

Overview of the interface
The default view of the XMLSpy interface is structured into three vertical areas (figure below). These three areas
contain, from left to right: (i) the Project and Info windows; (ii) the Main and Output windows; and (iii) the Entry
Helper windows. Look at the Project window. It will contain the Examples project, which is opened by default
when you start XMLSpy for the first time.

Given below are key points that will help you to understand the layout of the interface and the functions of its
various components. The sub-sections of this first part of the tutorial will help you get familiar with the interface.

Document bar in the Main window: When multiple documents are open, each document is displayed in a
tab in the document bar of the Main window (see figure). Clicking a tab makes that document the active
document. You can scroll document tabs by clicking the arrows on the right hand side of the document bar.
Open two or more files (for example, from the Examples project), and check how the tabs work.

Document editing views: The active document can be viewed in one of multiple applicable editing views. For
example:

38 XMLSpy Tutorial XMLSpy Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· An XML (.xml) document can be viewed in Text View, Grid View, Authentic View, and Browser View,
but cannot be viewed in other views, such as Schema View.

· An XML Schema (.xsd) document, on the other hand can be viewed in Text View, Grid View, Schema
View, and Browser View, but not in Authentic View.

The following views are available: Text View , Grid View , Schema View , WSDL View , XBRL
View , Authentic View , Archive View , and Browser View .

Entry helpers: The entry helper windows change according to the kind of the active document (for example,
XML or XSD or CSS or WSDL) and according to the currently active document view (for example, Text View or
Schema View). The entry helpers enable you to quickly and correctly edit the active document by providing
context-sensitive editing support.

2.1.1 The Views

In this part of the tutorial you will learn: (i) to switch between document editing views, and (ii) to change the
default editing view of a particular document type.

Switching between document views
When you open a document it will open in the view that has been set as the default view for that type of
document. Open a document as follows:

1. Click the command File | Open.
2. Browse for the file AddressFirst.xsd, which is located in the C:\Documents and

Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Tutorial folder, select it, and

click Open. The file opens in Schema View.
3. Switch among the various views by clicking the view tabs at the bottom of the Main window (Text View,

Grid View, etc). You will be able to view the XML Schema document in Text View, Grid View, Schema
View, and Browser View.

4. You can also change views by selecting the view you want from the options in the View menu. Try
switching the view of the AddressFirst.xsd document using the View menu commands.

5. Close the document (via File | Close).

Changing the default view of a document type
All documents with the .xsd extension will open by default in Schema View. You can change the default

opening view of any type of document in the Options dialog. Let us do this for .xsd documents now.

1. Click the command Tools | Options and go to the File Types section (screenshot below).
2. In the File Types pane, scroll down to .xsd and select it (highlighted in screenshot).

3. In the Default View pane, select Text View.

139 155 213 290

302 598 890 316

© 2018-2024 Altova GmbH

XMLSpy Interface 39XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

4. Click OK.
5. Click the File | Open command, and open the file AddressFirst.xsd. The file opens in Text View.

6. Switch to Schema View to see the file in this view, then close the file (File | Close).
7. Go back to the Options dialog (Tools | Options), and, in the File Types section, change the default

view of .xsd files back to Schema View.

Note: In the File Types section of the Options dialog (screenshot above), you can change the default view of
any of the listed file extensions. A new file extension can be added to the list via the Add New File
Extension button.

2.1.2 The Windows

By default, the various windows are located around the Main window (see screenshot below) and are organized
into the following window groups:

· Project window
· Info window
· Entry helpers (various, depending on the type of document currently active)
· Output windows: Messages, Charts, XPath, XSL Outline, Find in Files, Find in Schemas, Find in XBRL

40 XMLSpy Tutorial XMLSpy Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In this section, you will learn how to turn on and off the display of window groups and how to move windows
around the screen. Being able to manage the display of windows well will be useful when you need more space
within the interface.

Switching the display of window groups on and off
Window groups (Project Window, Info Window, Entry Helpers, Output Windows) can be displayed or hidden by
toggling them on and off via the commands in the Window menu. A displayed window group can also be
hidden by right-clicking its title bar and selecting the command Hide. A hidden window can only be displayed
via the Window menu.

Open any XML file in the C:\Documents and Settings\<username>\My

Documents\Altova\XMLSpy2024\Examples\Tutorial folder, and practise using these basic commands till

you are familiar with the way the commands work. For more information about displaying and hiding window
groups, see the section, XMLSpy Interface .

Saved status and backup status
By default, XMLSpy backs up unsaved documents at intervals of five seconds. Each file's tab at the bottom of
the Main Window provides information via indicator symbols about the file's saved/unsaved status and its
backup status. You should be aware of the meanings of these indicators since you will come across them
constantly during your work. See the Automatic Backup of Files section for information about these
indicators.

113

137

© 2018-2024 Altova GmbH

XMLSpy Interface 41XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Moving windows around the screen
An individual window can either float free of the interface or be docked within it. A window can also be docked
as a tab within a window group (window groups are explained above). For example, the screenshot below
shows the Components entry helper in Schema View, which has three tabbed windows: the Globals window,
Namespaces window, and Identity Constraints window.

A window can be made to float or dock using one of the following methods in any view:

· Double-click the title bar of the window. If docked, the window will now float. If floating, the window will
now dock in the last position in which it was docked.

· Right-click the title bar of a window and choose the required command (Floating or Docking).
· Drag the window (using its title bar as a handle) out of its docked position so that it floats. Drag a

floating window (by its title bar) to the location where it is to be docked. Two sets of blue arrows
appear. The outer set of four arrows enables docking relative to the application window (along the top,
right, bottom, or left edge of the GUI). The inner set of arrows enables docking relative to the window
over which the cursor is currently placed. Dropping a dragged window on the button in the center of the
inner set of arrows (or on the title bar of a window) docks the dragged window as a tabbed window
within the window in which it is dropped.

To float a tabbed window, double-click its tab. To drag a tabbed window out of a group of tabbed windows, drag
its tab.

To practise moving windows around open any XML Schema file from the C:\Documents and

Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Tutorial folder, and, while in

Schema View, try the methods described above till you are able to move windows around the interface
comfortably.

2.1.3 Menus and Toolbars

In this section of the tutorial, you will quickly learn about the main features of the menus and toolbars of
XMLSpy.

42 XMLSpy Tutorial XMLSpy Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menus
There are two menu bars: (i) a default menu that is displayed when no document is open, and (ii) the full
XMLSpy application menu, which is displayed as soon as a document is open. Do the following:

1. Close all open documents with the menu command File | Close All. You will see the default menu.
2. Open the AddressFirst.xsd file by clicking its name from the list of most recently opened files

located at the bottom of the File menu. When the file opens in Schema View, the menu will change to
the full XMLSpy application menu.

The menus are organized primarily according to function, and a command in a menu is enabled only when it
can be executed at the cursor point or for a selection in the current view of the active document. Do the
following to understand the factors that determine whether a menu command is enabled or disabled:

1. Click the Schema Design menu. Notice that the Save Diagram, Configure View, and Zoom
commands are disabled (screenshot below).

2. Click in a blank space outside the menu to make the menu disappear. Then click the Display

Diagram icon located to the left of the element component. This takes you to the Content Model
View of Schema View (the second of Schema View's two views; the first is Schema Overview). If you
check the Schema Design menu now, you will see that the Save Diagram, Configure View, and
Zoom commands have been enabled. They are enabled only in the Content Model View of Schema
View, not in the Schema Overview of Schema View, nor in any other view. Note also that only XML
Schema files can be opened in Schema View.

3. An XML Schema file is also an XML file, so it is displayed as an XML file in Text View and Grid View,
and all menu commands that apply to XML files will be enabled in these views. Compare commands in
the Edit menu (whether they are enabled or not) in Schema View and Text View.

4. Next compare commands in the XML | Insert menu (enabled or disabled) in Text View and Grid View.
The commands in this menu are enabled only in Grid View.

For descriptions of all the menu commands, see the User Reference section of the user documentation.

Toolbars
The display of toolbars varies according to the current view. The application's default settings provide the correct
toolbars for each view and will be different for each view. However, you can customize toolbars in the Toolbars
tab of the Customize dialog (Tools | Customize | Toolbars, screenshot below).

1193

© 2018-2024 Altova GmbH

XMLSpy Interface 43XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Now practise moving toolbars around the GUI. Click the handle of a toolbar and drag the toolbar to any desired
location in the GUI. (The toolbar handle is indicated by the dotted vertical line at the left of each toolbar; see
screenshot below.)

Try dragging a toolbar to the following locations: (i) another line in the toolbar area; (ii) left or right of another
toolbar; (iii) the middle of the Main window; (iv) docked to the left or right side of the application window (for this
to happen, the grab handle must be placed above the left or right border of the application window).

After you have finished, close the file AddressFirst.xsd.

2.1.4 Text View Settings

In this section, you will learn how to set up a "pretty-printed" document and how to use bookmarks while
editing. When a document is pretty-printed it is displayed in Text View so that each lower level in the XML
hierarchy is indented deeper than the previous level (see screenshot below). Bookmarks enable you to mark
document positions that you wish to return to quickly.

44 XMLSpy Tutorial XMLSpy Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Pretty-printing
Pretty-printing involves two steps: (i) setting up pretty-printing, (ii) applying pretty-printing.

1. Open the file CompanyFirst.xml, which is in the C:\Documents and Settings\<username>\My

Documents\Altova\XMLSpy2024\Examples\Tutorial folder.

2. Switch to Text View if Text View is not the default starting view of XML documents.
3. Select the menu command View | Text View Settings to open the Text View Settings dialog

(screenshot below).

© 2018-2024 Altova GmbH

XMLSpy Interface 45XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

4. In the Tabs pane, decrease the Tab size to 3. Leave the default selection of the Insert Tabs radio
button as it is. This will cause the pretty-printing indent to be a tab (rather than spaces) and each
tab will have a width of three spaces. Click OK when done.

5. Click the menu command Edit | Pretty-Print. This applies pretty printing. The document display will be
reset with the new tab values.

6. Open the Text View Settings dialog again (View | Text View Settings) and, in the Visual Aid pane,
switch on the end-of-line markers.

7. In Text View, go to the end of any line and delete the end-of-line marker so that the next line jumps up
a line.

8. Switch to Grid View and back again to Text View.
9. Click the menu command Edit | Pretty-Print. The document will be pretty-printed, and the the end-of-

line marker you deleted will be reinstated.

Note: If, in the Pretty-printing section of the Options dialog (Tools | Options | Pretty-printing), you
uncheck the Use Indentations check box and pretty-print, then all lines will begin without any
indentation.

Bookmarking
Bookmarks are placed in a bookmark margin on the left of lines you wish to mark. You can then quickly move
up and down through the bookmarks in your document.

1. In the Text View Settings dialog (View | Text View Settings, screenshot above) ensure that the
Bookmarks Margin option in the Margins pane is selected. Click OK when done.

140

1521

46 XMLSpy Tutorial XMLSpy Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. In Text View of the file CompanyFirst.xml, place the cursor anywhere in a line you wish to bookmark,

then select the menu command Edit | Insert/Remove Bookmark. The line will be bookmarked and
indicated by a blue bookmark in the bookmark margin (see screenshot below).

3. Create a bookmark on another line in the same way as in Step 2.

4. Press F2 (or the command Edit | Go to Next Bookmark) to go down the document to the next
bookmark. Press Shift+F2 (or the command Edit | Go to Previous Bookmark) to go up the
document to the previous bookmark. Repeat either or both commands as many times as you like.

5. Place the cursor in one of the bookmarked lines and select the menu command Edit | Insert/Remove
Bookmark. The bookmark is removed.

6. Save and close the file. No bookmark information is saved with the file. Reopen the file to check this.

2.1.5 Application Options

Because XMLSpy is so densely packed with features, there are a number of options that you can set and
which can significantly affect various aspects of your work. So it would be very beneficial for you in the long
term to be aware of the application settings that you can change to suit your work requirements and working
style. These settings are accessed in the Options dialog (screenshot below), which you open via the menu
command Tools | Options .

1513

© 2018-2024 Altova GmbH

XMLSpy Interface 47XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

The settings are organized in sections, listed in the left-hand pane. We suggest you look through each section
to get an idea of what settings are available. In the list below, we have drawn attention to settings that affect
some commonly used features. For descriptions of all settings, go to the documentation of the Options
dialog . After you change a setting, click OK to save the change to the registry and to close the dialog. The
Apply button causes changes to be displayed in currently open documents.

File
Automatic backup (of files you are editing) can be switched on/off. Validate on on Edit performs well-formed
checks and validation checks as you type. If this disturbs you, you can switch off this feature, and perform well-
formed checks and validation checks when you are ready.

File types
Set the default view by file type. You can select the view you are most comfortable with for each type of
document.

View
In the XMLSpy title bar, show either just the file name or the entire file path. Note that you can see the file path
if you hover over the file's name in the file tab at the bottom of the Main Window.

Fonts and Colors
You can set up the fonts, their sizes, and the colors of text and other components. There are separate settings
for each view.

1513

48 XMLSpy Tutorial XML Schemas: Basics

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2.2 XML Schemas: Basics

An XML Schema describes the structure of an XML document. An XML document can be validated against an
XML Schema to check whether it conforms to the requirements specified in the schema. If it does, it is said to
be valid; otherwise it is invalid. XML Schemas enable document designers to specify the allowed structure
and content of an XML document and to check whether an XML document is valid.

The structure and syntax of an XML Schema document is complex, and being an XML document itself, an XML
Schema must be valid according to the rules of the XML specification. In XMLSpy, Schema View enables you
to easily build valid XML Schemas by using graphical drag-and-drop techniques. The XML Schema document
you construct is also editable in Text View and Grid View, but is much easier to create and modify in Schema
View.

Objective
In this section of the tutorial, you will learn how to edit XML Schemas in Schema View. Specifically, you will
learn how to do the following:

· Create a new schema file
· Define namespaces for the schema
· Define a basic content model
· Add elements to the content model using context menus and drag-and-drop
· Configure the Content Model View

After you have completed creating the basic schema, you can go to the next section of the tutorial , which
teaches you how to work with the more advanced features of XML Schema in XMLSpy. This advanced section
is followed by a section about schema navigation and documentation in XMLSpy.

Commands used in this section
In this section of the tutorial, you will use Schema View exclusively. The following commands are used:

Display Diagram (or Display Content Model View). This icon is located to the left of all
global components in Schema Overview. Clicking the icon causes the content model of
the associated global component to be displayed.

2.2.1 Creating a New XML Schema File

To create a new XML Schema file:

1. Select the menu option File | New. The Create new document dialog opens.

63

76

© 2018-2024 Altova GmbH

XML Schemas: Basics 49XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

2. In the dialog, select the XSD (XML Schema v1.0) entry (the document description and the list in the
window might vary from that in the screenshot) and confirm with OK. An empty schema file appears in
the Main Window in Schema View.

3. In the Schema Design toolbar click the XSD 1.0 mode button (see screenshot below) so that Schema
View is in XSD 1.0 editing mode.

4. You are prompted to enter the name of the root element.

5. Double-click in the highlighted field and enter Company. Confirm with Enter. Company is now the root

element of this schema and is created as a global element. The view you see in the Main Window
(screenshot below) is called the Schema Overview. It provides an overview of the schema by displaying
a list of all the global components in the top pane of the Main Window; the bottom pane displays the
attributes and identity constraints of the selected global component. (You can view and edit the
content model of individual global components by clicking the Display Diagram icon to the left of that
global component.)

50 XMLSpy Tutorial XML Schemas: Basics

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6. In the Annotations field (ann) of the Company element, enter the description of the element, in this

case, Root element.
7. Click the menu option File | Save, and save your XML Schema with any name you like

(AddressFirst.xsd, for example).

The colored-circle symbols in the file's tab indicate the file's backup status. See Automatic Backup of Files
for a description of these indicators.

2.2.2 Defining Namespaces

XML namespaces are an important issue in XML Schemas and XML documents. An XML Schema document
must reference the XML Schema namespace and, optionally, it can define a target namespace for the XML
document instance. As the schema designer, you must decide how to define both these namespaces
(essentially, with what prefixes.)

In the XML Schema you are creating, you will define a target namespace for XML document instances. (The
required reference to the XML Schema namespace is created automatically by XMLSpy when you create a new
XML Schema document.)

To create a target namespace:

1. Select the menu option Schema Design | Schema Settings. This opens the Schema Settings dialog
(screenshot below).

137

© 2018-2024 Altova GmbH

XML Schemas: Basics 51XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

2. Click the Target Namespace radio button, and enter http://my-company.com/namespace. In XMLSpy,

the namespace you enter as the target namespace is created as the default namespace of the XML
Schema document and displayed in the list of namespaces in the bottom pane of the dialog.

3. Confirm with the OK button.

Note the following:

· The XML Schema namespace is automatically created by XMLSpy and given a prefix of xs:.

· When the XML document instance is created, it must have the target namespace defined in the XML
Schema for the XML document to be valid.

2.2.3 Defining a Content Model

In Schema Overview, you have already created a global element called Company. This element is to contain one

Address element and an unlimited number of Person elements. This then is the Company element's content

model. Global components that may have content models are: elements, complexTypes, and element groups.
In XMLSpy, the content model of a global component is displayed in the Content Model View of Schema View.

To view and edit the content model of a global component, click the Display Diagram icon located to the
left of the global component.

52 XMLSpy Tutorial XML Schemas: Basics

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In this section, you will create the content model of the Company element.

Creating a basic content model
To create the content model of the Company element:

1. In Schema Overview, click the Display Diagram icon of the Company element. This displays the

content model of the Company element (screenshot below), which is currently empty. Alternatively, you

can double-click the Company entry in the Components entry helper to display its content model.

2. A content model consists of compositors and components. The compositors specify the relationship
between two components. At this point of the Company content model, you must add a child

compositor to the Company element in order to add a child element. To add a compositor, right-click

the Company element. From the context menu that appears, select Add Child | Sequence.

(Sequence, Choice, and All are the three compositors that can be used in a content model.)

© 2018-2024 Altova GmbH

XML Schemas: Basics 53XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

This inserts the Sequence compositor, which defines that the components that follow must appear in
the specified sequence.

3. Right-click the Sequence compositor and select Add Child | Element. An unnamed element
component is added.

4. Enter Address as the name of the element, and confirm with Enter.

5. Right-click the Sequence compositor again, select Add Child | Element. Name the newly created
element component Person.

54 XMLSpy Tutorial XML Schemas: Basics

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You have so far defined a schema which allows for one address and one person per company. We
need to increase the number of Person elements.

6. Right-click the Person element, and select Unbounded from the context menu. The Person element

in the diagram now shows the number of allowed occurrences: 1 to infinity.

Alternatively, in the Details Entry Helper, you can edit the minOcc and maxOcc fields to specify the

allowed number of occurrences, in this case 1 and unbounded, respectively.

Adding additional levels to the content model structure
The basic content model you have created so far contains one level: a child level for the company element which

contains the Address and Person elements. Now we will define the content of the Address element so it

contains Name, Street, and City elements. This is a second level. Again we need to add a child compositor to

the Address element, and then the element components themselves.

Do this as follows:

1. Right-click the Address element to open the context menu, and select Add Child | Sequence. This

adds the Sequence compositor.
2. Right-click the Sequence compositor, and select Add Child | Element. Name the newly created

element component Name.

© 2018-2024 Altova GmbH

XML Schemas: Basics 55XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Complex types, simple types, and XML Schema data types
Till this point, we have not explicitly defined any element type. Click the Text tab to display the Text View of
your schema (listing below). You will notice that whenever a Sequence compositor was inserted, the
xs:sequence element was inserted within the xs:complexType element. In short, the Company and Address

elements, because they contain child elements, are complex types. A complex type element is one which
contains attributes or elements.

<xs:element name="Company">
 <xs:annotation>
 <xs:documentation>Root element</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Person"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Simple type elements, on the other hand, contain only text and have no attributes. Text can be strings, dates,
numbers, etc. We want the Name child of Address to contain only text. It is a simple type, the text content of

which we want to restrict to a string. We can do this using the XML Schema data type xs:string.

To define the Name element to be of this datatype:

1. Click the Schema tab to return to Schema View.
2. Click the Name element to select it.

3. In the Details Entry Helper, from the dropdown menu of the type combo box, select the xs:string

entry.

Note that both minOcc and maxOcc have a value of 1, showing that this element occurs only once.

56 XMLSpy Tutorial XML Schemas: Basics

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The text representation of the Name element is as follows:

<xs:element name="Name" type="xs:string"/>

Note: A simple type element can have any one of several XML Schema data types. In all these cases, the
icon indicating text-content appears in the element box.

2.2.4 Adding Elements with Drag-and-Drop

You have added elements using the context menu that appears when you right-click an element or compositor.
You can also create elements using drag-and-drop, which is quicker than using menu commands. In this
section, you will add more elements to the definition of the Address element using drag-and-drop, thus
completing this definition.

To complete the definition of the Address element using drag-and-drop:

1. Click the Name element of the Address element, hold down the Ctrl key, and drag the element box with

the mouse. A small "plus" icon appears in the element box, indicating that you are about to copy the
element. A copy of the element together with a connector line also appears, showing where the
element will be created.

2. Release the mouse button to create the new element in the Address sequence. If the new element

appears at an incorrect location, drag it to a location below the Name element.

3. Double-click in the element box, and type in Street to change the element name.

4. Use the same method to create a third element called City. The content model should now look like

this:

© 2018-2024 Altova GmbH

XML Schemas: Basics 57XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

The Address element has a sequence of a Name, a Street, and a City element, in that order.

2.2.5 Configuring the Content Model View

This is a good time to configure the Content Model View. We want to configure the view so that an element's
type is displayed in the element's box. Do this as follows:

1. Select the Content Model View of any component (by clicking its Content Model View icon).
2. When in Content Model View, the menu command Schema Design | Configure View is enabled.

Select the command to display the Schema Display Configuration dialog (screenshot below).

58 XMLSpy Tutorial XML Schemas: Basics

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. In the Element tab (see screenshot above), click the Append icon, and select Type (see
screenshot) to add this property descriptor line to element boxes.

4. In the Single Line Settings pane, select Hide line if no value. This hides the description of the datatype
in the element box if the element does not have a datatype (for example, if the element is a complex
type). In the screenshot below, notice that the type descriptor line appears for the Name, Street, and
City elements, which are simple types of type xs:string, but not for the complex type elements. This is
because the Hide Line If No Value toggle is selected.

© 2018-2024 Altova GmbH

XML Schemas: Basics 59XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

5. In the Single Line Settings pane, select the Always Show Line radio button.
6. Click OK to confirm the changes.

Notice that the descriptor line for the data type is always shown—even in element boxes of complex
types, where they appear without any value.

Note the following:

· The property descriptor lines are editable, so values you enter in them become part of the element
definition.

· The settings you define in the Schema display configuration dialog apply to the schema documentation
output as well as the printer output.

2.2.6 Completing the Basic Schema

You have defined the content of the Address element. Now you need to define the content of the Person

element, which must contain the following simpleType child elements: First, Last, Title, PhoneExt, and

Email. All these elements must be mandatory, except Title, and they must occur in the order just specified.

All should be of type xs:string except PhoneExt, which must be of type xs:integer and limited to two digits.

To create the content model for Person, do the following:

60 XMLSpy Tutorial XML Schemas: Basics

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1. Right-click the Person element to open the context menu, and select Add Child | Sequence. This

inserts the Sequence compositor.
2. Right-click the Sequence compositor, and select Add Child | Element.
3. Enter First as the name of the element, and press the Tab key. This automatically places the cursor

in the type field.

4. Select the xs:string entry from the dropdown list or enter it into the Type field.

5. Use the drag-and-drop method to create four more elements. Name them Last, Title, PhoneExt, and

Email, respectively.

© 2018-2024 Altova GmbH

XML Schemas: Basics 61XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Note: You can select multiple elements by holding down the Ctrl key and clicking each of the required
elements. This makes it possible to, e.g., copy several elements at once.

Making an element optional
Right-click the Title element and select Optional from the context menu. The frame of the element box

changes from solid to dashed; this is a visual indication that an element is optional.

In the Details Entry Helper, you will see that minOcc=0 and maxOcc=1, indicating that the element is optional.

Alternatively to using the context menu to make an element optional, you can set minOcc=0 in order to make

the element optional.

Limiting the content of an element
To define the PhoneExt element to be of type xs:integer and have a maximum of two digits, do the following:

62 XMLSpy Tutorial XML Schemas: Basics

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1. Double-click in the type field of the PhoneExt element, and select (or enter) the xs:integer entry from

the dropdown list (see screenshot below).

2. The items in the Facets entry helper change at this point. In the Facets entry helper, double-click in
the maxIncl field and enter 99. Confirm with Enter. This specifies that phone extensions can have

values from 0 to 99.

3. Select File | Save to save the schema changes.

Note the following

· Selecting an XML Schema datatype that is a simple type (for example, xs:string or xs:date)

automatically changes the content model to simple in the Details entry helper (content = simple).

· Adding a compositor to an element (sequence, choice, or all), automatically changes the content
model to complex in the Details entry helper (content = complex).

· The schema described above is available as AddressFirst.xsd in the Tutorial folder of your XMLSpy

application folder.

© 2018-2024 Altova GmbH

XML Schemas: Advanced 63XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

2.3 XML Schemas: Advanced

Now that you have created a basic schema, we can move forward to a few advanced aspects of schema
development.

Objective
In this section, you will learn how to:

· Work with complex types and simple types , which can then be used as the types of schema
elements.

· Create global elements and reference them from other elements.
· Create attributes and their properties, including enumerated values.

You will start this section with the basic AddressFirst.xsd schema you created in the first part of this tutorial.

Commands used in this section
In this section of the tutorial, you will use Schema View exclusively. The following commands are used:

Display Diagram (or Display Content Model View). This icon is located to the left of all
global components in Schema Overview. Clicking the icon causes the content model of
the associated global component to be displayed.

Display All Globals. This icon is located at the top left-hand corner of the Content Model
View. Clicking the icon switches the view to Schema Overview, which displays all global
components.

Append. The Append icon is located at the top left-hand corner of the Schema Overview.
Clicking the icon enables you to add a global component.

2.3.1 Working with Complex Types and Simple Types

Having defined the content model of an element, you may decide you want to reuse it elsewhere in your
schema. This might happen, for example, if you want to define a content model for addresses in the US and the
UK. Some components of the two address formats are common, for example, the street and city components.
Other components, however, are different. A sensible strategy, therefore, would be to reuse, in each address
content model (US and UK), the common components, and complete each content model with the components
that are specific to it (such as ZIP in the US and postal code in the UK). In order to do this, we can create the
common components as a global complex type (or, alternatively, each common component as a global
element), and reuse the global complex type (or the global elements) in the content model of each address
type.

In this section, you will work with global complex types. A complex type is a type definition for elements that
contain other elements and/or attributes. You will first create a complex type at the global level and then import
it into a content model and extend it. You will learn about global elements later in this tutorial.

63

71

73

64 XMLSpy Tutorial XML Schemas: Advanced

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Creating a global complex type
The basic Address element that we defined (containing Name, Street, and City elements) can be reused in

various address formats. So let us create this element definition as a complex type, which can be reused.

To create a global complex type:

1. In the Content Model View, right-click the Address element.

2. In the context menu that now appears, select Make Global | Complex type. A global complex type
called AddressType is created, and the Address element in the Company content model is assigned

this type. The content of the Address element is the content model of AddressType, which is

displayed in a yellow box. Notice that the datatype of the Address element is now AddressType.

3. Click the Display All Globals icon. This takes you to the Schema Overview, in which you can view
all the global components of the schema.

4. Click the Expand icons for the element and complexType entries in the Components entry helper so

that their respective schema constructs are displayed. The Schema Overview now displays two global
components: the Company element and the complex type AddressType. The Components Entry Helper

also displays the AddressType complex type.

5. Click on the Content Model View icon of AddressType to see its content model (screenshot

below). Notice the shape of the complex type container.

© 2018-2024 Altova GmbH

XML Schemas: Advanced 65XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

6. Click the Display All Globals icon to return to the Schema Overview.

Extending a complex type definition
We now want to use the global AddressType component to create two kinds of country-specific addresses. For

this purpose we will define a new complex type based on the basic AddressType component, and then extend

that definition.

Do this as follows:

1. Switch to Schema Overview. (If you are in Content Model View, click the Display All Globals icon .)

2. Click the Append icon at the top left of the component window. The following menu opens:

3. Select ComplexType from the menu. A new line appears in the component list, and the cursor is set
for you to enter the component name.

4. Enter US-Address and confirm with Enter. (If you forget to enter the hyphen character "-" and enter a

space, the element name will appear in red, signalling an invalid character.)

66 XMLSpy Tutorial XML Schemas: Advanced

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Click the Content Model View icon of US-Address to see the content model of the new complex

type. The content model is empty (see screenshot below).
6. In the Details entry helper, click the base combo box and select the AddressType entry.

The Content Model View now displays the AddressType content model as the content model of US-

Address (screenshot below).

© 2018-2024 Altova GmbH

XML Schemas: Advanced 67XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

7. Now we can extend the content model of the US-Address complex type to take a ZIP Code element.

To do this, right-click the US-Address component, and, from the context menu that appears, select

Add Child | Sequence. A new sequence compositor is displayed outside the AddressType box

(screenshot below). This is a visual indication that this is an extension to the element.

8. Right-click the new sequence compositor and select Add Child | Element.
9. Name the newly created element Zip, and then press the Tab key. This places the cursor in the value

field of the type descriptor line.
10. Select xs:positiveInteger from the dropdown menu that appears, and confirm with Enter.

68 XMLSpy Tutorial XML Schemas: Advanced

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You now have a complex type called US-Address, which is based on the complex type AddressType and

extends it to contain a ZIP code.

Global simple types
Just as the complex type US-Address is based on the complex type AddressType, an element can also be

based on a simple type. The advantage is the same as for global complex types: the simple type can be
reused. In order to reuse a simple type, the simple type must be defined globally. In this tutorial, you will define
a content model for US states as a simple type. This simple type will be used as the basis for another element.

Creating a global simple type
Creating a global simple type consists of appending a new simple type to the list of global components, naming
it, and defining its datatype.

To create a global simple type:

1. Switch to Schema Overview. (If you are in Content Model View, click the Display All Globals icon .)
2. Click the Append icon, and in the context menu that appears, select SimpleType.
3. Enter US-State as the name of the newly created simpleType.

4. Press Enter to confirm. The simple type US-State is created and appears in the list of simple types in

the Components Entry Helper (Click the expand icon of the simpleType entry to see it).

© 2018-2024 Altova GmbH

XML Schemas: Advanced 69XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

5. In the Details Entry Helper (screenshot below), place the cursor in the value field of restr and enter

xs:string, or select xs:string from the dropdown menu in the restr value field.

This creates a simple type called US-State, which is of datatype xs:string. This global component

can now be used in the content model of US-Address.

Using a global simple type in a content model
A global simple type can be used in a content model to define the type of a component. We will use US-State

to define an element called State in the content model of US-Address.

Do the following:

1. In Schema Overview, click the Component Model View icon of US-Address.

2. Right-click the lower sequence compositor and select Add Child | Element.
3. Enter State for the element name.

4. Press the Tab key to place the cursor in the value field of the type descriptor line.
5. From the drop-down menu of this combo box, select US-State.

70 XMLSpy Tutorial XML Schemas: Advanced

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The State element is now based on the US-State simple type.

Creating a second complex type based on AddressType
We will now create a global complex type to hold UK addresses. The complex type is based on AddressType,

and is extended to match the UK address format.

Do the following:

1. In Schema Overview, create a global complex type called UK-Address, and base it on AddressType

(base=AddressType).

2. In the Content Model View of UK-Address, add a Postcode element and give it a type of xs:string.

Your UK-Address content model should look like this:

© 2018-2024 Altova GmbH

XML Schemas: Advanced 71XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Note: In this section you created global simple and complex types, which you then used in content model
definitions. The advantage of global types is that they can be reused in multiple definitions.

2.3.2 Referencing Global Elements

In this section, we will convert the locally defined Person element to a global element and reference that global
element from within the Company element.

1. Click (Display All Globals) to switch to Schema Overview.

2. Click the Display Diagram icon of the Company element.

3. Right-click the Person element, and select Make Global | Element. A small link arrow icon appears

in the Person element, showing that this element now references the globally declared Person

element. In the Details Entry Helper, the isRef check box is now activated.

72 XMLSpy Tutorial XML Schemas: Advanced

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. Click the Display All Globals icon to return to Schema Overview. The Person element is now listed

as a global element. It is also listed in the Components Entry Helper.

5. In the Components Entry Helper, double-click the Person element to see the content model of the

global Person element.

© 2018-2024 Altova GmbH

XML Schemas: Advanced 73XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Notice that the global element box does not have a link arrow icon. This is because it is the referenced
element, not the referencing element. It is the referencing element that has the link arrow icon.

Note the following:

· An element that references a global element must have the same name as the global element it
references.

· A global declaration does not describe where a component is to be used in an XML document. It only
describes a content model. It is only when a global declaration is referenced from within another
component that its location in the XML document is specified.

· A globally declared element can be reused at multiple locations. It differs from a globally declared
complex type in that its content model cannot be modified without also modifying the global element
itself. If you change the content model of an element that references a global element, then the content
model of the global element will also be changed, and, with it, the content model of all other elements
that reference that global element.

2.3.3 Attributes and Attribute Enumerations

In this section, you will learn how to create attributes and enumerations for attributes.

Defining element attributes

1. In the Schema Overview, click the Person element to make it active.

2. Click the Append icon , in the top left of the Attributes/Identity Constraints tab group (in the lower
part of the Schema Overview window), and select the Attribute entry.

74 XMLSpy Tutorial XML Schemas: Advanced

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. Enter Manager as the attribute name in the Name field.
4. Use the Type combo box to select xs:boolean.

5. Use the Use combo box to select required.

6. Use the same procedure to create a Programmer attribute with Type=xs:boolean and Use=optional.

Defining enumerations for attributes
Enumerations are values allowed for a given attribute. If the value of the attribute in the XML instance document
is not one of the enumerations specified in the XML Schema, then the document is invalid. We will create
enumerations for the Degree attribute of the Person element.

Do the following:

© 2018-2024 Altova GmbH

XML Schemas: Advanced 75XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

1. In the Schema Overview, click the Person element to make it active.

2. Click the Append icon in the top left of the Attributes window, and select the Attribute entry.
3. Enter Degree as the attribute name, and select xs:string as its type.

4. With the Degree attribute selected, in the Facets Entry Helper, click the Enumerations tab (see

screenshot).

5. In the Enumerations tab, click the Append icon .
6. Enter BA, and confirm with Enter.

7. Use the same procedure to add two more enumerations: MA and PhD.

8. Click on the Content Model View icon of Person.

The previously defined attributes are visible in the Content Model View. Clicking the expand icon
displays all the attributes defined for that element. This display mode and the Attributes tab can be
toggled by selecting the menu option Schema Design | Configure view, and checking and
unchecking the Attributes check box in the Show in diagram pane.

9. Click the Display all Globals icon to return to the Schema Overview.

Saving the completed XML Schema
Before saving your schema file, rename the AddressLast.xsd file that is delivered with XMLSpy to something

else (such as AddressLast_original.xsd), so as not to overwrite it. Save the completed schema with any

name you like (File | Save as). We recommend that you save it with the name AddressLast.xsd. This is

because the the XML file you will create in the next part of the tutorial will be based on the AddressLast.xsd
schema.

76 XMLSpy Tutorial XML Schemas: XMLSpy Features

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2.4 XML Schemas: XMLSpy Features

After having completed the XML Schema, we suggest you become familiar with a few navigation shortcuts
and learn about the schema documentation that you can generate from within XMLSpy. These are
described in the subsections of this section.

Commands used in this section
In this section of the tutorial, you will use Schema View exclusively. The following commands are used:

Display Diagram (or Display Content Model View). This icon is located to the left of all
global components in Schema Overview. Clicking the icon causes the content model of the
associated global component to be displayed.

2.4.1 Schema Navigation

This section shows you how to navigate Schema View efficiently. We suggest that you try out these navigation
mechanisms to become familiar with them.

Displaying the content model of a global component
Global components that can have content models are complex types, elements, and element groups. The
Content Model View of these components can be opened in the following ways:

· In Schema Overview, click the Display Diagram icon to the left of the component name.
· In either Schema Overview or Content Model View, double-click the element, complex type, or element

group in the Components Entry Helper (screenshot below). This displays the content model of that
component.

If you double-click any of the other global components (simple type, attribute, attribute group) in the
Components Entry Helper, that component will be highlighted in Schema Overview (since such a
component would not have a content model).

76

78

© 2018-2024 Altova GmbH

XML Schemas: XMLSpy Features 77XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

In the Components Entry Helper, the double-clicking mechanism works in both the Globals and Namespaces
tabs.

Going to the definition of a global element from a referencing element
If a content model contains an element that references a global element, you can go directly to the content
model of that global element or to any of its contained components by holding down Ctrl and double-clicking
the required element.

When the Last element is highlighted, all its properties are immediately displayed in the relevant entry helpers
and information window.

Going to the definition of a complex type
Complex types are often used as the type of some element within a content model. To go directly to the
definition of a complex type from within a content model, double-click the name of the complex type in the
yellow box (see mouse pointer in screenshot below).

This takes you to the Content Model View of the complex type.

78 XMLSpy Tutorial XML Schemas: XMLSpy Features

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: Just as with referenced global elements, you can go directly to an element within the complex type
definition by holding down Ctrl and double-clicking the required element in the content model that
contains the complex type.

2.4.2 Schema Documentation

XMLSpy provides detailed documentation of XML Schemas in HTML and Microsoft Word (MS Word) formats.
You can select the components and the level of detail you want documented. Related components are
hyperlinked in both HTML and MS Word documents. In order to generate MS Word documentation, you must
have MS Word installed on your computer (or network).

In this section, we will generate documentation for the AddressLast.xsd XML Schema.

Do the following:

1. Select the menu option Schema design | Generate documentation. This opens the Schema
Documentation dialog.

© 2018-2024 Altova GmbH

XML Schemas: XMLSpy Features 79XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

2. For the Output Format option, select HTML, and click OK.
3. In the Save As dialog, select the location where the file is to be saved and give the file a suitable name

(say AddressLast.html). Then click the Save button.

The HTML document appears in the Browser View of XMLSpy. Click on a link to go to the
corresponding linked component.

80 XMLSpy Tutorial XML Schemas: XMLSpy Features

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The diagram above shows the first page of the schema documentation in HTML form. If components
from other schemas have been included, then those schemas are also documented.

© 2018-2024 Altova GmbH

XML Schemas: XMLSpy Features 81XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

The diagram above shows how complex types are documented.

82 XMLSpy Tutorial XML Schemas: XMLSpy Features

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The diagram above shows how elements and simple types are documented.

You can now try out the MS Word output option. The Word document will open in MS Word. To use hyperlinks
in the MS Word document, hold down Ctrl while clicking the link.

© 2018-2024 Altova GmbH

XML Documents 83XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

2.5 XML Documents

In this section you will learn how to create and work with XML documents in XMLSpy. You will also learn how
to use the various intelligent editing features of XMLSpy.

Objective
The objectives of this section are to learn how to do the following:

· Create a new XML document based on the AddressLast.xsd schema.
· Specify the type of an element so as to make an extended content model for that element available to

the element during validation.
· Insert elements and attributes and enter content for them in Grid View and Text View using intelligent

entry helpers.
· Copy XML data from XMLSpy to Microsoft Excel; add new data in MS Excel; and copy the modified

data from MS Excel back to XMLSpy. This functionality is available in the Table Display of Grid View.
· Sort XML elements using the sort functionality of Table Display.
· Validate the XML document.
· Modify the schema to allow for three-digit phone extensions.

Commands used in this section
In this section of the tutorial, you will mostly use the Grid View and Text View, and in one section Schema
View. The following commands are used:

File | New. Creates a new type of XML file.

View | Text View. Switches to Text View.

View | Grid View. Switches to Enhanced Grid View.

XML | Display as Table. Displays multiple occurrences of a single element type at
a single hierarchic level as a table. This view of the element is called its Table
Display. The icon is used to switch between the Table Display and regular Grid View.

F7. Checks for well-formedness.

F8. Validates the XML document against the associated DTD or Schema.

Opens the associated DTD or XML Schema file.

2.5.1 Creating a New XML File

When you create a new XML file in XMLSpy, you are given the option of basing it on a schema (DTD or XML
Schema) or not. In this section you will create a new file that is based on the AddressLast.xsd schema you

created earlier in the tutorial.

To create the new XML file:

84 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1. Select the menu option File | New. The Create new document dialog opens.

2. Select Extensible Markup Language 1.0 and confirm with OK. The Choose Schema or DTD dialog
appears.

3. Click Assign Schema/DTD File.
4. In the dialog that appears, use either the Browse button or Window button to find the schema file.

(The Window button lists all files currently open in XMLSpy.) Select AddressLast.xsd (see Tutorial

introduction for location), and confirm with OK. An XML document containing the main elements
defined by the schema opens in the main window.

5. Click the Grid tab to select Grid View.
6. In Grid View, notice the structure of the document. Click on any element to reduce selection to that

element. Your document should look something like this:

36

© 2018-2024 Altova GmbH

XML Documents 85XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

7. Click on the icon next to Address, to view the child elements of Address. Your document should

look like this:

8. Select the menu option File | Save and save it in the Tutorial folder. Give your XML document a

suitable name (for example CompanyFirst.xml). Note that the finished tutorial file CompanyFirst.xml

is in the Tutorial folder, so you may need to rename it before you give that name to the file you have

created.

2.5.2 Specifying the Type of an Element

The child elements of Address are those defined for the global complex type AddressType (the content model

of which is defined in the XML Schema AddressLast.xsd shown in the Schema View screenshot below).

86 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

We would, however, like to use a specific US or UK address type rather than the generic address type. You will
recall that, in the AddressLast.xsd schema, we created global complex types for US-Address and UK-

Address by extending the AddressType complex type. The content model of US-Address is shown below.

In the XML document, in order to specify that the Address element must conform to one of the extended

Address types (US-Address or UK-Address) rather than the generic AddressType, we must specify the

required extended complex type as an attribute of the Address element.

We add this attribute of the Address element as follows:

1. In the XML document, right-click the Name element, and select Insert Before from the context menu
(see screenshot below).

2. A new element node named new_elem is added above the Name element (see screenshot below). Click

the element type to the left of the node's name and, in the menu that appears (screenshot below),
select the Attribute node type. The node type will be changed to the Attribute node type; however, the
name is still new_elem.

© 2018-2024 Altova GmbH

XML Documents 87XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

3. Double-click the node name and, in the entry helper popup that appears, select xsi:type.

4. Press the Tab key to move to the attribute's value field. A popup menus containing the available
xsi:type values is displayed (screenshot below). These values are the complex types that have been

defined for the Address element in the schema.

5. Select US-Address as the value of the xsi:type attribute.

Note: The xsi: prefix allows you to use special XML Schema related commands in your XML document

instance. Notice that the the namespace for the xsi: prefix was automatically added to the document

element when you assigned a schema to your XML file. In the above case, you have specified a type
for the Address element. See the XML Schema specification for more information.

2.5.3 Entering Data in Grid View

You can now enter data into your XML document. Do the following:

1. Double-click in the Name value field (or use the arrow keys) and enter US dependency. Confirm with

Enter.

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

88 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Use the same method to enter a Street and City name (for example, Noble Ave and Dallas).

3. Click the Person element and press Delete to delete the Person element. (We will add it back in the

next section of the tutorial.) After you do this, the entire Address element is highlighted.

4. Click on any child element of the Address element to deselect all the child elements of Address

except the selected element. Your XML document should look like this:

2.5.4 Entering Data in Text View

Text View presents the actual data and markup of XML files in an easy-to-follow structural layout, as well as
schema-related intelligent editing features.

Document layout
The document layout of Text View is defined in two locations:

Pretty-printing options
These settings are in the Pretty-printing section of the Options dialog (screenshot below). When you set an
option, its effect can be immediately seen in the preview pane at bottom. Set up the pretty-printing options as
you like. While you are editing in Text View, you might find that the document's layout becomes unstructured,
especially after you copy-paste blocks of text. Whenever you want to obtain a neat and hierarchical layout,
simply click the Edit | Pretty Print command.

© 2018-2024 Altova GmbH

XML Documents 89XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Text View settings
The Text View Settings dialog (screenshot below) not only provides additional layout options but also switches
on/off useful Text View features such as line numbering and folding margins. Access the Text View Settings
dialog with the View | Text View Settings command.

90 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The screenshot below shows the current XML file in Text View with features switched on according to the
settings in the dialog above.

On the left are the three margins: (i) the line number margin, (ii) the bookmark margin (containing two blue
bookmarks), and (iii) the source folding margin (which allows you to expand and collapse the display of XML
elements). Indentation guides are the light gray vertical lines that show the indentation of tags at the same
hierarchical level. Additionally visual aids are end-of-line markers and whitespace markers, which can be
switched on or off in the Visual Aid pane (see screenshot above).

Note: The Text View-related pretty-printing and bookmark features were covered in the earlier Text View
Settings section of this tutorial.

Editing in Text View
In this section, you will enter and edit data in Text View in order to become familiar with the features of Text
View.

Note: Since the Validate on Edit feature is switched on by default, any validation error created during editing
will be immediately flagged, with the error message/s being displayed in the Messages Window. Ignore
these errors and messages for now. If you do not want background validation, you can switch off
Validate on Edit in the Validation settings of the Options dialog . In the event you do this, note that
you can always validate your document at any time (described in the next section of this tutorial).

43

1514

93

© 2018-2024 Altova GmbH

XML Documents 91XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Do the following:

1. Select the menu item View | Text View, or click on the Text tab. You now see the XML document in
its text form, with syntax coloring.

2. Place the text cursor after the end tag of the Address element, and press Enter to add a new line.

3. Enter the less-than angular bracket < at this position. A dropdown list of all elements allowed at that
point (according to the schema) is displayed. Since only the Person element is allowed at this point, it

will be the only element displayed in the list.

4. Select the Person entry. The Person element, as well as its attribute Manager, are inserted, with the

cursor inside the value-field of the Manager attribute.

5. From the dropdown list that pops up for the Manager attribute, select true.

6. Move the cursor to the end of the line (using the End key if you like), and press the space bar. This
opens a dropdown list containing a list of attributes allowed at that point. Also, in the Attributes Entry
Helper, the available attributes are listed in red. The Manager attribute is grayed out because it has

already been used.

7. Select Degree with the Down arrow key, and press Enter. This opens another list box, from which you

can select one of the predefined enumerations (BA, MA, or PhD). (Enumerations are values that are

allowed by the XML Schema.)

92 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

8. Select BA with the Down arrow key and confirm with Enter. Then move the cursor to the end of the line

(with the End key), and press the space bar. Manager and Degree are now grayed out in the Attributes

Entry Helper.

9. Select Programmer with the Down arrow key and press Enter.

10. Enter the letter "f" and press Enter.

11. Move the cursor to the end of the line (with the End key), and enter the greater-than angular bracket >.

XMLSpy automatically inserts all the required child elements of Person. (Note that the optional Title

element is not inserted.) Each element has start and end tags but no content.

You could now enter the Person data in Text View, but let's move to Grid View to see the flexibility of moving

between views when editing a document.

Switching to Grid View
To switch to Grid View, select the menu item View | Grid View, or click the Grid tab. See how the newly
added child nodes of Person are displayed.

© 2018-2024 Altova GmbH

XML Documents 93XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Now let us validate the document and correct any errors that the validation finds.

2.5.5 Validating the Document

XMLSpy provides two important checks of the XML document:

· A well-formedness check
· A validation check

Check Well-Formedness

Validate XML

Since the Validate on Edit feature is switched on by default, any validation error created during editing will be
immediately flagged, with the error message/s being displayed in the Messages Window. If you do not want
background validation, you can switch off Validate on Edit in the Validation settings of the Options dialog . In
the event you do this, note that you can always carry out well-formed checks and validation checks at any time
by invoking the respective command in the XML menu. This part of the tutorial shows you how to carry out
these checks.

Checking well-formedness
An XML document is well-formed if starting tags match closing tags, elements are nested correctly, and there
are no misplaced or missing characters (such as an entity without its semi-colon delimiter). You can do a well-
formedness check in any editing view. Check your document as follows:

1. Select Text View.
2. Select the menu option XML | Check Well-Formedness or press the F7 key. (Alternatively, you can

click the command's icon in the toolbar.) A message appears in the Messages window at the bottom
of the Main Window saying the document is well-formed.

1514

94 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Notice that the output of the Messages window has nine tabs, with the action's result always being displayed in
the active tab. So you could check well-formedness in Tab1, and switch to Tab2 for a validation check. If you do
not switch tabs, the new result overwrites the previous result in the active tab.

Note: This check does not check the the XML document for conformance with the schema. Schema
conformance is evaluated in the validity check.

Checking validity
An XML document is valid according to a schema if it conforms to the document structure and document
content specified in that schema. You can do a validity check in any editing view. Validate your document as
follows:

1. Select Grid View.
2. Select the menu option XML | Validate or press the F8 key. (Alternatively, you can click the

command's icon in the toolbar.) An error message appears in the Messages window saying the file is
not valid. Mandatory elements are expected after the City element in Address. If you check your

schema, you will see that the US-Address complex type (which you have set this Address element to

be via its xsi:type attribute) has a content model in which the City element must be followed by a

Zip element and a State element.

Fixing the invalid document
The point at which the document becomes invalid is highlighted in red, together with an error flag and a smart
fix . The invalid element in this case is the Address element. If you click the smart fix icon, you will see the

popup: Add missing element <Zip> with sample content. If you check the schema, you will find that the
Address/City element must be followed by the mandatory element Zip. To double-check this, select the City

element and look at the Siblings entry helper. You will notice that the Zip element is prefixed with an

exclamation mark, which indicates that the element is mandatory in the current context.

334

© 2018-2024 Altova GmbH

XML Documents 95XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

Now click the smart fix (see screenshot above). The Zip element will be added and will contain sample content

that makes the element valid. Enter the correct Zip code (say 04812 for Dallas). Look at the Siblings entry

helper again. It now shows that the State element is mandatory (it is prefixed with an exclamation mark). If you

select the State element, the entry helper options available for it become enabled (see screenshot below).

These are the actions to insert the State element after the element currently selected in the Main Window

(which is City) or to append State after all the sibling elements of City.

Since, in this case, both actions have the same effect, select either of the two actions. A State element is

added after City. Double-click inside the contents field of State and enter the state's name, Texas (screenshot

below). Notice that the Siblings entry helper now contains only grayed-out elements, indicating that there are
no more mandatory elements to add.

96 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Completing the document and revalidating
Let us now complete the document (by entering the remaining data of the first Person element) before
revalidating.

Do the following:

1. Click the value field of the element First, and enter a first name (say Fred). Then press Enter.

2. In the same way enter data for all the child elements of Person, that is, for Last, PhoneExt, and

Email. You can use the Tab key to move forward through the cells. Note that the value of PhoneExt

must be an integer with a maximum value of 99 (since this is the range of allowed PhoneExt values you

defined in your schema). Your XML document should then look something like this in Grid View:

3. Click again to check if the document is valid. A message appears in the Messages window stating
that the file is valid. The XML document is now valid against its schema.

© 2018-2024 Altova GmbH

XML Documents 97XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

4. Save the file with File | Save.

Note: An XML document does not have to be valid in order to save it. Saving an invalid document causes a
prompt to appear warning you that you are about to save an invalid document. You can select Save
anyway, if you wish to save the document in its current invalid state.

2.5.6 Adding Elements and Attributes

At this point, there is only one Person element in the document.

To add a new Person element, do the following:

1. Click the gray sidebar to the left of the Address element to collapse the Address element. This clears

up some space in the view.
2. Select the entire Person element by clicking on or below the name of the Person element in Grid

View. Notice that the Person element is now available in the Siblings entry helper.

3. Select the Person element in the Siblings entry helper and click either Insert After or Append. A new

Person element is appended (screenshot below).

98 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. When the Person element is selected, you will see, in the Children entry helper, this element's

available child attributes and elements. Double-click attributes and elements to add the same child
nodes as for the first Person element. When the focus in the Main Window changes from the Person

element to an added child element, you can add additional children of the Person element in one of

two ways: (i) Switch focus to the Person element (by selecting it) and adding a new child from the

Children entry helper; (ii) With the focus on the added child element, add a sibling child element from
the Siblings entry helper. In both entry helpers, child nodes of Person that have already been added

will be grayed out.

You could enter content for the child nodes of the Person element in normal Grid View, but let's switch

to the Table Display of Grid View since it is more suited to editing a structure with multiple
occurrences, such as Person.

© 2018-2024 Altova GmbH

XML Documents 99XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

2.5.7 Editing in Table Display

Grid View contains a special view called Table Display, which is convenient for editing elements that have
multiple occurrences. For example, the Person element has multiple occurrences (see screenshot below), so it

can be displayed as a table. To display such an element as a table, click the Table Display icon of the first
occurrence of the element. For example, in the screenshot below, the Table Display icon of the Person

elements is circled in green. (Alternatively, select the menu command XML | Display as Table or the
command's toolbar icon in the Grid View toolbar .)

When you click the Table Display icon, the Person element will be displayed as a table. In Table Display, the

child nodes of the element (its attributes and elements) are displayed as columns, while each Person element

is displayed as a row (see screenshot below).

Advantages of Table Display
Table Display provides the following advantages:

· You can drag-and-drop a column header to reposition entire columns relative to each other. In the
actual XML document, this translates to a change of the the relative position of child nodes of all
element occurrences (that correspond to the rows of the table).

· Tables—and, correspondingly, the element occurrences they represent—can be sorted (in ascending
or descending order) according to the contents of any column. Use the menu command XML |
Ascending Sort or Descending Sort for this.

· Additional rows (that is, element occurrences) can be appended or inserted quickly using commands
in the XML menu. The advantage is that not only is a new element added but all its children that are
represented by the columns of the table.

· You can copy-and-paste structured data to and from third party products, such as Microsoft Excel.
· The intelligent editing features of XMLSpy are available in Table Display also.

156

100 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Displaying an element with multiple occurrences as a table
To display the Person element type as a table, do te following:

1. Click the Table Display icon of the first occurrence of the Person element as described above.

2. Select the menu option View | Optimal Widths or the Optimal Widths icon in the Grid View
toolbar .

Note: Table Display can be toggled on/off for all elements that have multiple occurrences. However, child
elements that were displayed as tables will continue to be displayed as tables.

Entering content in Table Display
To enter content for the second Person element, double-click in each of the table cells in the second row, and

enter some data. The intelligent editing features are active also within cells of a table, so you can select
options from dropdown lists where available (for example, Boolean content and the enumerations of the Degree

attribute).

Dynamic validation
Note that, as defined in the schema, PhoneExt must be an integer from 0 to 99 in order for the file to be valid.

You can toggle on XMLSpy's function to validate while editing. When switched on, the file is validated each time
the focus switches to a new node. Try out dynamic validation as follows:

1. Toggle on the menu command XML | Validate on Edit.
2. Enter an invalid PhoneExt value (any value greater than 99), as shown in the screenshot below.

3. Press the Tab key. An error icon and a smart fix icon appear in the PhoneExt cell (see screenshot

below).
4. Hover over the error icon to see the validation-error message (screenshot below).

5. Click the smart fix icon and then the smart fix option that pops up. The invalid value will be substituted
with a valid value, and the error flag disappears.

Copying XML data to and from spreadsheet applications
When you are in Table Display, you can copy data as Tab-separated text so that it can be interchanged with
spreadsheet applications such as MS Excel. To copy data from your XML file, do the following:

156

© 2018-2024 Altova GmbH

XML Documents 101XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

1. Click on the Person element (see screenshot below). This selects the column headers as well as both

rows of the table.

2. Right-click inside the selection, and, in the context menu that appears, select the command Copy |
Copy as Tab-separated Text. Alternatively, press Ctrl+C.

3. Switch to an Excel worksheet, select the cell A1 and paste (Ctrl+V) the XML data. The data will be
entered as rows that correspond to the table structure in Table Display (see screenshot below).

4. Enter a new row of data in Excel as shown in the screenshot below. Make sure that you enter a three
digit number for the PhoneExt element (say, 444).

5. Mark the table data in Excel, excluding the column headers (the green frame in the screenshot below),
and copy it with Ctrl+C.

6. In XMLSpy make sure that the XML | Validate on Edit command is toggled on.
7. In the Table Display of your XML document in XMLSpy, select the Manager cell of the first row and

paste the clipboard contents with Ctrl+V. Your new table will look something like the screenshot
below.

8. The validation errors for the Boolean values have been caused by the casing difference between XML
and Excel. To fix these, apply the smart fixes of the respective table cells.

Sorting the table on the contents of a column
A table in Table Display can be sorted, in ascending or descending order, on any of its columns. We want to
sort the Person table on last name. Do this as follows:

1. Select the Last column by clicking its header.

102 XMLSpy Tutorial XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Select the menu option XML | Ascending Sort or click the Ascending Sort icon in the Grid View
toolbar . The column, and the whole table with it, is now sorted alphabetically. The column remains
highlighted.

Since the phone extension 444 is correct but invalid, what we need to do is modify the XML Schema

so that this number is valid. We will do this in the next section.

2.5.8 Modifying the Schema

Since we have a phone extension that is outside the range defined in the XML Schema (0 to 99), let's extend

the range to 999. Do this as described below.

1. In Grid View, select any of the PhoneExt cells (see screenshot below).

2. Select the menu option DTD/Schema | Go to definition or click the Go To Definition icon in the
Grid View toolbar . The associated schema, in this case AddressLast.xsd, is opened, and the

PhoneExt definition will be highlighted (screenshot below).

156

156

© 2018-2024 Altova GmbH

XML Documents 103XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

3. The element's maxIncl facet is 99 (see screenshot). Edit this value to 999, and then save the schema.

4. Go back to the XML document and validate it. It will be valid.
5. Save your file as CompanyLast.xml.

Note: The Tutorial folder of XMLSpy contains a file named CompanyLast.xml, which contains the same data

as the file you will have saved when you complete this tutorial.

104 XMLSpy Tutorial XSLT Transformations

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2.6 XSLT Transformations

Objective
To generate an HTML file from the XML file using an XSL stylesheet to transform the XML file. You should note
that a "transformation" does not change the XML file into anything else; instead a new output file is generated.
The word "transformation" is a convention.

Method
The method used to carry out the transformation is as follows:

· Assign a predefined XSL file, Company.xsl, to the XML document.

· Execute the transformation within the XMLSpy interface using one of the two built-in Altova XSLT
engines. (See note below.)

Commands used in this section
The following XMLSpy commands are used in this section:

XSL/XQuery | Assign XSL, which assigns an XSL file to the active XML document.

XSL/XQuery | Go to XSL, opens the XSL file referenced by the active XML document.

XSL/XQuery | XSL Transformation (F10), or the toolbar icon, transforms the active XML
document using the XSL stylesheet assigned to the XML file. If an XSL file has not been
assigned then you will be prompted for one when you select this command.

Note: XMLSpy has built-in XSLT engines for XSLT 1.0, 2.0, and 3.0. The correct engine is automatically
selected by XMLSpy on the basis of the version attribute in the xsl:stylesheet or xsl:transform

element. In this tutorial, we use an XSLT 3.0 stylesheet, so the XSLT 3.0 Engine will be selected
automatically when the XSL Transformation command is invoked.

2.6.1 Assigning an XSLT File

To assign an XSLT file to the CompanyLast.xml file:

1. Click the CompanyLast.xml tab in the main window so that CompanyLast.xml becomes the active

document, and switch to Text View.
2. Select the menu command XSL/XQuery | Assign XSL.
3. Click the Browse button, and select the Company.xsl file from the Tutorial folder. In the dialog, you

can activate the option Make Path Relative to CompanyLast.xml if you wish to make the path in the
XML document relative.

© 2018-2024 Altova GmbH

XSLT Transformations 105XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

4. Click OK to assign the XSL file to the XML document.
5. Switch to Grid View to see the assignment (screenshot below). An XML-stylesheet processing

instruction is inserted in the XML document that references the XSL file. If you activated the Make Path
Relative to CompanyLast.xml check box, then the path is relative; otherwise it is absolute (as in the
screenshot).

2.6.2 Transforming the XML File

To transform the XML document using the XSL file you have assigned to it:

1. Ensure that the XML file is the active document.
2. Select the menu option XSL/XQuery | XSL Transformation (F10) or click the command's icon in the

toolbar. This starts the transformation using the XSLT stylesheet referenced in the XML document. The
output document is displayed in Browser View; it has the name XSL Output.html. The HTML

document shows the Company/Address data in one block on the left, and the Company/Person data in

tabular form below.

106 XMLSpy Tutorial XSLT Transformations

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: Since the Company.xslt file is an XSLT 3.0 document, the built-in Altova XSLT 3.0 Engine is

automatically selected for the transformation. If the HTML output file is not generated, ensure that, in
the XSL section of the Options dialog (Tools | Options), the default file extension of the output file has
been set to .html. This ensures that the browser reads the output document correctly as an HTML file.

2.6.3 Modifying the XSL File

You can change the output by modifying the XSL document. For example, let's change the background-color of
the table in the HTML output from #ccccff to #99cc99. Do this as follows:

1. Click the CompanyLast.xml tab to make this document the active document.

2. Select the menu option XSL/XQuery | Go to XSL. The command opens the Company.xslt file that is

referenced in the XML document.
3. Find the start tag of the table element and then the element's bgcolor attribute (shown highlighted in

the screenshot below). Change the attribute's value from #ccccff to #99cc99.

© 2018-2024 Altova GmbH

XSLT Transformations 107XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

4. Select the menu option File | Save to save the change.
5. Click the CompanyLast.xml tab to make the XML file active.

6. Run the menu command XSL/XQuery | XSL Transformation; alternatively, press F10. A new XSL

Output.html file appears in Browser View, with a table that has the new background color (see

screenshot below).

7. Select the menu option File | Save, and save the output document as Company.html.

108 XMLSpy Tutorial Project Management

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2.7 Project Management

This section introduces you to the project management features of XMLSpy. After first describing the benefits of
organizing your XML files into projects, this section then shows you how to organize the files you have just
created into a simple project.

2.7.1 Benefits of Projects

The benefits of organizing your XML files into projects are listed below.

· Files can be grouped into folders on some common criterion. For example, you could group XML files
and XSD files into separate folders. You can create any hierarchy you like.

· Each folder has certain properties that you can set. For example, a folder of XML files can be assigned
a schema for validation. All the files in this project folder can then be validated in a batch against the
folder's schema file. If you change the project folder's schema assignment, then you can quickly run a
new batch validation. You can set several other useful folder properties, such as an XSLT file for batch
transformations with a single XSLT.

· Batch processing can be applied to specific folders or the project as a whole.
· A DTD or XML Schema can be assigned to specific folders, allowing validation of the files in that folder.
· XSLT files can be assigned to specific folders, allowing transformations of the XML files in that folder

using the assigned XSLT.
· The destination folders of XSL transformation files can be specified for the folder as a whole.

All the above project settings can be defined using the menu option Project | Properties. Project commands
are also available in context menus of the project and individual project folders. In the next section, you will
create a project using the Project menu.

Additionally, the following advanced project features are available:

· XML files can be placed under source control using the menu option Project | Source control | Add
to source control. (See the Source Control section for more information.)

· External folders on your network as well web folders can be added to projects. This allows all
the features of project folders, such as validation and transformations, to be applied to folders that are
on your network or on the Internet.

2.7.2 Building a Project

Having come to this point in the tutorial, you will have a number of tutorial-related files open in the Main
Window. You can group these files into a tutorial project. First you create a new project and then you add the
tutorial files into the appropriate sub-folders of the project.

Create a new project
Create a new project as follows:

1239

1254 1256

© 2018-2024 Altova GmbH

Project Management 109XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

1. Select the menu option Project | New Project. A new project folder called New Project is created in

the Project Window (screenshot below). The new project contains empty folders for typical categories
of XML files.

2. Click the CompanyLast.xml tab to make the CompanyLast.xml file the active file in the Main Window.

3. Select the menu option Project | Add Active and Related Files to project. Two files are added to the
project: CompanyLast.xml and AddressLast.xsd. The XML file is added to the XML subfolder because

it is the active file. The schema file is added to the DTD/Schemas folder because a reference to it is
contained in the XML file, making it a related file. Note that files referenced with processing
instructions, such as XSLT files, do not qualify as related files.

4. Select the menu option Project | Save Project and save the project under the name Tutorial.

Note: Folders (but not the project) each have a property named File extensions. This is a list of file
extensions separated by semi-colons (for example, xml;svg;wml). This list determines what files are

added to which folders when files are added to a project. For example, when active and related files are
added to a project, as done above, the File extensions properties of the folders determine into which
folders the added files will be placed.

Project and folder properties
Properties (such as the schema for validation and the XSLT for transformation) can be set not only on the entire
project, but also on individual folders. You can then carry out actions, such as validation and transformation, on
the entire project or individual folders. To carry out an action, right-click the project or folder, and select the
action you want to carry out from the context menu that appears.

Note the following points:

· A property that is set on a folder overrides the same property of the project.
· If a property is set on the project, it is applied to all folders that do not have the same property set.
· If an action is carried out on a project, it is applied to all applicable file types in all folders of the project.

For example, if a validation is carried out on a project, the validation is run on all XML files in all folders
of the project. In this case, the schema that has been set for the project is used for all validations,
except for XML files that are in folders which have the schema validation property set to some other
schema.

Adding files to the project
You can add other files to the project as well. Do this as follows:

110 XMLSpy Tutorial Project Management

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1. Click on any open XML file (.xml file extension) other than CompanyLast.xml to make that XML file the

active file. (If no other XML file is open, open one or create a new XML file.)
2. Select the menu option Project | Add Active File to Project. The XML file is added to the XML Files

folder on the basis of its .xml file type.

3. In the same way, add an HTML file and XSD file (say, the Company.html and AddressFirst.xsd files)

to the project. These files will be added to the HTML Files folder and DTD/Schemas folder,
respectively.

4. Save the project, either by selecting the menu option Project | Save Project, or by selecting any file
or folder in the Project Window and clicking the Save icon in the toolbar (or File | Save).

Note: Alternatively, you can right-click a project folder and select Add Active File to add the active file to
that specific folder.

Other useful commands
Here are some other commonly used project commands:

· To add a new folder to a project, select Project | Add Project Folder to Project, and insert the name
of the project folder.

· To delete a folder from a project, right-click the folder and select Delete from the context menu.
· To delete a file from a project, select the file and press the Delete key.

© 2018-2024 Altova GmbH

That's It 111XMLSpy Tutorial

Altova XMLSpy 2024 Enterprise Edition

2.8 That's It

If you have come this far, congratulations and thank you!

We hope that this tutorial has been helpful in introducing you to the basics of XMLSpy and that you will now be
able to carry out your XML work using XMLSpy as your editor. If you need more information about specific
features, please use the Index or Search functions of this manual. Note that you can also print the PDF version
of this tutorial. It is available as Tutorial.pdf in your XMLSpy application folder . 34

112 GUI and Environment

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3 GUI and Environment

This section describes:

· The application GUI , and
· The application environment .

The GUI section starts off by presenting an overview of the GUI and then goes on to describe each of the
various GUI windows in detail. It also shows you how to re-size, move, and otherwise work with the windows
and the GUI.

The Application Environment section points out the various settings that control how files are displayed and
can be edited. It also explains how and where you can customize your application. In this section, you will
learn where important example and tutorial files have been installed on your machine, and, later in the section,
you are linked to the Altova website, where you can explore the feature matrix of your application, learn about
the multiple formats of your user manual, find out about the various support options available to you, and
discover other products in the Altova range.

113

130

113

130

http://www.altova.com/

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 113GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

3.1 The Graphical User Interface (GUI)

The Graphical User Interface (GUI) consists of a Main Window and several sidebars (see illustration below). By
default, the sidebars are located around the Main Window and are organized into the following groups:

· Project Window
· Info Window
· Entry Helpers: Elements, Attributes, Entities, etc (depending upon the type of document currently

active)
· Output Windows: Messages, XPath/XQuery, XSL Outline, HTTP, Find in Files, Find in Schemas, Find

in XBRL, Charts

The main window and sidebars are described in the sub-sections of this section.

The GUI also contains a menu bar, status bar, and toolbars, all of which are described in the topic Menu Bar,
Toolbars, Status Bar .

Switching on and off the display of sidebars
Sidebar groups (Project Window, Info Window, Entry Helpers, Output Windows) can be displayed or hidden by
toggling them on and off via the commands in the Window menu. A displayed sidebar (or a group of tabbed
sidebars) can also be hidden by right-clicking the title bar of the displayed sidebar (or tabbed-sidebar group)
and selecting the command Hide.

If you close one of the Output Windows, you can get it back by clicking the menu command Window | Output
Windows.

128

114 GUI and Environment The Graphical User Interface (GUI)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Floating and docking the sidebars
An individual sidebar window can either float free of the GUI or be docked within the GUI. When a floating
window is docked, it docks into its last docked position. A window can also be docked as a tab within another
window.

A window can be made to float or dock using one of the following methods:

· Right-click the title bar of a window and choose the required command (Floating or Docking).
· Double-click the title bar of the window. If docked, the window will now float. If floating, the window will

now dock in the last position in which it was docked.
· Drag the window (using its title bar as a handle) out of its docked position so that it floats. Drag a

floating window (by its title bar) to the location where it is to be docked. Two sets of blue arrows
appear. The outer set of four arrows enables docking relative to the application window (along the top,
right, bottom, or left edge of the GUI). The inner set of arrows enables docking relative to the window
over which the cursor is currently placed. Dropping a dragged window on the button in the center of the
inner set of arrows (or on the title bar of a window) docks the dragged window as a tabbed window
within the window in which it is dropped.

To float a tabbed window, double-click its tab. To drag a tabbed window out of a group of tabbed windows, drag
its tab.

Auto-hiding sidebars
The Auto-hide feature enables you to minimize docked sidebars to buttons along the edges of the application
window. This gives you more screen space for the Main Window and other sidebars. Scrolling over a minimized
sidebar rolls out that sidebar.

To auto-hide and restore sidebars click the drawing pin icon in the title bar of the sidebar window (or right-click
the title bar and select Auto-Hide).

3.1.1 Main Window

The Main Window (screenshot below) is where you view and edit documents.

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 115GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

Files in the Main Window

· Any number of files can be opened and edited at once.
· Each open document has its own window and a tab (containing the document's file name) at the

bottom of the Main Window. To make an open document active, click its tab.
· If several files are open, some document tabs might not be visible for lack of space in the document

tabs bar. Document tabs can be brought into view by: (i) using the scroll buttons at the right of the
document tab bar, or (ii) selecting the required document from the list at the bottom of the Window
menu.

· When the active document is maximized, its Minimize, Restore, and Close buttons are located at
the right side of the Menu Bar. When a document is cascaded, tiled, or minimized, the Maximize,
Restore, and Close buttons are located in the title bar of the document window.

· When you maximize one file, all open files are maximized.
· Open files can be cascaded or tiled using commands in the Window menu.
· You can also activate open files in the sequence in which they were opened by using Ctrl+Tab or

Ctrl+F6.
· Right-clicking a document tab opens a context-menu with a selection of File commands, such as Print

and Close. Some useful commands: Copy Full Path copies the full path of the active file to the
clipboard. Open Containing Folder opens the containing folder in Windows Explorer (so saving you
the trouble of navigating to the folder). Open Containing Archive is available when the active file is
inside a zipped archive; the archive will be opened in Archive View .

Views in the Main Window
The active document can be displayed and edited in multiple views. The available views are displayed in a bar
above the document tabs (see illustration above), and the active view is highlighted. A view is selected by
clicking the required view button or by using the commands in the View menu.

The available views are either editing or browser views:

· Text View : An editing view with syntax-coloring for working directly with document code.
· Grid View : For structured editing. The document is displayed as a structured grid that can be

manipulated graphically. This view also contains a Table Display, which shows repeating elements in a
tabular format.

· Schema View : For viewing and editing XML Schemas.

1562

1562

318

1415

139

155

135

116 GUI and Environment The Graphical User Interface (GUI)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· WSDL View : For viewing and editing WSDL documents.
· Authentic View : For editing XML documents that are based on StyleVision Power Stylesheets in a

graphical interface.
· Browser View : An integrated browser view that supports both CSS and XSL stylesheets.

Note: The default view for individual file extensions can be customized in the Tools | Options dialog: in
the Default View pane of the File Types tab.

3.1.2 Project Window

A project is a collection of files that are related to each other in some way you determine. For example, in the
screenshot below, a project named Examples collects the files for various examples in separate example
folders, each of which can be further organized into sub-folders. Within the Examples project shown in the
screenshot, for instance, the Expense Report folder is further organized into sub-folders for XML, XSL, and
Schema files.

Note: The Project Window of XMLSpy will initially contain the application's default Examples project. To load
the default Examples project, go to the application's Examples folder in the (My) Documents folder ,

and double-click the file Examples.spp.

135

598

316

1513

34

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 117GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

Projects thus enable you to gather together files that are used together and to access them quicker.
Additionally, you can define schemas and XSLT files for individual folders, thus enabling the batch processing of
files in a folder.

Project operations
Commands for folder operations are available in the Project menu, and some commands are available in the
context menus of the project and its folders (right-click to access). A subset of Project menu commands,
because they are frequently used, are also available in the toolbar of the Project Window (screenshot below).

The toolbar commands are, from left: New Project, Open Project, Reload Project, Save Project, Add Active File
to Project, Select Active File, Expand All, Collapse All, Find. The names of these commands are self-
explanatory and are explained in the Project menu .

The key operations related to the Project Window are listed below.

· One project is open at a time in the Project Window. When a new project is created or an existing
project opened, it replaces the project currently open in the Project Window.

· After changes have been made to a project, the project must be saved (by clicking the Project | Save
Project command). A project with unsaved changes is indicated with an asterisk next to its name (see
screenshot above).

· The project has a tree structure composed of folders, files, and other resources. Such resources can
be added at any level and to an unlimited depth.

· Project folders are semantic folders that represent a logical grouping of files. They do not need to
correspond to any hierarchical organization of files on your hard disk.

· Folders can correspond to, and have a direct relationship to, physical directories on your file system.
We call such folders external folders, and they are indicated in the Project Window by a yellow folder
icon (as opposed to normal project folders, which are green). External project folders must be explicitly
synchronized by using the Refresh command.

· A folder can contain an arbitrary mix of file-types. Alternatively, you can define file-type extensions for
each folder (in the Properties dialog of that folder) to keep common files in one convenient place. When
a file is added to the parent folder, it is automatically added to the sub-folder that has been defined to
contain files of that file extension.

· When you hover over an image file that has been placed in a project folder, a preview of the image is
displayed (.png, .jpeg, .gif, .bmp, .tiff, and .ico formats). Double-click the image to open it in

the system's default image viewer/editor program.
· In the Project Window, a folder can be dragged to another folder or to another location within the same

folder, while a file can be dragged to another folder but cannot be moved within the same folder (within
which files are arranged alphabetically). Additionally, files and folders can be dragged from Windows
File Explorer to the Project Window.

· Each folder has a set of properties that are defined in the Properties dialog of that folder. These
properties include file extensions for the folder, the schema by which to validate XML files, the XSLT file
with which to transform XML files, etc.

· Batch processing of files in a folder is done by right-clicking the folder and selecting the relevant
command from the context menu (for example, Validate XML or Check Well-Formedness).

For a more detailed description of projects, see the section Projects .

Note: The display of the Project Window can be turned on and off in the Window menu.

1235

1009

118 GUI and Environment The Graphical User Interface (GUI)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3.1.3 Info Window

The Info Window (screenshot below) shows information about the element or attribute in which the cursor is
currently positioned. Information is available in the Info Window in Text View, Grid View,XBRL View, and
Authentic View.

The display of the Info Window can be turned on and off in the Window menu.

Note the following points:

· When an XSLT document is active, additional XSLT-specific information and commands are available in
the XSLT tab of the Info window. How to read the information and use the commands in the XSLT tab is
explained in the section XSLT and XQ | XSLT | XSL Outline .

· When a JSON document (instance or schema) is active, options for validation and intelligent editing
are available in the JSON tab of the Info window. See Validating JSON Documents for more
information.

· When an XML Schema document (.xsd file) is active, options for enabling extended validation are
available in the Schema tab of the Info window. How to set up extended validation is described in the
section, Schema Rules .

· When a XULE document is the active document, the XULE tab of the Info window provides an option to
select an XBRL taxonomy to use for information about the structure of an XBRL instance. The
taxonomy information is used for the Auto-Completion features of the XULE editor .

3.1.4 Entry Helpers

Entry helpers are an intelligent editing feature that helps you to create valid XML documents quickly. When you
are editing a document, the entry helpers display structural editing options according to the current location of
the cursor. The entry helpers get the required information from the underlying DTD, XML Schema, and/or
StyleVision Power Stylesheet, etc. If, for example, you are editing an XML data document, then the elements,
attributes, and entities that can be inserted at the current cursor position are displayed in the relevant entry
helpers windows.

The entry helpers that are available depend upon:

488

701

444

874

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 119GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

1. The k ind of document being edited. For example, XML documents will have different entry helpers than
XQuery documents: elements, attributes, and entities entry helpers in the former case, but XQuery
keywords, variables, and functions entry helpers in the latter case. The available entry helpers for each
document type are described in this documentation in the description of that document type.

2. The current view. Since the editing mechanisms in the different views are different, the entry helpers
are designed so as to be compatible with the editing mechanism of the current view. For example: In
Text View, an element can only be inserted at the cursor location point, so the entry helper is designed
to insert an element when the element is double-clicked. But in Grid View, an element can be inserted
before the selected node, appended after it, or added as a child node, so the Elements entry helper in
Grid View has three tabs for Insert, Append, and Add as Child, with each tab containing the elements
available for that particular operation.

A general description of entry helpers in each type of view is given in Editing Views . Further document-type-
related differences within a view are noted in the description of the individual document types, for example XML
entry helpers and XQuery entry helpers .

Note the following:

· You can turn the display of entry helpers on or off with the menu option Window | Entry Helpers.
· In Visual Studio .NET, entry helper windows have a prefix that is the application name.

3.1.5 Output Window: Messages

The Messages Window displays messages about actions carried out in XMLSpy as well as errors and other
output. For example, if an XML, XML Schema, DTD, or XQuery document is validated and is valid, a successful
validation message (screenshot below) is displayed in the Messages Window:

Otherwise, a message that describes the error (screenshot below) is displayed. Notice in the screenshot below
that there are links (black link text) to nodes and node content in the XML document, as well as links (blue link
text) to the sections in the relevant specification on the Internet that describe the rule in question. Clicking the
purple Def buttons opens the relevant schema definition in Schema View.

135

333 501

120 GUI and Environment The Graphical User Interface (GUI)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Messages Window is enabled in all views, but clicking a link to content in an XML document highlights that
node in the XML document in Text View. However, when an XML Schema has been validated in Schema View,
clicking a Def button does not change the view.

XML Validation smart fixes
Based on information in the schema, options for a smart fix are also suggested if validation was carried out in
Text View or Grid View. To view a list of smart fix options, click the Show Smart Fix button (see
screenshot above). A pane with suggested smart fix options appears in the Messages window (screenshot
below).

Note that errors in the Messages window are displayed one at a time. Also, errors of well-formedness (such as
mismatched start and end tags), if such exist, are displayed prior to validation errors being displayed. So the
Show Smart Fix button will be enabled only when a validation error is reached (after all well-formedness errors
have been corrected).

In the Smart Fix pane, select one of the suggested smart fixes and click either the Fix + Validate button or
the Fix button (see screenshot above). The invalid text in the XML document will be replaced with the selected
smart fix. Alternatively, you can double-click the smart fix you want. This action either fixes, or fixes and
validates, according to the option selected in the dropdown Options list (see screenshot above). The Fix +
Validate command is useful because when another validation is carried out after the fix it will pick up further
validation errors if there are any.

To hide the Smart Fix pane, click the Hide Smart Fix button (see screenshot above). For more details, see
the section Editing Views | Schema View | Validation and Smart Fixes .

277

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 121GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

Validating folders and files in the Project window
The Validate command (in the XML menu) is normally applied to the active document. But you can also apply
the command to a file, folder, or group of files in the active project. Select the required file or folder in the
Project Window (by clicking on it), and click XML | Validate XML or F8. Invalid files in a project will be
opened and made active in the Main Window, and the File is not valid error message will be displayed.

Note: You can also carry out the well-formedness check (Check Well-Formedness or F7) in the Project
window.

3.1.6 Output Window: XPath/XQuery

The XPath/XQuery Window (screenshot below) enables you to build, evaluate, and debug XPath and XQuery
expressions with respect to XML or JSON documents. (Features that enable JSON queries were introduced in
XPath/XQuery 3.1. See JSON Transformations with XSLT/XQuery .)

This section provides a brief overview of the main features of XPath/XQuery Window. For a detailed description
of how to work with XPath/XQuery Window, see the section XPath/XQuery Expressions .

Main features
The XPath/XQuery Window provides the following main features:

· Evaluation Mode: In Evaluation Mode, an XPath or XQuery expression is evaluated with respect to one
or more XML/JSON documents. The expression is entered in the Expression pane, and the result is
displayed in the adjoining Results pane. You can click nodes in the result to go to that node in the
XML or JSON document. See the section XPath/XQuery Expressions for details.

· Debug Mode: In Debug Mode, you can debug an XPath/XQuery expression as it applies to the
currently active XML document. You can set breakpoints and tracepoints, and go step-by-step through
the evaluation. At each step you can see the content of variables, as well as set custom Watch
expressions to check additional aspects of the evaluation. See the section Debugging the
Expression for details.

· Expression Builder: An Expression Builder provides entry helpers and information popups to help you
construct syntactically correct expressions. See the section Expression Builder for details.

· Support for multiple languages: You can switch language versions from XPath 1.0 to XPath 3.1 and
XQuery 3.1. The expression that you enter will be evaluated according to the rules of the selected
language.

1269

1268

705

558

558

567

575

122 GUI and Environment The Graphical User Interface (GUI)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Open and save expressions from/to file: You can save an XPath/XQuery expression, together with the
current settings of the window, to an XQuery file, and you can load expressions from an XQuery file.

· Auto-detection of file type (XML/JSON): The filetype of the current document (XML or JSON) is
automatically detected and the correct target-document mode is automatically set. If the scope is a
set of documents, you can manually select the target document type.

· Flexible scope for target documents: In the Where field, you can select whether the expression is
tested on the currently active file, all open files, the current project, or a folder.

· Options for the Result Window and Watch Window: You can define how items in the Results Window
and Watch Expressions Window are to be displayed.

· Results link directly to documents and document nodes: Lines in the Results pane contain links to the
relevant documents or document nodes. This enables you to go directly to specific nodes and check
data there.

· Debugger analytics: In Debug Mode, a wide range of analytical information is displayed. Additionally,
you can set custom expressions to check additional aspects of the evaluation.

For a detailed description of the XPath/XQuery Window features, see the section XPath/XQuery
Expressions , in which all the modes, icons, and functionality available in the toolbar are described..

3.1.7 Output Window: XSL Outline

The XSL Outline Window (screenshot below) lists all the templates and functions in an XSLT stylesheet, and,
optionally, in all included and imported XSLT stylesheets as well. The XSL Outline Window is located by default
docked with the Output Windows at the bottom of the XMLSpy window. It can be undocked, or docked along
another edge of the XMLSpy window.

The XSL Outline Window provides information about templates and functions in the stylesheet. This information
can be sorted and searched, and the window's toolbar contains commands that enable you to easily insert
calls to named templates and to set named templates as the starting point of transformations. How to work
with the XSL Outline Window is described in the section XSLT and XQuery | XSLT | XSL Outline | XSL Outline
Window .

567

558

489

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 123GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

Note: File-related information about the stylesheet and file-related commands are available in the XSLT tab of
the Info Window. How to use these commands is described in the section XSLT and XQuery | XSLT |
XSL Outline | Info Window .

3.1.8 Output Window: HTTP

in the HTTP output window (screenshot below), you can test HTTP commands: you can create and send an
HTTP request to a web server, and receive and check the response.

The HTTP output window has nine tabs (see screenshot below). You can store a separate request in each tab,
and switch between tabs. After creating a request in the window, you can send the request by clicking the
Send button. The response is displayed directly in the window.

The window consists of the following parts:
· At the top: (i) a combo box in which to select the HTTP method you want to use; (ii) an entry field for

the URL of the web server; (iii) buttons related to the execution of HTTP requests (Send, Import, and
Reset).

· A left-hand pane for creating the request .
· A right-hand pane for displaying information and logging information about the request.

For details about how to use the HTTP output window, see the section HTTP .

3.1.9 Output Window: Find in Files

The Find in Files Window (screenshot below) enables you to carry out find-and-replace operations quickly
within several documents at a time, and provides mechanisms that help you to quickly navigate among the
found instances. The results of each find-and-replace action are presented in one of the tabs numbered 1 to 9.
Clicking on a found item in the results takes you to that item in the Text View of that document.

492

762

761

124 GUI and Environment The Graphical User Interface (GUI)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Find criteria
There are two broad find criteria: (i) what to find, and (ii) where to look?

What to find: The string to find is entered in the Find What text box. If that string must match a whole word,
then the Match Whole Word check box must be clicked. For example, for the find string fit, with Match
Whole Word checked, only the word fit will match the find string; the fit in fitness, for example, would not.
You can specify whether casing is significant using the Match Case check box. If the text entered in the Find
What text box is a regular expression, then the Regular Expression check box must be checked. An entry

helper for regular expression characters can be accessed by clicking the button. The use of regular
expressions for searching is explained in the section, Find . The More button opens the Find in Files
dialog , where you can set advanced search conditions and actions. For more information, see Edit | Find in
Files .

Where to look: The search can be conducted in: (i) all the files that are open in the GUI; (ii) the files of the
current project; and (iii) the files of a selected folder. You can set additional conditions in the Find in Files
dialog (accessed by clicking More).

Replace with
The string with which the found string is to be replaced is entered in the Replace With text box. Note that if the
Replace With text box is empty and you click the Replace button, the found text will be replaced by an empty
string.

The results
After you click the Find or Replace buttons, the results of the find or replace are displayed in the Find in Files
output window. The results are divided into four parts:

· A summary of the search parameters, which lists the search string and what files were searched.
· A listing of the found or replaced strings (according to whether the Find or Replace button was

pressed). The items in this listing are links to the found/replaced text in the Text View of the document.

1224

1231

1231

1231

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 125GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

If the document is not open, it will be opened in Text View and the found/replaced text will be
highlighted.

· A list of the files which were searched but in which no matches were found.
· A summary of statics for the search action, including the number of matches and number of files

checked.

Note: Note that the Find in Files feature executes the Find and the Replace commands on multiple files at
once and displays the results in the Find in Files output window. To do a find so that you go from one
found item to the next, use the Find command.

3.1.10 Output Window: Find in Schemas

When an XML Schema is active in Schema View, it can be searched intelligently using XMLSpy's Find and
Replace in Schema View feature. The Find and Replace in Schema View feature is accessed via: (i) the Find
and Replace commands in the Edit menu; and (ii) the Find and Replace buttons in the Find in Schemas
Window (screenshot below).

The results of the Find and Replace in Schema View feature (i.e. each time a Find or Replace command is
executed) are displayed in the Find in Schemas window. The term that was searched for is displayed in green;
(in the screenshot above, it can be seen that email was the search term, with no case restriction specified).
Notice that the location of the schema file is also given.

Results are displayed in nine separate tabs (numbered 1 to 9). So you can keep the results of one search in
one tab, do a new search in a new tab, and compare results. To show the results of a new search in a new tab,
select the new tab before starting the search. Clicking on a result in the Find In Schemas window pops up and
highlights the relevant component in the Main Window of Schema View. In this way you can search and
navigate quickly to the desired component, as well as copy messages to the clipboard. For more details, see
the Results and Information section in the description of the Find in Schemas feature.

3.1.11 Output Window: Find in XBRL

The Find in XBRL Window (screenshot below) displays the results of searching an XBRL taxonomy document.
There are nine tabs in this window, so results in one tab can be compared with the results in another tab.

1224

479 468

126 GUI and Environment The Graphical User Interface (GUI)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Find in XBRL can be performed when an XBRL taxonomy document is open in XBRL View. How to carry
out the search is described in the section Find in XBRL in the XBRL section of the user manual.

The Find button pops up the Search dialog. The Find Next button finds the next instance of the search term in
the document starting from the cell immediately after the cell in XBRL View in which the cursor is currently
placed.

The following Find In XBRL toolbar commands are available:

· The Next and Previous icons select, respectively, the next and previous find results to the currently
selected result.

· The Copy Messages commands copy, respectively, the selected message, the selected message and
its children messages, and all messages, to the clipboard.

· The Find commands find text strings in the Find In XBRL window.
· The Clear command deletes all messages in the currently active tab.

3.1.12 Output Window: Charts

When an XML document is open in Text View or Grid View, a chart (pie chart, bar chart, etc) representing
selected data in the XML document can be generated in the Charts Window (screenshot below).

882 773

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 127GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

Creating the chart
The broad steps for creating a chart are as follows:

1. Place the cursor in the XML document to select a context node.
2. Click the New Chart button in the Charts Window (see screenshot above) or right-click in the Main

Window and select New Chart from the context menu.
3. In the Select Columns dialog that pops up, select data for the chart data table and click OK. The chart

will be created in the Charts Window (screenshot above).

For detailed information, see the section Charts in the XML section of the user manual.

Modifying and managing charts
A chart can be created in any of the nine Charts Window tabs (numbered along the left side of the window). In
this way charts in different tabs can be compared. A chart created in a tab can only be overwritten when a new
chart is created in that tab. A chart cannot be otherwise deleted. Even when the XML document that was used
to generate a chart is closed, the chart remains in the tab in which it was created.

The buttons at the top of the window do the following:

· New Chart: Pops up the Select Columns dialog, in which the chart data table is configured.
· Overlays: Enables you to add and delete layers over the main chart. After creating a new layer, you

can add a new chart to this layer by clicking the New Layer tab and specifying the data to be used in
this overlay chart.

· Change Type: Enables the chart type to be changed, for example, from a bar chart to a pie chart.
· Change Appearance: Enables settings, like the chart's fonts sizes and color schemes, to be changed.

345 322

128 GUI and Environment The Graphical User Interface (GUI)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Select Data: Pops up the Select Data dialog, which contains the chart data table and the final
selection of data that will be presented in the chart. Data for the series, the X-Axis and Y-Axis can be
modified in this dialog. The X-Axis and Y-Axis data can be graphically selected from the chart data
table. Clicking OK generates the modified chart in the Charts Window.

· Export: the chart can be exported as an image file, or as an XSLT or XQuery fragment to the clipboard.
The XSLT or XQuery fragment can be used in an XSLT or XQuery document, which when processed
with the Altova XSLT 2.0 Engine or the Altova XQuery Engine, will correctly render the chart.

· Reload/Auto: If the Auto button is toggled on, then any change in the underlying XML document will
automatically refresh a chart in the Charts Window that is based on the XML document. Otherwise a
chart will only be updated when the Reload button is pressed.

For more information, see the section Charts in the XML section of the user manual.

3.1.13 Output Window: XULE

The XULE Window enables you to interactively query the active XBRL instance document, and see the results
of your query. The XULE Window has nine tabs, each of which is divided into two panes: (i) a XULE expression
pane, where you enter the XULE expression (or XULE rule) that you want to execute; and (ii) a Results pane,
which displays the result of the execution.

To interactively execute a XULE expression on the active XBRL instance document, do the following:

1. Make the XBRL instance document that you want to query the active document in the Main Window.
2. Enter the XULE expression in the XULE expression pane (left pane).
3. Click Run in the window's toolbar to execute the expression
4. The results of the execution are displayed in the Results pane (right pane).

For detailed information, see the description of the XULE Window in the XBRL section .

3.1.14 Menu Bar, Toolbars, Status Bar

Menu Bar
The menu bar (see illustration) contains the various application menus. The following conventions apply:

· If commands in a menu are not applicable in a view or at a particular location in the document, they
are unavailable.

345 322

877

113

© 2018-2024 Altova GmbH

The Graphical User Interface (GUI) 129GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

· Some menu commands pop up a submenu with a list of additional options. Menu commands with
submenus are indicated with a right-pointing arrowhead to the right of the command name.

· Some menu commands pop up a dialog that prompts you for further information required to carry out
the selected command. Such commands are indicated with an ellipsis (...) after the name of the
command.

· To access a menu command, click the menu name and then the command. If a submenu is indicated
for a menu item, the submenu opens when you mouseover the menu item. Click the required sub-menu
item.

· A menu can be opened from the keyboard by pressing the appropriate key combination. The key
combination for each menu is Alt+KEY, where KEY is the underlined letter in the menu name. For
example, the key combination for the File menu is Alt+F.

· A menu command (that is, a command in a menu) can be selected by sequentially selecting (i) the
menu with its key combination (see previous point), and then (ii) the key combination for the specific
command (Alt+KEY, where KEY is the underlined letter in the command name). For example, to
create a new file (File | New), press Alt+F and then Alt+N.

· Some menu commands can be selected directly by pressing a special shortcut key or key
combination (Ctrl+KEY). Commands which have shortcuts associated with them are indicated with the
shortcut key or key combination listed to the right of the command. For example, you can use the
shortcut key combination Ctrl+N to create a new file; the shortcut key F8 to validate an XML file. You
can create your own shortcuts in the Keyboard tab of the Customize dialog (Tools | Customize).

Toolbars
The toolbars (see illustration) contain icons that are shortcuts for selecting menu commands. The name of
the command appears when you place your mouse pointer over the icon. To execute the command, click the
icon.

Toolbar buttons are arranged in groups. In the Tools | Customize | Toolbars dialog, you can specify which
toolbar groups are to be displayed. These settings apply to the current view. To make a setting for another view,
change to that view and then make the setting in the Tools | Customize | Toolbars . In the GUI, you can
also drag toolbar groups by their handles (or title bars) to alternative locations on the screen. Double-clicking
the handle causes the toolbar to undock and to float; double-clicking its title bar causes the toolbar to dock at
its previous location.

Status Bar
The Status Bar is located at the bottom of the application window (see illustration) and displays (i) status
information about the loading of files, and (ii) information about menu commands and command shortcuts in
the toolbars when the mouse cursor is placed over these. If you are using the 64-bit version of XMLSpy, this is
indicated in the status bar with the suffix (x64) after the application name. There is no suffix for the 32-bit
version.

1500

113

1497

1497

113

130 GUI and Environment The Application Environment

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3.2 The Application Environment

In this section we describe various aspects of the application that are important for getting started. Reading
through this section will help you familiarize yourself with XMLSpy and get you off to a confident start. It
contains important information about settings and customization, which you should read for a general idea of
the range of settings and customization options available to you and how these can be changed.

This section is organized as follows:

· Settings and Customization : Describes how and where important settings and customization
options can be defined.

· Tutorials, Projects, Examples: Notes the location of the various non-program files included in the
application package.

· Product features and documentation, and Altova products : Provides links to the Altova website,
where you can find information about product features, additional Help formats, and other Altova
products.

3.2.1 Settings and Customization

In XMLSpy, there are several settings and customization options that you can select. In this section, we point
you to these options and also briefly discuss some aspects of XMLSpy menus. This section is organized into
the following parts.

· Settings
· Customization
· Menus

Settings
Several important XMLSpy settings are defined in different tabs in the Options dialog (screenshot below,
accessed via the menu command Tools | Options). You should look through the various options to
familiarize yourself with what's available.

130

133

133

130

131

132

1513

http://www.altova.com/

© 2018-2024 Altova GmbH

The Application Environment 131GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

Given below is a summary of the most important settings. For details, see the description of the Options
dialog in the User Reference section.

· File types and default views: In the File Types tab, you can add file types that XMLSpy will recognize.
A file type is specified by a file extension. For each file type, you can then specify conformance to a
particular standard (for example conformance to the DTD, XQuery, or JSON standard). This setting will
switch on editing aids relevant to the standard selected for a particular file type. You can also specify
in what XMLSpy view files of each file type should open (the default view for this file type).

· File validation: In the File tab (screenshot above), you can specify whether files should be validated
automatically on opening and/or saving. In the File Types tab (see previous bullet point), file validation
can then be disabled for specific file types.

· Editing features: In the Editing tab, you can specify how entry helpers should be organized, how new
elements are generated, and whether auto-completion is enabled. Additional options are available for
individual views in the View tab. In the Fonts tabs for various views, you can specify the font
characteristics of individual node types in each of these views.

· XSLT and FO Engines: In the XSL tab, you can specify that an external XSL engine be used for
transformations made from within the GUI. You must also specify the location of the FO processor
executable to be used for FO processing within XMLSpy. For more information, see the XSLT
Processing section.

· Encoding: Default encodings for XML and non-XML files are specified in the Encoding tab.

Customization
You can also customize various aspects of XMLSpy, including the appearance of the GUI. These customization
options are available in the Customize dialog (screenshot below, accessed via the menu command Tools |
Customize).

1513

485

1495

132 GUI and Environment The Application Environment

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The various customization options are described in the User Reference section.

Menus
Menu commands are enabled/disabled depending upon three factors: (i) file type, (ii) active view, and (iii)
current cursor location or current document status. For example:

· File type: The command DTD/Schema | Include Another DTD is enabled only when the active file is
a DTD. Similarly, commands in the WSDL menu will be enabled only when a WSDL file is active.

· Active view: Most commands in the Schema Design menu will be active only when the active view is
Schema View.

· Current cursor location, document status: In Grid View, whether the command to add an attribute as a
child node (XML | Add Child | Attribute) is enabled will depend on whether the selected item in Grid
View is an element or not (current cursor location). When an XSLT document is active the Stop
Debugger command will not be active till after a debugger session has been started (current
document status).

Note also that you can customize menus (Tools | Options) as well as drag and reorganize them within the
GUI (see Menu Bar, Toolbars, Status Bar).

1495

1513

128

© 2018-2024 Altova GmbH

The Application Environment 133GUI and Environment

Altova XMLSpy 2024 Enterprise Edition

3.2.2 Tutorials, Projects, Examples

The XMLSpy installation package contains tutorials, projects, and example files.

Location of tutorials, projects, and example files
The XMLSpy tutorials, projects, and example files are installed in the folder:

C:\Users\<username>\Documents\Altova\XMLSpy2024\Examples\

The My Documents\Altova\XMLSpy2024 folder will be installed for each user registered on a PC within that
user's <username> folder. Under this installation system, therefore, each user will have his or her own
Examples folder in a separate working area.

Location of tutorial, project, and examples files
All tutorial, project, and example files are located in the Examples folder. Specific locations are as follows:

· XMLSpy tutorial: Tutorial folder.
· Authentic View tutorial: Examples folder.
· WSDL tutorial: Examples folder.
· Project file: The Examples project with which XMLSpy opens is defined in Examples.spp, which is

located in the Examples folder.
· Example files: are in the Examples folder and in sub-folders of the Examples folder.

3.2.3 XMLSpy Features and Help, and Altova Products

The Altova website, www.altova.com, has a wealth of XMLSpy-related information and resources. Among these
are the following.

XMLSpy feature listing
The Altova website carries an up-to-date list of XMLSpy features, which also compares the support of various
features across XMLSpy editions (Enterprise and Professional). On the website, you can also obtain a listing of
features that are new since any previous release.

XMLSpy Help
This documentation is the Altova-supplied Help for XMLSpy. It is available as the built-in Help system of
XMLSpy, which is accessible via the Help menu or by pressing F1. Additionally, the user manuals for all
Altova products are available in the following formats:

· Online HTML manuals, accessed via the Support page at the Altova website
· Printable PDFs, which you can download from the Altova website and print locally
· Printed books that you can buy via a link at the Altova website

http://www.altova.com
http://www.altova.com/matrix_x.html
http://www.altova.com/support_help.html
http://www.altova.com/download_doc.html
http://www.altova.com/download_doc.html

134 GUI and Environment The Application Environment

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Support options
If you require additional information to what is available in the user manual (this documentation) or have a query
about Altova products, visit our Support Center at the Altova website. Here you will find:

· Links to our FAQ pages
· Discussion forums on Altova products and general XML subjects
· Online Support Forms that enable you to make support requests, should you have a support package.

Your support request will be processed by our support team.

Altova products
For a list of all Altova products, see the Altova website.

http://www.altova.com/support_center.html
http://www.altova.com/support_faq_main.html
http://www.altova.com/forum/default.aspx
http://www.altova.com/support_center.html
http://www.altova.com

© 2018-2024 Altova GmbH

 135Editing Views

Altova XMLSpy 2024 Enterprise Edition

4 Editing Views

XMLSpy contains powerful editing views. In addition to a Text View with intelligent editing features, there are
graphical views that greatly simplify the editing of documents. Depending on what type of document is currently
active in XMLSpy, the Main Window will have one or more of XMLSpy's Editing Views. For example, when an
Office Open XML file or ZIP file is active, the Main Window will contain just one editing view: Archive View.
When an HTML document is active, there will be two editing views: Text View and Browser View. When an XML
document is active, there will be seven editing views: Text View, Grid View, Schema View, WSDL View, XBRL
View, Authentic View, and Browser View; of these Schema View will be enabled only for XML Schema
documents, and WSDL View only for WSDL documents.

In this section, we describe the various editing views available in XMLSpy:

· Text View
· Grid View
· Schema View
· WSDL View
· XBRL View
· Authentic View
· Browser View
· Archive View

Default view selection
A document of a specific type (for example, an XML document or JSON document) can be viewed in multiple
views. You can select the default editing view directly in the interface, by either clicking or right-clicking the
current view's tab and selecting the appropriate option from the menu that appears (see screenshot below):

The menu options are:

· Default for file extension: The current editing view becomes the default view for files having the same
file extension as the active file (for example, .xml files or .xq files).

· Default for all similarly conformant files: The current editing view becomes the default view for files
having the same conformance type as the active file (for example, all XML-conformant files or all
XQuery-conformant files). This could be a larger set than the set for a file extension; for example, the
two different file extensions .xq and .xquery could both be XQuery-conformant.

· Show information: Links to a page on the Altova website that describes the features of the current
editing view.

If a default view option has been selected, then it will have a radio button next to it (see screenshot above).

In the following cases, no change of default editing view is possible

139

155

213

290

302

598

316

318

https://www.altova.com

136 Editing Views

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· JSON Schema files: These files, like JSON instance files, have a .json extension. However, they will

be automatically detected from content to be JSON Schemas, and will always be opened in JSON
Schema View .

· Authentic-enabled XML files: These are XML files (having a .xml file extension) that have been

assigned an Altova StyleVision Stylesheet, which enables the XML document to be viewed as an
Authentic XML document. These files will always be opened in Authentic View .

· XSD files for XBRL (XBRL taxonomies): These files have a .xsd extension. However, they will be

automatically detected from content to be XBRL taxonomies (and not XML Schemas), and will
therefore always be opened in XBRL View .

Note: The file conformance of each file extension, as well as the default editing view that corresponds to
individual file types, can be set in the File Types section of the Options dialog . However, the default
view selection in the editing view itself (which has been described here) gives you the option of setting
default views faster and in an easier way.

663

315

302

1516

© 2018-2024 Altova GmbH

Automatic Backup of Files 137Editing Views

Altova XMLSpy 2024 Enterprise Edition

4.1 Automatic Backup of Files

Files that are modified in XMLSpy are automatically backed up at regular intervals. In the File tab of the Options
dialog (Tools | Options | File) shown in the screenshot below, you can:

· Switch on/off automatic backups
· Specify the frequency of backups (5 seconds to 300 seconds)

All file types that can be edited in XMLSpy will be backed up; ZIP archives are not backed up.

Indicators
The file tabs at the bottom of the Main Window contain symbols to the right of the file name which indicate the
saved/unsaved state and backup state of the file (screenshot below).

Saved / Unsaved
A colored circle symbol is present if a file has been modified. If no such symbol is present, it means that the
file has not been modified since either being opened or being last saved. In the screenshot above, for example,
address.xsd has not been modified since being last saved, and Untitled8.xml is a new file that has not been
edited or saved since it was created.

Backup state
The colors of the circle symbols indicate the backup state of the file.

· Yellow: The file has been modified, but the last modification has not been backed up (or saved).
· Green: The file has been backed up, and it has not been modified since being backed up. However, the

file has not been saved. (If it had been saved, there would be no circle symbol.)
· Red: Backup is not supported for this file (for example, if this is the Archive View of a ZIP file) or a

backup has failed.
· Gray: The automatic backup function has been disabled (via the Options dialog ; see above). The

presence of the symbol, however, indicates that the file has not been saved since last modification. (If
it had been saved, there would be no circle symbol.)

Restoring from backups
If XMLSpy terminates unexpectedly, then, at the next application start, a Restore Document dialog is displayed
which contains a list of all documents that were open at the time of the application being terminated
(screenshot below). You can hover over each file to see its path. In the case of temporary files that have not yet
been saved, the filepath will be the current default path were a Save As dialog opened for that file.

1514

318

1514

138 Editing Views Automatic Backup of Files

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For each file in the list, its font style and the presence/absence of asterisks provide the following information:

· A bold style and asterisk indicates that the file contains unsaved changes. Such files will be restored
in their last backed-up state.

· A normal style indicates that the file has been saved and there are no unsaved changes. Such files will
be restored in their saved state.

· A grayed out style indicates that the file has neither been saved nor been backed up (for example,
because it is a new file that was not edited). Such files will not be restored.

You can now do one of the following:

· Click Restore to restore the files in the GUI from their last backed-up state.
· Click Discard to not open any of the listed files and to discard any available backups.

© 2018-2024 Altova GmbH

Text View 139Editing Views

Altova XMLSpy 2024 Enterprise Edition

4.2 Text View

In Text View (screenshot below), you can type in the text of your document—both, markup and content—
directly. Any text file, including non-XML documents (such as XQuery and HTML documents) can be edited in
Text View. A number of features help you to quickly and accurately type in your document.

In this section, we describe general Text View features that are available for all kinds of documents. Specific
document types, such as XML, XQuery, and CSS have certain type-specific features, which are described in
the respective sections for those document types. For example, additional XML-specific features of Text View
are described in the section XML | Editing XML in Text View .

The general Text View features have been organized as follows:

· Formatting in Text View describes how the font properties, indentation, and word-wrapping of the
document can be specified.

· Displaying the Document contains information about the line-numbering, bookmarking,
expanding/collapsing of nodes, and other display-related features.

· Editing in Text View describes the features that are available while you edit, particularly the
intelligent editing features.

· Navigating the Document explains the various ways in which you can navigate a document in Text
View.

· Entry helpers are the windows that provide context-sensitive data-entry options. For example, the
elements or attributes that can be validly added at a given document location are displayed in an entry
helper and any one of these options can be inserted by double-clicking it.

327

140

142

145

148

151

140 Editing Views Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Split View divides the main window of Text View in two and displays the active document in both
views. This enables you to see different parts of a long document side-by-side.

· Text View Shortcuts lists the default shortcuts of commonly used Text View commands.

Switching to Text View
To open the Text View of a document, click the Text button at the bottom of the Document Window or select
View | Text View.

Switching from Text View to Browser View
If in Text View a document is marked up in HTML or Markdown formatting and you switch to Browser View ,
then the document will be rendered in Browser View as an HTML page.

4.2.1 Formatting in Text View

Text View offers a number of text formatting options. These are listed below.

Fonts
The font-family, font-size, font-style, and text background-color can be customized separately for the following
groups of documents: (i) generic XML documents (including HTML); (ii) XQuery documents; and (iii) CSS
documents.

Text items in a document that have different semantics, can be colored differently. For example, you can color
element names, attribute names, and element content differently. When you set different colors for different text
items, the syntax-coloring feature is enabled. Text fonts are customized in the Fonts and Colors section of the
Options dialog .

Indentation
You can indent a document to show its structure, as in the screenshot below. When the document is shown
with this kind of hierarchical indentation, it is said to be pretty-printed. In a pretty-printed document, each
deeper level will be displayed with a deeper indent than its parent element. To see a document in its pretty-
printed form, you must: (i) set up its indentation (according to your preference) and (ii) apply pretty-printing to it.

152

153

316

316

1535

https://commonmark.org/help/

© 2018-2024 Altova GmbH

Text View 141Editing Views

Altova XMLSpy 2024 Enterprise Edition

To set up and apply pretty-printing, carry out the following steps. Note that the set up of pretty-printing is
application-wide. This means that pretty-printing settings will be applied to all XML and JSON documents after
the settings have been saved. Consequently, settings need to be edited only when you want to change the
pretty-printing display of your documents. Once the application-wide settings have been made, you must apply
pretty-printing individually to each document. A document is always displayed with the pretty-printing that was
applied to it, and its display formatting will not change till the next time pretty-printing is applied.

1. In the Pretty-printing section of the Options dialog (Tools | Options), enable pretty-printing by
checking the option Use indentation determined by the tab configuration of Text View. It is this setting
that switches on the indentation that you will see in a pretty-printed document. If the Use Indentation
option is not checked, then every line in the document will start with a zero indent.

2. While still in the Pretty-printing section (see previous point), click the Text View Settings button
(at top right) to go to the Text View Settings dialog (screenshot below) and set the amount and type of
indentation. (Alternative ways to access the Text View Settings dialog are (i) the menu command
View | Text View Settings and (ii) the Text View Settings icon in the Text toolbar.) In the Text
View Settings dialog, the Tab size field specifies the number of spaces that make up a tab as well as
an indent. Choose whether pretty-printing indents will be composed of tabs or spaces by selecting
either Insert Tabs or Insert Spaces. In either case, the size of each indent will be equivalent to the X

number of spaces specified in the Tab size field (since 1 tab = X spaces).

1521 1513

1521

1420

142 Editing Views Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. After having set up application-wide pretty-printing as described in the previous two steps, you can
apply pretty-printing to individual documents. Make the document you want to pretty-print the active
document. Click the Edit | Pretty-Print command or the Pretty Print icon in the Text toolbar. This
will cause the document text to be displayed according to the formatting specified in the Pretty
Printing section of the Options dialog. Note that the Pretty-Print command removes unnecessary
leading or trailing whitespace.

Note: Indentation guides are vertical dotted lines (see screenshot at the start of this section). They are
toggled on and off via the Indentation Guides check box in the Visual Aid pane of the Text View
Settings dialog (see screenshot above).

Note: For information about whitespace handling, see the section Whitespace .

Using tabs and spaces for formatting
You can use tabs and spaces for formatting text, especially for non-XML documents, where the pretty-printing
option is not available. When you press Return or Shift+Return, the cursor will jump to a position on the next
line that corresponds to the starting position of the previous line.

Word-wrapping
Lines of text that are longer than the breadth of the Main Window can be made to wrap by toggling the View |
Word Wrap command on; the corresponding icon is in the Text toolbar .

4.2.2 Displaying the Document

Text View has visual features to make the display and editing of large sections of text easier. Some very useful
features are: (i) Line Numbers , (ii) Bookmarks , (iii) Source Folding (expanding and collapsing the
display of nodes), (iv) Indentation Guides , and (v) End-of-Line and Whitespace Markers . These
commands are available in the Text View Settings dialog (first screenshot below) and the Text toolbar (second
screenshot below).

1224

1521

336

1419 142

143 143 143

144 144

© 2018-2024 Altova GmbH

Text View 143Editing Views

Altova XMLSpy 2024 Enterprise Edition

The Text View Settings dialog is accessed via the View | Text View Settings command, the Text View
Settings button in the Text toolbar, or the Text View context menu. Settings in the Text View Settings dialog
apply to the entire application—not only to the active document.

Other useful features are the Zooming and navigation and search features.

Line numbers
Line numbers are displayed in the line numbers margin (screenshot below), which can be toggled on and off In
the Text View Settings dialog (see screenshot above). When a section of text is collapsed, the line numbers of
the collapsed text are also hidden. A related command is the Go-to-Line/Character command.

Bookmarks
Lines in the document can be separately bookmarked for quick reference and access. If the bookmarks margin
is toggled on, bookmarks are displayed in the bookmarks margin; otherwise, bookmarked lines are highlighted
in cyan.

The bookmarks margin can be toggled on or off in the Text View Settings dialog (screenshot above).

You can edit and navigate bookmarks using commands in the Edit menu and Text toolbar. Bookmarks can be
inserted with the Edit | Insert/Remove Bookmark command, enabling you to mark a line in the document for
reference. A bookmark can be removed by selecting the bookmarked line and then selecting the Edit |
Insert/Remove Bookmark command. To navigate through the bookmarks in a document, use the Edit | Next
Bookmark and Edit | Previous Bookmark commands. These bookmark commands are also available as
icons in the Text toolbar (screenshot above).

Source folding
Source folding refers to the ability to expand and collapse nodes in XML, XQuery, JSON, and CSS documents.
Nodes that can be expanded/collapsed are indicated in the source folding margin by a +/- sign (see

screenshot below). The margin can be toggled on and off in the Text View Settings dialog (see screenshot

1420

145 148

151

144 Editing Views Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

above). In the screenshot below, notice that three nodes have been collapsed: the shipTo element and two
item elements. When a node is collapsed, this is visually indicated by an ellipsis (marked in green in the
screenshot below). If the mouse cursor is placed over an ellipse, the content of the collapsed node is displayed
in a popup (marked in blue in the screenshot below). If the content is too large for a popup, this is indicated by
an ellipsis at the bottom of the popup.

The Toggle All Folds icon in the Text toolbar toggles all nodes to their expanded forms or collapses all
nodes to the top-level document element.
The following options are available when clicking on the node's +/- icon:

Click [-] Collapses the node.

Click [+] Expands the node so that descendant nodes are shown expanded or collapsed according to
how they were before the node was collapsed.

Shift+Click
[-]

Collapses all descendant nodes, but leaves the node that was clicked in its expanded form.

Ctrl+Click [+] Expand the clicked node as well as all its descendant nodes.

Indentation guides
Indentation guides are vertical dotted lines that indicate the extent of a line's indentation (see screenshot
above). They can be toggled on and off in the Text View Settings dialog.

End-of-line markers, whitespace markers
End-of-line (EOL) markers and whitespace markers can be toggled on in the Text View Settings dialog. The
screenshot below shows these markers in the document display; each dot represents a whitespace.

© 2018-2024 Altova GmbH

Text View 145Editing Views

Altova XMLSpy 2024 Enterprise Edition

Zooming in and out
You can zoom in and out of Text View by turning the scroll-wheel of the mouse while keeping the Ctrl key
pressed. This enables you to magnify and reduce the size of text in Text View. If you wish to increase the size
of fonts, do this in the Options dialog .

4.2.3 Editing in Text View

The following text editing features are available in Text View generally for all document types. These features
are in addition to common features of editing applications, such as Cut, Copy, Paste, Delete, and Select All
(which are available as commands in the Edit menu).

· Syntax coloring
· Start-tag and end-tag matching
· Intelligent editing
· Auto-completion
· Moving siblings relative to each other
· Selecting an entire element and going to parent
· Find and Replace
· Drag-and-drop and context menus
· Unlimited undo
· Spelling check

For some document types (such as XML and XQuery) additional specialized features are available, and
these are described, respectively, in the sections that deal with those document types.

Note: For large files, Auto-completion and entry helpers can be disabled, thus enabling faster loading and
editing. The threshold file size is specified by the user. For more details, see the reference section
Options | Editing .

Syntax coloring
Syntax coloring is applied according to the semantic value of the text. For example, in XML documents,
depending on whether the XML node is an element, attribute, content, CDATA section, comment, or processing
instruction, the node name (and in some cases the node's content) is colored differently. A number of
document type are distinguished, such as: (i) generic XML (which includes HTML); (ii) XQuery; (iii) CSS; and
(iv) JSON. The text properties (including color) of each group can be set in the Text Fonts section of the
Options dialog (Tools | Options).

Intelligent Editing
If you are working with an XML document based on a schema, XMLSpy provides you with various intelligent
editing capabilities in Text View. These allow you to quickly insert the correct element, attribute, or attribute

140

145

147

145

146

147

147

147

148

148

148

322 497

1520

146 Editing Views Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

value according to the content model defined for the element you are currently editing. For example, when you
start typing the start tag of an element, the names of all the elements allowed by the schema at this point are
shown in a pop-up (screenshot below). Selecting the required element name and pressing Enter inserts that
element name in the start tag. Also, after the start tag is created, the end tag is automatically added (see
Auto-completion below).

Popup windows also appears in the following cases:

· When the cursor is inside the start tag of an element that has an attribute defined for it and the space
bar is pressed. The popup will contain all available attributes.

· When the cursor is within the double-quotes delimiting an attribute value that has enumerated values.
The popup will contain the enumerated values.

· When you type </ (which signifies the start of a closing tag), the name of the element to be closed

appears in the popup.
· When you wish to write an empty element as a single tag or convert an empty element of two tags to

an empty element of one tag, type in the closing slash after the element name: <element/. An empty

element with a single tag is created; if a close tag exists, it is removed: <element/>.

Auto-completion
Editing in Text View can easily result in XML and other marked-up documents (such as HTML) that are not
well-formed. For example, closing tags may be missing, mis-spelled, or structurally mismatched. XMLSpy
automatically completes the start and end tags of elements, as well as inserts all required attributes as soon
as you finish entering the element name on your keyboard. The cursor is also automatically positioned between
the start and end tags of the element, so that you can immediately continue to add child elements or contents:

XMLSpy makes use of the XML rules for well-formedness and validity to support auto-completion. The
information about the structure of the document is obtained from the schema on which the document is based.
(In the case of well-used schemas, such as HTML and XSLT, the schema information is built into XMLSpy.)
Auto-completion uses not only information about the structure of the document, but also the values stored in
the document. For example, enumerations and schema annotations in an XML Schema are actively used by
the Auto-Completion feature. If, in the schema, values are enumerated for a particular node, then those
enumerations will be displayed as auto-completion options when that node comes to be edited. Similarly, if, for
a node, annotations exist in the schema, then these annotations are displayed when the node name is being
typed in the document (screenshot below). (First (given) name of person is the schema annotation of the First
element.)

146

© 2018-2024 Altova GmbH

Text View 147Editing Views

Altova XMLSpy 2024 Enterprise Edition

Auto-completion can be switched on and off in the Editing section of the Options dialog (Tools | Options |
Editing).

Start-tag and end-tag matching
When you place the cursor inside a start or end tag of a markup element, pressing Ctrl+E moves the selection
to the other member of the pair. Pressing Ctrl+E repeatedly enables you to switch repeatedly between the start
and end tags. This feature is an excellent aid for quickly locating the start and end tags of an XML element.
Additionally, the names of elements are highlighted in two different colors according to whether the names
in the start and end tags match or not. This serves as a visual editing aid. The highlight colors can be set in the
Options dialog . When you edit the name of an element in a start tag, then the end tag will be automatically
edited as well.

Moving sibling elements relative to each other
When the cursor is within an element, pressing Alt+ArrowUp or Alt+ArrowDown moves the selected element
up or down relative to its siblings.

Selecting an entire element and going to parent
When the cursor is within an element, pressing Ctrl+Shift+E selects the entire element. If you click
Ctrl+Alt+E, the start tag of the parent element is highlighted. Both these shortcuts help you to quickly locate
your current cursor position relative to the document structure.

Find and Replace
The Find and Replace features (accessed via the Edit menu) provide powerful search capabilities. The
search term can be defined additionally in terms of casing and whether whole words should be matched, and it
can also be expressed as a regular expression. The search range can be restricted to a selection in the
document and to particular node types (see screenshot below).

For a description of the Find and Replace functionality, see the descriptions of the Find and Replace
commands in the Edit menu

1520

1535

1535

1224 1230

1224 1230

1215

148 Editing Views Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Drag-and-Drop and Context Menus
You can also use drag-and-drop to move a text block to a new location, as well as right-click to directly access
frequently used editing commands (such as Cut , Copy , Paste , Delete , Send by Mail , and Go
to line/char) in a context menu.

Unlimited Undo
XMLSpy offers unlimited levels of Undo and Redo for all editing operations.

Spelling check
In Text View, documents can be spellchecked with any of the built-in language dictionaries. A user dictionary
can also be created and edited to allow words not contained in the language dictionary. For details, see the
descriptions of the Spelling and Spelling Options commands.

4.2.4 Navigating the Document

You can use the following features to navigate a document in Text View:

· Text highlighting enables you to find all matches of a text string or word that you select. Each
match is indicated in the scroll bar, so you can navigate easily through all the matches.

· Document overview in the scroll bar shows you the relative location of the cursor and text selection
within the document.

· Go to line/character takes you straightaway to the line and character you specify.

Text highlighting
If text highlighting is enabled in the Text View Settings dialog (View | Text View Settings), then all
matches in the document of a text selection that the user makes are highlighted. The selection will be
highlighted in pale blue, and matches will be highlighted in pale orange (see screenshot below). The selection
and its matches are indicated in the scroll bar by gray marker-squares. Note also that the current cursor
position is given by the blue cursor-marker in the scroll bar.

1216 1216 1216 1216 1210

1419

1216 1216

1471 1474

148

150

151

1420

© 2018-2024 Altova GmbH

Text View 149Editing Views

Altova XMLSpy 2024 Enterprise Edition

To switch the text highlighting feature on, select Enable auto-highlighting in the Text View Settings dialog
(View | Text View Settings , screenshot below). A selection can be defined to be an entire word or a fixed
number of characters. You can also specify whether casing should be taken into account or not.

Note the following points:

· For a character selection, you can specify the minimum number of characters that must match,
starting from the first character in the selection. For example, you can choose to match two or more
characters. In this case, one-character selections will not be matched, but a selection consisting of

1420

150 Editing Views Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

two or more characters will be matched. So, in this case, if you select t, then no matches will be

shown; selecting ty will show all ty matches; selecting typ will show all typ matches; and so on.

· For word searches, the following are considered to be separate words: element names (without angular
brackets), the angular brackets of element tags, attribute names, and attribute values without quotes.

Note: Element start-tag and end-tag matching is a separate feature that is not affected by the Enable
auto-highlighting setting.

Document overview in the scroll bar
The scroll bar provides the following features:

· It relates the sizes of the following to each other (see screenshot below): (i) the entire document (scroll
bar); (ii) the document segment that is currently in the window (thumb); (iii) the current text selection
(blue bar), if any; and (iv) the current cursor location (cursor-marker).

· It enables you to navigate the document by either: (i) dragging the scroll bar's thumb up and down, or
(ii) clicking the Page Up and Page Down arrows (circled in green in the screenshot below).

Note the following points:

· The length of the scroll bar corresponds to the length of the entire document.
· If only a part of the document fits in the window, then this windowed part corresponds to the scroll bar's

thumb (see screenshot above). You can drag the thumb up and down to bring other parts of the
document into the window. It is as if the thumb represents the window and you are moving the window
up and down the document in order to view the document.

· The current text selection is indicated in the scroll bar by the blue bar. The size of the blue bar relative
to the size of the scroll bar is proportional to the size of the text selection relative to the size of the
entire document. If the text selection does not exceed one line, the blue bar will not be visible.

· The cursor position is indicated by a dark blue cursor-marker. The cursor-marker's relative position in
the scroll bar corresponds to the cursor's relative position in the document.

145

© 2018-2024 Altova GmbH

Text View 151Editing Views

Altova XMLSpy 2024 Enterprise Edition

Go to line/character
This command in the View menu and Text toolbar enables you to go to a specific line and character in the
document text.

4.2.5 Entry Helpers in Text View

What entry helpers are available in Text View depends upon the type of document being edited. A list of entry
helpers is given below for the most common document types. The general use of entry helpers is described
below . Additional features for specific document types, if any, are described in the sections describing the
respective document types.

· XML: Elements (screenshot below), Attributes, Entities

· HTML: Elements, Attributes, Entities
· CSS: CSS Outline, CSS Properties, HTML Elements
· DTD: None
· XQuery: XQuery Keywords, XQuery Variables, XQuery Functions
· WSDL: Overview, Details
· Text: Entities

Note that several document types, such as XSD, XSLT, XHTML, and RDF, are essentially XML documents and
will therefore have the Elements, Attributes, and Entities entry helpers.

Display and use of entry helper items
Different items in the various entry helpers are variously color-coded. These color codes are explained in the
Entry Helpers documentation of the respective document types. In general, the following points should be noted
about entry helpers:

· The entry helpers are context-sensitive and display items that may be inserted at that point.
· If the item has already been inserted at the selected (or at another equivalent and valid location) and

may not be inserted again at that location (for example, an XML attribute), it is displayed in gray.
· If the item is mandatory, an exclamation mark icon is displayed next to it.
· To insert an entry helper item at the cursor selection point in the text, double-click the entry-helper

item.
· When an element is inserted via the Elements entry helper, its start and end tags are inserted in the

document text. Mandatory elements are also inserted if this option has been specified in the Options
dialog (Tools | Options | Editing).

151

152 Editing Views Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· When an attribute is inserted via the Attributes entry helper, the attribute is inserted at the cursor point
together with an equals-to sign and quotes to delimit the attribute value. The cursor is placed between
the quotes, so you can start typing in the attribute value directly.

Note: For large files, Auto-completion and entry helpers can be disabled, thus enabling faster loading and
editing. The threshold file size is specified by the user. For more details, see the reference section,
Options | Editing .

4.2.6 Split View

Split View divides the main window of Text View in two, vertically or horizontally, and displays the active
document in both views. You can navigate separately in each view, which enables you to see different parts of
the document side-by-side. Editing changes in either view are made to the underlying document and are
immediately reflected in the other view.

Switching between Split View and Single View
Create split views of the active document as follows:

· Horizontal split: Drag down the horizontal-split icon at top right (see screenshot below).
· Vertical split: Drag the vertical-split icon at bottom right (see screenshot below) to the left.

To return to single view from split view, do one of the following:

· Double-click the splitter bar, or
· Move the splitter bar to one of the main window's edges that are parallel to it.

1520

© 2018-2024 Altova GmbH

Text View 153Editing Views

Altova XMLSpy 2024 Enterprise Edition

Note: A split view is created for each document individually.

Navigating and editing in split view
The main benefit of working in Split View is that you can view different parts of a long document side-by-side,
while being able to edit the document in both views. The screenshot below shows a document in a vertical Split
View.

Note the following points:

· When the view is split, the second view contains the same view as the original single view at the time
of the split.

· All the display features (like line numbering and source folding), editing features , navigation
features , etc. that are available in the single view of a document are available in both views of Split
View (see screenshot above).

· In each view of Split View, you can scroll and navigate separately.
· You can use source folding separately in each view.
· All editing actions on the document, including entry helper actions, are reflected in both views.

4.2.7 Text View Shortcuts

The default shortcuts of commonly used Text View commands are listed below. You can change the default
shortcuts in the Keyboard tab of the Customize dialog .

Text View commands

CTRL + E Jump between Start/End Tags

CTRL + Shift + E Select Element that Contains Cursor

CTRL + Alt + E Go to Parent Element

CTRL + "+" Zoom In

CTRL + "-" Zoom Out

142 145

148

1500

154 Editing Views Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

CTRL + 0 Reset Zoom

CTRL + mousewheel forwd Zoom In

CTRL + mousewheel back Zoom Out

© 2018-2024 Altova GmbH

Grid View 155Editing Views

Altova XMLSpy 2024 Enterprise Edition

4.3 Grid View

Grid View is available for XML documents, JSON documents, and DTDs. (The screenshot below is of the Grid
View of an XML document.) Grid View shows the hierarchical structure of the document through a set of nested
containers. These can be easily expanded and collapsed to get a clear picture of the document's structure. As
a result, in Grid View, both contents and structure can be easily edited.

For details about how to work in Grid View, see the subsections of this section.

Customizing Grid View

· To resize columns, place the cursor over the appropriate border and drag so as to achieve the desired
width.

· To resize a column to the width of its largest entry, double-click on the grid line to the right of that
column.

· To adjust column widths to display all content, select the menu item View | Optimal widths
command, or click on the Optimal Widths icon in the Grid View toolbar.

· The heights of cells are determined by their contents. They can be adjusted with the menu option
Tools | Options | View | Enhanced Grid View, "Limit cell height to xx lines".

Note: If you mark data in Grid View and switch to Text View, that data will be marked also in Text View.

In this section
This section is organized according to the features of Grid View:

· Document Display
· Document Structure
· Document Content
· Split View

1418

156

164

165

169

156 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Entry Helpers
· Table Display XML
· Table Display (JSON)
· Drag-and-Drop (XML)
· Drag-and-Drop (JSON)
· Formulas (XML)
· Formulas (JSON)
· Filters
· Images
· Charts
· Context Menu
· Grid View Settings

4.3.1 Document Display

In Grid View an XML, JSON, or DTD document is displayed hierarchically within a grid (see screenshots below:
XML document at left, JSON document at right).

171

172

176

181

183

186

189

193

196

198

204

207

© 2018-2024 Altova GmbH

Grid View 157Editing Views

Altova XMLSpy 2024 Enterprise Edition

158 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XML documents
Each XML grid line contains one XML structural item (known as a node), such as an element, attribute,
comment, or text. The node types that are available in XML documents are listed in the screenshot below
together with their icons.

In an XML grid cell, the type of the XML node is indicated by the icon in the top left of the cell (see XML
screenshot at topic start). You can change a node's type by clicking its icon and selecting another node type
from the list of types that appears (screenshot above). Note that nodes of type Element, Attribute, and

© 2018-2024 Altova GmbH

Grid View 159Editing Views

Altova XMLSpy 2024 Enterprise Edition

Processing Instruction have a name and a value, whereas nodes of type Text, CDATA, and Comment have only
a value. For example, an element node will have a name and a value, whereas a text node will have only a
value.

Note: Formulas are specific to XMLSpy.

JSON documents
Each JSON grid line contains one of the data structures shown in the table below (with their symbols). Note
that both arrays and objects can contain child components that may be objects, arrays, or atomic values. In
the JSON screenshot at the start of the topic, we see a root object that contains two key:value pairs: (i)
"Title":"Music Library", (ii) "Artists":[Array]. The array keyed to Artists contains four items that are

objects.

{} An object (see definition). Objects contain key:value pairs.

[] An array (see definition). Arrays contain items, which are
typically objects or values.

A key:value pair (see definition).

In a JSON grid cell, the type of the JSON node is indicated by the icon in the top left of the cell (see the JSON
screenshot at topic start). You can change a node's type by clicking its icon and selecting another node type
from the list of types that appears (see screenshot below).

Note: Comments are supported in JSONC and JSON5. Formulas are specific to XMLSpy.

DTD documents
For a description of the Grid View features of DTD documents, see the DTD topic .

Features of document display in Grid View
Note the following features:

· You can zoom the grid in and out via Ctrl + Mouse Wheel, or Ctrl+[Plus] and Ctrl+[Minus].
· XML elements at the same level and JSON objects, array, and array items at the same level are

numbered, starting from 1. In the XML screenshot at the start of the topic, for example, the Office

element that is numbered one is the first of a sequence of Office elements. The other elements in the

186

649

649

649

189

436

160 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

screenshot are not numbered—because they do not have sibling elements of the same name. In the
JSON screenshot, for example, within the Artists array, the objects are numbered from 1 to 4. So
also within the Albums and Tracks arrays. Note that this numbering is not contained in the actual
document, but is a Grid View feature to help you see the structure of the document.

· XML nodes and JSON objects and arrays can be expanded or collapsed by clicking the arrowhead
icon at the left of the node's symbol (see screenshots at start of topic). When an XML or JSON node is
collapsed, any content it has is displayed as text in a single line. For examples, see the last three grid
lines of the JSON screenshot at the top of the page.

· If you select multiple components at the same level, you can expand/collapse all of them by
pressing Shift and clicking any one of the selected components' arrowheads.

· If word-wrap is switched on via the Grid View toolbar (see below), then all cells containing text that is
longer than the width of the cell will wrap. You can toggle off word-wrap by clicking its icon in the Grid
View toolbar.

· Notice that node/content items in XML Grid View and key:value pairs in JSON Grid View are
represented on one line in Grid View's standard mode. However, when they are part of Table
Display , the node name (XML) or key name (JSON) become the column headers of tables. For a
brief description of Table View, see the relevant sections below.

Scroll headers
As you scroll down an XML, JSON, or DTD document in Grid View and nodes at the top of the window go out of
the view window, a header bar appears at the top of Grid View (see screenshot below). This header bar—or
scroll header—displays all the ancestor elements of the node currently at the top of the view window. For
example, in the screenshot below, the node at the top of the view window is the
attribute /Company/Person[1]/@Programmer node. Its parent is the first Person element, and the parent of this

Person element is the root element, which is named Company. So the ancestors of the topmost node in the

view window (@Programmer) are the root element Company and the first Person element, and these are

displayed in the header bar: /Company/Person[1]/.

If you click any node in the header bar, then that node will be selected and displayed in the view window. The
header bar, in this way, enables you to quickly navigate the document in Grid View.

Toolbar commands
Commands related to Grid View editing can be accessed quickly via the respective Grid View toolbar for XML or
JSON (screenshots below), located in the toolbars area at the top of the application window. The toolbar that is
displayed will depend on the currently active document. Hover over a toolbar icon to see its name and shortcut.

172

© 2018-2024 Altova GmbH

Grid View 161Editing Views

Altova XMLSpy 2024 Enterprise Edition

Note: The commands accessible via these toolbars are also available in the XML menu and JSON
menu , respectively.

Display-related commands
The commands in the table below are useful for modifying the display in Grid View.

Optimizes widths of grid columns according to cell content.

 / When colored, Table Display is on, otherwise off. Click to switch the display

 / When colored, a filter for the table, object, or array is active; otherwise the filter is
deactivated. Click to deactivate/activate. To edit the expression, double-click it

Toggle command to word-wrap cells. When selected, word-wrap is on. By default. only
the contents of items are wrapped. If you want to additionally wrap the names of items,
choose this option from the icon's dropdown list.

Zoom level of Grid View

Filtered display
A filter can be placed on element nodes (XML) or array or object nodes (JSON). This enables you to filter the
node to show only the descendants defined in the filter. For a detailed description of filters, see the topic
Filters .

Table display (XML)
Repeating elements are shown in standard Grid View, one after the other, progressing vertically downward in
document order (screenshot below left). However, displaying repeating elements as the rows of a table provides
additional editing features. In the screenshots below, the Person element is the repeating element. The

screenshot at left shows standard Grid View; the first Person element is shown expanded, while subsequent

instances are shown collapsed. The screenshot at right shows the repeating Person elements as the rows of a

table.

To switch to Table View, click the Table Mode icon (circled in green in the screenshot below left). When
switched to table display, the icon is displayed in color (see screenshot below right).

1265

1281

172

193

193

162 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Table View offers unique editing benefits in that whole rows and columns can be manipulated relative to other
columns and rows in the table. This enables such operations as sorting table rows on the values of one
column. For example, in the screenshot above right, the six Person elements can be sorted on the basis of

their Last child elements via a single command in the Grid View toolbar . This is simpler than running an

XSLT transformation, which would be the usual way to sort an XML nodeset.

For more information, see the topic Table Display (XML) .

Table display (JSON)
Objects and arrays that contain at least one object or array can be viewed either as a list (highlighted in
screenshot at left) or as a table (highlighted in screenshot at right). The display can be switched between list
display and table display for individual objects and arrays.

156

172

© 2018-2024 Altova GmbH

Grid View 163Editing Views

Altova XMLSpy 2024 Enterprise Edition

For a description of JSON Grid View's Table Display, see the section Table Display (JSON) .176

164 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4.3.2 Document Structure

In Grid View, the XML, JSON, or DTD document structure can be edited graphically. For example, you can
insert, append and delete nodes, drag-and-drop nodes to different locations, and convert one type of node to
another type.

Adding new nodes
There are two ways to add new nodes to the document:

· The Siblings and Children entry helpers enter specific nodes at the selected location.
· You can add a new node that is not defined in a schema as a sibling, child, or parent.

Siblings and Children entry helpers
How the Siblings and Children entry helpers is explained here with reference to an XML document that is
associated with a schema (DTD or XML Schema). A JSON document that is associated with a JSON Schema
would work in a similar way.

When a node is selected in the Main Window, the sibling and children that are allowed at that point (according
to the schema) are displayed in the Siblings and Children entry helpers, respectively.

· In each of these entry helpers, use the toolbar icons to toggle the visibility of elements and attributes
on or off. Mandatory nodes are displayed with an exclamation mark.

· Nodes in gray cannot be added. This is because of one of the following reasons: (i) The node has
already been added, and no more instances of it are allowed by the schema, as in the case of the
Address sibling in the screenshot below; (ii) Another node needs to be added before the grayed out
node can be added, as in the case of the Last child in the screenshot below, which can be added only
after the First child has been added.

Add nodes as follows:

· Siblings: In the entry helper, select the node you want to add as a sibling. Then click the appropriate
icon (see screenshot above left), depending on whether you want to add the sibling after or before the
node selected in the grid, or append it as the last of the selected node's siblings.

· Children: Double click the node you want to add as a child.

© 2018-2024 Altova GmbH

Grid View 165Editing Views

Altova XMLSpy 2024 Enterprise Edition

Inserting new nodes
When a node in the document (that is, a grid cell) is selected, you can add a new empty node as a sibling,
child, or parent. The commands for these operations are listed in the table below, and are available in: (i) the
context menu of the cell; (ii) the XML menu or JSON menu ; and (iii) the Grid View toolbar .

Command Shortcut

Insert (Sibling) After Ctr+Enter

Insert (Sibling) Before Ctr+Shift+Enter

Append (Sibling) Ctr+Alt+A

Add Child Ctr+Alt+Enter

Add Attribute (XML) Ctrl+Alt+I

Wrap in Element (XML) Ctr+Alt+W

Wrap in Array (JSON) Ctrl+Alt+W

Wrap in Object (JSON) Ctrl+Shift+W

Note the following points:

· The new node is created as an empty element (XML) or empty property (JSON) by default. You can
change the node type subsequently.

· The Wrap in Element command creates an element node around the current node. This element
becomes the new parent of the current node. The Wrap in Array and Wrap in Object commands in
JSON documents work similarly.

Modifying structure with standard Windows mechanisms
In Grid View, you can also modify document structure using the following Windows mechanisms:

· Delete: Select a component and delete it with the Delete key.
· Move: Select a component and drag-and-drop it to a new location.

4.3.3 Document Content

Editing content in Grid View is straightforward: Double-click inside the content field and edit the content as
required. The node type can be quickly changed by clicking the node's Type icon and selecting another type
from the menu that appears. In XML documents, entities can be inserted via the Entities entry helper. Grid View
additionally offers validation and find-and-replace functionality.

This topic describes the unique Grid View features of XML and JSON documents. For a description of the Grid
View features of DTD documents, see the DTD topic .

1265 1281 156

165

436

166 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Type selection (XML)
The cells in Grid View contain nodes of the XML document. We have grouped the types as follows:

· Name–Value types: Element, attribute, processing instruction (PI). Nodes of this type have names and
values.

· Value types: Text, CDATA, comment, entity/character references. Nodes of this type take values only.
· Definition types: XML declaration, DOCTYPE (internal or external DTD). These nodes define properties

of the XML document.
· Special container types specific to XMLSpy: Formula.

The type of a value is indicated by a symbol in front of the value (see screenshot below). To change a type,
click its symbol and select the type you want from the menu that appears. Alternatively, right-click in a cell
and, from the context menu that appears, select a type from the Type sub-menu. The symbols and shortcuts
of types are shown in the screenshot below:

Note the following points:

· Nodes of type Element, Attribute, and PI take a name and a value, whereas nodes of type Text,
CDATA, and Comment take only a value. For example, an element node will have a name and content,
whereas a text node will have only a value.

· Type conversions try to preserve the original key and value. For example, if you convert an element to
an attribute, the attribute will have (i) the same name as the element, and (ii) a value that is, as far as
possible, the same as the content of the element.

· In the sequence of an element's child nodes, attributes are always listed first. As a result, type
conversions could lead to a reordering of nodes.

· In the case of mixed content (character data interspersed with element children, such as a paragraph
element that contains text as well as bold and italic elements), consecutive text nodes are not allowed
and so might automatically be joined.

· You can set an option to determine whether, when multiple nodes are selected for conversion to a
single type, this change should go ahead or not, or whether you should be warned.

© 2018-2024 Altova GmbH

Grid View 167Editing Views

Altova XMLSpy 2024 Enterprise Edition

· You can edit raw text in a cell or a row by selecting the parent cell or parent row to be edited in this
way and then clicking the Edit as Raw Text icon in the toolbar. When you edit text as raw text,
entities and markup in that cell or row will not be resolved, respectively, into glyphs and Grid View
components (and can therefore be edited).

Type selection (JSON)
JSON Grid View distinguishes the following type categories:

· Simple types: String, Number, Boolean, Null
· Special simple types: Auto (which is detected from the value), Comment (JSONC, JSON5)
· Container types: Object, Array
· Special container types: Formula

The type of a value is indicated by a symbol in front of the value (see screenshot below). To change a type,
click its symbol and select the type you want from the menu that appears. The symbols and shortcuts of types
are shown in the screenshot below:

Auto-detected types have green dots under them (see screenshot below). An explicit type is a type that you
assign.

Type-related actions occur in two situations:

· When a JSON document is loaded: All simple types are converted to Auto, which are automatically
detected from the values. For example "MyString" is automatically detected as a String type, 123 as

a Number type, true as a Boolean type, and null as a Null type. In cases of ambiguous strings,

select the type explicitly.
· When a new data structure or value is entered: Simple types are auto-detected and the type is

automatically assigned. You can change the type subsequently if you want to.

Note: The JSON Grid View settings enable you to specify (i) how type changes are to be handled when
multiple cells are selected, and (ii) how values of atomic types should be treated when the type is
changed to an array or object.

207

168 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Auto-completion
Auto-completion is enabled when the document being edited is associated with a schema.

Auto-completion provides you with entry options at the cursor location (see screenshot below). These options,
which are based on the definitions in the schema, are provided (i) via pop-ups in the main window, and (ii) via
the entry helpers. The pop-ups and entry helpers each display a list of entries that are valid at that cursor
location. To move through the entries in the pop-up list, use the arrow keys. Select an entry from the pop-up
window or double-click an entry in the entry helper to insert it.

For JSON documents, note the following points:

· If the document is a JSON schema, then auto-completion is based on the schema version indicated by
the $schema keyword. For more information, see also JSON Schema Version .

· If the document is a JSON/JSON5 instance, then a JSON schema must be assigned to the
instance in order for auto-completion to be enabled.

· If the document is an Avro data document in JSON format, then an Avro schema must be assigned to
the instance for auto-completion to work.

· If the document is an Avro schema , then it is automatically associated with the schema for Avro
Schema, and auto-completion is based on this schema.

Validate on modification
The Validate on Edit mode is toggled off by default. When toggled on, well-formed checks and validation
checks are carried out as you edit a document in Grid View. For validation to be carried out (additional to well-
formed checks), a schema must be assigned to the document. Errors are shown by (i) displaying erroneous
text in red and (ii) flagging the location with a red exclamation mark. If a smart fix is available for an error, then
a light bulb icon is shown on the line that generates the error. When you place the mouse over the icon, a
popup appears that lists available smart fixes. Select a fix to apply it immediately. For more information, see
Validating XML Documents and Validating JSON Documents .

652 664

701

701

716

334 701

http://avro.apache.org/docs/current/spec.html
http://avro.apache.org/docs/current/spec.html

© 2018-2024 Altova GmbH

Grid View 169Editing Views

Altova XMLSpy 2024 Enterprise Edition

The Validate on Edit mode can be toggled on/off either (i) via the XML | Validate on Edit menu command,
(ii) the Validate on Edit toolbar button, or (iii) via the On Edit option of the Validation settings of the Options
dialog .

Find and Replace
The Find (Ctrl+F) and Replace (Ctrl+H) commands (accessed via the Edit menu or Ctrl+F) provide
powerful search capabilities. The search term can be narrowed down in terms of casing and whether whole
words should be matched, and it can also be expressed as a regular expression. The search range can be
restricted to a selection in the document. Results are highlighted in orange, and containing cells also
highlighted in orange.

For a description of the Find and Replace functionality, see the descriptions of the Find and Replace
commands of the Edit menu .

4.3.4 Split View

Split View divides the main window of Grid View (for XML; JSON, and DTD documents) into two either vertical or
horizontal parts and displays the active document in both parts. This essentially means that you will have two
views of the active document. You can navigate separately in each view—which enables you to see different
parts of the document side-by-side. If you make a change in either view, then this is applied to the underlying
document and is immediately reflected in the other view.

Switching between Split View and Single View
Create split views of the active document as follows:

· Horizontal split: Drag down the horizontal-split icon at top right (see screenshot below).
· Vertical split: Drag the vertical-split icon at bottom right (see screenshot below) to the left.

1275

1514

1224 1230 1215

1224 1230

1215

170 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To return to single view from split view, do one of the following:

· Double-click the splitter bar, or
· Move the splitter bar to one of the parallel window sides and release the mouse button.

Note: A split view is created for each document individually.

Navigating and editing in split view
The main benefit of working in Split View is that you can view different parts of a long document side-by-side or
view the same part in the alternative Table Display simultaneously. In Split View, you can edit the document
in both views. The changes will be applied to the underlying document and will be reflected in both views. The
screenshot below shows a document in a vertical Split View.

172

© 2018-2024 Altova GmbH

Grid View 171Editing Views

Altova XMLSpy 2024 Enterprise Edition

Note the following points:

· When the view is split, the second view contains the same view as the original single view at the time
of the split.

· All the display features , editing features , navigation features, etc. that are available in the single
view of a document are available in both views of Split View (see screenshot above).

· In each view of Split View, you can scroll and navigate separately.
· You can use table display separately in each view.
· All editing actions on the document, including entry helper actions, are reflected in both views.

4.3.5 Entry Helpers

For XML, JSON, and DTD documents in Grid View, there are three entry helpers: Siblings, Children, and
Values. When a cell is selected in Grid View, context-sensitive items appear in each entry helper. What
appears depends on the document structure and node constraints defined in the schema that has been
assigned to the XML document.

Siblings and Children entry helpers
The Siblings and Children entry helpers will contain, respectively, available sibling and children nodes of the
node selected in Grid View. See the screenshot of the Sibling entry helper below. Nodes that have already
been added are shown in gray, while those that have not yet been added are show in black. Mandatory
elements are indicated with an exclamation mark. In the screenshot below of an active XML document, all
sibling nodes, except the mandatory State element, have already been added to the document.

156 165

172

172 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

When you select an item in the Siblings or Children entry helpers, icons appear on the right hand side (see
screenshot above) that enable you, respectively, to insert the item immediately after the node selected in Grid
View, immediately before it, or (appended) after all its siblings.

Values entry helper
When a node is selected in Grid View that can take a value and if that node has a set of possible values
defined for it in the schema, these values are listed in the Values entry helper. Double-click any of these values
to enter it.

4.3.6 Table Display (XML)

About Table Display
In standard Grid View, if an element repeats, then each element instance is displayed, one after the other in
document order. In the screenshot below, for example, the Person element is the repeating element.

© 2018-2024 Altova GmbH

Grid View 173Editing Views

Altova XMLSpy 2024 Enterprise Edition

A repeating element, such as the Person element shown above, can also be displayed as a table (screenshot

below). In table representation, child nodes of the repeating element form the table's columns, while instances
of the repeating element form the table's rows. To switch to Table View, click the Table Mode icon that is
shown on the first instance of the repeating element (circled in green in the screenshot above). When switched
to table display, the Table Mode icon is displayed in color (see screenshot below).

Table View offers a unique editing advantage in that whole rows and columns can be manipulated relative to
other columns and rows in the table. This enables such operations as sorting rows on the values of one
column. For example, in the screenshot above, the six Person elements can be sorted on the basis of their
Last child elements via a simple GUI operation. Such an operation (see below for details) is simpler than

running an XSLT transformation, which is the usual way to sort an XML nodeset.

Note
· Table Display can be applied only to a sequence of elements of the same name.
· Table Display is also available for a single element. The element's Table Mode icon becomes visible

when the element is clicked.
· Table Display colors can be set in the Options dialog: Fonts and Colors | Grid View | Cell Colors .

1537

174 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Icons for viewing and editing in Table Display
The icons shown below are available in Table Display and provide viewing and editing functionality. They are
available in table cells and/or the Grid View toolbar.

Optimizes widths of grid columns according to cell content.

 / When colored, Table Display is on, otherwise off. Click to switch the display

 / A toggle command in top left cell of table. Switches rows to columns and vice versa

 / When colored, a filter for the table, object, or array is active; otherwise the filter is
deactivated. Click to deactivate/activate. To edit the expression, double-click it

Toggle command to word-wrap cells. When selected, word-wrap is on. By default. only
the contents of items are wrapped. If you want to additionally wrap the names of items,
choose this option from the icon's dropdown list.

Zoom level of Grid View

Enabled when a column header in Table View is selected. The buttons sort the rows of
the table, respectively, in descending or ascending order of column content

Editing in Table Display
In Table Display, you can carry out the editing actions described below.

Add a table row (new instance of the table's repeating element)
You can add a new row—that is, another instance of the table's repeating element—as follows:

1. Right-click the cell containing the row number of the row above or below which you want to add a new
row.

2. Select the command Insert After (Ctrl+Enter) to add a row below the selected row, or Insert Before
(Ctrl+Shift+Enter) to add a row above the selected row. These commands are also available in the
XML menu and the Grid View toolbar .

The new row will be created as an element node. You can change its node type if you want (see below for
details).

Add sibling or child elements to a table cell
If a table cell represents a child element of a table row, then you can give this child element a following-sibling
node or a child node. Right-click the table cell and select the command Append (Ctrl+Alt+A) or Add Child
(Ctrl+Alt+Enter), respectively. These commands are also available in the XML menu and the Grid View
toolbar . The new row will be created as an element node. You can change its node type if you want (see
below for details).

Wrap cell in element
You can create an element around a table cell. The new element will be created at a level between that of the
cell and that of the cell's parent. To do this, right-click the table cell and select the command Wrap in
Element (Ctrl+Alt+W). This command is also available in the XML menu and the Grid View toolbar .

172

193

1265 156

1265

156

1265 156

© 2018-2024 Altova GmbH

Grid View 175Editing Views

Altova XMLSpy 2024 Enterprise Edition

Add a table column (new child node of all instances of table's repeating element)
You can add a new column—that is, a new child node of all instances of the table's repeating element—as
follows:

1. Right-click a column header or a non-empty cell of a column.
2. Select the command Insert After (Ctrl+Enter) to add a column to the right of the selected column, or

Insert Before (Ctrl+Shift+Enter) to add a column to the left of the selected column. These commands
are also available in the XML menu and the Grid View toolbar .

The new column will be created as an element node. You can change its node type if you want (see below for
details).

Change node types and names of columns
To change the node type of a column, click the node type icon of the column and, from the menu that appears,
select the new node type. The type of this node will be changed for all instances of the repeating element.

To change the name of a column header, double-click the name and edit it. As a result, the name of this node
will be changed in all instances of the repeating element.

Sort table rows on the values of a selected column
You can sort the rows of a table on the relative values of one of its child nodes (a column). For example, you
can sort rows on the basis of the LastName column to give you the repeating elements of the table sorted
alphabetically. To sort on a column, select the column header and then click the Grid View toolbar
command Ascending Sort or Descending Sort. These commands are also available in the XML menu .

Sort order in some languages, especially those with non-Latin alphabets, may benefit from enabling the beta
Unicode UTF-8 support in the Language Region Settings dialog of Windows 10 (or later). Do this as follows: Go
to your Windows Settings dialog and search for Language Settings. Under Related Settings, click
Administrative language settings. In the Region dialog that appears, go to the Administrative tab, and, under
Language for non-Unicode programs, click Change system locale. In the Region Settings dialog that appears
(screenshot below), select the option Beta: Use Unicode UTF-8 for worldwide language support and click OK.

1265 156

156

1265

176 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Table Display and external applications
You can take advantage of the table structure to exchange data between Table Display and a spreadsheet
application (such as MS Excel). To move data from Table Display, do the following:

1. In Table Display, select the nodes you want to copy. Do this by clicking the cells themselves, column
headers, row headers, or the entire table. If you click the entire table or column headers, then column
headers are also copied; otherwise they are not. (In the screenshot below, rows 2 and 3 are selected.)

2. Select the context menu command Copy | Copy as Tab-separated Text .
3. Paste the data directly into the spreadsheet program.

Data exchange works in both directions. You can also copy data from a spreadsheet to Table Display. Do this
as follows:

1. Select a range in the external application and copy it to the clipboard (with Ctrl+C).
2. Select a single cell in Table Display.
3. Paste the copied data with Ctrl+V.

The data will be pasted into the table with a structure corresponding to the original structure and starting from
the cell selected in Table View. The following points need to be noted:

· If data already exists in these cells in Table View, the new data overwrites the original data.
· If more rows and/or columns are required to accommodate the new data, these are created.
· The data becomes content of the elements represented by the respective cells.

For more complex data exchange tasks, use the unique import/export functions of XMLSpy.

4.3.7 Table Display (JSON)

Table Display view
Objects and arrays that contain at least one object or array can be viewed either as a list (highlighted in
screenshot at left) or as a table (highlighted in screenshot at right). To switch between these two views, click
the table icon that is located below the object or array icon (see screenshot). In array tables, the array items
are displayed as rows. For example, in the screenshot below right, the Tracks array is displayed as a table.
This array consists of child objects, which are displayed as rows. Each object's properties (Title and
Duration in the screenshots below) are shown as columns, with the names of common properties being
displayed as the headers of columns. To switch rows and columns, click the icon in the top left cell of the
table.

1218

1384

© 2018-2024 Altova GmbH

Grid View 177Editing Views

Altova XMLSpy 2024 Enterprise Edition

Icons for viewing and editing in Table Display
The icons shown below are available in Table Display and provide viewing and editing functionality.

Optimizes widths of grid columns according to cell content.

178 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 / When colored, Table Display is on, otherwise off. Click to switch the display

 / A toggle command in top left cell of table. Switches rows to columns and vice versa

 / When colored, a filter for the table, object, or array is active, otherwise the filter s
deactivated. Click to deactivate/activate. To edit the expression, double-click it

Toggle command to word-wrap cells. When selected, word-wrap is on. By default. only
the contents of items are wrapped. If you want to additionally wrap the names of items,
choose this option from the icon's dropdown list.

In an array: Append an array item to the list or table
In an object: Append a key:value pair (as a row in a list, or (in table display) as a cell of
a new table column)

Add an empty key:value pair; the type of the value is string by default

Select the datatype of a property value, or enter a comment or formula

Editing in Table Display
In Table Display, you can carry out the editing actions listed below.

Add rows to a table
You can add rows in the following ways:

· Add a child row to the table: Select the table and, in the context menu, select the command Add
Child (Ctrl+Shift+Enter). Alternatively, click the table's Append Child icon (see icon list above). A
row will be appended to the bottom of the table.

· Append a sibling row to the table when a row is selected: Select a row and, in the context menu,
select the command Append (Ctrl+Enter). A row will be appended to the bottom of the table.

· Insert a sibling row above the selected row: Select a row and, in the context menu, select the
command Insert (Ctrl+Alt+Enter).

Enter or edit a property value
Select the table cell in which the property value is located and enter the value. The datatype will be
automatically detected if the value is a string, number, Boolean, or null. In case of ambiguity, the type is set to
string. You can override the automatic selection by using the datatype-selection icon (see icon list above).
Alternatively, you can use an appropriate shortcut (see shortcut table below).

* Auto (detects string, number, Boolean, null, and sets accordingly)

" String

[Array

{ Object

/ Comment (document must be JSONC or JSON5)

= Formula (document must be JSONC or JSON5)

176

193

© 2018-2024 Altova GmbH

Grid View 179Editing Views

Altova XMLSpy 2024 Enterprise Edition

Add an empty row cell in a new column
You can add a new cell to a row. The new cell will be part of a newly created column. To add the new cell,
select the row you want and, in the context menu, select the command Add Child (Ctrl+Shift+Enter).
Alternatively, click the row's Append Row Cell icon (see icon list above). The row cell will be created in a new
column. The type of the value in the cell is string by default. Enter the property's value in the cell and the
property's name as the column header. The other cells in the newly created column will be empty.

Sort table rows on the values of a selected column
You can sort the rows of a table on the relative values of one of its child nodes (a column). For example, you
can sort rows on the basis of the LastName column to give you the repeating elements of the table sorted
alphabetically. To sort on a column, select the column header and then click the Grid View toolbar
command Ascending Sort or Descending Sort. These commands are also available in the JSON menu .

Sort order in some languages, especially those with non-Latin alphabets, may benefit from enabling the beta
Unicode UTF-8 support in the Language Region Settings dialog of Windows 10 (or later). Do this as follows: Go
to your Windows Settings dialog and search for Language Settings. Under Related Settings, click
Administrative language settings. In the Region dialog that appears, go to the Administrative tab, and, under
Language for non-Unicode programs, click Change system locale. In the Region Settings dialog that appears
(screenshot below), select the option Beta: Use Unicode UTF-8 for worldwide language support and click OK.

Table Display and external applications
You can take advantage of the table structure to exchange data between Table Display and a spreadsheet
application (such as MS Excel). To move data from Table Display, do the following:

1. In Table Display, select the nodes you want to copy. Do this by clicking the cells themselves, column
headers, row headers, or the entire table. If you click the entire table or column headers, then column
headers are also copied; otherwise they are not. (In the screenshot below, rows 1 to 8 are selected,
together with their column headers.)

156

1283

180 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Select the context menu command Copy | Copy as Tab-separated Text .
3. Paste the data directly into the spreadsheet program.

Data exchange works in both directions. You can also copy data from a spreadsheet to Table Display. Do this
as follows:

1. Select a range in the external application and copy it to the clipboard (with Ctrl+C).
2. Select a single cell in Table Display.
3. Paste the copied data with Ctrl+V.

The data will be pasted into the table with a structure corresponding to the original structure and starting from
the cell selected in Table View. The following points need to be noted:

· If the data is copied into a cell that allows new rows and/or columns to be created without invalidating
currently existing data, then new rows and/or columns will be created.

· Rows are created as new objects, while columns are created as properties of the table's (row) objects.
· If the table structure cannot be validly modified, then the new data overwrites the original data of the

selected cell as text.

For more complex data exchange tasks, use the unique import/export functions of XMLSpy.

1218

1384

© 2018-2024 Altova GmbH

Grid View 181Editing Views

Altova XMLSpy 2024 Enterprise Edition

4.3.8 Drag-and-Drop (XML)

Grid View offers a very useful drag overlay that enables you to drag an XML document fragment into Grid View
from a document that is open in XMLSpy, an external application, or even a website.

When you place the cursor over the target node, a drag overlay appears that not only provides information about
what is being dragged (type and number of item/s) but also information about how the item will be created when
it is dropped. For example, in the screenshot below, the value Development is being dragged (moved). That the

item is a string value is indicated by the Abc popup.

· If you hover over a value field (as in the screenshot at left), then the entire field is marked, indicating
that the value of the marked field will be replaced by the value of the dragged field.

· If you hover over a node name (such as Date in the screenshot at right), then an insertion line appears,

indicating that the value string will be dropped there to create a text node in the tree.

Note: You can always undo any move with Ctrl+Z or the menu command Edit | Undo.

Information contained in the drag overlay
The following kinds of drag overlay information will be displayed.

182 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Normal Grid View

· Value dropped onto a value field moves the source value to overwrite the value in the target field (see
screenshot above left).

· Value dropped into the tree as a node creates a text node (see screenshot above right).
· The overlay for multiple nodes of a single type shows the node type that is being dropped and the

number of these nodes. Note that in order to select a node (and not its value), you must click the
node's name. In the screenshot below, the information in the drag overlay indicates that two attributes
will be dropped.

· The overlay for multiple nodes of different types shows the text Mixed and the number of nodes on the
clipboard (see screenshot below). Note that in order to select a node (and not its value), you must click
the node's name.

Table Display

· When values are dragged, the number of selected cells are indicated by column x rows (see

screenshot below). The matrix of dragged cells will replace a corresponding matrix. The target cell (the
cell on which you drop the matrix) will receive the value of the top left cell of the matrix. The other
dragged cells will fill the cells rightwards and downwards from the target cell. For example, in the
screenshot below the blue cells are dragged and dropped onto the first Date cell. This results in them

replacing the cells that have been marked. If the matrix of dragged cells exceeds the table boundaries,
then the appropriate number of columns and/or rows is added to accommodate all dragged cells. In
this case, the boundaries that will be expanded are indicated with dashed lines.

© 2018-2024 Altova GmbH

Grid View 183Editing Views

Altova XMLSpy 2024 Enterprise Edition

· When the target is the node tree—and not a cell—then the node being added is indicated, together
with (i) the columns that will be added (contained in square brackets), and (ii) the number of rows that
will be added for the new element (see screenshot below).

· A table column can be moved by selecting it (click its header to do this) and dropping it onto the
column header adjacent to which you want to move it. An insertion line will indicate on which side of
the target column the relocated column will be placed.

4.3.9 Drag-and-Drop (JSON)

Grid View offers a very useful drag overlay that enables you to drag a JSON document fragment into Grid View
from a document that is open in XMLSpy, an external application, or even a website.

When you place the cursor over the target node, a drag overlay appears that not only provides information about
what is being dragged but also information about how the item will be created when it is dropped. For example,
in the screenshot below, the value Seaside Rendezvous is being dragged (moved). That the item is a string

value is indicated by the AB popup.

· If you hover a value field (as in the screenshot at left), then the entire field is marked, indicating that the
value of the marked field will be replaced by the value of the dragged field.

· If you hover over a node name (such as Duration in the screenshot at right), then an insertion line

appears, indicating that the value string will be dropped there to create the value node of a key–value
pair. The key in this case will be an empty string.

Note: You can always undo any move with Ctrl+Z or the menu command Edit | Undo.

184 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Information contained in the drag overlay
The following kinds of drag overlay information will be displayed.

Normal Grid View

· Value dropped onto a value field moves the source value to overwrite the value in the target field (see
screenshot above left).

· Value dropped into the tree as a node creates the value node of a key–value pair (see screenshot
above right). The key will be an empty string.

· The overlay for multiple nodes of a single type shows the node type that is being dropped and the
number of these nodes. Note that in order to select a node (and not its value), you must click the
node's name. In the screenshot below, the information in the drag overlay indicates that two key–value
pairs of type string will be dropped.

· The overlay for multiple nodes of different types shows that the new nodes will be created with a default
type of string (see screenshot below). You can change the type of the dropped nodes by clicking the
respective Edit Type icons. Note that in order to select a node (and not its value), you must click the
node's name.

© 2018-2024 Altova GmbH

Grid View 185Editing Views

Altova XMLSpy 2024 Enterprise Edition

Table Display

· When values are dragged, the number of selected cells are indicated by column x rows (see

screenshot below). The matrix of dragged cells will replace a corresponding matrix. The target cell (the
cell on which you drop the matrix) will receive the value of the top left cell of the matrix. The other
dragged cells will fill the cells rightwards and downwards from the target cell. For example, in the
screenshot below the blue cells are dragged and dropped onto the Duration cell of row 6. This results

in them replacing the cells that have been marked. If the matrix of dragged cells exceeds the table
boundaries, then the appropriate number of columns and/or rows is added to accommodate all dragged
cells. In this case, the boundaries that will be expanded are indicated with dashed lines.

· When the target is the node tree—and not a cell—then the node being added is indicated, together
with (i) the columns that will be added (contained in square brackets), and (ii) the number of instances
of the new item. For example, in the screenshot below, an array is added that contains two objects,
each of which has a Title, Duration, and Writer key–value pair.

186 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· A table column can be moved by selecting it (click its header to do this) and dropping it onto the
column header adjacent to which you want to move it. An insertion line will indicate on which side of
the target column the relocated column will be placed.

4.3.10 Formulas (XML)

A formula in XML Grid View uses an XQuery 3.1 expression to calculate a result or generate a nodeset that can
be stored in the document. A formula is defined with an XQuery 3.1 expression. For example, in the screenshot
below, a formula named MinTemps has been created that generates the minimum, maximum, and average of

the set of all minimum temperatures.

To create a formula, do the following:

1. Add a new node where you want to display the formula.
2. The node will be created by default as an element. Change the type of the node to Formula.
3. Double-click in the cell containing the f(x) icon and enter the name of the formula (see screenshot

above).
4. You can click this icon to save the output of the formula to the document.
5. Double-click in the expression's cell and type in the XQuery expression, then click Enter.

Listing of XML document used in the screenshot above

<?xml version="1.0" encoding="UTF-8"?>

<Temperatures>

 <Month name="January">

 <Min>-5</Min>

 <Max>3</Max>

165

© 2018-2024 Altova GmbH

Grid View 187Editing Views

Altova XMLSpy 2024 Enterprise Edition

 </Month>

 <Month name="February">

 <Min>-16</Min>

 <Max>1</Max>

 </Month>

 <Month name="March">

 <Min>-9</Min>

 <Max>7</Max>

 </Month>

 <Month name="April">

 <Min>2</Min>

 <Max>16</Max>

 </Month>

 <Month name="May">

 <Min>8</Min>

 <Max>21</Max>

 </Month>

 <Month name="June">

 <Min>12</Min>

 <Max>26</Max>

 </Month>

 <Month name="July">

 <Min>14</Min>

 <Max>34</Max>

 </Month>

 <Month name="August">

 <Min>16</Min>

 <Max>36</Max>

 </Month>

 <Month name="September">

 <Min>11</Min>

 <Max>28</Max>

 </Month>

 <Month name="October">

 <Min>10</Min>

 <Max>26</Max>

 </Month>

 <Month name="November">

 <Min>-1</Min>

 <Max>14</Max>

 </Month>

 <Month name="December">

 <Min>-3</Min>

 <Max>9</Max>

 </Month>

</Temperatures>

Listing of formula expression used in the screenshot above

concat(

" MinMin=", min(//Month/Min), ", ",

188 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

" MaxMin=", max(//Month/Min), ", ",

" AvgMin=", avg(//Month/Min)

)

Note the following points:

· The context node of the formula's XQuery expression is the parent node of the formula node.
· To add a new line in an expression, press Ctrl+Enter. This is useful if you want to display an

expression over several lines for better readability.
· The XQuery expressions of a document's formulas are stored in a special application metadata file

located in your (My) Documents folder : Altova\XMLSpyCommon\json-metadata.json. Formulas
will automatically be applied from this file when the document is re-opened in Grid View.

· Formula expressions can additionally be saved as processing instructions in the document file itself
when the document is saved. To do this, make sure that the Persistence option of Grid View Settings
(Tools | Options | View | Grid View Settings) has been selected.

· In Grid View, the result generated by a formula is displayed in the cell below the formula's XQuery
expression and also stored in the application metadata file (see above).

· If the Persistence option has been selected (see above), then a disk icon appears next to the XQuery
expression. Toggle this icon on to save the formula's result in the document.

· The formula's result will be stored as the content of an element which has the name you assigned the
formula. For example: for the MinTemps formula shown in the screenshot above, the result will be

stored in an element named MinTemps.

· Whether the formula's result is stored in the document or not, it will be calculated and stored in the
application metadata file (see above).

Formulas in tables
If all the cells of a table column (in Table Display) contain the same formula, then the formula is displayed
only once—in the header of the column (see screenshot below). The results of the formula calculation, however,
are displayed in the respective cells. The formula in the column header is a Grid View representation. In the
XML document (see Text View), the formula is repeated for each table-row item.

If even a single formula of a cell is different, then the formula of each cell will be displayed. If all formulas of a
table column are the same so that the formula appears in the header, and you now want to create a different

34

1528

172

© 2018-2024 Altova GmbH

Grid View 189Editing Views

Altova XMLSpy 2024 Enterprise Edition

formula for an individual cell, switch off Table Display and edit the formula of that cell. When you switch back to
Table Display, formulas will be displayed in individual cells (for all cells).

4.3.11 Formulas (JSON)

A formula is an XQuery 3.1 expression that generates output (either a nodeset or a calculations) for display in
JSON Grid View. In the screenshot below, for example, the total price of the items 1 to 4 is calculated and the
output (28) is displayed in a separate line. Each formula is executed independently and is not affected by other

filters or formulas in the document.

For information about constructing XQuery expressions for JSON documents, see the section XQuery
Expressions for JSON .

JSON document shown in screenshot above, including stored formula and formula result

Note that the formula is stored as a JSON comment, but the formula result is stored as straight JSON
code. The code below (with the formula output being stored) is a result of the formula's disk icon being
clicked.

{
"receiptID": "123-456-7890",
"paymentMethod": "Cash",
"items": [

{
"itemID": "1",
"displayName": "Milk",
"price": 1,
"quantity": 3

},
{

"itemID": "2",
"displayName": "Yogurt",
"price": 2,
"quantity": 2

},
{

"itemID": "3",

707

190 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

"displayName": "Chocolate 85%",
"price": 1,
"quantity": 1

},
{

"itemID": "4",
"displayName": "Fancy Wine",
"price": 20,
"quantity": 1

}
],
//(:altova_xq_embed:)totalPrice(:altova_xq_key:)sum(for $item in ?items?* return

$item?price * $item?quantity)
"totalPrice": 28
//(:altova_xq_end:)

}

In the screenshot above, the formula sums up the members of a sequence. These members are each the
product of the price and quantity values of each object contained in the items array. The iteration to select

each object and assign it in turn to the $item variable is specified by: for $item in ?items?*. It is important

at this point to note the context node, which is the parent of the formula—and, consequently, the parent of the
items node. Each product is obtained by looking up the price and quantity child nodes of the object

currently in the $item variable, and multiplying these two values with one another. The products obtained in this

way are the members of the sequence, which are then summed to generate the total price.

Create a formula
To create a formula, do the following:

1. Select the node to which you want to add the formula, either as a sibling or child. Right-click, and add
the sibling or child (whichever you want). In deciding where you want the formula to appear (as sibling
or child), bear in mind that the context node of the formula's XQuery expression will be the parent node
of the formula. For example, in the XQuery expression shown in the screenshot above, the context
node is the parent node of the formula (totalPrice) and of its sibling, the items array. To create the

formula in the screenshot above, a sibling node was appended to the items array (see screenshot

below).
2. Change the type of the node to Formula (see screenshot below).

© 2018-2024 Altova GmbH

Grid View 191Editing Views

Altova XMLSpy 2024 Enterprise Edition

3. Double-click in the cell containing the f(x) icon to enter the name of the formula (see screenshot

below). If the document is a JSON5 or JSONC document, then a disk icon is displayed. You can click
this icon to save the output of the formula to the document.

4. By default, the XQuery expression is the string 'XQuery', so the output will be the string XQuery

(displayed in the cell below the expression). Enter your XQuery expression by double-clicking in the
expression's cell, typing in the expression, and then clicking Enter. This causes the formula to be
evaluated and its result to be displayed. Other formulas will not be modified.

5. If there are multiple formulas in the document, click the menu command JSON | Re-evaluate All to
update the results of all formulas. This command is especially useful if formulas in the document look
up dynamically changing data (for example, exchange rates).

Summary of key points
Note the following points about formulas, especially the special properties of JSON5 and JSONC documents:

· The context node of the formula's XQuery expression is the parent node of the formula node.
· To add a new line in an expression, press Ctrl+Enter. This is useful if you want to display an

expression over several lines for better readability.
· The XQuery expressions of a document's formulas are stored in a special application metadata file

located in your (My) Documents folder : Altova\XMLSpyCommon\json-metadata.json. Formulas
will automatically be applied from this file when the document is re-opened in Grid View.

· In JSON5 and JSONC documents, you can additionally save formulas as comments. Do this by
selecting the Persistence option of Grid View Settings (Tools | Options | View | Grid View
Settings). This option is selected by default.

· The calculation result of a formula is displayed in the cell below the formula's XQuery expression. In the
case of JSON5 and JSONC, the output can additionally be stored in the document. If the Persistence

34

1528

192 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

option has been selected (see previous point), then a disk icon appears next to the XQuery
expression. Toggle this icon on to save the formula's result in the document.

Formula output not saved to JSON content; click to save. Only in JSON5 and JSONC.

Formula output saved to JSON content; click to not save. Only in JSON5 and JSONC

· Whether the disk is clicked or not, the formula's output will be calculated and stored in the document's
metadata.

· When the output is a calculation and is stored in content, it is stored as a property which has the
name you assigned the formula. For example, in the totalPrice formula described above, the output

will be stored like this: "totalPrice": 28.

· Note this difference: In JSON5 and JSONC documents, formulas are saved as JSON comments, their
outputs are saved as JSON properties.

Note: It is not possible to save either formulas or their results in JSON documents that are not JSON5 or
JSONC. However, since the Grid View formulas of any JSON document are always stored in the
application metadata file, they will always be applied to the document when the document is displayed
in Grid View.

Formulas in tables
If all the cells of a table column (in Table Display) contain the same formula, then the formula is displayed
only once—in the header of the column (see screenshot below). The results of the formula calculation, however,
are displayed in the respective cells. The formula in the column header is a Grid View representation. In the
JSON document content (in Text View), the formula is repeated for each table-row item.

If even a single formula is different (as in the highlighted cell of the screenshot below), then each formula is
displayed in its respective cell.

176

© 2018-2024 Altova GmbH

Grid View 193Editing Views

Altova XMLSpy 2024 Enterprise Edition

Re-evaluate all formulas
To update the results of all formulas in the document, click the menu command JSON | Re-evaluate All.

Procedures for relevant actions

· Add a new empty column to the table as follows: Switch to List Display from Table Display, right-click
any key:value pair in the list display, and append or insert a new key:value pair via the item's
context menu. When you switch back to Table Display, a new column is created for the new
key:value pair that was appended/inserted. You can now edit this column in Grid View.

· If all formulas of a table column are the same so that the formula appears in the header and you now
want to create a different formula for an individual cell, switch to List Display and edit the formula of that
cell.

4.3.12 Filters

Filters in XML documents
A filter in XML Grid View can be applied to an element node and enables you to filter the descendants of that
node. Wherever a filter can be applied, a grayed out filter icon is displayed. Once a filter has been defined, this
icon is shown in color (see screenshot below). A filter is defined with an XQuery 3.1 expression. For example,
in the screenshot below, a filter has been set on the Temperatures node to display only those Month child

elements that have a Min child element with a value that is greater than 10. (Note that in the screenshot the

index number of the respective Month element instance is listed.)

194 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To set up a filter, right-click the element you want to filter, select Filter from the context menu that appears,

enter the XQuery expression, and click Enter. The Filter cell is indicated by the icon (see screenshot
above). You can activate/deactivate the filter by clicking the Filter icon.

Listing of XML document used in the screenshot above

<?xml version="1.0" encoding="UTF-8"?>

<Temperatures>

 <Month name="January">

 <Min>-5</Min>

 <Max>3</Max>

 </Month>

 <Month name="February">

 <Min>-16</Min>

 <Max>1</Max>

 </Month>

 <Month name="March">

 <Min>-9</Min>

 <Max>7</Max>

 </Month>

 <Month name="April">

 <Min>2</Min>

 <Max>16</Max>

 </Month>

 <Month name="May">

 <Min>8</Min>

 <Max>21</Max>

 </Month>

 <Month name="June">

 <Min>12</Min>

 <Max>26</Max>

 </Month>

 <Month name="July">

 <Min>14</Min>

 <Max>34</Max>

 </Month>

 <Month name="August">

 <Min>16</Min>

 <Max>36</Max>

 </Month>

 <Month name="September">

© 2018-2024 Altova GmbH

Grid View 195Editing Views

Altova XMLSpy 2024 Enterprise Edition

 <Min>11</Min>

 <Max>28</Max>

 </Month>

 <Month name="October">

 <Min>10</Min>

 <Max>26</Max>

 </Month>

 <Month name="November">

 <Min>-1</Min>

 <Max>14</Max>

 </Month>

 <Month name="December">

 <Min>-3</Min>

 <Max>9</Max>

 </Month>

</Temperatures>

Note the following points about filters:

· Filters can be applied only to element nodes.
· The context node of the filter's XQuery expression is the current node. In the screenshot above, for

example, the context node is the Temperatures node.

· Filters can be nested. A nested filter will be applied to the filtered content of the parent filter.
· Each filter is executed independently and is not affected by formulas or other filters (unless it is a

nested filter).
· To add a new line in an expression, press Ctrl+Enter. This is useful if you want to display an

expression over several lines for better readability.
· The filtered content is a visual display only. The actual content remains unchanged.
· After a filter has been created, it can be deactivated/reactivated via the node's context menu Filter

command.
· Filters are not stored in the XML document, but are kept in a special application metadata file located

in your (My) Documents folder : Altova\XMLSpyCommon\json-metadata.json. Filters will be
automatically applied from this file when the document is re-opened in Grid View. You can pass the
metadata file to other XMLSpy users so that they can use the same filters.

Filters in JSON documents
Filters enable you to filter the display of objects and arrays. For example, in the screenshot below, a filter
(which is an XQuery 3.1 expression) has been applied to an array so that only those tracks written by Brian
May are displayed. In JSON terms, only those object children of Tracks are displayed that have a Writer

property containing the string value Brian May. The filter's XQuery expression looks up all child objects of
Tracks and selects those for which a lookup of the Writer property matches the string 'Brian May'.

186

34

196 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Each filter is executed independently and is not affected by other filters or formulas in the document.

For information about constructing XQuery expressions for JSON documents, see the section XQuery
Expressions for JSON .

Note: When entering expressions for filters and formulas in Grid View, you might want to display an
expression over several lines for better readability. To add a new line in the expression, press
Ctrl+Enter.

Set up a filter
To set up a filter, right-click the element you want to filter, select Filter from the context menu that appears,

enter the XQuery expression, and click Enter. The Filter cell is indicated by the icon (see screenshot
above). You can activate/deactivate the filter by clicking the Filter icon.

Note the following points about filters:

· Filters can be applied only to objects and arrays.
· The context node of the filter's XQuery expression is the current node. In the screenshot above, for

example, the context node of the filter's XQuery expression is the Tracks node.

· Filters can be nested. A nested filter will be applied to the filtered content of the parent filter.
· Each filter is executed independently and is not affected by formulas or other filters (unless it is a

nested filter).
· To add a new line in an expression, press Ctrl+Enter. This is useful if you want to display an

expression over several lines for better readability.
· The filtered content is a visual display only. The actual content remains unchanged.
· After a filter has been created, it can be deactivated/reactivated via the node's context menu Filter

command.
· Filters are not stored in the XML document, but are kept in a special application metadata file located

in your (My) Documents folder : Altova\XMLSpyCommon\json-metadata.json. Filters will be
automatically applied from this file when the document is re-opened in Grid View. You can pass the
metadata file to other XMLSpy users so that they can use the same filters.

4.3.13 Images

Images can be displayed directly in Grid View in its graphical representation (see screenshots below: XML Grid
View at left, JSON Grid View at right). In order for this to happen, the image must be stored in the file in its
Base64-encoding (and not as a reference to an image file)

186

707

186

34

© 2018-2024 Altova GmbH

Grid View 197Editing Views

Altova XMLSpy 2024 Enterprise Edition

There are two ways to insert the Base64-encoding of an image in a Grid View cell:

· Create a node that is of type Formula. In the formula expression cell (see screenshot above), enter the
following XPath expression to convert an image to its Base64 encoding: unparsed-text("<Image-

URL>", "x-binarytobase64"). The XPath function unparsed-text converts the image to Base64

encoding. The image will be stored as Base64-encoded text (which you can see in Text View), but will
be rendered in its graphic form below the cell containing the formula expression.

· Place the cursor in the cell into which you want to add the image. For example, in the screenshot
above, the image is added as content of the second Image element by selecting the Image element.

198 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Then select Edit | Insert | Encoded External File. In the dialog that appears: (i) enter the path to the
image you want (local or internet), (ii) select Base 64, (iii) select Create Text. The image will be
converted to its Base64 encoding, and the encoded text will be entered as text in the selected node.
(In XML Grid View, you can alternatively create the Base64 text as a new child element.) You can see
the encoded text in Text View. However, in Grid View, you will see, not the encoding, but a rendering of
the image in the cell (see screenshot above).

Image URLs can be given in the following forms, including as relative paths:

· http://httpbin.org/image/png
· file:///c:/LocalPig.png
· C:/LocalPig.png
· LocalPig.png

Most of the image formats that are commonly used are supported. These include PNG, JPEG, BMP, and
animated GIFs. SVG is read as an XML document; in Grid View, the image is displayed as the last child of the
<svg> element.

Save a Base64-encoded image string as an image file
The Base64 encoding of an image is simple text. In XMLSpy, you can generate this text into an image file
having the image format that is encoded in the Base64 text string. To save a Base64-encoded string in its
image format, right-click the image or its cell and select the command Save as Image. (Note that, although
the image is displayed in Grid View as an image, it is actually stored in the file as a Base64 string.) In the
dialog that appears, select the location where you want to save the image and enter a name for the image file.
The extension of the image file (.png, .gif, .svg, etc) will be auto-detected from the Base64 encoding and will
appear in the Save dialog. Click Save when done.

This action can also be carried out via the Edit | Save as Image menu command.

4.3.14 Charts

Charts can be created in Grid View by using the Altova XPath/XQuery extension named altovaext:chart (see

screenshots below). This extension is described below. It is also described along with other chart extensions in
the section Chart Functions .

Chart example in XML
The altovaext:chart extension shown in the screenshot below is used in an XQuery Let expression that is

defined inside a Grid View formula . The chart is displayed as an image below the formula. You can use the
XML document listing and the XQuery expression given below to try out the charts function.

2156

186

© 2018-2024 Altova GmbH

Grid View 199Editing Views

Altova XMLSpy 2024 Enterprise Edition

Listing of the XML document used in the screenshot above

<?xml version="1.0" encoding="UTF-8"?>

<Temperatures>

 <Month name="January">

 <Min>-5</Min>

 <Max>3</Max>

 </Month>

 <Month name="February">

 <Min>-16</Min>

200 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 <Max>1</Max>

 </Month>

 <Month name="March">

 <Min>-9</Min>

 <Max>7</Max>

 </Month>

 <Month name="April">

 <Min>2</Min>

 <Max>16</Max>

 </Month>

 <Month name="May">

 <Min>8</Min>

 <Max>21</Max>

 </Month>

 <Month name="June">

 <Min>12</Min>

 <Max>26</Max>

 </Month>

 <Month name="July">

 <Min>14</Min>

 <Max>34</Max>

 </Month>

 <Month name="August">

 <Min>16</Min>

 <Max>36</Max>

 </Month>

 <Month name="September">

 <Min>11</Min>

 <Max>28</Max>

 </Month>

 <Month name="October">

 <Min>10</Min>

 <Max>26</Max>

 </Month>

 <Month name="November">

 <Min>-1</Min>

 <Max>14</Max>

 </Month>

 <Month name="December">

 <Min>-3</Min>

 <Max>9</Max>

 </Month>

</Temperatures>

Listing of XQuery expression to generate the chart that is shown in the screenshot above

let $months := //Month return

altovaext:chart(map{ "title":"Temperatures", "kind":"LineChart" },

(

 (:name, X-axis, Y-axis :)

 ['Min', $months/@name, $months/Min],

© 2018-2024 Altova GmbH

Grid View 201Editing Views

Altova XMLSpy 2024 Enterprise Edition

 ['Max', $months/@name, $months/Max]

))

Chart example in JSON
The altovaext:chart extension shown in the screenshot below is used in an XQuery Let expression that is

defined inside a Grid View formula . The chart is displayed as an image below the formula. This chart
example is in the file Chart.jsonc, which is located in the Examples folder of your (My) Documents folder

and also accessible via the Examples project .) The JSON document listing is also given below for your
convenience so that you can more easily try out the charts function. The charts function is contained in the
JSON document listing, but it is also listed separately below.

186

34

116

202 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

© 2018-2024 Altova GmbH

Grid View 203Editing Views

Altova XMLSpy 2024 Enterprise Edition

Listing of the JSON document used in the screenshot above

// This file demonstrates the new features in JSON Grid View.

// Switch to Grid View to enjoy new features like filters and formulas.

{

"Temperatures": [

{ "Month": "January", "Min": -5, "Max": 3 },

{ "Month": "February", "Min": -16, "Max": 1 },

{ "Month": "March", "Min": -9, "Max": 7 },

{ "Month": "April", "Min": 2, "Max": 16 },

{ "Month": "May", "Min": 8, "Max": 21 },

{ "Month": "June", "Min": 12, "Max": 26 },

{ "Month": "July", "Min": 14, "Max": 34 },

{ "Month": "August", "Min": 16, "Max": 36 },

{ "Month": "September", "Min": 11, "Max": 28 },

{ "Month": "October", "Min": 10, "Max": 26 },

{ "Month": "November", "Min": -1, "Max": 14 },

{ "Month": "December", "Min": -3, "Max": 9 }

],

"ChartConfig": {

//Title is optional, you can remove it

"title": "Temperatures",

//Try modifying the kind of this chart.

"kind": "LineChart",

"width": 800,

"height": 600

}

/*(:altova_xq:)Chart(:altova_xq_key:)

 let $temps := ?Temperatures?* return

 altovaext:chart(?ChartConfig,

(

 (:name, X-axis, Y-axis :)

['Min', $temps?Month, $temps?Min],

['Max', $temps?Month, $temps?Max],

(: Calculate average per each min/max

 using mapping operator ! :)

['Avg', $temps?Month, $temps ! avg((?Min, ?Max))]

))*/

}

Listing of XQuery expression to generate the chart that is shown in the screenshot above

let $temps := ?Temperatures?* return

altovaext:chart(?ChartConfig,

(

 (:name, X-axis, Y-axis :)

 ['Min', $temps?Month, $temps?Min],

 ['Max', $temps?Month, $temps?Max],

 (: Calculate average per each min/max

 using mapping operator ! :)

 ['Avg', $temps?Month, $temps ! avg((?Min, ?Max))]

204 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

))

Using the Altova Charts extension

· The charts extension function altovaext:chart must use the namespace prefix altovaext:.

· The function altovaext:chart takes two arguments: (i) chart configuration information, and (ii) chart

data series information.
· The chart configuration information is the first argument of altovaext:chart. It is an unordered series

of four key–value pairs. These pairs are for (i) the chart's title (key is title), (ii) the kind of chart, such

as pie chart, line chart, etc (key is kind; see Chart Functions for available kinds), (iii) chart width in

pixels (integers only; key is width), and (iv) chart height in pixels (integers only; key is height). If

either, the width or height value, or both values are not given, then the missing value or values are auto-
calculated on the basis of the data.

· In the screenshot of the JSON example above, the configuration information is stored in the
ChartConfig object, which is referenced in the altovaext:chart function.

· The chart data series is the second argument of altovaext:chart. Each data series is an array of

size 3: (i) the name of the series, (ii) the x-axis values, (ii) the y-axis values. If you wish to create
multiple series (for example where each series represents a line, as in the example above) then create
a sequence of multiple arrays.

· The XML example above has two data series; for the minimum, and maximum temperatures. The data
for the X and Y axes are referenced from the sequence of all Month elements.

· The JSON example above has three data series; for the minimum, maximum, and average
temperatures. The data for the X and Y axes are referenced from the array named Temperatures.

For more information, see the section Chart Functions .

4.3.15 Context Menu

When you right-click a cell in Grid View, a context menu (screenshot below) appears that provides commands
for editing content related to the cell and for modifying the display. The context menu can also be accessed by
pressing the keyboard's Menu key. The commands of the context menu are described below.

2156

2156

© 2018-2024 Altova GmbH

Grid View 205Editing Views

Altova XMLSpy 2024 Enterprise Edition

Type
Hovering over the Type command causes a sub-menu to be displayed in which you can select the type of the
component . You can also directly access the Type sub-menu via the keyboard shortcut Ctrl+Menu.

Insert After/Before, Append, Add Child
The Insert and Append commands add an item at the same level. (In XML, this is by default an element.) The
new item is added, in the case of Insert After and Insert Before, respectively, after and before the selected
item, and in the case of Append as the last sibling of the selected item.

The Add Child command appends a new item as a child:

· In XML, the child item is by default an element. Change the name of the newly added element by
double-clicking in its name cell and editing. Change the node type by clicking the element's icon (to
the left of its name) and selecting the node type you want.

· In JSON, if a child already exists, the new child will be of the same type as the last child; if no child
exists, then the new child will be an empty key:value pair.

Wrap in Element (XML Grid View)
The selected item is given a parent element with a default element, which you can rename (by double-clicking
the name and editing it).

156

206 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Edit as Raw Text (XML Grid View)
Enables you to edit text content of the selected item as raw text. This is useful, for instance, if you are editing
complex content such as HTML code. For example, the screenshot below, shows the Address element in Grid

View.

If you switch the display of the Address element to raw text (screenshot below), the grid structure is converted

to a single item containing raw text, all of which can be edited as in Text View.

Element Whitespace (XML Grid View)
Available on element nodes, it adds the xml:space attribute to the element's markup and gives this attribute

the value you select from the command's submenu.

· However, if you select the Omit value, then the xml:space attribute is not added, which has the effect

of normalizing whitespace.
· The Preserve value preserves all whitespace as is and turns off pretty printing for that element.

Preserved whitespace is indicated in Grid View by an ellipsis icon.
· The Default value takes the value specified for that element in the schema, which can be useful for

overriding an xml:space value that has been inherited from an ancestor element in the XML document.

Wrap in Array, Wrap in Object (JSON Grid View)
The selected part of the table can be wrapped in either an array or an object.

Move Up/Down/Left/Right
If it is possible to move a component up, down, left or right from its current location in the grid, then the
corresponding command/s are enabled. Select the respective command to carry out the move.

Copy
These commands can be used to copy the current selection. Only those options are enabled that are allowed
on that component.

Command Description

Copy as XML/JSON Text Current selection is serialized as XML/JSON markup

Copy as Tab-separated Text Current table selection is serialized as TSV (Tab-Separated Values)

Copy as Image Current image cell is copied as image

140

© 2018-2024 Altova GmbH

Grid View 207Editing Views

Altova XMLSpy 2024 Enterprise Edition

Note the following points:

· Copy as Image copies the Base64-encoded string of the selected image. If the string is pasted to a
document where the Base64-encoded string can be rendered as an image (for example to another
table cell in Table Display), then it will be rendered. Otherwise, it will be pasted as a string.

· To insert text in a cell, copy the text and paste it in the cell.
· To import from file, for example an image, use the command Edit | Insert | Encoded External File

. This inserts an image as Base64-encoded string, and displays this string as an image in JSON Grid
View. Image file formats that are supported for import are: PNG, JPEG, BMP, GIF, TIFF.

Copy XPath
This command copies to the clipboard an XPath 3.1 locator expression, starting at the document root, that
locates the selected node.

Copy XPointer (XML Grid View)
This command copies to the clipboard an XPointer expression that locates the selected node. See Copy
XPointer/JSON-Pointer for details.

Copy JSON Pointer (JSON Grid View)
This command copies to the clipboard a JSON Pointer expression that locates the selected node. For
example: /Artists/1/Albums/1/Tracks. See Copy XPointer/JSON-Pointer for more information.

Filter, Filter to Focus
The Filter command is a toggle command. It adds a filter to the selected element or deactivates a filter. Note
that, after you add a filter via this command, you must enter a filter expression; otherwise the filter will
automatically be removed. After a filter has been added you can deactivate it by selecting the command again
or clicking the filter. To remove the filter, click Remove all filters in the toolbar.

The Filter to Focus command (i) builds a filter on the root element which contains an XPath expression to
locate the selected node, and (ii) filters the Grid View display to show the selected node (and its descendants)
directly under the root element. This is useful if you want to focus the display on just the selected node. To
remove the filter, click the Filter icon in the content cell of the root element.

Expand Fully
This command is enabled if the selected component or any of its descendants is collapsed. It expands the
component and all descendant components.

Collapse Unselected
This command collapses all components except the selected component and its ancestor components.

Text Direction
This command is available for nodes containing text (or, in JSON, a String type), and switches the reading
order to start from either the left or the right of the cell. This is useful when using languages such as Arabic and
Hebrew.

4.3.16 Grid View Settings

The settings of Grid View are defined in the Grid View Settings dialog (screenshot below), which is accessed
via the Settings icon in the Grid View toolbar .

1219

1219

1219

156

208 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Grid View Settings icon in the Grid View toolbar

Grid View settings are described below. Note that these settings apply to the Grid View of all documents (XML,
JSON, DTD).

156

© 2018-2024 Altova GmbH

Grid View 209Editing Views

Altova XMLSpy 2024 Enterprise Edition

210 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Display
The check boxes in the Display section are fairly self-explanatory. Given below are a few notes for clarification.

· If all cells are not expanded on loading, then the root node and all its descendants are collapsed. You
will need to expand each node as you go deeper into the document.

· If Convert XML entities to raw text on loading is selected, then XML entities will be loaded in Grid View
as the raw text of the respective entity; they will not be resolved to their respective glyph
representations.

· If Show inline previews is not checked, then, instead of a preview of the cell being shown, only the
index number of the element in the cell will be shown. If inline previews are enabled, then you can opt
to show a preview that contains (i) both element content and attributes, or (ii) attributes only. To opt for
the latter, check For attributes only; to opt for the former, uncheck For attributes only. Note that only
the first part of the inline content of a cell will be shown; you can hover over an element's start tag to
see all of its content.

· When optimal widths are switched on, the entire width of the grid is displayed. To achieve this, text in
some cells will wrap.

· When text overflows a cell, the overflow can be shown either as text that fades or be indicated by an
ellipsis.

· You can switch the display of whitespace in grid cells on or off. A space character is shown as a
vertically centered dot and a tabs is displayed as an arrow. An end-of-line is indicated with a new
linefeed inside the cell.

· Sibling nodes can be organized into sibling groups of 100, 1k, or 10k nodes (see screenshot below).
This is useful for two reasons: (i) saving space in the display and aiding navigation; (ii) avoiding a delay
in rendering that loading a large number of records would entail. At any time, one sibling group is
shown expanded. This group can be collapsed only by expanding another group. If you do not want to
group siblings, then select Unlimited.

Navigation
Basically, you can use the arrow keys to navigate the grid. These setting provide smart options for using the
keys.

· Expand on Right Arrow key: If a cell item is collapsed, then pressing the Right Arrow key expands the
item in the cell. If the cell item is not collapsed, the Right Arrow key takes you to the next cell on the
right (including to the child if the next cell on the right is a child). If the option is not selected, the Right
Arrow key stops at a collapsed cell. Note that the Expand on Right Arrow key feature does not apply to
cells within tables; in table cells, the action takes you to the next cell on the right.

· Collapse on Left Arrow key: When you move left with the Left Arrow key, then, at some points, you

© 2018-2024 Altova GmbH

Grid View 211Editing Views

Altova XMLSpy 2024 Enterprise Edition

must also move up the document hierarchy. If this option is selected, then items that can be collapsed
will be collapsed when the Left Arrow key is pressed; otherwise such items will not be collapsed
although the focus will shift to the parent item. Note that the Collapse on Left Arrow key feature does
not apply to cells within tables; in table cells, the action takes you to the next cell on the left.

· Expand/Collapse on Spacebar: The spacebar functions as a toggle to expand/collapse an item. It can
therefore be used as an additional key for navigating the grid.

· Keep Column Position on Up/Down Arrow keys: The Up and Down Arrow keys take you, respectively,
up and down through cells of the grid, including through parent and children items—which are
hierarchically at different levels, and so in different columns. If this option is selected, levels that are
represented in columns other than the current column are skipped. This works, for example, like this.
Say the cursor is in the column for the element subject/course/books/book/title. With the Keep

Column Position option selected, you can use the Up and Down arrow keys to navigate only through
titles of books (without going into the book, books, course, or subject columns, or any columns for

descendant items of Title.)

Editing
The check boxes in the Display section are fairly self-explanatory. Given below are a few notes for clarification.

· When changing the type of multiple selected cells, you are given the following options about whether to
go ahead with the action of the setting: Always, Never, or Ask (for user decision).

· When changing a JSON type to from an atomic type to object or array, you are given the following
options about whether to go ahead with the action of the setting: (i) Ask (whether the value of the
atomic type should be retained as the value of an unnamed child key:value pair, or discarded), (ii)

Always (retain the value in an unnamed child key:value pair), (iii) Never (retain the value, that is,

discard the value).
· The Paste direction option determines whether a selection in the clipboard is pasted above or below

the selected cell.

Persistence
Formula expressions and formula results are always stored in the application metadata file for filters and
formulas. However, if the Persistence option is selected, then formulas can also be saved in the document
itself.

· In XML documents, formula expressions are stored as processing instructions and formula results are
stored as element content.

· In JSON5 and JSONC documents, formula expressions are stored as comments and formula results
are stored as JSON properties.

 The if possible terminology of the option refers to the fact that comments are allowed only in JSON5 and
JSONC documents—not in other JSON documents.

JSON Tables, XML Tables
If the setting to detect Grid View tables automatically on loading is selected, then you can select the minimum
percentage of filled table cells that qualify tables to be detected as tables. If the number of filled table cells
does not exceed this level, then the structure is displayed as a normal grid with the repeating elements listed
one below the other.

212 Editing Views Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Clipboard
You can also choose whether clipboard contents should be stored as tab-separated values (TSV), or as
XML/JSON (depending on the document type). This is a very useful feature: If you want to paste a table from
the clipboard to another document, this setting enables you to choose whether the copied table is stored as
TSV or with markup. (To see the difference, try pasting a table to a text editor after copying the table to the
clipboard in each of the formats.)

© 2018-2024 Altova GmbH

Schema View 213Editing Views

Altova XMLSpy 2024 Enterprise Edition

4.4 Schema View

Altova website: XML Schema Editor

XML Schemas can be viewed and edited graphically in Schema View (screenshot below). The graphical
interface enables you to build schemas quickly and accurately using typical GUI features. Schema View has
two panes: (i) an upper pane for designing the structural relationships between schema components; and (ii) a
lower pane for definitions related to the component selected in the upper pane. There are also three entry
helpers that greatly facilitate the creation of valid schemas: the Components, Details, and Facets entry helpers.

Upper pane: schema design
The upper pane of Schema View can be switched between two views:

· Schema Overview displays all global components of the schema (such as global elements and
complex types) in a simple tabular list (see screenshot). By clicking the icon of a global component
you can switch to the Content Model View of that global component. Note that not all global
components can have a content model (for example, simple types).

· Content Model View displays the content model of the selected global component (see
screenshot). To return to Schema Overview, click the Show Globals icon at the top left of the upper
pane.

219

219

231

231

https://www.altova.com/xmlspy-xml-editor/xsd-editor

214 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Switch to Content Model View: Available for global components that have a content model. Opens the
global component's content model in Content Model View .

Show Globals: Available in Content Model View. Switches to Schema Overview .

Lower pane: Attributes, Assertions, and Identity Constraints
The lower pane of Schema View (see screenshot) contains tabs for the definitions of Attributes, Assertions,
and Identity Constraints of the component selected in the design (upper pane). We call this pane the AAIDC
pane for short.

· In XSD 1.0 mode, the lower pane has two tabs: (i) Attributes , and (ii) Identity Constraints .
· In XSD 1.1 mode, the lower pane has three tabs: (i) Attributes , (ii) Assertions , and (iii) Identity

Constraints .

The AAIDC pane is always present in Schema Overview and may be present in Content Model View. In Content
Model View, all three types of definitions (attributes, assertions, IDCs) can be displayed in the diagram instead
of in the AAIDC pane. To do this, toggle the respective Schema Design toolbar buttons on: (i) Display
attributes in diagram, (ii) Display assertions in diagram, and (iii) Display identity constraints in
diagram. Alternatively, you can specify these preferences in the Schema Display Configuration dialog
(Schema Design | Configure View). When all the definition-types of the AAIDC pane are displayed in the
diagram, the lower pane will no longer be visible in Content Model View.

Schema settings
The Schema Settings dialog (Schema Design | Schema Settings) is accessed from Schema View and
lets you define global settings for the active schema. These settings are the attributes of the xs:schema

element.

Organization of this section
This section is organized into the following sub-sections

· XSD Mode: XSD 1.0 or 1.1 : Select between the two editing modes
· Schema Overview : Edit the properties of global components
· Content Model View : Edit the content models of individual global components
· Attributes, Assertions, and Identity Constraints : Define these particular properties of components
· Entry Helpers : Use these to quickly define various properties of components
· Smart Restrictions : Graphically create and edit derived types from base types
· Using xml: prefixed attributes : Add the base, id, lang, and space attributes graphically to schema

components
· Back and Forward: Moving through Positions explains a Schema View feature that enables you to

move through previously viewed positions

Connecting to SchemaAgent
From XMLSpy you can also connect to SchemaAgent in order to display components from other schemas in
the GUI and to use these components in the schema being currently edited. How to work with SchemaAgent in
XMLSpy is described in the section Working with SchemaAgent .

231

219

252

252

253 260

253 256

260

1312

1303

215

219

231

252

267

282

287

288

457

© 2018-2024 Altova GmbH

Schema View 215Editing Views

Altova XMLSpy 2024 Enterprise Edition

Find in schemas
The Find in Schemas features enables intelligent searches in schemas, i.e., searches that are restricted by
various schema-related criteria. For example, searches may be restricted to certain component types, thus
making the search more efficient. Find in Schemas is described in the DTDs and XML Schemas section .

4.4.1 XSD Mode: XSD 1.0 or 1.1

In Schema View you can select whether the XML Schema (XSD) should be edited and validated according to
the XML Schema 1.0 specification (XSD 1.0) or the XML Schema 1.1 specification (XSD 1.1). The XSD mode
that is used for editing a file is based on two settings: one in the application, the other in the XSD document.

Selecting XSD mode
The XSD mode determines the Schema View editing and validation features (XSD 1.0 or 1.1) available for the
active document. You can either: (i) make an application-wide setting, in which case all XSD documents in
Schema View will be edited in the selected mode, or (ii) you can save the XSD version number in the XSD
document and let the application automatically select the XSD mode according to this information.

Application-wide mode
The application-wide setting is made in the File section of the Options dialog (Tools | Options, see screenshot
below). If you select the Version 1.0 or Version 1.1 radio button, then the selected mode becomes the
application-wide mode. All XML Schema documents opened in Schema View will now be edited in this mode.
(If you select the v1.1 if <xs:schema vc:minVersion="1.1", v1.0 otherwise setting, the mode will depend on
information in the document and will not be application-wide. See Document-specific mode and the other
sections below for information about this.)

You can switch between the two application-wide modes (Version 1.0 and Version 1.1) at any time by selecting
the option you want in the XML Schema Version setting of the Options dialog (screenshot above).

Note: If the current setting is an application-wide setting and you switch modes using the XSD 1.0 or XSD
1.1 button in the Schema Design toolbar (see next section), then the mode switch because of the
button will be temporary, and the mode will revert to the application-wide mode when the document is
reloaded. A reload happens each time the view is changed or when Schema View is refreshed (via File
| Reload).

Document-specific mode
You can also choose to save the XSD mode information in the XSD document itself. This would enable Schema
View to automatically switch to the document's XSD mode when the document is loaded. You can add XSD

468

216 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

mode information to an XSD document by clicking the XSD 1.0 or XSD 1.1 button in the Schema Design
toolbar (screenshot below). On doing this, the selected mode is saved in the vc:minVersion attribute of the
top-level xs:schema element. (The value of the vc:minVersion can also be added manually in Text View.)

Note: The vc:minVersion attribute, if present, must be in the namespace
http://www.w3.org/2007/XMLSchema-versioning. In this case, the XML Schema document must
have a namespace declaration binding the vc: namespace prefix to this namespace. If you use the
XSD 1.1 toolbar button (screenshot above), the namespace is added automatically. Clicking the XSD
1.0 toolbar button removes this namespace declaration if no other node name in the document is in
this namespace.

To activate the document-specific mode and specify a document's XSD mode, do the following:

1. Activate document-specific mode: In the File section of the Options dialog (Tools | Options), set the
XML Schema Version option to v1.1 if <xs:schema vc:minVersion="1.1", v1.0 otherwise (see
screenshot below). This indicates to XMLSpy that the XSD mode in Schema View should be set
according to the vc:minVersion attribute of the xs:schema element.

2. Specify the document's XSD version: In the Schema Design toolbar (screenshot above), click the XSD
1.0 or XSD 1.1 button. A confirmation dialog (screenshot below) pops up.

3. Clicking Yes results in the following: (i) enters the corresponding value in the vc:minVersion attribute
of the xs:schema element, and (ii) if XSD 1.1 was selected, declares the XMLSchema-versioning
namespace with a binding to the vc: namespace prefix; if XSD 1.0 was selected, the namespace
declaration is removed if no other node is in the XMLSchema-versioning namespace. The XML
Schema document now contains the XSD version number. On saving the file, the XSD mode
information is saved with it. When you reopen or reload the file, Schema View will automatically switch
to the document's XSD mode as contained in the vc:minVersion attribute of the xs:schema element.

© 2018-2024 Altova GmbH

Schema View 217Editing Views

Altova XMLSpy 2024 Enterprise Edition

Note: If the document-specific mode option is selected, and if the XSD document has no vc:minVersion
attribute or the value of the vc:minVersion attribute is other than 1.0 or 1.1, then Schema View
defaults to XSD 1.0 mode.

Note: Do not confuse the vc:minVersion attribute with the xsd:version attribute. The former holds the XSD
version number, while the latter hold the document version number.

XSD mode of new documents
When you create a new XSD document you will be prompted about whether you wish to create it as an XSD
1.0 or XSD 1.1 document. If XSD 1.1 is selected, the new document is created with the
attribute /xs:schema/@vc:minVersion="1.1" and the XMLSchema-versioning namespace with a binding to
the vc: namespace prefix is declared. If XSD 1.0 is selected, then neither the vc:minVersion attribute nor the
XMLSchema-versioning namespace declaration is added. However, which XSD mode is actually enabled in
Schema View depends also on the XML Schema Version selected in the File section of the Options dialog
(Tools | Options). See the next section for details about how these two settings interact.

The enabled XSD mode
The XSD mode that is enabled in Schema View depends on both (i) the presence/absence—and, if present, the
value—of the /xs:schema/@vc:minVersion attribute of the XSD document, and (ii) the XML Schema Version
option selected in the File section of the Options dialog (Tools | Options, screenshot below).

The following situations are possible. XML Schema Version in the table below refers to the selection in the XML
Schema Version pane shown above. The vc:minVersion values in the table below refer to the value of the
xs:schema/@vc:minVersion attribute in the XML Schema document.

XML Schema Version vc:minVersion attribute XSD mode

Always v1.0 Is absent, or is present with any value 1.0

Always v1.1 Is absent, or is present with any value 1.1

Value of @vc:minVersion Attribute has value of 1.1 1.1

Value of @vc:minVersion Attribute is absent, or attribute is
present with a value other than 1.1

1.0

Note: In the situations described in the first two rows, it is possible that an XSD 1.1 schema is opened in
XSD 1.0 mode and vice versa. The inconsistencies will be handled as described further below.

218 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XSD mode features
The interface and editing features of Schema View will change according to which XSD mode (XSD 1.0 or XSD
1.1) is enabled.

If XSD 1.0 mode is enabled:

· Editing support for new XML Schema 1.1 components and properties is not available. However, if XSD
1.1 components or properties are already present in the XSD document, these will be displayed and
will be available for deletion.

· Validation is performed against the XSD 1.0 specification. So, if an exclusively XSD 1.1 component or
property (already) exists in the schema, a validation error is reported.

If XSD 1.1 mode is enabled, editing support is provided for all features of XML Schema 1.1. Validation is with
respect to the XML Schema 1.1 specification.

Handling of XSD 1.1 features in XSD 1.0 mode
If an XSD 1.1 feature that is not supported in XSD 1.0 is present in the document (for example, an assertion),
how such a feature is displayed and handled in XSD 1.0 mode is described below.

· Assertions: If at least one assertion is present on the selected simple type, the Assertions tab is
present in the Facets entry helper. No editing is possible except for deletion of the assertion.

· Asserts: The assertion is displayed in the diagram of the complex type if present. No Assertions tab is
available in the AAIDC pane. Assertion cannot be added via context menu. No editing of properties is
possible except for deletion.

· Attributes: New property inheritable is displayed if present. No editing is possible except for
selecting the empty value (this is effectively a removal of properties).

· Complex types: The new property defaultAttributesApply, if present, is displayed in the Details
entry helper. No editing is possible except for selecting the empty value (this is effectively a removal of
properties).

· Documentation: New XSD 1.1-specific components and properties are not included in Schema View
documentation.

· Facets: Unknown facets cause validation errors and are displayed in red.
· Find in schemas: New XSD 1.1-specific components and properties are ignored.
· Identity constraints (IDCs): The property isRef is displayed in case of reference and can be switched

off. It will be switched off as soon as the IDC’s name is modified.
· Multiple substitution groups: Combo box to select single substitution group (only single substitution

groups allowed in XSD 1.0).
· Open content: Displayed in diagram if present. Cannot be added via context menu. No editing is

possible except for deletion. Default Open Content is not displayed within complex types.
· Override: Displayed in globals grid if present. Cannot be added via menu. No editing (of location) is

possible except for deletion. Overriding components (that is, children of xs:override) are ignored and
will not be included in the Components entry helper.

· Schema settings: New properties defaultAttributes and xpathDefaultNamespace are displayed in
dialog if present. No editing is possible except for selecting the empty value (this is effectively a
removal of properties).

· Simple types: Unknown types cause validation errors and are displayed in red.
· Type Alternatives: Displayed in diagram if present. Cannot be added via context menu. No editing (of

properties) is possible except for deletion.
· Wildcards: New properties displayed if present. No editing is possible except for the selection of

empty value (effectively a removal of properties).

© 2018-2024 Altova GmbH

Schema View 219Editing Views

Altova XMLSpy 2024 Enterprise Edition

4.4.2 Schema Overview

Schema Overview (screenshot below) displays a list of all the global components of the schema (import
elements, global elements, complex types, etc).

You can insert, append, or delete global components, as well as modify their properties. To modify properties,
select the global component in the Schema Overview list. Depending on what kind of global component it is, its
properties can be edited in the Details entry helper , the Facets entry helper , and/or the
Attributes/Assertions/Identity Constraints (AAIDC) pane .

A global component that can have a content model has a Switch to Content Model View icon to its left in the
global components list. Clicking this icon switches to the Content Model View of that component, where the
content model of that component can be edited.

Switch to Content Model View: Available for global components that have a content model. Opens the
global component's content model in Content Model View .

Show Globals: Available in Content Model View. Switches to Schema Overview .

In this section, we first describe the GUI mechanisms of Schema Overview, then describe the particulars of
the various global components .

271 273

252

231

231

219

220

223

220 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4.4.2.1 GUI Mechanisms

Global components are added as children of the top level xs:schema element. Add a global component by

clicking the Append icon or Insert icon at the top left of the upper pane (see list of icons further below), and
then selecting, from the global components menu (screenshots below), the global component you want to add.

The screenshots below show the global components that can be added: XSD 1.1 mode on the left, XSD 1.0
mode on the right. (Override and Default Open Content are XSD 1.1 features.)

You can add as many global components as you like. All the global components in the schema are displayed
in a tabular list in Schema Overview (screenshot below).

© 2018-2024 Altova GmbH

Schema View 221Editing Views

Altova XMLSpy 2024 Enterprise Edition

Editing in Schema Overview
Note the following editing features of Schema Overview:

· You can reposition components in the Schema Overview list using drag-and-drop.
· You can navigate using the arrow keys and Tab key of your keyboard.
· You can use cut/copy-and-paste to copy or move global components, attributes, assertions, and

identity constraints from one diagram to a different position in the diagram, to other diagrams, and from
one schema to another.

· Right-clicking a component opens a context menu that allows you to cut, copy, paste, delete, or edit
the annotation data of that component.

· To enter a new line in global comments and global annotations, press Ctrl+Enter. To enter a tab,
press Ctrl+Tab.

Schema Overview and related icons

Append Global Component: Adds global components to the bottom of the global components list. If
the component must, by definition, occur at the beginning of the document, it is added to the top of
the list.

Insert Global Component: Adds global components above the selected component. If the component
must, by definition, occur at the beginning of the document, it is added to the top of the list.

Sort: Pops up the Sort Components dialog, in which the precedence of sort criteria can be set (name
before kind, or vice versa), before going ahead with the sorting. See description below.

Comments: Pops up a menu to select between multi-line and single-line display of global comments.
See description below.

Switch to Content Model View: Available for global components that have a content model. Opens the
global component's content model in Content Model View .231

222 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Show Globals: Available in Content Model View. Switches to Schema Overview .

Switching between Schema Overview and Content Model View
Some global components (such as complex types, element declarations, and model groups) have a Switch to
Content Model View icon to the left of the component name (see list of icons above). This indicates that
these global components can have a content model which describes the component's structure and contents.

Clicking this icon switches the view from Schema Overview to the Content Model View of that global
component. Other global components (such as annotations, simple types, and attribute groups) do not have a
content model, and therefore do not have the Switch to Content Model View icon. You can switch back to
Schema Overview from Content Model View by clicking the Show Globals icon (see list of icons above).

Sorting global components
You can sort global components by clicking the Sort icon in the Schema Overview toolbar (see list of icons
above). In the Sort Components dialog that pops up (screenshot below), you can choose to sort either all
sortable global components, or the set of selected components. You can use Shift+click to select a range and
Ctrl+click to add additional components to the selection.

Note: Global components that must occur at the start of the document (such as include and import) are
not affected by the sorting feature. They are not part of the range of global components that may be
sorted.

After setting the range you can choose to sort the sortable range alphabetically (Name before k ind), or
organized first by kind and then by name.

The sort order is implemented in the text of the schema.

Global comments: line display mode
Global comments can be displayed in a multi-line text field (default) or a single-line text field (see screenshots
below).

219

231

© 2018-2024 Altova GmbH

Schema View 223Editing Views

Altova XMLSpy 2024 Enterprise Edition

To switch between these two display modes of comments, click the Comments icon at the top of the Schema
Overview pane and select the option you want. Within the text of a comment, if you wish to create a new line
(and so make the comment a multi-line comment), press Ctrl+Enter. When comments are in single-line text-
field display mode, placing the cursor over a multi-line comment pops up a multi-line box that displays all the
lines.

4.4.2.2 Global Components

Global components are those that are added as children of the top-level xs:schema element (as opposed to

local components, which are created within other components). Some global components, such as complex
types, elements and attributes can be referenced by other components in the schema.

Creating global components in Schema Overview
Global components are typically created and edited in Schema Overview . In Schema Overview, they are
added via the Append or Insert icons . The content model of a global component (if the global
component can have one, see table below) is created and edited in the Content Model View of that global
component. (Click the Switch to Content Model View icon to the left of a component's name to go to
Content Model View .)

Some global components, on being created in Schema Overview, are also added to the Components entry
helper . If a component has a content model, double-clicking its name in the Components entry helper will
open the content model for editing in Content Model View .

If the global component has a type definition (simple type or complex type), then clicking the component's
context menu command Go to Type Definition will take you to the type definition. In the case of built-in
simple types, a message box appears that contains information about the simple type.

Note: You can also create some global components (elements, attributes, simple types, complex types, and
model groups) while editing in Content Model View. Right-click anywhere in the window and select
New Global | < Type of Global Component >.

Note: While editing in Content Model View, you can make a local element a global element—or a global
complex type if the element has an element or attribute child. Select the local element, right-click
anywhere in the window, and select Make Global | Element or Make Global | Complex type.

Global component Location in Schema Content Model

219

220 220 220 220

231

231

267

231

224 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

include Beginning No

import Beginning No

redefine Beginning No

override 1.1 Beginning No

defaultOpenContent 1.1 After Includes, Imports, Redefines
Overrides; before any other

Yes

element Anywhere after defOpenCont Yes

group Anywhere after defOpenCont Yes

simpleType Anywhere after defOpenCont No

complexType Anywhere after defOpenCont Yes

attribute Anywhere after defOpenCont No

attributeGroup Anywhere after defOpenCont No

notation Anywhere after defOpenCont No

annotation Anywhere after defOpenCont No

Comment Anywhere No

Processing instruction Anywhere No

Given below are key points about editing these components in Schema View.

Includes, Imports, Redefines, and Overrides
These four global components allow other schema documents to be reused within the current schema
document.

· Includes reuse documents that have the same target namespace as that of the current document.
· Imports reuse documents that have other target namespaces as that of the current document.
· Redefines and Overrides are types of Includes in that they have the same target namespace as the

current document. They, however, modify parts of the included schemas. Redefines are a 1.0 feature
and are deprecated in 1.1. Overrides, which are a 1.1 feature, are more flexible and have been designed
to replace Redefines in 1.1.

All four have a schemaLocation attribute that points to the schema to be reused. In Schema View, when you
double-click in the loc field of these components, you can browse for the file to reuse and set its path relative
to the current document. The import component additionally has a namespace attribute that holds the target
namespace of the imported schema.

When a schema is reused in the current schema document (via includes, imports, redefines, or overrides), its
global components, namespaces, and identity constraints are displayed in the Components entry helper of
the current document.

267

© 2018-2024 Altova GmbH

Schema View 225Editing Views

Altova XMLSpy 2024 Enterprise Edition

Redefines
In a redefine component, you can modify complex types, simple types, model groups and attribute groups.
The component to be redefined will be in the schema specified in the loc field of the redefine component (in
the screenshot below the components to be redefined are in the schema ExpReport.xsd). After a redefine
component is added, you must add the component to be redefined into a position between the redefine and
end of redefine rows of the global components list (see screenshot below, where the components New and
emailType are redefined). These two components exist in the schema ExpReport.xsd and are being redefined
for the current schema.

To redefine a component, do the following:

1. Select the end of redefine row.
2. Click the Insert icon in the top left of Schema Overview.
3. Select the kind of component you wish to define (complex type, simple type, model group or attribute

group). The component is added within the redefine component.
4. Give it the same name as the component you wish to redefine. The component will now have all the

properties of the component from the schema that is being reused.
5. Redefine the component by selecting it and modifying its properties in the Details and Facets entry

helpers, or by modifying its content model in Content Model View (if it has a content model).

Note: You might also be able to insert the components to be redefined as follows: either from elsewhere in
the global components list or from the Components entry helper, using drag-and-drop or copy-paste.

Redefined components can be referenced by other components in the schema.

Overrides
In an override element you can define the following components: complex types, simple types, global
elements, global attributes, model groups, attribute groups, and notations. If, within an override element, one
 of these components is defined, then this component will replace, in the overridden schema, all components of
the same kind that have the same name as the overriding component. The overridden schema is specified in
the loc field of the Override.

Overrides differ from Redefines (see above) in that they are components defined from scratch and not based on
any reused component. In Schema View, you add components for overriding similarly to how you add
components for redefining. Insert the overriding component above the end of override row and then define its
properties. See the 'Redefine' section above. The main difference between an Override and a Redefine is that
when a component is added to an Override, it is not based on any component from the reused schema.

226 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Default open content
The defaultOpenContent element is new in XSD 1.1 and specifies that one or more undefined elements can
be added to any complex type of mixed or element-only content. It is similar to the openContent element
(also new to XSD 1.1), the main difference being that while the openContent element applies to a single
complex type, the defaultOpenContent element applies to all complex types in the schema.

The defaultOpenContent element occurs once in the document (see screenshot below), after Includes,
Imports, Redefines, and Overrides, and before the definitions of components. It has a mode attribute which can
take a value of either interleave or suffix. The default is interleave.

The defaultOpenContent element has a content model that you can edit in Content Model View. Once
declared, the defaultOpenContent element will apply to all complex types in the schema. In the screenshot
below, you can see that the defaultOpenContent has been applied automatically to the OfficeType and Desc
complex types.

To override the defaultOpenContent element when it is applied to a particular complex type, add a child
openContent element to that complex type. In the screenshot below, the Desc element with the
defaultOpenContent element (see screenshot above) has had an openContent element added to it that
overrides the defaultOpenContent element.

249

© 2018-2024 Altova GmbH

Schema View 227Editing Views

Altova XMLSpy 2024 Enterprise Edition

Global elements (element)
In Schema Overview, you can create a global element. If the global element is to have a content model, then
this is defined in the Content Model View of the global element. With the element selected in either view, you
can define attributes , assertions , and identity constraints in the respective tabs of the AAIDC
pane . Facets and other properties can be defined in the element's Facets and Details entry helpers.
Global elements can then be referenced by complex types.

Model groups (group)
In Schema Overview, you can create named model groups that can then be referenced in complex types. A
named model group (the xs:group element) allows you to predefine a content model that can be reused. It can
contain one of three kinds of child model group: a sequence group, a choice group, or an all group.

You create a named model group in Schema Overview by adding a Group component, giving it a name, and
then defining its content model in Content Model View. The named model group can then be added to the
content model of a complex type.

Named simple types (simpleType)
In Schema Overview you can create named simple types (see screenshot below), which can then be referenced
in element and attribute declarations.

In the Details entry helper you specify the content of the simple type (restriction, list, union) and the
corresponding type: respectively, the base type, item type, and member type. In the screenshot below, for
example, the base type of the simple type's restriction is xs:integer. See the Details entry helper section
for more information. To restrict a simple type with facets, use the options in the Facets entry helper .

253 256 260

252 273 271

271

273

228 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: Anonymous types can be declared on an element or attribute of simple content in either Schema
Overview or Content Model View . When you set the derivedBy property (in the Details entry
helper) to restriction, list or union, you create an anonymous simple type within that element or
attribute declaration. You can define restriction facets (in the Facets entry helper) and other properties
in the Details entry helper.

Named complex types (complexType)
In Schema Overview you can create named complex types, which can then be referenced in element
declarations. With the named complex type selected in either view, you can define its attributes and
assertions in the respective tabs of the AAIDC pane .

A complex type can have four types of content (see list below). You specify the various types of content in the
Details entry helper as described below and, if desired (and allowed), a content model in Content Model
View .

· Simple content: Set the base type of the simple content (see screenshot below). The mixed attribute
(for mixed content) must have a value of false (the default value); this is why true in the screenshot
below is displayed in red. No content model is allowed.

219 231

253

256 252

231

© 2018-2024 Altova GmbH

Schema View 229Editing Views

Altova XMLSpy 2024 Enterprise Edition

· Element-only content: Create child elements in the content model diagram. There will be no base type.

· Mixed content: The mixed attribute must be set to true. Character data can be present anywhere in
the element among child element nodes. The character data does not have any datatype, so there
must be no base type (see screenshot above). Child elements can be created in the content model
diagram.

· Empty content: The element will have neither character data nor child elements. There must be no
base type and mixed must be false. Data in empty-content elements is typically stored in attributes.

Note: Attributes and assertions can be set (in the AAIDC pane) on all four types of content.

Note: Anonymous complex types are created within an element by creating a content model for that element
in Content Model View .

Global attributes and attribute groups (attribute, attributeGroup)
Global attributes and attribute groups are added in Schema Overview.

· Properties of a global attribute are defined in the attribute's Details entry helper.
· After creating a global attribute group, you can add attributes to the group as follows: (i) Select the

global attribute group in the global components list; (ii) Add attributes in the Attributes tab of the
AAIDC pane ; and (iii) Define the properties of each attribute in the Details entry helper of the
selected attribute.

After global attributes and attribute groups have been created, they can be referenced in the declarations of
elements and complex types.

Notations (notation)
Notations are always global; there are no local notations. The properties of a notation are specified in the
Details entry helper of the notation. The notation's name can be specified directly in the global components list.
All notations in the schema are displayed in the Components entry helper for ease of reference.

252

231

252

230 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Global annotations
Global annotations are global components and are not the same as the optional annotations that are available
for some global components. You can edit a global annotation in the Annotation dialog (screenshot below),
which is accessed by right-clicking the Annotation global component and selecting Whole Annotation Data.

Each annotation can have an id attribute and multiple child documentation and/or appinfo elements. You can
add documentation or appinfo elements by clicking the Append or Insert buttons at the top left of the dialog
and then selecting the doc or app item from the respective combo boxes. Select a doc or app item in the top
pane of the dialog and enter its content in the Content pane. If you wish to create a new line in the content (and
so make the content multi-line content), press Enter. In the screenshot above, the documentation element is
selected and can be seen to have two-line content. For each documentation or appinfo element, you can
also enter optional source and xml:lang attributes.

In Schema Overview, only the first documentation or appinfo element of the global annotation is displayed
and can be edited directly in the global components list. If that content is multi-line, placing the cursor over it
reveals all the lines in a multi-line popup box. To display or edit the contents of the other documentation and/or
appinfo elements, go to the Annotation dialog of that global annotation.

Note: The optional annotations that are available for some global components can also be edited via the
Annotation dialog in exactly the same way as for global annotations as described above.

Comments and processing instructions
Comments and processing instructions can be inserted anywhere in the global components list in Schema
Overview. They cannot be added in Content Model View. If one or more comments or processing instructions

© 2018-2024 Altova GmbH

Schema View 231Editing Views

Altova XMLSpy 2024 Enterprise Edition

are present within simple types or complex types, they are collected and moved to the end of the enclosing
object. It is therefore recommended that you use annotations instead of comments in such cases.

4.4.3 Content Model View

A content model is a description of the structure and content of a component. The following components can
have content models:

· Complex types
· Elements
· Model groups
· Default open content

They are indicated in the global components list in Schema Overview with a Switch to Content Model
View icon to the left of the component name.

Switch to Content Model View: Available for global components that have a content model. Opens
the global component's content model in Content Model View .

Show Globals: Available in Content Model View. Switches to Schema Overview .

Clicking on the Switch to Content Model View icon opens the Content Model View for that global component
(see screenshot below). Alternatively, in Schema Overview : (i) select a component and then select the
menu option Schema Design | Display Diagram, or (ii) double-click on a component's name in the
Components entry helper . Note that only one content model in the schema can be open at a time. When a
content model is open, you can jump to the content model of a component within the current content model by
holding down Ctrl and double-clicking the required component.

General description of Content Model View
The content model is displayed in the Content Model View as a tree (see screenshot below). You can configure
the appearance of the tree in the Schema Display Configuration dialog (menu item Schema Design |
Configure view).

219

231

219

219

267

1312

232 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note the following:

· Objects in the content model tree are of two types: compositors and components. Additionally,
attributes, assertions, identity constraints, and open content can be shown in boxes attached to the
component.

· Each level in the tree is joined to adjacent levels with a compositor. The content model can extend an
unlimited number of layers deep.

· An object can be added relative to another object via the latter's context menu (accessed by right-
clicking the latter object).

· Components in the content model can be local components or can reference global components.
· Drag-and-drop functionality enables objects to be moved around.
· Keyboard shortcuts can be used to copy (Ctrl+C) and paste (Ctrl+V) objects.
· The properties of an object can be edited in the Details entry helper and in the AAIDC pane .
· The attributes, assertions, and identity constraints of a component are displayed in a pane below

Content Model View, the AAIDC pane . Attributes and identity constraints can also be displayed in
the Content Model diagram instead of in the AAIDC pane . This viewing option can be set in the
Schema Display Configuration dialog . Alternatively, you can use the three Display in Diagram
buttons of the Schema Design toolbar (screenshot below).

· Sibling components can be sorted by selecting them, right-clicking, and selecting the Sort
Components command from the context menu. You can prioritize by one of two sort criteria: (i) local
name, and (ii) component kind.

These features are explained in detail in the subsections of this section and in the tutorial.

252

252

252

1312

© 2018-2024 Altova GmbH

Schema View 233Editing Views

Altova XMLSpy 2024 Enterprise Edition

To return to Schema Overview , click the Show Globals icon or select the menu option Schema design |
Display All Globals.

4.4.3.1 Content Model Objects

In Content Model View, the objects shown in the diagram are best organized in three broad groups:

· Compositors : (i) sequence, (ii) choice, (iii) all
· Components : (i) element, (ii) complex type, (iii) model group, (iv) wildcard
· Miscellaneous : (i) attribute, (ii) attribute group, (iii) assertion, (iv) constraint, (v) open content

The graphical representations of these objects are described individually below.

Compositors
A compositor defines the order in which child elements occur. There are three compositors: sequence,
choice, and all.

To insert a compositor:

1. Right-click the element to which you wish to add child elements
2. Select Add Child | Sequence (or Choice or All).

The compositor is added, and will look as below:

· Sequence

· Choice

· All

219

233

234

237

234 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To change the compositor, right-click the compositor and select Change Model | Sequence (or Choice or
All). After you have added the compositor, you will need to add child element/s or a model group.

Components
Given below is a list of components that are used in content models. The graphical representation of each
provides detailed information about the component's type and structural properties.

· Mandatory single element

Details: The rectangle indicates an element and the solid border indicates that the element is required.
The absence of a number range indicates a single element (i.e. minOcc=1 and maxOcc=1). The name of
the element is Country. The blue color indicates that the element is currently selected; (a component
is selected by clicking it). When a component is not selected, it is white.

· Single optional element

Details: The rectangle indicates an element and the dashed border means the element is optional. The
absence of a number range indicates a single element (i.e. minOcc=0 and maxOcc=1). Element name is
Location.
Note: The context menu option Optional converts a mandatory element into an optional one.

· Mandatory multiple element

Details: The rectangle indicates an element and the solid border indicates that the element is required.
The number range 1..5 means that minOcc=1 and maxOcc=5. Element name is Alias.

· Mandatory multiple element containing child elements

Details: The rectangle indicates an element and the solid border indicates that the element is required.
The number range 1..infinity means that minOcc=1 and maxOcc=unbounded. The plus sign means
complex content (i.e. at least one element or attribute child). Element name is Division.
Note: The context menu option Unbounded changes maxOcc to unbounded.
Clicking on the + sign of the element expands the tree view and shows the child elements.

© 2018-2024 Altova GmbH

Schema View 235Editing Views

Altova XMLSpy 2024 Enterprise Edition

· Element referencing global element

Details: The arrow in the bottom-left means the element references a global element. The rectangle
indicates an element and the solid border indicates that the element is required. The number range
1..infinity means that minOcc=1 and maxOcc=unbounded. The plus sign indicates complex content (i.e.
at least one element or attribute child). Element name is xs:field.
Note: A global element can be referenced from within simple and complex type definitions, thus
enabling you to re-use a global declaration at multiple locations in your schema. You can create a
reference to a global element in two ways: (i) by entering a name for the local element that is the same
as that of the global element; and (ii) by right-clicking the local element and selecting the option
Reference from the context menu. You can view the definition of a global element by holding down
Ctrl and double-clicking the element. Alternatively, right-click, and select Go to Definition. If you
create a reference to an element that does not exist, the element name appears in red as a warning
that there is no definition to refer to.

· Complex type

Details: The irregular hexagon with a plus sign indicates a complex type. The complex type shown
here has the name keybase. This symbol (the irregular hexagon with a plus sign) indicates a global
complex type. A global complex type is declared in the Schema Overview, and its content model is
typically defined in Content Model View. A global complex type can be used either as (i) the data type
of an element, or (ii) the base type of another complex type by assigning it to the element or complex
type, respectively, in the Details entry helper (in either Content Model View or in Schema Overview).

236 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The keybase complex type shown above was declared in Schema Overview with a base type of
xs:annotated. The base type is displayed as a rectangle with a dashed gray border and a yellow
background color. Then, in Content Model View, the child elements xs:selector and xs:field were
created. (Note the tiny arrows in the bottom left corner of the xs:selector and xs:field rectangles.
These indicate that both elements reference global elements of those names.)

A local complex type is defined directly in Content Model View by creating a child element or attribute
for an element. There is no separate symbol for local complex types.

Note: The base type of a content model is displayed as a rectangle with a dashed gray border and a
yellow background color. You can go to the content model of the base type by double-clicking its
name.

· Model group

Details: The irregular octagon with a plus sign indicates a model group. A model group allows you to
define and reuse element declarations.
Note: When the model group is declared (in Schema Overview) it is given a name. You subsequently
define its content model (in Content Model View) by assigning it a child compositor that contains the
element declarations. When the model group is used, it is inserted as a child, or inserted or appended
within the content model of some other component (in Content Model View).

· Wildcards

Details: The irregular octagon with any at left indicates a wildcard.
Note: Wildcards are used as placeholders to allow elements not specified in the schema or from other
namespaces. ##other = elements can belong to any namespace other than the target namespace
defined in the schema; ##any = elements can belong to any namespace; ##targetNamespace =
elements must belong to the target namespace defined in the schema; ##local = elements cannot
belong to any namespace; anyURI = elements belong to the namespace you specify.

© 2018-2024 Altova GmbH

Schema View 237Editing Views

Altova XMLSpy 2024 Enterprise Edition

Miscellaneous objects
Miscellaneous objects are attributes, attribute groups, assertions, identity constraints, and open content.

· Attributes, Attribute Groups

Details: Indicated with the word 'attributes' in italics in a rectangle that can be expanded. Each
attribute is shown in a rectangle with a (i) dashed border if the attribute is optional, or (ii) a solid border
if the attribute is required (mandatory). Attribute groups and attribute wildcards are also included in the
'attributes' rectangle.
Note: Attributes can be edited in the diagram and in the Details Entry Helper. Attributes can be
displayed in the Content Model View diagram or in the AAIDC pane below the Content Model View.

You can toggle between these two views by clicking the Display Attributes icon. To change the
order of attributes of an element, drag the attribute and drop when the arrow appears at the required
location.

· Assertions

Details: Indicated with the word 'assertions' in italics in a rectangle that can be expanded. Each
assertion is shown in a rectangle within the Assertions box.
Note: Assertions can be edited in the diagram and in the Details Entry Helper. They can be displayed
in the Content Model View diagram or in the AAIDC pane below the Content Model View. You can

toggle between these two views by clicking the Display Assertions icon. To change the order of
assertions on an element, drag the assertion and drop when the arrow appears at the required location.

· Identity constraints

Details: Indicated with the word 'constraints' in italics in a rectangle that can be expanded.

252

252

238 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: The identity constraints listed in the content model of a component show constraints as defined
with the key and keyref elements, and with the unique element. Identity constraints defined using the
ID datatype are not shown in the content model diagram, but in the Details Entry Helper. Identity
constraints can be displayed and edited in the Content Model View or in the Identity Constraints tab of
Schema Overview. In Content Model View, you can toggle the Constraints box on and off with the

Display Constraints icon.

· Conditional Type Assignment

Details: The alternative element is a rectangle containing the XPath expression that will be tested
(see screenshot above). The type of the alternative element is specified in the Details entry helper.
If the type is a complex type, it is shown in the alternative element's expanded rectangle and can
be further edited there (see screenshot below). Simple types are not shown in the diagram, but can be
defined in the Simple Type tab of the Details entry helper.

Note: The alternative element is new in XSD 1.1. If the XPath expression evaluates to true, the type
specified by the alternative element will be the selected type. The first alternative element from
among the alternative siblings to evaluate to true is selected. So the order of alternative elements is
important. The order can be changed by dragging the alternative element boxes into the desired
order. See the section Conditional Type Assignment for a detailed description.

· Default Open Content, Open Content

245

© 2018-2024 Altova GmbH

Schema View 239Editing Views

Altova XMLSpy 2024 Enterprise Edition

Details: The defaultOpenContent and openContent elements are indicated in Content Model View
with the labels openContent and defOpenContent. Wildcard element content is indicated with an any
box (see screenshot above).
Note: The defaultOpenContent and openContent elements are new in XSD 1.1. Default Open
Content is a global component and is created in Schema Overview . In the Content Model View of a
particular component's content model, you can replace the Default Open Content with Open Content
specific to that component that overrides the schema's Default Open Content. Simply add Open
Content as a child of the component. The Default Open Content box will be replaced by an Open
Content box. In Content Model View, you can edit the mode attribute of the Open Content and the
namespace of its wildcard element, both in the diagram and in the Details entry helper. You can also
modify the Default Open Content (for the whole schema) from within its representation in the Content
Model View of any complex type.

Note:

· Predefined details you have specified in the Schema Display Configuration dialog can be turned on

and off by clicking the Add Predefined Details toolbar icon.
· You can toggle Attributes, Assertions, and Identity Constraints to appear either in the diagram of the

content model itself or in the AAIDC pane (below Content Model View) by clicking the Display in
Diagram icons for attributes, assertions, and identity constraints, respectively.

· In Content Model View, you can jump to the content model view of any global component within the
current content model by holding down the Ctrl key and double-clicking the required component.

· The context menu of components contain commands to (i) go to the definition of a component, and (ii)
go to the type definition of a component, if these exist.

4.4.3.2 Editing in Content Model View

The description of how to edit in Content Model View is organized into the following sections:

· Configuring Content Model View
· Attributes, Assertions, and Identity Constraints
· Content Model View icons
· Context menu operations
· Keyboard shortcuts and drag-and-drop
· Component properties
· Annotations
· Comments and processing instructions
· Documenting the content model

Configuring Content Model View
You can configure the content model view for the entire schema in the Schema display configuration dialog
(Schema Design | Configure View). For details about configuration options, see the Configure View
section later in the User Reference. Note that the settings you define here apply to the whole schema, and to
the schema documentation output as well the printer output.

219

1312

252

239

240

240

240

243

244

244

245

245

1312

240 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Attributes, Assertions, and Identity Constraints
The attributes, assertions, and identity constraints of a component can appear in a pane below the Content
Model View, the AAIDC pane , or as boxes in the Content Model View itself, that is, in the diagram. This
second viewing option can be set in the Schema Display Configuration dialog . Alternatively, you can use the
three Display in Diagram toolbar buttons in the Schema Design toolbar (screenshot below, also see icon list
below).

For a description of how to insert and edit attributes, assertions, and identity constraints, see the section,
Attributes, Assertions, and Identity Constraints .

Content Model View icons

Show Globals: Available in Content Model View. Switches to Schema Overview .

Add Predefined Details: In the Schema Design toolbar and enabled in Content Model View. Toggles
the display of predefined details in components on and off.

Display Attributes in Diagram: In the Schema Design toolbar and enabled in Content Model View.
Toggles the display of attributes between the diagram (toggled on) and the Attributes tab.

Display Assertions in Diagram: In the Schema Design toolbar and enabled in Content Model View.
Toggles the display of assertions between the diagram (toggled on) and the Assertions tab.

Display Constraints in Diagram: In the Schema Design toolbar and enabled in Content Model View.
Toggles the display of IDCs between the diagram (toggled on) and the Identity Constraints tab.

Visualize Identity Constraints: In the Schema Design toolbar and enabled in Content Model View.
Toggles the display of IDC information on and off.

Context menu operations
Several editing operations in Content Model View are carried out via the context menu (screenshot below) that
appears when you right-click within Content Model View. Only commands for operations allowed at that point in
the content model diagram are enabled. Operations are carried out relative to the right-clicked object. For
example, when a child is added, it is added relative to the right-clicked object.

252

1312

252

219

© 2018-2024 Altova GmbH

Schema View 241Editing Views

Altova XMLSpy 2024 Enterprise Edition

Given below is a list of operations available via the context menu.

· Add child compositors and components: The Add Child command opens a sub-menu, in which you
can select the compositor or component to add.

· Insert/Append compositors and components: Inserts the compositor or component at the same
hierarchical level as the selected object, before the selected object (Insert) or after its last sibling
(Append).

· Change a compositor: Right-click a compositor, select Change Model | <new compositor>.

· Create global components: (i) The New Global command can be accessed by clicking anywhere in
Content Model View. It displays a sub-menu in which you can select the new global component to
create. (ii) If an object can be created as a global component, the Make Global command in its
context menu is enabled. On selecting this command, the object will be created as a global
component. In Content Model View, it will contain a reference to the newly created global component.

· Change the occurrence definition: Use the Optional and Unbounded toggle commands together to
obtain the desired occurrence setting: (i) optional = 0 or 1; (ii) optional + unbounded = 0 to infinity; (iii)
unbounded = 1 to infinity; (iv) not optional + not unbounded = 1. (Note: optional sets the minOccurs
attribute of the component, unbounded sets the maxOccurs attribute.)

242 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Toggle between local and global definitions: If a global element exists that has the same name as a
local element, use the Reference toggle command to switch between referencing the global definition
(toggle on) and using the local definition (toggle off).

· Go to another content model: If a component has its own content model (for example, if it references a
global component), then the Go to Definition command is active, and you can select it to go to the
content model. Alternatively, you can press Ctrl and double-click the component.

· Go to the component's type definition: If a component has a type definition (simple type or complex
type), then clicking the Go to Type Definition command will take you to the type definition. In the
case of built-in simple types, a message box appears that contains information about the simple type.

· Edit predefined details: If predefined details have been set to be displayed in the diagram (with the Add
Predefined Details icon in the Schema Design toolbar), then the Edit command displays a submenu
containing the predefined details. Select the required predefined detail, and edit its value in the
diagram.

· Create and edit compositor/component annotation: The Edit Annotation command creates annotation
space below the compositor/component (see screenshot below). You can enter and edit the annotation
here. If the annotation already exists, clicking the command highlights the annotation text for editing.
Double-clicking existing annotation text is a faster way of starting an edit.

In the XML Schema document, the annotation is created inside the compositor or component's
annotation/documentation element. Also see the section below about documentation.

· Copy XPath of instance node: The command Copy XPath of Instance Node is enabled for elements
and attributes defined within a global element or global complex type. It copies to the clipboard an
XPath expression that locates the selected node. The location path expression starts at the global
component whose content model is currently being displayed in Content Model View.

· Find and rename component: The commands Find All References and Rename with All
References are enabled for global elements. These, respectively, find all occurrences of the selected
component and rename all occurrences of the selected component in the active document and,
optionally, in all schema files related to the active document.

© 2018-2024 Altova GmbH

Schema View 243Editing Views

Altova XMLSpy 2024 Enterprise Edition

In the screenshot above the name Email will replace the name of the right-clicked component and of all
its references within the search scope. See Finding and Renaming Globals for details.

· Sort declarations and references: Using the Sort command, all selected components or the siblings of
the selected component can be sorted. Make your sort settings in the Sort Components dialog
(screenshot below) and click OK.

To select multiple components, press the Shift or Ctrl key while clicking. You can sort using
component names as the first sort key and component kind as the second sort key, or vice versa.

Note: You can select a component and copy, cut, delete, or drag it. In few cases, such as attributes of a
complexType restriction, this might be disallowed,

Keyboard shortcuts and drag-and-drop
You can copy and paste elements in Content Model View using the shortcuts Ctrl+c and Ctrl+v. Copied
objects are pasted as child objects of the selected object. Where this is not possible for structural reasons, a
message to this effect is displayed.

You can also drag-and-drop: (i) objects to other locations in the diagram, (ii) some components, such as
attributes, from the Components entry helper into the diagram.

480

244 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Component properties
If Content Model View is configured so that components are displayed with predefined details in the component
box, then you can edit this information directly in the diagram. The display of predefined details can be turned
on and off by clicking the Add Predefined Details toolbar icon (see icon list above).

Alternatively, you can edit a component's properties in the Details entry helper , and changes will be
reflected in the placeholder fields—if these are configured to be displayed.

Annotations
XML Schema annotations are held in the annotation element. There are two types of annotation, each of
which is contained in a different child element of annotation:

· documentation child: Contains information that could be useful for editors of the schema
· appinfo child: Allows you to insert a script or information that a processing application may use

Given below is the text of an annotation element that contains both types of child elements.

<xs:element name="session_date" type="xs:dateTime" nillable="true">
 <xs:annotation>

 <xs:documentation>Date and time when interview was held</xs:documentation>
 <xs:appinfo source="http://www.altova.com/datehandlers/interviews">separator =

:</xs:appinfo>

 </xs:annotation>

</xs:element>

In Content Model View, you can create annotation for individual compositors and components as follows.

1. Right-click the compositor or component.

2. Select the context menu option Whole Annotation Data. The Annotation dialog box opens (see
screenshot below). If an annotation (either documentation or appinfo) exists for that element, then
this is indicated by a corresponding row in the dialog.

271

© 2018-2024 Altova GmbH

Schema View 245Editing Views

Altova XMLSpy 2024 Enterprise Edition

3. To create an appinfo element, click the Append or Insert icon at top left to append or insert a
new row, respectively.

4. In the Kind field of the new row, select the app option from the dropdown menu.
5. In the Content pane of the dialog, enter the script or info that you want to have processed by a

processing application.
6. Optionally, in the Source field, you can enter a source URI where further information can be made

available to the processing application.

Comments and processing instructions
When XML Schema documents are loaded in XMLSpy, or when views are changed, comments and processing
instructions within simple types and complex types are collected and moved to the end of the enclosing object.
It is therefore recommended that you use annotations instead of comments in such cases.

Documenting the content model
You can generate detailed documentation about your schema in HTML and MS Word formats. Detailed
documentation is generated for each global component, and the list of global components is displayed in a
table-of-contents page that allows you to link to the content models of individual components. Additionally,
related elements (such as child elements or complex types) are referenced by hyperlinks, thus enabling you to
navigate from element to element. To generate schema documentation, select the menu command Schema
design | Generate documentation.

4.4.3.3 Conditional Type Assignment

Conditional type assignment is an XSD 1.1 feature that allows the type of an element to be determined by
content in the XML document, specifically by the value of the element's attributes or by the presence or
absence of attributes. For example, say the XML document has the following element:

<publication kind="magazine">

1306

246 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

...
</publication>

In the schema, the type of the publication element can be specified to vary according to the value of the
instance element's @kind attribute value. In the schema, this is done using the alternative element, which is
new in XSD 1.1. Multiple types are specified, each in an alternative element.

In the screenshot below, the Publication element is declared with three alternative child elements, two of
which have test attributes (@kind eq 'magazine' and @kind eq 'book'). The third alternative element
has no test attribute and a simple type assignment of xs:error (assigned in the Details entry helper, not
shown in the diagram), which, if triggered, returns an XML validation error.

The listing for the above declarations is given below:

<xs:complexType name="PublicationType">

 <xs:sequence>
<xs:element name="Title" type="xs:string"/>
<xs:element name="Author" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="Date" type="xs:gYear"/>

 </xs:sequence>
 <xs:attribute name="kind" type="xs:string"/>
</xs:complexType>

<xs:complexType name="MagazineType">

 <xs:complexContent>
<xs:restriction base="PublicationType">

 <xs:sequence>
<xs:element name="Title" type="xs:string"/>
<xs:element name="Date" type="xs:gYear"/>

 </xs:sequence>
</xs:restriction>

 </xs:complexContent>

© 2018-2024 Altova GmbH

Schema View 247Editing Views

Altova XMLSpy 2024 Enterprise Edition

</xs:complexType>

<xs:element name="Publication" type="PublicationType">

 <xs:alternative test="@kind eq 'magazine'" type="MagazineType"/>

 <xs:alternative test="@kind eq 'book'">

<xs:complexType>
 <xs:complexContent>

<xs:extension base="PublicationType">
 <xs:sequence>

<xs:element name="ISBN" type="xs:string"/>
<xs:element name="Publisher" type="xs:string"/>

 </xs:sequence>
</xs:extension>

 </xs:complexContent>
</xs:complexType>

 </xs:alternative>
 <xs:alternative type="xs:error"/>

</xs:element>

Note the following points:

· The first alternative element from among the alternative siblings to evaluate to true is selected. So
the order of alternative elements is important. In Content Model View, the order can be changed by
dragging the alternative element boxes into the desired order.

· Notice that the Publication element has a type (PublicationType). This type serves as the default
type if none of the alternative elements are used. In our example above, however, the alternative
element of type xs:error will be used if both the previous alternative element conditions return
false.

· If no alternative element condition is met and if the element has no default type, then the element is
assigned a type of anyType. In this event, the element may have any well-formed XML content.

· The alternative element and the simple type xs:error are new in XSD 1.1.

Content Model View editing
You can add an alternative type to an element declaration as a child via the element's context menu (see the
content model in screenshot above).

The type of the alternative element is specified in the Details entry helper. If the type is a complex type, it is
shown in the alternative element's expanded rectangle and can be further edited there (see screenshot
below). Simple types are not shown in the diagram, but can be defined in the Simple Type tab of the Details
entry helper.

248 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: You can specify a namespace for the XPath expression via the xpathDefaultNamespace attribute in
the Details entry helper. For more information about XPath default namespaces, see the section below.

Using xpathDefaultNamespace
A default namespace declared in the XML Schema document is the default namespace of the XML Schema
document. It applies to unprefixed element names in the schema document—but not to unprefixed element
names in XPath expressions in the schema document.

The xpathDefaultNamespace attribute (a new feature in XSD 1.1) is the mechanism used to specify the
namespace to which unprefixed element names in XPath expressions belong. XPath default namespaces are
scoped on the XML Schema elements on which they are declared. The xpathDefaultNamespace attribute can
occur on the following XML Schema 1.1 elements:

· xs:schema
· xs:assert and xs:assertion
· xs:alternative
· xs:selector and xs:field (in identity constraints)

The xpathDefaultNamespace on xs:schema is set, in XSD 1.1 mode, in the Schema Settings dialog (Schema
Design | Schema Settings). For the other elements listed above, the xpathDefaultNamespace attribute is set
in their respective Details entry helpers (see screenshot below for example).

© 2018-2024 Altova GmbH

Schema View 249Editing Views

Altova XMLSpy 2024 Enterprise Edition

Declaring the XPath default namespace on xs:schema, declares the XPath default namespace for the scope of
the entire schema. You can override this declaration on elements where the xpathDefaultNamespace attribute
is allowed (see list above).

Instead of containing an actual namespace, the xpathDefaultNamespace attribute can contain one of three
keywords:

· ##targetNamespace: The XPath default namespace will be the same as the target namespace of the
schema

· ##defaultNamespace: The XPath default namespace will be the same as the default namespace of the
schema

· ##local: There is no XPath default namespace

If no XPath default namespace is declared in the document, unprefixed elements in XPath expressions will be
in no namespace.

Note: The XPath default namespace declaration does not apply to attributes.

4.4.3.4 Open Content Models

Open content models are new to XSD 1.1. They are declared on complex types and allow any element (that is,
an element undefined in the content model of the complex type) to occur any number of times either (i)
between elements defined in the content model, or (ii) after elements defined in the content model.

The openContent element is a child of the complex type and occurs once before the content model of the
complex type (see screenshot below).

Mode
The openContent element has a mandatory mode attribute, which can take the values interleave, suffix, or
none (see screenshot below). The default value is interleave.

250 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The significance of these values is as follows:

· If mode="interleave" or mode="suffix", then wildcard element content (xs:any) with no minimum or
maximum number of occurrences must be present. This implies that any number of undefined
elements (wildcards) is allowed.

· If the mode is interleave, any number of undefined elements can occur before or after individual
defined elements in the content model. They are interleaved between defined elements.

· If the mode is suffix, any number of undefined elements can occur after the last defined element of
the content model.

· If the mode is none, no undefined element (xs:any child) may occur; the content model is not open.
The none value is used to override the defaultOpenContent element that is scoped on the entire
schema.

In Content Model View, you add open content as a child of the complex type (via Add Child in the context
menu). Specify the mode either by double-clicking in the openContent box in the diagram (see screenshot
above) and selecting a value (interleave, suffix, or none), or by selecting a value in the Details entry helper.

Wildcard (xs:any) properties
Wildcard properties are specified in the wildcard's Details entry helper. Select the wildcard in the diagram and
enter property values in the Details entry helper.

Default open content
The defaultOpenContent element is new in XSD 1.1 and specifies that one or more undefined elements can
be added to any complex type of mixed or element-only content. It is similar to the openContent element (also
new to XSD 1.1), the main difference being that while the openContent element applies to a single complex
type, the defaultOpenContent element applies to all complex types in the schema.

The defaultOpenContent element is a global component and occurs once in the document (see
screenshot below), after Includes, Imports, Redefines, and Overrides, and before the definitions of components.
It has a mode attribute which can take a value of either interleave or suffix. The default is interleave.

223

223

© 2018-2024 Altova GmbH

Schema View 251Editing Views

Altova XMLSpy 2024 Enterprise Edition

The defaultOpenContent element has a content model that you can edit in Content Model View, in exactly
the same way as the openContent element is defined (see above). Once declared, the defaultOpenContent
element will apply automatically to all complex types in the schema and will be displayed in their content
models. In the screenshot below, you can see that the defaultOpenContent has been applied automatically to
the OfficeType and Desc complex types.

To override the defaultOpenContent element when it is applied to a particular complex type, add a child
openContent element to that complex type. In the screenshot below, the Desc element with the
defaultOpenContent element (see screenshot above) has had an openContent element added to it that
overrides the defaultOpenContent element.

252 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4.4.4 Attributes, Assertions, and Identity Constraints

The Attributes/Assertions/Identity Constraints (AAIDC) pane (screenshot below) is located below the main pane
in Schema Overview and Content Model View. The pane and its tabs are fixed. In Content Model View,
however, the view of each tab can be switched individually so that the tab's components can be viewed and
edited in the diagram in Content Model View rather than in the AAIDC pane. When the views of all three tabs
are switched to the diagram, the AAIDC pane disappears.

Views can be switched between the AAIDC pane and the diagram via the Schema Display Configuration
dialog (Schema Design | Configure View | Element tab) or by clicking the respective icon in the Schema
Design toolbar (shown below).

Display Attributes in Diagram: Enabled in Content Model View. Toggles the display of attributes
between the diagram (toggled on) and the Attributes tab.

Display Assertions in Diagram: Enabled in Content Model View. Toggles the display of assertions
between the diagram (toggled on) and the Assertions tab.

Display Constraints in Diagram: Enabled in Content Model View. Toggles the display of IDCs
between the diagram (toggled on) and the Identity Constraints tab.

Using the tabs
The tabs in the AAIDC become enabled individually according to what component is selected in the upper main
pane of Schema Overview or Content Model View. For example, since it is possible to add an attribute to a
complex type, the Attributes tab will be enabled when a complex type is selected in the main pane. (A tab is
considered to be enabled when its commands are enabled.)

How to use each of the tabs is discussed in the sub-sections of this section:

· Attributes, Attribute Groups, Attribute Wildcards
· Assertions
· Identity Constraints

1312

253

256

260

© 2018-2024 Altova GmbH

Schema View 253Editing Views

Altova XMLSpy 2024 Enterprise Edition

Sorting attributes and identity constraints
You can sort the attributes and identity constraints in their respective tabs by clicking the Sort icon in the tab's
toolbar. In the Sort Components dialog that pops up (screenshot below), you can choose to sort either the
selected single component and its siblings or the set of selected components. In the screenshot above, for
example, three attributes have been selected (highlighted blue). You can use click+Shift to select a range and
click+Ctrl to add additional components to the selection.

After selecting the set of components to sort you can choose to sort alphabetically first on name and then on
kind (Name before k ind), or vice versa (Kind before name). The sort order is immediately implemented in the
text of the schema document; it is not just an interface mask.

4.4.4.1 Attributes, Attribute Groups, Attribute Wildcards

In the Attributes tab of the Attributes/Assertions/Identity Constraints (AAIDC) pane (screenshot below), you
can:

· Declare attributes locally on the selected complex type
· Reference attribute groups for use on the selected complex type
· Define attribute wildcards on the selected complex type

Note: If you have chosen the option to display attributes in the diagram (Schema Design | Configure View)
rather than in the AAIDC pane, you can edit the properties of attributes, attribute group references,
and attribute wildcards in the diagram and Details entry helper.

Display Attributes in Diagram: Enabled in Content Model View. Toggles the display of attributes
between the diagram (toggled on) and the Attributes tab.

Attributes
In the Attributes tab of the Attributes/Assertions/Identity Constraints (AAIDC) pane (screenshot below), you can
declare local attributes of elements and complex types, and the attributes that constitute attribute groups.

253

255

255

254 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To create attributes, do the following:

1. In Schema Overview, select the complex type or attribute group for which you wish to create the
attribute.

2. In the Attributes tab, click the Append or Insert icon at top left and select Attribute.
3. In the row that is created for the attribute, enter the attribute's details (name, type, use, and default or

fixed value). The name property is mandatory, and the default value of use is optional. The datatype
and default/fixed value properties are optional.

Note: Attributes can be added to attribute groups only in Schema Overview , but to complex types in both
Schema Overview and Content Model View .

Note: If an attribute has a type definition, then clicking its context menu command Go to Type Definition
will take you to the type definition. In the case of built-in simple types, a message box appears that
contains information about the simple type.

Default values and fixed values
A default value or fixed value, if specified in an attribute declaration, is applied in the instance document when
that attribute is absent in the instance document. Either a default value or a fixed value can be specified, not
both (see screenshot above). The default or fixed value must be valid according to the attribute's datatype. If
use is set to required, then neither default nor fixed value is allowed.

Note the following:

· Default values: A default value is inserted only if the attribute is missing. If the attribute is present and
has a valid value, the default value is not inserted. If the value in the instance documents is invalid, an
error is raised.

· Fixed values: A fixed value is applied not only when the attribute is missing but also if the value in the
instance document is not equal to the fixed value specified in the attribute's declaration.

Note: Default and fixed values can be specified on both local and global attributes. On local attributes they
can be defined in both the Attributes tab of the AAIDC pane (screenshot above) and in the Details
entry helper. On global attributes, they can be specified in the Details entry helper.

213

213 213

© 2018-2024 Altova GmbH

Schema View 255Editing Views

Altova XMLSpy 2024 Enterprise Edition

Attribute group references
If a global attribute group has been declared, you can add a reference to this attribute group in the definition of a
complex type. Do this by selecting the complex type component in Schema Overview or Content Model View,
then clicking the Append or Insert icon at top left of the Attributes tab of the AAIDC pane and selecting
Attribute Group. In the attribute group row that is created, enter the name of the attribute group to be
referenced (see screenshot below, which has two attribute group references). You can add multiple attribute
groups.

When the attribute group is selected in the Attributes tab, its properties can also be edited in the Details entry
helper.

Attribute wildcards: anyAttribute
An attribute wildcard can be added to a complex type to allow the use of any attribute on an element. An
attribute wildcard is defined with a single anyAttribute element. It would allow any number of attributes from
the specified namespace to occur on the element in the instance document.

Add an attribute wildcard by selecting the complex type component in Schema Overview or Content Model
View, then clicking the Append or Insert icon at top left of the Attributes tab of the AAIDC pane and selecting
Any Attribute. A row for the attribute wildcard anyAttribute is created (see screenshot below).

In the Attributes tab, you can set the namespace property of anyAttribute. With the attribute wildcard
selected in the Attributes tab, you can set additional properties in the Details entry helper (see screenshot
above). Note that the notNamespace and notQName properties are XSD 1.1 features and so will not be
available in XSD 1.0 mode .

Sorting attributes and attribute groups
You can sort the attributes and attribute groups in the Attributes tab by clicking the Sort icon in the tab's
toolbar. In the Sort Components dialog that pops up (screenshot below), you can choose to sort either the

215

215

256 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

selected single component and its siblings or the set of selected components. You can use Shift+click to
select a range and Ctrl+click to add additional components to the selection.

After setting the range you can choose to sort the entire range of attributes and attribute groups alphabetically
(Name before k ind), or attributes sorted alphabetically before attribute groups sorted alphabetically.

The sort order is immediately implemented in the text of the schema document; it is not just an interface mask.

Note: Attribute wildcards will not be included in the range to sort since they must always occur at the end of
a complex type declaration and only one attribute wildcard is allowed in a single complex type
declaration.

4.4.4.2 Assertions

The assertions described in this section are assertions on complex types. Such an assertion is defined in an
xs:assert element, which was introduced in XML Schema version 1.1, and serves as a validity constraint

on the complex type. (The other kind of assertion is an assertion on a simple type, which is defined in an
xs:assertion element and is created and edited in the Facets entry helper of a simple type. That kind of
assertion is not covered by the feature described in this topic.)

Note: Assertions are an XSD 1.1 feature. So the Assertions editing features will be available only in XSD 1.1
mode .

Where to edit assertions
In Schema View, complex type assertions can be created and edited via the following GUI access points:

· In Schema Overview: In the Assertions tab of the Attributes/Assertions/Identity-Constraints (AAIDC)
pane (screenshot below). In order for the Assertions tab to be enabled, change the XSD mode to
1.1 (for instance, via the XSD 1.1 toolbar icon).

275

215

215

© 2018-2024 Altova GmbH

Schema View 257Editing Views

Altova XMLSpy 2024 Enterprise Edition

· In Content Model View: Assertions can be edited in the Assertions tab (screenshot above) or in the
diagram (screenshot below). Only one of these two editing options (tab or diagram) is enabled at a
given time. You can switch between them by toggling off/on the Display Assertions in Diagram icon
in the Schema Design toolbar (see below). (To set one of these options as the default, go to the
Schema Display Configuration dialog (Schema Design | Configure View | Element tab).) In the
diagram, select the Assertion box of the complex type or complex-content element. Then enter or edit
the Assertion's definition directly or in the Details entry helper.

Display Assertions in Diagram: Enabled in Content Model View. Toggles the display of
assertions between the diagram (toggled on) and the Assertions tab.

Scope of the assertion
The XPath expression used to define the assertion's constraint must be within the scope of the complex type
on which it is defined. So if the XPath expression is required to access a particular node, then the assertion
must be defined on an ancestor of that node.

Adding and deleting assertions
A complex type can have multiple assertions. The XPath expression of each assertion must evaluate to
boolean true for the element in the instance document to be valid. To add an assertion to a complex type, do
the following:

· In Schema Overview: Select the complex type. Then, in the Assertions tab of the AAIDC pane (see
screenshot above), click the Add or Insert icon at the top left of the tab. You can add multiple
assertions. To delete an assertion, select it and click the Delete icon at the top right of the tab.

· In Content Model View (see screenshot above): Right-click the complex type and select Add Child |
Assertion. Alternatively, right-click an existing assertion in the diagram of the complex type and select
Append | Assertion or Insert | Assertion. You can add multiple assertions to a complex type. To
delete an assertion, select it and press the Delete key.

258 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Defining the assertion's XPath expression
The XPath expression of a complex type assertion defines the validation constraint to be applied on the
complex type element in the instance document. For example, in the screenshots above, the assertion is on
the complex-type element team and the assertion's XPath expression is: @region="US". In the XML Schema
document, the assertion appears as:

<xs:assert test='@region="US"'/>

The assertion specifies that, in the instance document, the team element must have a region attribute with a
value of US. If it does not, the document will be invalid.

Note the following points:

· XPath expressions must be written in the XPath 2.0 language
· Nodes tested in the XPath expression must be within the scope of the assertion (see above)
· If an expression does not evaluate to boolean true/false, the returned value is converted to a boolean

value. A non-empty sequence is converted to true, while an empty sequence is converted to false.
· Syntax errors in the expression are flagged by displaying the expression in red. Context errors are not

flagged. For example, if the XPath expression tests an attribute and that attribute is not defined in the
schema, no error is flagged.

The assertion's message
It is very useful if an explanation of the assertion is supplied together with its definition, so that in case the
assertion is not fulfilled when the XML instance document is validated, an appropriate message can be
displayed. Since the XML Schema specification does not make provision for such a message, XMLSpy allows
a message in the Altova xml-schema-extensions namespace http://www.altova.com/xml-schema-
extensions (or any other namespace) to be provided with the definition of the assertion and to be used in the
validation of the XML instance document. For example:

<xs:assert test="count(//MyNode) ge 1" altova:message="There must be at least one MyNode

element"/> or
<xs:assertion test="count(//MyNode) ge 1" altova:message="There must be at least one

MyNode element"/>

If the restriction specified in the assertion is not fulfilled, XMLSpy's validation engine will display, along with the
validation-error message, the message associated with the assertion as a hint. The validator will report the
value of an assert/@message attribute or of an assertion/@message attribute regardless of the namespace in
which the message attribute is. However, in Schema View, you can edit only message attributes that are in the
Altova xml-schema-extension namespace. To edit message attributes in other namespaces, use Text View.

See Assertion Messages for details.

Using xpathDefaultNamespace
A default namespace declared in the XML Schema document is the default namespace of the XML Schema
document. It applies to unprefixed element names in the schema document—but not to unprefixed element
names in XPath expressions in the schema document.

The xpathDefaultNamespace attribute (a new feature in XSD 1.1) is the mechanism used to specify the

278

© 2018-2024 Altova GmbH

Schema View 259Editing Views

Altova XMLSpy 2024 Enterprise Edition

namespace to which unprefixed element names in XPath expressions belong. XPath default namespaces are
scoped on the XML Schema elements on which they are declared. The xpathDefaultNamespace attribute can
occur on the following XML Schema 1.1 elements:

· xs:schema
· xs:assert and xs:assertion
· xs:alternative
· xs:selector and xs:field (in identity constraints)

The xpathDefaultNamespace on xs:schema is set, in XSD 1.1 mode, in the Schema Settings dialog (Schema
Design | Schema Settings). For the other elements listed above, the xpathDefaultNamespace attribute is set
in their respective Details entry helpers (see screenshot below for example).

Declaring the XPath default namespace on xs:schema, declares the XPath default namespace for the scope of
the entire schema. You can override this declaration on elements where the xpathDefaultNamespace attribute
is allowed (see list above).

Instead of containing an actual namespace, the xpathDefaultNamespace attribute can contain one of three
keywords:

· ##targetNamespace: The XPath default namespace will be the same as the target namespace of the
schema

· ##defaultNamespace: The XPath default namespace will be the same as the default namespace of the
schema

· ##local: There is no XPath default namespace

If no XPath default namespace is declared in the document, unprefixed elements in XPath expressions will be
in no namespace.

Note: The XPath default namespace declaration does not apply to attributes.

For XPath expressions in assertions, you can also specify the XPath default namespace on the definition of the
assertion. In the Assertions tab of the Attributes/Assertions/Identity-Constraints (AAIDC) pane (screenshot
below), select the required keyword from the dropdown list of the XPathDefaultNS field.

260 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The selected namespace will be in scope on the assertion.

4.4.4.3 Identity Constraints

Identity constraints (IDCs) can be defined on global or local element declarations. They specify the uniqueness
of nodes and enable correct referencing between unique nodes.

Declaration mechanisms
The following mechanisms are available for defining an IDC (unique, key, keyref):

· In Schema Overview , IDCs can be declared on global elements. Select a global element and define
IDCs in the Identity Constraints tab of the Attributes/Assertions/Identity-Constraints (AAIDC) pane
(screenshot below).

Add an IDC (unique, key, keyref) using the Insert or Append icon of the Identity Constraints tab.
These icon can also be used to add a field to the selected IDC. Use the Delete icon to delete the
selected field or IDC.

· In the Content Model View of a global element, IDCs can be defined on the global element or on a
local descendant element. In this view, IDCs can be edited either in the Identity Constraints tab
(screenshot above) or in an element's Constraints box in the diagram (screenshot below, in which the
match element has a uniqueness constraint that has a team selector). The latter alternative can be
selected in the Schema Display Configuration dialog (Schema Design | Configure View).
Alternatively, you can click the Display Constraints in Diagram icon in the Schema Design toolbar.
The diagram provides a graphical representation of IDCs and drag-and-drop editing functionality.

219

231

© 2018-2024 Altova GmbH

Schema View 261Editing Views

Altova XMLSpy 2024 Enterprise Edition

To add an IDC (unique, key, keyref) in the diagram when diagram mode for IDCs is switched on,
right-click the element to be constrained and select Add Child | [IDC] from the context menu. The
field item will be enabled in the context menu only when an IDC is selected in the diagram. Press the
Delete key to delete the selected field or IDC.

The XPath expression can be entered in the selector and field boxes in one of three ways: (i) by
typing it in, (ii) by selecting the required node from a dropdown list that appears automatically when
you click in the selector or field box, or (iii) by dragging the target node into the selector or field
box and dropping it when the box becomes highlighted; the XPath expression will be created
automatically.

Note: Additionally, an overview of all identity constraints in the schema is available in the Identity
Constraints tab of the Components entry helper.

Identity constraint icons

Display Constraints in Diagram: Enabled in Content Model View. Toggles the display of IDCs
between the diagram (toggled on) and the Identity Constraints tab.

Visualize Identity Constraints: Enabled in Content Model View. Toggles the display of IDC
information on and off.

Selector node, Field node: Seen in node boxes in the diagram, these two icons identify, respectively,
the node selected (in IDCs) by the XPath expression for selector and for field.

Visualizing IDCs
When the Visualize Identity Constraints icon is toggled on, IDC information is displayed in the diagram and
can be visualized better. When visualization is toggled on, nodes selected by the selector and field XPath

267

262 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

expressions are indicated with icons in their boxes (see icons section above), and the IDC box is connected to
its selector and field boxes with green lines (see screenshot above).

The Visualize ID Constraints icon also switches on IDC validation functionality in Schema View. If an XPath
expression is incorrect or an IDC is otherwise incorrect, errors are indicated with red text, warnings with orange
text. On validating the XML Schema document, error or warning messages are displayed in the Messages
window.

You can also disable validation by toggling the Visualize ID Constraints icon off.

XML listing
The IDC examples further below in this section are based on the following valid instance document.

<results xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Scores.xsd">
<!----- Groups ----->
<group id="A">

<team name="Brazil"/>
<team name="Germany"/>
<team name="Italy"/>
<team name="Holland"/>

</group>
<group id="B">

<team name="Argentina"/>
<team name="France"/>
<team name="England"/>
<team name="Spain"/>

</group>
<!----- Matches ----->
<match group="A" date="2012-06-12" location="Munich">

<team name="Brazil" for="2" points="3"/>
<team name="Germany" for="1" points="0"/>

</match>
<match group="A" date="2012-06-12" location="Frankfurt">

<team name="Italy" for="2" points="1"/>
<team name="Holland" for="2" points="1"/>

</match>
<match group="B" date="2012-06-13" location="Munich">

<team name="Argentina" for="2" points="3"/>
<team name="France" for="0" points="0"/>

</match>
<match group="B" date="2012-06-13" location="Berlin">

<team name="England" for="0" points="1"/>
<team name="Spain" for="0" points="1"/>

</match>
</results>

Uniqueness constraints (unique)
A uniqueness constraint specifies that the value of an element or attribute (or of a set of elements and/or
attributes) must be unique within a defined scope. In the XML listing shown above, we wish to ensure that the
two teams playing a match are not the same team. So, within the scope of each match element, we constrain
the values of the team/@name node to be unique. We do this as follows.

© 2018-2024 Altova GmbH

Schema View 263Editing Views

Altova XMLSpy 2024 Enterprise Edition

1. In Schema Overview, select the match element. The match element will therefore be the scope of the
identity constraint definition.

2. In the Identity Constraints tab, click the Add or Insert icon at the top left of the tab, and, in the menu
that pops up, click Unique. This adds a row for the uniqueness constraint (see screenshot below).

3. Give the identity constraint a name. (In the screenshot above, MatchTeams is the name.)
4. Enter an XPath expression in the Selector column to select the team element. Note that the match

element is the context node. The team element will now be the IDC's selector, that is, the node to
which the uniqueness constraint applies.

5. In the Field column, enter the @name node that must be unique. The value of this node is the value that
must be unique.

The uniqueness constraint described above specifies that within the scope of each match element, every team
element must have a unique @name attribute-value.

You can use additional fields to check for uniqueness. For example, a uniqueness constraint can be defined on
the results element to check that all matches have a unique combination of date and location: Not more than
one match may occur at one location on the same date. The uniqueness constraint must have, for each match
element (the selector), its combination of @date and @location values unique within the scope of the results
element.

Define the uniqueness constraint on the results element in a similar way to that described above. The
selector will be match, and the fields will be @date and @location (see screenshot below). Add the second
field by clicking the Append icon and then Field.

Note: The Refer column in the Identity Constraints tab is enabled for keyref constraints only, not for unique
or key constraints.

Key constraints (key)
A key constraint specifies: (i) that the value of an element or attribute (or of a set of elements and/or attributes)
must be unique within a defined scope, and (ii) that these field elements and/or attributes must be present in

264 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

the instance XML document; therefore, optional elements or attributes should not be selected as fields of a key
constraint. A key constraint is thus (in point (i) above) exactly the same as a uniqueness constraint. It
stipulates one additional constraint: that its field elements/attributes must be present in the XML document.

The screenshot below shows a key constraint defined on a match element that is similar to the first uniqueness
constraint described above.

This key constraint specifies that within the scope of each match element, every team element must have a
unique @name attribute-value. Additionally, it specifies that the @name attribute must be present on every
match/team element.

Note: The Refer column in the Identity Constraints tab is enabled for keyref constraints only, not for unique
or key constraints.

Key references (keyref)
Key references check one set of values in an instance document against another. In our XML listing, for
example (see listing above), we can use a key reference to check whether the teams playing in matches are
among the teams listed in the respective groups. If not, the XML document will be invalid.

First, we create a uniqueness constant or key constraint. The screenshot below shows a uniqueness
constraint (unique), TeamsInGroups, created on the results element. This constraint stipulates that each
team in group has a unique @name attribute.

Next, we create the key reference (keyref), TeamCheck, which selects the team child of match and checks
whether its @name attribute-value is present among the values returned by TeamsInGroups, which it references
(in the Refer column).

The screenshot below shows the graphical display of this key reference (highlighted in blue) together with the
Details entry helper (in which you can also select the referenced IDC). The relations of the selected IDC are
shown with a solid green line, while unselected IDCs are shown with a dotted green line. Also, for each identity

© 2018-2024 Altova GmbH

Schema View 265Editing Views

Altova XMLSpy 2024 Enterprise Edition

constraint the node selected by the XPath expression for selector and field are shown with the icons
and respectively. If a node is collapsed, the relationship line to it ends with an ellipsis.

Using xpathDefaultNamespace
A default namespace declared in the XML Schema document is the default namespace of the XML Schema
document. It applies to unprefixed element names in the schema document—but not to unprefixed element
names in XPath expressions in the schema document.

The xpathDefaultNamespace attribute (a new feature in XSD 1.1) is the mechanism used to specify the
namespace to which unprefixed element names in XPath expressions belong. XPath default namespaces are

266 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

scoped on the XML Schema elements on which they are declared. The xpathDefaultNamespace attribute can
occur on the following XML Schema 1.1 elements:

· xs:schema
· xs:assert and xs:assertion
· xs:alternative
· xs:selector and xs:field (in identity constraints)

The xpathDefaultNamespace on xs:schema is set, in XSD 1.1 mode, in the Schema Settings dialog (Schema
Design | Schema Settings). For the other elements listed above, the xpathDefaultNamespace attribute is set
in their respective Details entry helpers (see screenshot below for example).

Declaring the XPath default namespace on xs:schema, declares the XPath default namespace for the scope of
the entire schema. You can override this declaration on elements where the xpathDefaultNamespace attribute
is allowed (see list above).

Instead of containing an actual namespace, the xpathDefaultNamespace attribute can contain one of three
keywords:

· ##targetNamespace: The XPath default namespace will be the same as the target namespace of the
schema

· ##defaultNamespace: The XPath default namespace will be the same as the default namespace of the
schema

· ##local: There is no XPath default namespace

If no XPath default namespace is declared in the document, unprefixed elements in XPath expressions will be
in no namespace.

Note: The XPath default namespace declaration does not apply to attributes.

IDs of identity constraints
An ID can be assigned to an identity constraint, its selector, and/or field/s. To assign an ID, select the required
component and, in the Details entry helper, enter the ID in the id row.

Sorting identity constraints
You can sort the IDCs in the Identity Constraints tab by clicking the Sort icon in the tab's toolbar. In the Sort
Components dialog that pops up (screenshot below), you can choose to sort either the selected single
component and its siblings, or the set of selected components. You can use click+Shift to select a range and
click+Ctrl to add additional components to the selection.

© 2018-2024 Altova GmbH

Schema View 267Editing Views

Altova XMLSpy 2024 Enterprise Edition

After setting the range you can choose to sort the entire range alphabetically (Name before k ind), or organized
alphabetically by kind (that is: uniqueness constraints first, then key constraints, then key references).

The sort order is implemented in the text of the schema.

4.4.5 Entry Helpers in Schema View

There are three entry helpers in Schema View. They are described in detail in the sub-section of this section:

· Components entry helper
· Details entry helper
· Facets entry helper

The entry helpers are the same in both Schema Overview and Content Model View. They enable you to
graphically add and edit definitions of schema components. Typically you can drag components from an entry
helper, or select a component in the design and then define properties for it in an entry helper.

4.4.5.1 Components

The Components entry helper in Schema View (see screenshots below) serves three purposes:

· To organize global components in a tree view by component type and namespace (see screenshots
below). This provides organized overviews of all global components and global components according
to namespace.

· To enable you to navigate to and display the Content Model View of a global component—if the
component has a content model. If a component does not have a content model, the component is
highlighted in the Schema Overview. Global components that are included or imported from other
schemas are also displayed in the Components entry helper.

· To provide an overview of the identity constraints defined in the schema document. For a description of
the Identity Constraints tab, see Identity Constraints .

267

271

273

260

268 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: Whether the built-in datatypes of XSD 1.0 or 1.1 are displayed depends on which XSD mode (XSD 1.0
or 1.1) is selected.

Globals tab
In the Globals tab (see screenshot below) global components are grouped in a tree according to their
component type. The number of each global component type present in the schema is given next to each
component type.

In the tree display, global components are organized into the following seven groups. Note that a component
type is listed in a tree only if at least one component of that type exists in the schema.

· Element Declarations (Elements)
· Model Groups (Groups)
· Complex Types
· Simple Types
· Attribute Declarations (Attributes)
· Attribute Groups
· Notations

Namespaces tab
In the Namespaces tab (see screenshot below), components are organized first according to namespace and
then according to component type.

© 2018-2024 Altova GmbH

Schema View 269Editing Views

Altova XMLSpy 2024 Enterprise Edition

In the tree display, global components are organized into the following seven groups. Note that a component
type is listed in a tree only if at least one component of that type exists in the schema.

· Element Declarations (Elements)
· Model Groups (Groups)
· Complex Types
· Simple Types
· Attribute Declarations (Attributes)
· Attribute Groups
· Notations

Component-type groups in the Globals and Namespaces tabs
Expanding a component-type group in the Globals tab or Namespaces tab displays all the components in that
group (see screenshot below). This enables you to easily navigate to a user-defined component. When you
double-click the component in the Components tab, its definition is displayed in the main window.

270 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If a component has a content model (that is, if it is an Element, Group, or Complex Type), double-clicking it will
cause the component's content model to be displayed in Content Model View (in the Main Window). If the
component does not have a content model (i.e. if it is a Simple Type, Attribute, Attribute Group, or Notation),
then the component is highlighted in Schema Overview (in the Main Window).

Note: If the component is in an included or imported schema, then the included/imported schema is opened
(if it is not already open), and either the component's content model is displayed in Content Model
View or the component is highlighted in Schema Overview.

Identity constraints
The Identity Constraints tab of the Components entry helper (screenshot below) provides an overview of a
document's identity constraints. In this tab, identity constraints are listed by the kind of identity constraint
(unique, key, keyref) and displayed as an expandable/collapsible tree.

© 2018-2024 Altova GmbH

Schema View 271Editing Views

Altova XMLSpy 2024 Enterprise Edition

Entries in bold are present in the current schema, while those in normal face are present in sub-schemas.
Double-clicking an entry in the Identity Constraints tab selects that schema component in Content Model
View .

The following context menu commands are available when an item in the Identity Constraints tab is selected:

· Show in Diagram: selects the schema component in Content Model View .
· Show Selector/Field Target in Diagram: selects, in Content Model View , the schema component

targeted by the selector or field of the identity constraint. In the case of multiple fields, a dialog
prompts the user for the required field.

· Go to Identity Constraint: selects the identity constraint in Schema Overview .
· Expand/Collapse All: expands or collapses the tree, respectively.

For a description of the Identity Constraints tab, see the section, Identity Constraints .

4.4.5.2 Details

The Details entry helper of Schema View displays editable information about the component or compositor
currently selected in the Main Window. If you are editing a schema file which contains database extensions, an
additional tab with information about the DB extensions may be visible.

231

231

231

219

260

272 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To change the properties of the currently selected component or compositor, double-click the field to be edited
and edit or enter text directly. If a combo box is available in the field to be edited, select the desired value from
the dropdown list. Changes you make via the Details entry helper are immediately reflected in the design.

Simple type derivations
You can use the Details entry helper to quickly and accurately create derived simple types: restriction,
list, and union. When a simple type is selected in the design, the Details entry helper will have a Simple
Type tab in it (see screenshot below).

In the derivation-type combo box of the SimpleType tab, select the derivation type (restriction, list, or
union) and, in the corresponding member type combo box to its right, select a simple type from the available
simple types. Use the icons in the toolbar to append or insert a type on the same level, to add another
derivation sub-level, or to delete a derivation type. To go a type's definition, right-click it and select Go to Type

© 2018-2024 Altova GmbH

Schema View 273Editing Views

Altova XMLSpy 2024 Enterprise Edition

Definition. In the case of built-in simple types, a message box appears that contains information about the
simple type.

4.4.5.3 Facets

A new simple type (named or anonymous) is created by restricting the simple type's base type (which is an
existing simple type). Such a restriction is effected by adding facets to restrict the values of the base type. In
Schema View, the Facets entry helper (see screenshots below) enables you to graphically and easily edit the
facets of a simple type. The available facets are organized in tabs of the Facets entry helper as listed in the
table below.

Tab Available facets

Facets minInclusive, maxInclusive, minExclusive, maxExclusive, length,
minLength, maxLength, totalDigits, fractionDigits, whiteSpace,
explicitTimezone

Patterns pattern

Enumerations enumeration

Assertions assertion

Samples altova:exampleValues is an annotation, not a facet. This annotation is
used to generate sample values in the instance XML document generated
by XMLSpy from the XML Schema.

Each of these tabs is described in the sections below.

Selecting the simple type in the design
A simple type (named or anonymous) can be selected in the following design environments:

· In Schema Overview (either in the global components list or in the Attributes tab below the global
components list), or

· In Content Model View (either in the diagram or in the Attributes tab below the diagram).

When a simple type is selected in the design in any of the design environments listed above, applicable facets
in the Facets entry helper become enabled and can be edited in the Facets entry helper.

Facets tab
In the Facets tab, only facets applicable to the type selected in the design will be displayed. For example, if it
is the xs:string type that is being restricted, then non-applicable facets like totalDigits will not be
displayed.

· The four bounds facets (minInclusive, maxInclusive, minExclusive, maxExclusive) are applicable
only to the numeric and date/time types and to types derived from these types.

273

274

275

275

277

219

231

274 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The three length facets (length, minLength, maxLength) are applicable only to string-based types, the
binary types, and anyURI.

· The totalDigits facet apply to xs:decimal and integer types, and to any types derived from them.
The fractionDigits facet can be applied only to xs:decimal.

To enter a value, either select a value from the dropdown list of a combo box (if present) or double-click in the
value field and enter a value. If an invalid value is entered, the resulting conflicts are displayed in red. Valid
values are displayed in blue. For example, a minInclusive facet and a maxInclusive facet cannot exist
together; so if a value is entered for the second of these facets, then the values of both facets are displayed in
red.

To specify a fixed facet (giving the facet an attribute-value of fixed="true"), click the open-lock symbol to
the right of the facet so that the symbol becomes a closed-lock. In the screenshot above, the totalDigits
facet has been set as a fixed facet. More than one facet can be fixed. To unfix a facet, click the closed-lock
symbol to make it an open-lock symbol.

Patterns tab
In the Patterns tab (screenshot below), you can add one or more pattern facets to a restriction. The pattern (of
a pattern facet) is specified with the regular expression syntax. The pattern in the screenshot below specifies
the pattern of email addresses.

If multiple pattern facets are specified, then the XML instance value must match one of the specified patterns.
For example, a pattern to restrict postcodes could have two pattern facets, one each for US and EU
postcodes. An XML instance value must then match one of the patterns for it to be valid.

Add a pattern facet by clicking the Append or Insert icon at top left and then entering a regular expression to
define the required pattern. To delete a pattern, select it and click the Delete icon at top right.

© 2018-2024 Altova GmbH

Schema View 275Editing Views

Altova XMLSpy 2024 Enterprise Edition

Enumerations tab
In the Enumerations tab (screenshot below), you can add one or more enumeration facets to a restriction.
Each enumeration facet specifies a valid value for the type. Taken together, a set of enumeration facets
specifies a range of allowed values. In the screenshot below, enumeration facets specify the allowed range of
size values for the restriction.

Add an enumeration facet by clicking the Append or Insert icon at top left and then entering the enumeration
value. To delete an enumeration, select it and click the Delete icon at top right.

Assertions tab
Assertions are an XSD 1.1 feature. So the Assertions tab will be enabled only in XSD 1.1 mode . Assertion
facets defined in the Assertions tab of the Facets entry helper are assertions for simple types—as opposed
to assertions for complex types (which can be defined and edited in Schema Overview or Content Model
View, not in the Facets entry helper).

When a simple type (element or attribute of simple content) is selected in the design, an assertion can be
specified for it by switching to the Assertions tab (see screenshot below), clicking the Append or Insert icon
at top left, and then entering the XPath 2.0 expression that will be used to define the assertion. A special
variable called $value must be used in the XPath expression to hold the value of the simple type. (Note that,

since there are no descendants to test but only a value, the normal self::node() path step (or the period
abbreviation of this path step '.') cannot be used in the XPath expression.)

For example, the XPath expression string-length($value) = 6 (see screenshot below) tests whether the
value of the simple type has six characters. If the element or attribute in the instance document does have six
characters, then it is valid according to the assertion.

215

256

276 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: Syntax errors in the XPath expression will be flagged by the expression turning red. But, since the
datatype is determined at runtime, type errors will not be flagged when you enter the XPath expression.
You must take care to construct types as required. For an example of type construction, see the third
XPath expression in the screenshot above, which converts a string value (assuming that the assertion
is defined on an xs:string simple type) into a number before doing a numeric comparison.

Multiple assertions can be specified on a single simple type, as in the screenshot above. In this case, all the
assertions must be satisfied for the element or attribute in the instance document to be valid. The assertions in
the screenshot above specify that the instance document value must be a six-character string starting with the
characters EU and having numeric characters that have a number value of 0000 to 4999 as its final four
characters. To edit the details of an assertion, right-click the assertion in the Facets entry helper, and click
Details in the menu that pops up. This brings up the Assertion Details modal window (see screenshot below).

It is very useful if an explanation of the assertion is supplied together with its definition, so that in case the
assertion is not fulfilled when the XML instance document is validated, an appropriate message can be
displayed. Since the XML Schema specification does not make provision for such a message, XMLSpy allows
a message in the Altova xml-schema-extensions namespace http://www.altova.com/xml-schema-
extensions (or any other namespace) to be provided with the definition of the assertion and to be used in the
validation of the XML instance document. For example:

<xs:assert test="count(//MyNode) ge 1" altova:message="There must be at least one MyNode

element"/> or
<xs:assertion test="count(//MyNode) ge 1" altova:message="There must be at least one

MyNode element"/>

If the restriction specified in the assertion is not fulfilled, XMLSpy's validation engine will display, along with the
validation-error message, the message associated with the assertion as a hint. The validator will report the
value of an assert/@message attribute or of an assertion/@message attribute regardless of the namespace in
which the message attribute is. However, in Schema View, you can edit only message attributes that are in the
Altova xml-schema-extension namespace. To edit message attributes in other namespaces, use Text View.

See Assertion Messages for details.

Note: It is a good practice recommendation to use other facets in preference to assertions where possible.
For example, the restriction specified by the first assertion in the screenshot above would be better
specified by the length facet (in the Facets tab).

278

© 2018-2024 Altova GmbH

Schema View 277Editing Views

Altova XMLSpy 2024 Enterprise Edition

Samples tab
In the Samples tab (screenshot below), you can specify sample values that can be used when generating an
XML file from the XML Schema (with the menu command DTD/Schema | Generate Sample XML File). If a
sample value is invalid, a warning is indicated by displaying the sample value in orange. In the screenshot
below, the first value is invalid because it does not match the pattern facet specified for emails (see Patterns
tab above).

Note: Click the Display Validation Warnings icon in the toolbar to switch on the display of invalid
sample-value warnings. An invalid sample value does not invalidate the XSD file if the file is valid in
other respects.

Sample values are placed in an altova:example annotation element that is in the
http://www.altova.com/xml-schema-extensions namespace. Add an altova:example annotation by
clicking the Append or Insert icon at top left and then entering the altova:example value. To delete an
altova:example annotation, select it and click the Delete icon at top right.

4.4.6 Validation and Smart Fixes

An XML Schema document can be validated for correctness. Do this by clicking the menu command XML |
Validate XML (F8).

If the document is valid, a message to this effect is displayed in the Messages window.

If the document is invalid, the Messages window will change to display two panes (see screenshot below). The
left-hand pane (the Errors pane) lists the first x errors, or all errors. The right hand pane is the Smart Fix pane;
it contains a list of possible fixes for the error selected in the left-hand pane. For example, in the screenshot
below, selection of the second error in the Errors pane has caused possible fixes for this error to be listed in
the right-hand Smart Fix pane. If you select one of the fixes and then click either Fix+Validate or Fix, the
error in the document is corrected with this particular fix.

278 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors pane
The toolbar of the window provides the following functionality:

· Scroll through the errors using the Up and Down arrows.
· Copy a message, or a message and its descendants, or all messages to the clipboard.
· Search for words you want using the Find, Find Next, and Find Previous functionality. This is useful if

several errors have been reported.
· Clear all errors from the Errors pane.
· Set a limit to the number of found and displayed errors (1 to 999). The default is 100. Click the button

to edit the limit.
· Show/Hide Smart Fix pane. When the Smart Fix pane is hidden, the Show Smart Fix button appears

in the toolbar; clicking it causes the Smart Fix pane to be displayed, and the button changes to Hide
Smart Fix. If the Show/Hide Smart Fix button is disabled, no smart fix is available.

Smart Fix pane
The toolbar of the window provides the following functionality:

· The Fix+Validate button corrects the selected error with the selected Smart Fix and re-validates the
document. Any other errors will be reported in the Errors pane.

· Clicking the Fix button fixes the error but does not re-validate.
· The Options button drops down a list containing a choice of behavior on double-clicking a Smart Fix:

whether double-clicking carries out a Fix+Validate or a Fix.

4.4.7 Assertion Messages

In XML Schema 1.1, assertions can be defined for complex types (using xs:assert elements) and simple
types (using xs:assertion elements).

It is very useful if an explanation of the assertion is supplied together with its definition, so that in case the
assertion is not fulfilled when the XML instance document is validated, an appropriate message can be
displayed. Since the XML Schema specification does not make provision for such a message, XMLSpy allows
a message in the Altova xml-schema-extensions namespace http://www.altova.com/xml-schema-

© 2018-2024 Altova GmbH

Schema View 279Editing Views

Altova XMLSpy 2024 Enterprise Edition

extensions (or any other namespace) to be provided with the definition of the assertion and to be used in the
validation of the XML instance document. For example:

<xs:assert test="count(//MyNode) ge 1" altova:message="There must be at least one MyNode

element"/> or
<xs:assertion test="count(//MyNode) ge 1" altova:message="There must be at least one

MyNode element"/>

If the restriction specified in the assertion is not fulfilled, XMLSpy's validation engine will display, along with the
validation-error message, the message associated with the assertion as a hint. The validator will report the
value of an assert/@message attribute or of an assertion/@message attribute regardless of the namespace in
which the message attribute is. However, in Schema View, you can edit only message attributes that are in the
Altova xml-schema-extension namespace. To edit message attributes in other namespaces, use Text View.

Editing xs:assert messages
In Schema View, xs:assert elements (for complex types) can be created and edited in the
Attributes/Assertions/Identity Constraints (AAIDC) pane or Details entry helper of the relevant complex
type. The screenshot below shows an assertion for the complex type orderType. The assertion (an xs:assert
in this case) is defined in the Assertions tab (of Schema Overview) together with an assertion message.

If the Display Assertions in Diagram option is selected, assertions on complex types can also be created
and edited in Content Model View. To add or edit an assertion message, select the assertion and enter the
assertion message in the Details entry helper (see screenshot below).

256 256

237

280 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note that assertion messages created in this way are in the Altova xml-schema-extensions namespace
http://www.altova.com/xml-schema-extensions. When you add the first assertion message in the XML
schema document via the AAIDC pane or Details entry helper , the Altova xml-schema-extensions
namespace is automatically declared on the xs:schema element.

If an XML file is validated and the assertion test is not fulfilled, the message defined for the assertion is
displayed together with an error message (see screenshot below).

Editing xs:assertion messages
In Schema View, xs:assertion elements (for simple types) can be created and edited in the Facets entry
helper of the relevant simple type. To edit the assertion message, right-click the assertion in the Facets
entry helper (see screenshot below), click Details in the menu that pops up, and edit the message in the
Assertion Details modal window (see screenshot below). Note that assertion messages created in this way are
in the Altova xml-schema-extensions namespace http://www.altova.com/xml-schema-extensions. When
you add the first assertion message in the XML schema document via the Assertion Details modal window, the
namespace is automatically declared on the xs:schema element.

If an XML file is validated and the assertion test is not fulfilled, the message defined for the assertion is
displayed together in the error message (see screenshot below).

256 256

273

© 2018-2024 Altova GmbH

Schema View 281Editing Views

Altova XMLSpy 2024 Enterprise Edition

4.4.8 Base Type Modification

If the base type of a derived type is changed in Schema View, content, attributes, facets and sample values
defined within the derived type can be handled in one of two ways:

· They can be preserved if they are still applicable in combination with the new base type.
· They can be removed automatically whether or not they are still applicable in combination with the new

base type.

When changing the base type of a derived type which contains content, attributes, facets or sample values the
Base Type Modification dialog (screenshot below) is displayed.

If the Request Confirmation check box is de-selected a pop-up (screenshot below) indicates that the
confirmation can be turned on again in the View section of the Options dialog (Tools | Options | View).

1528

282 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the Schema View pane (screenshot below) of the View section of the Options dialog (Tools | Options |
View), you can specify whether content should be preserved and whether user confirmation is required for
every base type modification.

Check the respective check boxes to preserve content and require confirmation if you wish these to be the
default options.

4.4.9 Smart Restrictions

When restricting a complex type, parts of the content model of the base type are rewritten in the derived type.
This can be confusing if the content model is complex because while editing the derived type it might be hard
to correctly remember exactly what the content model of the base type looks like.

Smart Restrictions combine and correlate the two content models in the graphical view of the derived content
model. In the derived complex type, all particles of the base complex type, and how they relate to the derived
type, can be seen. Additionally, Smart Restrictions provide visual hints to show you all possible ways to
restrict the base type. This makes it easy to correctly restrict the derived type.

To switch on Smart Restrictions:

· Click the Smart Restrictions icon . in the Schema Design toolbar.

The example that follows illustrates the features of Smart Restrictions.

The following complex type is the base type used in this example:

1528

© 2018-2024 Altova GmbH

Schema View 283Editing Views

Altova XMLSpy 2024 Enterprise Edition

The complex type "derived" is derived from the "base" type as follows:

1. Create a new complex type in the schema and call it "derived".
2. In the Details Entry Helper select "base" from the base drop-down list and "restriction" from the

derivedBy drop-down list.

With Smart Restrictions switched on, the new derived type looks like this:

284 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Notice the following controls that can be used to restrict the derived type in this example:

· Use this icon to remove elements that are in the base type from the derived type. Here, elem1 has

been deleted. To add it again, click this icon .

· Click the down arrow on the Choice compositor to get the following list, which allows you to change
the Choice model group to a Sequence model group:

It is also possible to change wildcards in the same way, as seen in this example:

© 2018-2024 Altova GmbH

Schema View 285Editing Views

Altova XMLSpy 2024 Enterprise Edition

For a complete list of which particles can be replaced by which other particles, see the XML schema
specification.

· Change the number of occurrences of the model group using the following control to
increase the minimum number of occurrences by clicking the plus sign over the "1", or to decrease the
maximum number of occurrences by clicking the minus sign under "4". These controls are shown if the
occurrence range in the base describes a real range (e.g., 2-5) and not a certain amount (e.g. 4-4).
They are also displayed if the occurrence range is wrong.

Here you can see that the minimum occurrence for this element has been changed to 2. Notice that
the model group now has a blue background, which means that it is no longer the same as the model
group in the base complex type. Also, the permitted occurrence range of the model group in the base
particle is now displayed in parentheses.

· It is possible to change the data types of attributes or elements if the new data type is a valid
restriction of the base data type as defined in the XML schema specification. For example, you can
change the data type of elem3 in the "derived" data type from decimal to integer. After you do this, the
element has a blue background to show that is different from the element in the base type, and the
type that the element has in the base type is displayed in parentheses:

http://www.w3.org/TR/xmlschema-1/#cos-particle-restrict
http://www.w3.org/TR/xmlschema-1/#cos-particle-restrict
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

286 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

This example shows attributes whose data types have been restricted in the derived complex type:

· Smart Restrictions alert you to pointless occurrences in the content model. A pointless occurrence
happens, for example, when a sequence that is present in the content model is unnecessary. This
example shows a pointless occurrence:

© 2018-2024 Altova GmbH

Schema View 287Editing Views

Altova XMLSpy 2024 Enterprise Edition

Please note: Pointless occurrences are only shown if the content model contains an error. It is
possible for a content model to contain a pointless occurrence and be valid, in which case the
pointless occurrence is not explicitly shown in order to avoid confusion.

See the XML schema specification for more information about pointless occurrences.

4.4.10 xml:base, xml:id, xml:lang, xml:space

The namespace http://www.w3.org/XML/1998/namespace is, according to the XML Namespaces
specification, bound by definition to the xml: prefix. What this means is that this is the namespace that must
be used with the xml: prefix and that is reserved for it. There are four attributes in this namespace that can be
children of any XML element in any XML document (schema or instance):

· xml:base (for setting the base URI of an element)
· xml:id (for specifying the unique ID of an element)
· xml:lang (for identifying the language used within that element)
· xml:space (for specifying how whitespace in the element should be handled)

In Schema View, once the XML Namespaces namespace has been imported into the XML Schema document,
these four xml: attributes can be referenced for use on any element in the schema.

In order to declare one of these attributes on an element, do the following:

1. Declare the XML Namespaces namespace for that schema document and bind the namespace to the
xml: prefix. When any of the four xml: attributes is used in the document, its name would then be
expanded to include the correct namespace part.

2. Import the XML Namespaces namespace. XMLSpy's validator will recognize the namespace and make
the four xml: attributes available as global attributes, which can be referenced within that schema.

3. Insert the required xml: attribute as the child of an element. The attribute is declared as a reference to
the "imported" global attribute.

Declare the XML Namespaces namespace
You can declare the XML Namespaces namespace (http://www.w3.org/XML/1998/namespace) by entering it
via the Schema Settings dialog, where all namespaces declared for that schema are stored and can be
edited. The namespace must be bound to the xml: prefix. (Alternatively, you could declare the namespace
(with the xml: prefix) on the xs:schema element in Text View.)

Import the XML Namespaces namespace
In Schema Overview, create a global import declaration for the XML Namespaces namespace. Do this by

clicking the Insert or Append icon at the top of the Schema Overview window and selecting Import
from the menu that pops up. Enter the XML Namespaces namespace as the namespace to be imported. In
Text View, the import declaration should look like this:
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/XML/1998/namespace"/>.

http://www.w3.org/TR/xmlschema-1/#cos-particle-restrict
http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace

288 Editing Views Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Adding the xml: attribute
In Schema Overview, select the element for which the xml: attribute is to be added, and add an attribute for it.
In the Details entry helper (screenshot below), click the down arrow of the name combo box and select the
required xml: attribute, for example xml:base. When you are prompted whether you wish to reference the
global attribute, click Yes. The attribute is added as a reference.

XInclude and xml:base
When XInclude's include element is replaced by the XML file specified in the href attribute of the include
element, the top-level element of the parsed XML document is included with an xml:base attribute. If this XML
document is going to be validated, then the schema must define an xml:base attribute on the relevant
element/s.

4.4.11 Back and Forward: Moving through Positions

The Back and Forward commands in Schema View enable you to move through previously viewed positions in
Schema View. This is useful because, while clicking through schema components in Schema View, you might
wish to view a previously viewed component. Clicking the Back button once in the toolbar takes you to the
previously viewed position. By repeatedly clicking the Back button, you can view up to 500 of the last visited
positions. After moving back through previous positions, you can move forward through these positions by using
the Forward button in the toolbar.

The shortcut keys for the two commands are:

· Back: Alt + Left Arrow

· Forward: Alt + Right Arrow

Back/Forward versus Undo/Redo
Note that the Back and Forward commands are not the same as the Undo (Ctrl+Z) and Redo (Ctrl+Y)
commands. These two sets of commands make up two different series of steps. Clicking the Back command

© 2018-2024 Altova GmbH

Schema View 289Editing Views

Altova XMLSpy 2024 Enterprise Edition

once takes you to the previously viewed component as previously displayed. Clicking the Undo command once
undoes the last editing change regardless of when that editing change was made.

Additional notes
Note the following points:

· The Back button enables you to re-view the previous 500 positions.
· The Back/Forward feature is enabled across schemas. If a schema has since been closed or is

currently open in another view, it will be opened in Schema View or switched to Schema View,
respectively.

· If a component that was viewed in a previous position is deleted, then that component will not be able
to be viewed. If such a component was part of a previous position, this position will be displayed
without the deleted component. If the component comprised the entire position, the entire position will
be unavailable, and clicking the Back button at this point in the Back series will take you to the
position previous to the unavailable position.

290 Editing Views WSDL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4.5 WSDL View

WSDL View (screenshot below) provides an interface for graphically editing WSDL 1.1 and WSDL 2.0
documents. WSDL View is available when a WSDL document is active and the WSDL View tab is clicked. The
structure and components of a WSDL document are created in the Main Window using graphical design
mechanisms, and additional editing is enabled from the Entry Helpers .

The Main Window (consisting of the PortTypes (WSDL 1.1) or Interfaces (WSDL 2.0), Bindings, and
Services sections) and the Entry Helpers (Overview and Details) are described in the sub-sections of this
section. (For a description of how to work with projects, see Project Menu in the User Reference section.)

Functionality available in WSDL View
The following functionality is available in WSDL View:

· A graphical display in the Main Window of all WSDL elements, grouped by PortTypes (WSDL 1.1) or
Interfaces (WSDL 2.0), Bindings, and Services.

· Direct manipulation of WSDL elements using drag and drop.
· Ability to add, append, and delete any WSDL element visible in the graphical view (context sensitive

menu).
· Ability to enter and edit values in the Details Entry Helper.
· WSDL validation against W3C Working Draft.
· Import or embedding of XML Schemas in the WSDL document.
· Switching to Schema View for editing of schemas.
· Editing of schema types from within WSDL View.
· Generation of WSDL documentation in MS Word or HTML.
· Generation of a diagram (PNG image) of the WSDL document in the Main Window.
· Printing of the view in the WSDL window.

File viewing
Note the following points concerning file viewing:

291

295

291

295 301

1235

© 2018-2024 Altova GmbH

WSDL View 291Editing Views

Altova XMLSpy 2024 Enterprise Edition

· When you open a WSDL file, the file opens automatically in WSDL View.
· You can also view a WSDL document in the Text and Enhanced Grid Views. To do this, click on the

appropriate tab.
· If the WSDL file contains a reference to an XML Schema, then the schema can be viewed and edited

by selecting the menu command WSDL | Types | Edit Schema in Schema View. This opens the
schema file in the Schema View.

· If an associated schema file is open, then you are not allowed to change the view of the WSDL file (for
example, from WSDL View to Text View). Before trying to change views of the WSDL file, make sure
that you have saved changes to the schema file and closed the file.

There are two entry helpers to help you edit WSDL documents: Overview and Details . Both entry helpers
can be docked/undocked by double-clicking the title bar. When docked, the auto-hide feature can be activated
by clicking the drawing-pin icon in the title bar. When auto-hidden, the entry helper is minimized as a tab at an
edge of the application window. An auto-hidden entry helper can be re-docked by rolling it out from the edge (by
mousing over its tab) and clicking the drawing-pin icon in the title bar.

See also: More information about working with WSDL documents is available in the sections, WSDL
Tutorial and User Reference | WSDL Menu .

4.5.1 Main Window

The Main Window is where you edit your WSDL document. It consists of three vertical sections: (i) Port Types
(WSDL 1.1) or Interfaces (WSDL 2.0) ; (ii) Bindings , and (iii) Services . The relationship between a port
type and a binding and between a binding and a service is each indicated with a connector line. Each of these
three sections is described in detail below.

Symbols in the Main Window
The following symbols are used in the Main Window:

Port type in WSDL 1.1, Interface in WSDL 2.0

Binding

Service
Fault

Operation. The green arrow represents inputs and the blue arrow represents outputs. Depending on the
type of operation, an appropriate symbol is used.

Message
Message part (parameter)
XSD element
XSD simpleType or complexType

Port

295 301

732 1423

292 293 294

292 Editing Views WSDL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Adding new port types, interfaces, bindings, and services
To add a new port type (in WSDL 1.1 documents), interface (in WSDL 2.0 documents), binding, or service,
right-click anywhere in the Main Window but outside a component box, and select the relevant command from
the context menu that appears.

Drag and drop functionality
The following drag-and-drop functionality is available:

· In the Main Window, associations between PortTypes (WSDL 1.1) or Interfaces (WSDL 2.0) and
Bindings and between Bindings and Services can be established with drag-and-drop.

· In WSDL 2.0 documents, elements in the Overview entry helper can be dragged to interface faults in
both the Main Window and the Overview entry helper.

PortTypes (WSDL 1.1), Interfaces (WSDL 2.0)
The PortTypes section (WSDL 1.1 documents) contains all the portTypes defined in the WSDL document (the
screenshot below shows only one portType in the PortTypes section). The Interfaces section (in WSDL 2.0
documents) contains all the interfaces defined in the WSDL document

Each portType or interface is represented as a box containing the operations defined for that portType
or interface. Components can be edited directly in the box. The main features of port type and interface boxes
are listed below:

· Operations can be expanded to display their messages by clicking the icon at the left of an
operation name.

· In WSDL 1.1 a message can contain a message part . Such messages can be expanded to show
the message part.

· Right-clicking a component of a portType box (either portType, operation, message, or message part),
pops up a context menu from which relevant actions can be selected. For example, right-clicking a
portType name allows you, among other actions, to append a new portType, append an operation to
the selected portType, or create a binding for the selected portType.

© 2018-2024 Altova GmbH

WSDL View 293Editing Views

Altova XMLSpy 2024 Enterprise Edition

· The optional WSDL 2.0 interface properties, extends, styleDefault, and documentation are hidden if
empty. They can be edited via the Edit command in the context menu of the interface.

· In WSDL 2.0 documents, properties of operations can be edited via the Edit command in the context
menu of the operation. The value of the style property is selected via a combo box listing the options.

· Note that when a component is selected, its details can be edited in the Detail entry helper.
· Documentation for port types and interfaces appears at the bottom of individual boxes.

The association of a portType or interface with a binding is indicated in the Main Window by a black connector
line linking the portType box or interface box to the binding box; the binding box will be in the Bindings section
of the Main Window.

Bindings
A binding defines message formats and protocol details for:

· Operations defined by a particular portType (WSDL 1.1), or
· Operations and faults defined by a particular interface (WSDL 2.0).

In WSDL 1.1, bindings can be created for SOAP 1.1 or SOAP 1.2 endpoints, or for HTTP 1.1's GET and POST
verbs. In WSDL 2.0, bindings can be created for SOAP 1.1 or SOAP 1.2 endpoints, or for HTTP. Each binding
is represented by a binding box (screenshot below) in the Bindings section of the Main Window. The binding
box contains all the operations and/or faults of the associated portType or interface (see screenshot below).

A binding can be associated with a port type or an interface in any of the following ways:

· Right-click a port type or an interface and select the command Create binding for portType or
Create binding for interface, respectively.

· Right-click a WSDL 1.1 binding and edit the PortType property.
· Right-click a WSDL 2.0 binding and select the command Edit | Interface.

To define the binding, in the first combo box to the right of the binding name (screenshot below), select the
required protocol. In WSDL 1.1, this is either soap 1.1, soap 1.2, http-get, or http-post to define the kind
of binding. If you select a SOAP protocol, you can additionally define (using the second combo box) whether
the style should be doc or rpc. In WSDL 2.0 documents, the wsoap:protocol property can be added or edited
via the Edit command of the context menu of the binding.

294 Editing Views WSDL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In WSDL 1.1, MIME encodings (also referred to as MIME bindings) are defined at the message level. To define
a MIME encoding, right-click on the message (screenshot below) and append the appropriate MIME definition.
In the screenshot below, MIME definitions have been created for the Output message.

Right-clicking a specific item in a binding box opens a context-sensitive menu. Using the context menus, for
example, bindings can be appended or deleted; extensibility items can be edited; and messages defined. Note
also that when a binding box or an item in a binding box is selected, the definitions are displayed in the Details
entry helper and can be edited there.

A port can be created for a binding by right-clicking the title bar of a binding box and selecting the Create Port
for Binding command (WSDL 1.1 documents) or Create Endpoint for Binding command (WSDL 2.0
documents). The associated port or endpoint is created within a service box (in the Services section of the
Main Window). The association between a binding and a port is indicated by a black connector line.

Documentation for bindings appears at the bottom of individual binding boxes.

Services
A service groups together a set of related ports (WSDL 1.1) or endpoints (WSDL 2.0). It is represented by a
service box in the Services section of the Main Window (screenshot below). Each service box consists of one
or more port or endpoint declarations (see screenshot below).

© 2018-2024 Altova GmbH

WSDL View 295Editing Views

Altova XMLSpy 2024 Enterprise Edition

The service name, port or endpoint name, the binding associated with a port or endpoint, and the address
information of a port or endpoint can be edited directly in the service box or in the Details entry helper. Right-
clicking a service box or a specific item in the service box opens a context menu in which commands relevant
to the service or that item are available.

Documentation for services appears at the bottom of individual service boxes.

4.5.2 Overview Entry Helper

The Overview entry helper (screenshot below) provides an overview of the WSDL document by grouping the
document's various components into structural categories and by listing the target namespace, imported
schemas, and included/imported WSDL documents. In addition to port types (or interfaces in WSDL 2.0),
messages (WSDL 1.1), bindings, and services, the various types defined in the document are also listed.

You can also manage imports and includes of XML Schema and WSDL files in the Overview entry helper.

Overview entry helper in WSDL 1.1 (left) and WSDL 2.0 (right).

In each category, components are displayed in a tree view. A tree item can be expanded and collapsed,
respectively, to reveal and to hide its contents. Selecting a component in the Overview entry helper displays it
and its properties in the Details entry helper , where the properties can be edited. The names of WSDL and
schema components that are displayed in the tree can be edited directly in the trees. Externally defined

301

296 Editing Views WSDL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

components (those in included or imported WSDL documents or schemas and displayed in gray), however,
cannot be edited. The individual categories in the Overview entry helper are explained below.

Target namespace (WSDL 1.1 and 2.0)
Indicated in the tree by tns. The target namespace can be edited in the Overview entry helper. All other
namespaces must be edited in Text View.

Imports (WSDL 1.1)
XML Schema (XSD) files and WSDL files can be imported into the active WSDL document. To import an XML
Schema or a WSDL file, right-click the Imports item or an already imported file in the Imports list, and select
Add new import. Right-clicking an imported file in the Imports list pops up a context menu in which you can
choose to add a new import, select another file to replace the selected file as an import (Edit Import), or delete
the imported file (Delete Import). You can also open the file from its location. The file opens in WSDL View
(.wsdl file) or Schema View (.xsd file), and can be edited there.

An imported XML Schema can subsequently be embedded in the WSDL file. Embedding an imported schema
creates the schema as an inline schema within the types element, and the import element is removed. To
embed an imported schema, right-click the schema's entry in the Imports list and select the command Embed
Imported Schema or Embed All Imported Schemas. The latter command, which applies to all imported
schemas, is also enabled in the context menu of the Imports item.

WSDL includes, WSDL imports, Schema imports (WSDL 2.0)
XML Schema (XSD) files can be imported, and WSDL files can be included or imported, into the active WSDL
document. To include or import a file, right-click the respective item (WSDL Includes, WSDL Imports, Schema
Imports), browse for the file you wish to include or import, and add it. The namespace of an imported file is
generated automatically from the target namespace of the imported file.

© 2018-2024 Altova GmbH

WSDL View 297Editing Views

Altova XMLSpy 2024 Enterprise Edition

Right-clicking an included or imported file pops up a context menu in which you can choose to delete the file or
open it in XMLSpy. The file opens in WSDL View (.wsdl file) or Schema View (.xsd file), and can be edited
there. An imported XML Schema can subsequently be embedded in the WSDL file (see screenshot below).

Embedding an imported schema creates the schema as an inline schema within the types element, and the
import element is removed. To embed an imported schema, right-click the schema's entry in the Imports list
and select the command Embed Imported Schema or Embed All Imported Schemas. The latter command,
which applies to all imported schemas, is also enabled in the context menu of the Imports item.

Types (WSDL 1.1 and 2.0)
Lists all types defined in the WSDL document (in black) and in any imported schema or WSDL document (in
gray).

The following functionality is available.

298 Editing Views WSDL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Create new schema: Right-click the Types item and select New Schema (see screenshot below). A
new empty embedded schema is created in the WSDL file, and all embedded schemas, including the
new empty one, are opened in Schema View. After you edit the schema document, saving your
changes in the schema file will write the changes to the WSDL document. You can then close the
schema document. This feature is useful if you wish to create a new embedded schema in the WSDL
document.

· Embedding schemas: Right-click the Types item and select Embed Schema. An Open-File dialog
pops up in which you can browse for the schema file you wish to embed. On clicking OK, the schema
is created as an inline schema within the types element. If the selected schema has already been
imported, you will be prompted about whether you wish to embed the already imported schema.

· Extracting schemas: Right-click the Types item and select Extract Schema(s). Each of the embedded
schemas is opened as a temporary file in Schema View and a Save As dialog pops up for each file. If
you choose to save the schema file, the schema will be extracted, saved to the location you specify
and then imported into the WSDL file. The schema file will now no longer exist as an inline schema,
but as an external, imported schema.

· Editing schemas: You can edit embedded schemas in Schema View. Right-click either the Types item
or the name of a schema component in the Types list, then select Edit Schema(s) or Edit Schema,
respectively. This causes a temporary XSD file to be generated on the fly from the types definitions in
the WSDL document. This XSD document is displayed in Schema View and can be edited. After you
have finished editing the XSD document, saving the changes will cause the changes to be saved back
to the types definitions in the WSDL document. If you close the XSD document without saving
changes, the types definitions in the WSDL document will not be modified.

· Adding schema components: You can add an XML Schema element (WSDL 1.1 and 2.0), simpleType
(WSDL 1.1), or complexType (WSDL 1.1). Do this by right-clicking either the Types item or the name
of a schema component in the Types list, and then selecting the relevant Add command. A temporary
XSD file will be generated on the fly from the types definitions in the WSDL document and be
displayed in Schema View. This file will contain the new component, unnamed. You can then edit this
component. On saving the file, the new component will be written to the types definitions in the WSDL
document.

© 2018-2024 Altova GmbH

WSDL View 299Editing Views

Altova XMLSpy 2024 Enterprise Edition

· Deleting schema components: A schema component can be deleted by right-clicking it in the Types
list and selecting Delete in the context menu.

Messages (WSDL 1.1)
When a message or its sub-component is selected, the properties of that message or sub-component are
displayed in the Details entry helper , where they can be edited. Additionally, you can do the following via
the context menu:

· With a message selected in the Overview entry helper, you can add a message part to that message
or delete the message, as well as add a new message.

· With a message part selected in the Overview entry helper, you can add another message part to that
message or delete the selected message part.

· The Synchronize command highlights the selected message or message part in the relevant portType
box.

PortTypes (WSDL 1.1)
For portTypes, the following functionality is available via context menus.

· With the item PortTypes selected, a portType can be added.
· With a portType selected, portTypes can be added, the selected portType can be deleted, and

operations can be added to the selected portType.
· With an operation selected, additional operations can be appended, the selected operation can be

deleted, and elements (input, output, or fault) can be added to the selected operation.
· With a message element (input, output, or fault) selected, additional messages can be added and the

selected message can be deleted.
· The Synchronize command highlights the selected portType, operation, or message.

Interfaces (WSDL 2.0)
Interfaces can be managed using context menus.

· To add an interface, right-click the Interfaces item and select the menu command, Add new
interface.

· Right-clicking an interface pops up a menu (see screenshot below) with commands enabling the
selected interface to be deleted, and faults and operations to be added to the definition of the selected

301

300 Editing Views WSDL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

interface. The type of operation to be added can be specified in the submenu of the Add new
operation command. A corresponding binding operation is added to all bindings referencing the
interface. In the same way, when an operation is deleted, referencing binding operations are also
deleted.

· Right-clicking an operation pops up commands (see screenshot below) enabling the selected operation
to be deleted, and elements (such as infault and outfault) to be added to the operation.

· Right-clicking a message element pops up a menu via which you can delete the selected message.
· Clicking the Synchronize command highlights the selected interface, operation, or message in the

design.

Bindings (WSDL 1.1 and 2.0)
With a binding selected, additional bindings can be appended to the already-existing bindings, the selected
binding can be deleted, and operations inserted for the selected binding. With an operation or message
selected, the same options are available as described for operations and messages in the PortTypes (WSDL
1.1) or Interfaces (WSDL 2.0) category. Clicking the Synchronize command highlights the selected binding,
operation, or message.

© 2018-2024 Altova GmbH

WSDL View 301Editing Views

Altova XMLSpy 2024 Enterprise Edition

Services (WSDL 1.1 and 2.0)
With a service selected, additional services can be added, the selected service can be deleted, and ports can
be added for the selected service. Clicking the Synchronize command highlights the selected service or port.

4.5.3 Details Entry Helper

The Details entry helper displays the properties of the item selected in the Main Window or Overview entry
helper (screenshot below). These properties can be edited in the Details entry helper.

For example, as shown in the screenshot above, if, in the Main Window, the port TimeServiceSoap (of the
TimeService service) is selected, then the properties of TimeServiceSoap are displayed in the Details entry
helper, where they can be edited. To edit a text field such as for name or description, double-click in the field
and edit the text. For some properties, such as binding in the screenshot example above, where a selection
can be made from among options, a combo box allows you to select from the available options.

302 Editing Views XBRL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4.6 XBRL View

XBRL View is a graphical interface that enables you to edit XBRL taxonomies. It provides fast validation and
error messages, which helps users to develop taxonomies quickly and accurately.

XBRL View consists of the following parts:

· A Main Window having six tabs: Elements , Definitions , Presentation , Calculation ,
Formula , Table (screenshot below). The main features of these tabs are described in the sub-
sections of this section.

· Three powerful entry helpers : Overview, Global Elements, Details. These entry helpers enable you
to manage taxonomy files and edit the taxonomy in the Main Window.

· A Messages window which displays messages about the validity of the taxonomy.

This section provides a description of the Main Window and entry helpers of XBRL View and information about
how to use them. For more related information, see the sections XBRL and the description of commands in
the XBRL menu .

Additional features of XBRL View
Besides the editing features described in this section, the following useful features are available:

· Generate Documentation : which creates detailed documentation files in HTML, Word, and RTF
formats.

· Print of the current view enables a printout of the current view to be taken using XMLSpy's File |
Print command.

4.6.1 Main Window: Elements Tab

The Elements tab of the Main Window (screenshot below) displays the concepts of the taxonomy, including,
by default, the concepts contained in imported taxonomies. Concepts in the current taxonomy are displayed in
black; concepts in imported taxonomies are displayed in gray.

302 306 306 306

306 306

309

119

773

1447

1455

1211

© 2018-2024 Altova GmbH

XBRL View 303Editing Views

Altova XMLSpy 2024 Enterprise Edition

For additional information, see the sections XBRL and the description of commands in the XBRL menu .

Selecting the taxonomy to display
In the File combo box located below the tabs of the Main Window (screenshot below), you can select whether
concepts from the current taxonomy only, or whether concepts from the current taxonomy plus its imported
taxonomies, should be displayed. Select Show All Files to show the imported taxonomies. Filtering out large
imported taxonomies from the display will speed up editing considerably.

Sorting elements
In the Sort combo box located below the tabs of the Main Window and to the right (screenshot below), you can
sort the elements in the Main Window.

The sorting criterion can be one of the following:

· Sort by Name: Elements are listed by the alphabetical order of their names. The names include the
prefix. So abc:yname will occur before bcd:xname.

773 1447

304 Editing Views XBRL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Sort by Qualified Name: Element names are fully resolved (which means that their namespaces are
expanded), and the expanded names are listed in alphabetical order. So if the abc namespace prefix is

bound to the namespace http:people.altova.com, then the element name abc:yname will be

resolved to http:people.altova.com:yname.

· Sort by Substitution Group: There are four substitution groups: items; tuples; hypercubeItems;
dimensionItems.

· Sort by Type: Refers to the Type attribute of the XBRL element.

Finding elements in the Main Window
To find an element in the Main Window press the key combination Ctrl+F. This pops up a Find dialog, in which
you can enter the string for which you wish to search. The namespace prefixes used in the taxonomy can also
be searched.

About concepts (the <element> elements)
Each taxonomy concept is defined in an XML Schema <element> element (see listing below). This plain text
definition can be seen on switching to the Text View of the taxonomy document. (To see the text definitions
of an imported taxonomy document, the imported taxonomy document will have to be opened in XMLSpy.)

<xs:element id="icui_UnrealizedHoldingLoss"
name="UnrealizedHoldingLoss"
substitutionGroup="xbrli:item"
type="xbrli:monetaryItemType"
xbrli:balance="credit"
xbrli:periodType="instant"
abstract="false"
nillable="true"/>

Each element (or concept) is displayed in the Elements tab with an icon indicating its substitution group (item,
tuple, hypercube, or dimension). Additionally, icons indicating the values of the concept's balance,
periodType, abstract, and nillable attributes are displayed to the left of the concept name (screenshot
below).

To edit the name of the concept, double-click the name of the concept and edit the name.

Substitution group
The substitution group value of a concept is indicated by the concept's icon:

xbrli:item

xbrli:tuple

xbrldt:hypercubeItem

xbrldt:dimensionItem

The screenshot below shows an element with a substitutionGroup value of xbrli:item.

139

© 2018-2024 Altova GmbH

XBRL View 305Editing Views

Altova XMLSpy 2024 Enterprise Edition

The attributes balance, periodType, abstract, nillable
The additional icons to the left of an element's name (see screenshot above) indicate the values of the
concept's main attributes, respectively, from left to right:

· xbrli:balance: a plus icon for a value of credit, a minus icon for debit
· xbrli:periodType: a clock icon with a gray segment between the clock hands for a value of

duration, white segment for instant
· xs:abstract: black A icon when true, gray when false
· xs:nillable: black 0 icon when true, gray when false

Note that the xbrli: attributes listed above are from the XBRL schema and the xs: attributes are from the XML
Schema schema.

In the screenshot above, the plus icon indicates that the value of the xbrli:balance attribute is credit. The
values of the other attributes in the screenshot (xbrli:periodType, xs:abstract, xs:nillable), respectively,
are: duration, false, (i.e. not abstratct), and true (i.e. nillable).

The values of these four attributes are displayed in a popup when the cursor is placed over any of the four
icons. Clicking any of these icons pops up a list box containing the allowed values for that attribute. You can
select one of the allowed choices, and in this way edit the value of concept attributes quickly.

These attribute values can also be edited in the Details entry helper (screenshot below).

306 Editing Views XBRL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The attributes substitutionGroup, type
Clicking the arrowhead symbol at the left of the element name expands the display of the element so that the
values of the two attributes, xs:substitutionGroup and xs:type, are displayed graphically (screenshot
below).

In the screenshot above, the value of the xs:substitutionGroup and xs:type attributes are, respectively:
xbrli:item and xbrli:monetaryItemType. These values can be edited by selecting alternative values from
the dropdown list of the corresponding combo boxes. Both attribute values can also be edited in the Details
entry helper (see screenshot further above) by double-clicking in the respective value field in the Details entry
helper and editing the value via the keyboard.

Label links
To add a label child, right-click an element and select Add Label Linkrole from the context menu. This adds a
label row (screenshot below), in which you can specify the label's properties (language, label type, and value).
You can expand and collapse labels by clicking the + and - icons on the right edge of the box.

The language and label type properties of each label can be edited by selecting the required property value from
in respective combo boxes (screenshot above).

Reference links
To add a reference child, right-click an element and select Add Reference Linkrole from the context menu.
This adds a reference box, in which the properties of the reference can be edited by clicking in the Reference
field and editing the reference URN. You can expand and collapse references by clicking the + and - icons on
the right edge of the box.

4.6.2 Main Window: Definitions, Presentation, Calculation,
Formula, Table Tabs

The Main Window contains tabs for each of the three relationships between concepts:

· Definition relationships, shown in the Definitions tab

© 2018-2024 Altova GmbH

XBRL View 307Editing Views

Altova XMLSpy 2024 Enterprise Edition

· Presentation relationships, shown in the Presentation tab
· Calculation relationships, shown in the Calculation tab
· Formula definitions and relationships, shown in the Formula tab
· Table definitions, shown in the Table tab

Each tab (Definition, Presentation, Calculation, Formula, and Table) displays the taxonomy relationships of that
kind (screenshot below) and allows you to edit the relationships graphically. A relationship between two
concepts (whether a definition, presentation, or calculation relationship) is created by building an arc from one
concept to another concept. This from–to arc is indicated in the graphical display as a curved arrow. The
relationship between the two concepts (in the direction from–to) is specified and is known as its arcrole. The
arcrole of an arc is shown in the Details entry helper when the element at the to-end of a relationship is
selected, and, in the case of definition relationships, in an Arcrole column in the Definitions tab (see screenshot
below).

The way the relationship arcs are displayed is the same for all kind of relationships (definition, presentation,
and calculation). In this section, each tab is considered separately, with the basic description of how
relationships are displayed being in the section on the Definitions tab. Additional or specific information about
presentation and calculation arcs are in the respective sections. For more detailed information, see the
sections, Creating Relationships: Part 1 and Creating Relationships: Part 2 .

Definitions tab
The Definitions tab shows all the definitions of the taxonomy. These definitions are specified in definition arcs
contained in definition relationships (.xml) file/s. In the Definitions tab of XBRL View, the structure resulting
from the set of definition arcs is displayed in an expandable/collapsible tree form (screenshot below).

In this graphical display of the definitions, each definition arc is displayed as a curved arrow with two endpoints
(a from endpoint and a to endpoint). The type of relationship between the two elements at either endpoint is
displayed in the Arcrole column of the element at the to endpoint. For example, in a hypercube–dimension
relationship, the relationship (or arcrole) is listed with the element that is the dimension part of the element
pair. Arcrole URIs can also be entered in the Details entry helper.

For more information on definitions relationships, see the section Creating Relationships: Part 1 .

807 810

807

308 Editing Views XBRL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Presentation tab
Presentation arcs have the same attributes as definition arcs, and they work in the same way (see Definitions
tabs above). Arcrole URIs are entered in the Details entry helper. One important presentation attribute is the
order attribute, which determines the order in which child elements of a single parent element are presented.
In the Presentation tab, such child elements are displayed in correct ascending order. The value of the order
attribute can be changed quickly by dragging a child element to another position in the ordered list. The value of
the order attribute can also be changed in the Details entry helper (see screenshot below).

For more information on presentation relationships, see the section Creating Relationships: Part 2 .

Calculation tab
Calculation arcs have the same attributes as definition arcs, and they work similarly to definition arcs (see
Definitions tabs above). Arcrole URIs are entered in the Details entry helper. There are two types of arcroles:

· those that sum the values of elements to another element; and
· those that do not represent a summation relationship but an equivalent relationship

In the case of the former the weight attribute determines how much of the value of that element is summed up
to the aggregator element. A value of 1.0 indicates that 100% of the value should be summed up. A negative
value indicates that the value must be subtracted from the aggregator. The value of the weight attribute can be
edited in the Calculation tab as well as in the Details entry helper.

Formula tab
XBRL formulas can be defined and managed in the Formula tab. The Formula tab is used together with the
Overview entry helper and Details entry helper to create and edit formulas. Definitions and relationships
between formula components can be carried out in the diagram. For more information, see the section XBRL
Formula Editor .

Table tab
Tables provide an alternative way to define views of concepts defined in XBRL taxonomies. These definitions are
contained in table linkbases, which you can create and edit in the Table tab. For a description of how to edit
table linkbases, see the section XBRL Table Definitions Editor .

Editing in the graphical view
The following editing possibilities are available:

· Elements can be dragged from the Global Elements entry helper and dropped in a to relationship to an
element in the tree.

· An arcrole can be created or edited for an element by selecting the required arcrole (in the Arcrole
column). The relationship defined in the arcrole expresses a from–to relationship, with the selected
element occurring at the to-endpoint of the relationship.

· Elements can be dragged to alternative locations in the tree. This is a quick way to change the value of
the order attribute.

· The properties of an element can be edited by clicking one of its property symbols and editing it, or by
expanding its prroperty box and then editing properties inside the property box.

810

817

841

© 2018-2024 Altova GmbH

XBRL View 309Editing Views

Altova XMLSpy 2024 Enterprise Edition

Editing in Details entry helper
When an element is selected in the Main Window, the properties of its definition arc are displayed in the
Details entry helper in the Arc section (see screenshot below). The values of these properties can be edited by
double-clicking in a value field and entering the required value or, if available, by selecting a value in the
dropdown list of its combo box.

Additionally, properties of the arc of the selected element are displayed in Arc section of the Details entry
helper. The arc will be a definition arc, presentation arc, or calculation arc according to what tab is currently
active. The arcrole can be entered in the Arcrole field.

Label and reference relationships are listed under the Children heading. These relationships can be edited in
the Elements tab.

For additional information, see the XBRL section.

4.6.3 Entry Helpers in XBRL View

XBRL View features the following entry helpers:

· An Overview entry helper

773

310

310 Editing Views XBRL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· A Global Elements entry helper
· A Details entry helper

Validation information is displayed in the Messages window . For additional information, see the XBRL
section.

Overview entry helper
The Overview entry helper displays the taxonomy files in a tree structure (screenshot below).

The tree is organized as follows:

· The main concepts file (an XML Schema document) is shown at the root of the tree and is the currently
active file.

· The relationship linkbase files (XML files) have a colored file icon with a character corresponding to the
initial character of the relationship kind.

 indicates a definitions linkbase;

 indicates a labels linkbase;

 indicates a calculations linkbase;

 indicates a presentation linkbase;

 indicates a reference linkbase;

 indicates a formula linkbase.

· Imported schemas are listed on lower levels of the hierarchy. All XML Schema (.xsd) files are indicated
with an XSD icon.

This information displayed in the Overview entry helper is obtained from the /schema/annotation/appinfo
element of the main concepts file. See Taxonomy Files for more information about this element.

311

313

119 773

791

791

© 2018-2024 Altova GmbH

XBRL View 311Editing Views

Altova XMLSpy 2024 Enterprise Edition

Right-clicking a file in the Overview entry helper pops out a context menu (screenshot below), in which the
following commands are available:

· Open File: opens the selected XML Schema or XML file in XMLSpy.
· Set Default Linkbase: If there are multiple files of a single relationship kind (for example, presentation

relationships), then one of these can be set as the default linkbase. Newly created relationships will be
saved in the default linkbase of its particular relationship kind. The default linkbase of each relationship
kind is displayed in bold.

· Set Linkbase Kind: Specifies the relationship kind of the selected linkbase. Select the required
relationship kind from the submenu that rolls out. The All relationship kind specifies that the selected
linkbase will be used for all relationship kinds.

· Add New Linkbase: Creates a new linkbase file to contain relationships of one of the five kinds
(definition, presentation, calculation, label, resource). The added file can be renamed by right-clicking it
and selecting the Rename command in the context menu. A new linkbaseRef element is added to
the concepts file; this element references the newly added linkbase.

· Import/Reference: Imports a standard taxonomy or creates a reference to an existing XML Schema or
linkbase. If you select the standard taxonomy option, a window containing a list of standard
taxonomies pops up. Select the taxonomy you wish to import; see Importing a Taxonomy for
details. If you create a reference to an XML schema or linkbase, a new linkbaseRef element
containing the reference is added to the concepts file. Clicking either the XML Schema or linkbase
option pops up a dialog in which you can browse for the required file.

· Set Target Namespace: Sets the target namespace and declares this namespace to be in scope on
the xs:schema element (that is, for the entire taxonomy). See the description of the command XBRL |
Set Target Namespace .

· Rename: Enables the selected file to be renamed.
· Remove: Removes the selected file from the Overview and its linkbaseRef element from the concepts

file.

Global Elements entry helper
The Global Elements entry helper (screenshot below) displays all the items, tuples, hypercubes, and
dimensions present in a taxonomy document. Elements can be dragged from the Global Elements entry helper
into the main window.

795

1452

312 Editing Views XBRL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The following functionality is available in the Global Elements entry helper:

· Filtering by type: The display of each element type (item, tuple, hypercube, and dimension) can be
toggled on and off by clicking its icon in the toolbar of the Global Elements entry helper. Clicking the

Show All Elements icon displays all elements. The selected filter is highlighted (Show All, in the
screenshot above).

· Filtering by text: Clicking the Text Filter icon displays the Text Filter bar (see screenshot below).

After the Text Filter has been selected, in the combo box at the right-hand side of the Text Filter bar
(under the arrow cursor in the screenshot above), choose a condition with which to filter. The available
options are Contains, Does not contain, and Starts with. In the screenshot above, the Starts with

© 2018-2024 Altova GmbH

XBRL View 313Editing Views

Altova XMLSpy 2024 Enterprise Edition

condition has been selected. Next, enter the text for the filter in the Text Filter box. The displayed
elements will be filtered accordingly. In the screenshot above, the list is filtered by names that begin
with n1. Note that: (i) the filters work on the names of the entries as text strings, and (ii) the names of
entries can be changed with the Format icon (see below) and are sensitive to the changes in name
formats.

· Filtering by sources: The required sources can be selected in a popup, and only the elements in the
selected sources will be displayed.

· Format: There are three format options for the way names of elements are displayed: Short qualified
names , Expanded qualified names, and Labels. The short qualified name uses the prefixes assigned

to the respective namespaces; expanded qualified name (icon is) uses the whole namespace;
and label uses the labels associated with elements. Note that the format selection affects the Text
Filter option, in that the filter is applied to elements as listed according to the currently selected
Format option.

· Drag-and-drop functionality: Elements in the Global Elements entry helper can be dragged and dropped
into relationships in any of the relationships views of the Main Window (Definitions, Presentations,
Calculations)

Details entry helper
When an element is selected in the Main Window, the Details entry helper (screenshot below) displays its
properties. If the element has custom attributes, then a section named Custom is displayed in the entry helper
and contains the attributes.

The properties of some elements can be edited in the Details entry helper: for example, Abstract, Nillable,
Balance, Period Type, Substitution Group, and Type.

The Details entry helper also has a Type tab that shows the type of the selected item as the root node of a tree
view (see screenshot below). For concepts of type enum:enumerationItemType, extensible extensions with

314 Editing Views XBRL View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

multi-language labels, as defined in the Extensible Enumerations Recommendation of 29 October 2014 can be
specified. For items of this type, additional entries for the type's attributes enum:domain, enum:linkrole, and
enum headUsable are available.

If the type is neither an xbrli-item-type or a built-in XSD type, the entry helper shows information concerning its
base type in brackets. The tree view provides a context menu to show (or modify) the concept's type definition
in Schema View.

4.6.4 XBRL View Settings

There are two types of settings that you can configure for XBRL View:

· The fonts and colors of components in XBRL View. These settings are accessed in the Fonts and
Colors section of the Options dialog (Tools | Options).

· The layout and format of the view, as well as label defaults. These settings are available in the XBRL
View Settings dialog , which is accessed via the XBRL | XBRL View Settings command.

1543

1458

http://www.xbrl.org/Specification/ext-enumeration/REC-2014-10-29/ext-enumeration-REC-2014-10-29.html

© 2018-2024 Altova GmbH

Authentic View 315Editing Views

Altova XMLSpy 2024 Enterprise Edition

4.7 Authentic View

Authentic View has a menu bar and toolbar running across the top of the window, and three areas that cover
the rest of the interface: the Project Window, Main Window, and Entry Helpers Window. These areas are
shown below.

The Authentic View interface is described in detail in the section, Authentic | Authentic View
Interface .

598 583

598

316 Editing Views Browser View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4.8 Browser View

Browser View is typically used to view:

· XML files that have an associated XSLT file. When you switch to Browser View, the XML file is
transformed on the fly using the associated XSLT stylesheet and the result is displayed directly in
Browser View.

· HTML files which are either created directly as HTML or created via an XSLT transformation of an XML
file.

To view XML and HTML files in Browser View, click the Browser tab.

Browser engines in Browser View
By default, Browser View currently uses Microsoft's Internet Explorer as its browser engine. If you wish to use
Microsoft's newer Edge WebView2 browser engine for Browser View, you can select this option in the View
section of the Options dialog .

Note: Since Microsoft Edge WebView2 uses the Chromium software project, on which Google's Chrome
browser is based, using WebView2 for Browser View also provides a good preview of the Chrome
display of a web page.

Notes about Microsoft Internet Explorer
Browser View requires Microsoft's Internet Explorer 5.0 or later, or Microsoft Edge WebView2 (see above).

Note the following points about Internet Explorer in Browser View:

· If you wish to use Browser View for viewing XML files transformed by an XSLT stylesheet, we strongly
recommend Internet Explorer 6.0 or later, which uses MSXML 3.0, an XML parser that fully supports
the XSLT 1.0 standard. You might also wish to install MSXML 4.0.

· Support for XSLT in IE 5 is not 100% compatible with the official XSLT Recommendation. So if you
encounter problems in Browser View with IE 5, you should upgrade to IE 6 or later.

· In general, you should check the support for XSLT of your version of Internet Explorer.
· If you encounter problems with the correct display of HTML in Internet Explorer, include the following

meta tag in the head element of your HTML document:
<head>
... <meta http-equiv="X-UA-Compatible" content="ie=edge">...
</head>

Developer tools in Browser View
You can use the Developer Tools of the underlying browser to inspect, debug, and test your HTML code. To
open the tools, right-click in the Browser View pane and select Open Developer Tools.

Markdown text and Browser View
If a document in Text View is marked up with Markdown formatting, then switching to Browse View converts the
Markdown formatting to simple HTML formatting and renders the document as an HTML page in Browser View.

1528 1513

https://commonmark.org/help/

© 2018-2024 Altova GmbH

Browser View 317Editing Views

Altova XMLSpy 2024 Enterprise Edition

Browser View features
The following features are available in Browser View. They can be accessed via the Browser menu, File menu,
and Edit menu.

· Open in separate window: When Browser View is a separate window, it can be positioned side-by-side
with an editing view of the same document. To do this, click the menu command Browser | Separate
Window. This is a toggle command that switches Browser View between two windows: (i) a separate
window, and (ii) a tabbed view in the Main Window. These commands are also available in the
dropdown menu of the Browser View button (at the bottom of the Main Window). In the View tab of
the Options dialog, you can set whether Browser View should be shown by default in a separate
window.

· Forward and Back: The common browser commands to navigate through pages that were loaded in
Browser View. These commands are in the Browser menu.

· Font size: Can be adjusted via the Browser menu.
· Stop, Refresh, Print: More standard browser commands, these can be found in the Browser and File

menus.
· Find: Enables searches for text strings. This command is in the Edit menu.
· Info Window: There are options here to view the active HTML page with any of the web browsers

installed on the machine and to open or remove the installed browsers.

1528

318 Editing Views Archive View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4.9 Archive View

An Office Open XML (OOXML) file, ZIP file (for example, WinZip or WinRAR), or EPUB file can be
opened and edited in Archive View. Not only can OOXML, ZIP, and EPUB archives be structurally modified in
Archive View, but individual files in the archive can be opened from Archive View, edited in one of XMLSpy's
editing views, and then saved directly back to the archive.

Archive files and Archive View
When an archive file (OOXML, ZIP, or EPUB file) is created or opened in XMLSpy , it is opened in Archive
View (screenshot below). Multiple archive files can be open at a time, with each archive file being in a separate
Archive View window. The type of the archive file appears in the top right-hand corner of Archive View. In the
screenshot below, the type of the archive file is MS Office Word Open XML.

Folder View
The Folder View is located on the left-hand side of the Archive View window and displays the folder structure of
the zipped archive. On each level, folders are listed alphabetically. To view the sub-folders of a folder, click the
plus symbol to the left of the folder. If a folder does not have a plus symbol to the left of it, then it has no sub-
folder. To view the document files (hereafter called documents) contained in a folder, select the folder; the files
will be displayed in the Main Window. In the screenshot above, the documents displayed in the Main Window
are in the word folder, which also has two sub-folders: _rels and theme.

Main Window
The Main Window lists the documents in the folder that is selected in Folder View. Documents are displayed in
alphabetical order, each with its respective uncompressed size and the date and time of last modification. To
open a Document from Archive View, double-click it. The document opens in a separate XMLSpy window.

Command buttons
The command buttons are located along the top of the Archive View window.

· Open document: Enabled when a document in the Main Window is selected. Clicking it opens the
selected document. A document can also be opened by double-clicking the document listing in the
Main Window.

890 896 898

892

© 2018-2024 Altova GmbH

Archive View 319Editing Views

Altova XMLSpy 2024 Enterprise Edition

· New folder: Adds a new folder to the folder that is currently selected in Folder View. The folder must
be named immediately upon its being created in Folder View. It is not possible to rename a folder
subsequently. The new folder is saved in the archive when the archive file is saved.

· Add new document: Adds a new document to the folder currently selected in Folder View. Clicking
this button opens the Create New Document dialog of XMLSpy. The newly created document opens in
a separate XMLSpy window. The document must be named immediately upon its being listed in the
document listing of the selected folder. The document is saved in the archive only when it is saved in
its own editing window or when the archive file is saved.

· Add document: Opens a Browse dialog in which you can browse for a document to add. The
document is added to the listing in the Main Window of documents currently in the selected folder, and
the document is opened in a separate XMLSpy window. For the document to be saved to the archive, it
must either be saved in its own window, or the archive file must be saved.

· Delete from archive: Deletes the selected document (in Main Window) or selected folder (in Folder
View) from the archive. The archive file must be saved in order for the deletion to take effect.

· Info: Toggles the Info Window on and off. See below.

Info Window
The Info Window is toggled on and off by clicking the Info command button. The Info Window provides general
information about the archive file, such as the number of files it contains, its uncompressed and compressed
sizes, and the compression ratio.

320 Editing Views Common Shortcuts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4.10 Common Shortcuts

The default shortcuts of commonly used editing commands are listed below. You can change the default
shortcuts in the Keyboard tab of the Customize dialog .

Function-key shortcuts (incl. for validation and transformation)

F1 Help Menu

F1 + Alt Open Last File

F3 Find Next

F4 + CTRL Close Active Window

F4 + Alt Close XMLSpy

F5 Refresh

F6 + CTRL Cycle through Open Windows

F7 Check Well-formedness

F8 Validate

F10 XSL Transformation

F10 + CTRL XSL:FO Transformation

File and Application commands

Alt + F1 Open Last File

CTRL + O File Open

CTRL + N File New

CTRL + P File Print

CTRL + S File Save

CTRL + F4 Close Active Window

CTRL + F6 Cycle through Open Windows

CTRL + TAB Switch between Open Documents

Alt + F4 Close XMLSpy

Miscellaneous keys

Up/Down Arrow Keys Move Cursor or Selection Bar

Esc Abandon Edits or Close Dialog Box

Return Confirm Selection

Del Delete Character or Selected

Shift + Del Cut

Editing commands

CTRL + A Select All

1500

© 2018-2024 Altova GmbH

Common Shortcuts 321Editing Views

Altova XMLSpy 2024 Enterprise Edition

CTRL + F Find

CTRL + G Go to Line/Char

CTRL + H Replace

CTRL + V Paste

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

322 XML

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5 XML

This section describes how to work with XML documents in XMLSpy. It covers the following aspects:

· How to create, open, and save XML documents . In this section, some important XMLSpy settings
relating to file creation are also explained.

· XML documents can be edited in Text View , Grid View , and Authentic View . You can select
the view that is most useful for you and switch among the views while editing. Each of the views offers
different advantages.

· You can easily and quickly add XML fragments to your XML document from external sources.
· How to use the various XML validation features of XMLSpy.
· Entry helpers for XML documents have certain specific features, and these are described.
· How to process XML documents with XSLT and XQuery . Various XMLSpy features related to

processing are explained. A section on PDF Fonts explains how fonts are processed when
generating PDF output.

· Miscellaneous other features for working with XML documents are described.

Altova website: XML Editor

323

327 330 331

338

334

333

340

342

418

https://www.altova.com/xmlspy-xml-editor

© 2018-2024 Altova GmbH

Creating, Opening, and Saving XML Documents 323XML

Altova XMLSpy 2024 Enterprise Edition

5.1 Creating, Opening, and Saving XML Documents

When creating, opening, or saving XML documents, the following issues are involved:

· In what view will the XML document open: Text View, Grid View, or Authentic View
· When a new XML document is created, whether a schema (XML Schema or DTD) will be automatically

assigned, manually assigned, or not assigned
· If a schema is assigned to the XML document, whether the document will be validated automatically on

opening and/or saving

Default view
There are application-wide settings for specifying in what view XML documents (new and existing) should open.
These settings are in the Options dialog (Tools | Options).

In the File Types section of the Options dialog, select a file type of .xml and, in the Default View pane, check
the required editing view (Text or Grid). Note that: (i) Schema View and WSDL View can be used only for XML
Schema and WSDL documents, respectively; and (ii) Browser View is a display view, not an editing view.

In the File Types tab, you can also set XMLSpy as the default editor for the selected file type.

An XML document can be edited in Authentic View if a StyleVision Power Stylesheet (SPS) has been assigned
to it. When an XML file with an associated SPS is opened, you can specify that it opens directly in Authentic
View. Do this by checking the Always open in Authentic View option in the View section of the Options dialog.
If this option is not checked, the file will open in the default view specified for .xml files in the File Types tab
(see above).

Assigning schemas
When a new XML file is to be created, select the menu command File | New. This pops up the Create New
Document dialog (screenshot below).

324 XML Creating, Opening, and Saving XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Notice that there are several options for the XML document type. The options marked Extensible Markup
Language create a generic XML documents. Each of the other options is associated with a schema, for
example the DocBook DTD. If you select one of these options, an XML document is created that has (i) the
corresponding schema automatically assigned to it, and (ii) a skeleton document structure that is valid
according to the assigned schema. Note that you can create your own skeleton XML document. If you save it
in the Template folder of the application folder, your skeleton document will be available for selection in the
Create New Document dialog.

If you select the generic Extensible Markup Language document type, you will be prompted for a schema (DTD
or XML Schema) to assign to the document. At this point, you can choose to browse for a schema (or schema
package) or go ahead and create an XML document with no schema assigned to it.

You can, of course, assign a schema via the DTD/Schema menu at any subsequent time during editing.

Automatic validation
If an existing XML document has a schema assigned to it, then it can be automatically validated on opening
and/or saving. The setting for this is in the File section of the Options dialog (Tools | Options).

The automatic validation settings in the File tab can be combined with a setting in the File Types tab to disable
automatic validation for specific file types. Using the settings in the two tabs together enables you to specify
automatic validation for specific file types.

© 2018-2024 Altova GmbH

Assigning Schemas and Validating 325XML

Altova XMLSpy 2024 Enterprise Edition

5.2 Assigning Schemas and Validating

Altova website: XML Validator, XML Validation

A schema (DTD or XML Schema) can be assigned to an XML document when it is first created . A schema
can also be assigned, or changed, at any subsequent time using the Assign DTD or Assign Schema
commands in the DTD/Schema menu.

The following options are available:

· Assign Schema/DTD File: Browse for the XML Schema or DTD file you want to assign. Note that you
can make the assignment in the document a relative or absolute path.

· Assign Packaged Schema: Some schemas are each actually a package of schema files rather than a
single schema file. The Assign Packaged Schema option opens a dialog that lists the schema
packages supported by Altova's Schema Manager . In this dialog, schemas listed in black have
already been installed on your machine, those in blue have not been installed and can be installed by
Schema Manager . When you select a schema package or one of its schema entry points and click
OK, the following happens: The schema package will be installed if it has not already been installed.
The selected schema package (previously installed or newly installed) will be assigned to the
document and will be used from this point onwards for document validation.

· Cancel: If a new file is being created, then it is created with no XML Schema or DTD assignment. If the
schema assignment is for an already existing document, then the dialog is exited.

Global resources for schemas
A global resource is an alias for a file or folder. The target file or folder can be changed within the GUI by
changing the active configuration of the global resource (via the menu command Tools | Active
Configuration). Global resources therefore enable the assigned schema to be switched among multiple
schemas, which can be useful for testing. How to use global resources is described in the section Altova
Global Resources .

XML Schema plus DTD
One very useful DTD feature that XML Schema does not have is the use of entities. However, if you wish to use
entities in your XML-Schema-validated XML document, you can add a DOCTYPE declaration to the XML
document and include your entity declarations in it.

<?xml version="1.0" encoding="UTF-8"?>

323

420

420

991

https://www.altova.com/xmlspy-xml-editor/xml-validator
https://www.altova.com/xmlspy-xml-editor/xml-validator

326 XML Assigning Schemas and Validating

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

<!DOCTYPE OrgChart [
 <!ENTITY name-int "value">
 <!ENTITY name-ext SYSTEM "extfile.xml">
]>
<OrgChart xmlns="http://www.xs.com/org"
 xsi:schemaLocation="http://www.xs.com/org OrgChart.xsd">
 ...
</OrgChart>

After declaring the entities in the DTD, they can be used in the XML document. The document will be well-
formed and valid. Note, however, that external parsed entities are not supported in Authentic View..

Going to schema definitions
With the XML document open, you can directly open the DTD or XML Schema on which it is based by clicking
the Go to DTD or Go to Schema commands in the DTD/Schema menu. Additionally, you can place the cursor
within a node in the XML document and go to the schema definition of that node via the Go to Definition
command in the DTD/Schema menu.

Validating and checking well-formedness
To validate and/or check for well-formedness, use the Validate XML (F8) and Check Well-Formedness (F7)
commands in the XML menu or the corresponding commands in the toolbar. Any error is reported in the
Messages window. If an XML document is invalid, the XML validator provides smart fixes to correct the error
based on the information in the schema.

You can also use a RaptorXML Server to validate XML documents.

1269

1016

http://www.altova.com/xmlspy/xml-validator.html

© 2018-2024 Altova GmbH

XML in Text View 327XML

Altova XMLSpy 2024 Enterprise Edition

5.3 XML in Text View

XMLSpy offers some specialized XML text editing features (described below) in addition to the generally
available editing features in Text View (which are described in Text View in the Editing Views section).

· Commenting text in and out
· Note about empty lines
· Find and Replace
· Escaping and unescaping XML characters
· Inserting file paths
· Inserting XML fragments via XInclude
· Copying XPath and XPointer expressions to the clipboard
· Save a Base64-encoded image string as an image

Commenting text in/out
Text in an XML document can be commented out using the XML start-comment and end-comment delimiters,
respectively <!-- and -->. In XMLSpy, these comment delimiters can be easily inserted using the Edit |
Comment In/Out menu command.

To comment out a block of text, select the text to be commented out and then select the command Comment
In/Out, either from the Edit menu or the context menu that you get on right-clicking the selected text. The
commented text will be grayed out (see screenshot below).

To uncomment a commented block of text, select the commented block excluding the comment delimiters,
and select the command Comment In/Out, either from the Edit menu or the context menu that you get on
right-clicking the selected text. The comment delimiters will be removed and the text will no longer be grayed
out.

Note about empty lines
In XML documents, empty lines are discarded when you change views or save the document. If you wish to
retain empty lines, enclose them in comment delimiters.

Find and Replace
You can use the Find (Ctrl+F) and Replace (Ctrl+H) commands of the Edit menu to find text in
Grid View and replace it. Results are highlighted in orange, and containing cells also highlighted in orange.

139

327

327

327

328

328

328

328

328

1224 1230 1215

328 XML XML in Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Escaping and unescaping XML characters
The five XML special characters (listed below) can be escaped and unescaped with the corresponding entity
references (listed below) by highlighting a block of text and selecting the context menu command Escape XML
Characters or Unescape XML Characters. The XML special characters in that block of text will then be
escaped or unescaped according to the command selected.

< <

> >

& &

' '

" "

For example:

<a> can be escaped with the Escape XML Characters command to <a> and
<a> can be unescaped with the Unescape XML Characters command to <a>

Inserting file paths
The Edit | Insert File Path command enables you to browse for the file in question and insert its file path at
the selected location in the XML document being edited. This command enables you to quickly and accurately
enter a file path. See the command description for more details.

Inserting XML fragments via XInclude
The Edit | Insert XInclude enables you, via XInclude, to insert the contents of an entire XML document, or
a fragment of one, in the XML document being edited. This command enables you to quickly and accurately
enter entire XML documents (via the XInclude mechanism) or fragments of XML documents (via an XPointer
extension of the XInclude mechanism). See the command description for more details.

Copying XPath and XPointer expressions to the clipboard
The XPath and XPointer expressions of the selected node (expressing the node's position in the XML
document) can be copied to the clipboard using the Edit | Copy XPath and Edit | Copy XPointer
commands, respectively. This enables you to obtain the correct XPath and XPointer expressions targeting the
selected node.

For example, let the selected node in Text View or Grid View be the third Office element of a document
element called Offices. In this case, the copied XPath expression will be /Offices/Ofice[3]. And the
copied XPointer expression, if the Office elements have no other-named sibling that occurs before the third
Office element, will be element(/1/3).

The copied expressions can then be inserted at any required location. For example, an XPath expression can
be inserted in an XSLT stylesheet and an XPointer expression in the href attribute of an xinclude element.

For more detailed descriptions of the commands, see their descriptions in the User Reference section.

1220

1220

1220

1220

1219 1219

© 2018-2024 Altova GmbH

XML in Text View 329XML

Altova XMLSpy 2024 Enterprise Edition

Save a Base64-encoded string as an image
To save a Base64-encoded string in its image format, right-click the encoding text and select the command
Save as Image. In the dialog that appears, select the location where you want to save the image and enter a
name for the image file. The extension of the image file (.png, .gif, .svg, etc) will be auto-detected from the
Base64 encoding and will appear in the Save dialog. Click Save when done.

This action can also be carried out via the Edit | Save as Image menu command.

330 XML XML in Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.4 XML in Grid View

Grid View shows the hierarchical structure of XML documents through a set of nested containers that can
be expanded and collapsed. This provides a clear picture of the document's structure. In Grid View, document
structure can be easily modified and content can be easily edited.

In the screenshot above, notice that the document is displayed as a hierarchy in a grid form. When a node can
contain content, it either directly contains content (as in the case of Text nodes) or it is divided into two fields:
node name and node content (as in the case of Element nodes). Node names are displayed in bold face and
node content in normal face.

Furthermore, if an element is repeated (such as the Person child elements of a Company element), then instead

of each Person element repeating one below the other, they can be displayed in a table format, where the child

elements of Person are displayed as columns of the table and each Person element is represented in a

numbered row (see the table at bottom in the screenshot, which shows three Person elements).

Grid View provides you with other powerful features for displaying your XML document in graphical form (such
as a split view, filters, and charts), as well as editing features such as drag-and-drop and the ability to create
formulas that generate new data.

For a full description of Grid View features, see the Editing Views | Grid View section .

155

155

© 2018-2024 Altova GmbH

XML in Authentic View 331XML

Altova XMLSpy 2024 Enterprise Edition

5.5 XML in Authentic View

Authentic View enables a user to edit an XML document as if it were a text document (screenshot below). The
XML markup and all other non-content text can be hidden from the person editing the document. This can be
useful for people who are unfamiliar with XML, enabling them to creating valid XML documents even while
concentrating on the content of the document.

The Authentic View of a document is enabled when a StyleVision Power Stylesheet (SPS) is assigned to an
XML document. An SPS is based on the same schema source as that on which the XML document is based,
and it defines the structure of the XML document. The SPS also defines the layout and formatting of the
document in Authentic View. For example, in the document shown in the screenshot above, the following
Authentic formatting and editing features are used:

· Paragraph and other block formatting
· Table structures
· Text formatting, such as color and font face
· Combo boxes (see the State and Zip fields) enable the user to select from a group of valid choices,

which can be taken from schema enumerations, as has been done in the case above
· Additional information can be calculated from the data in the document and be presented (in the

example above, the office summary details have not been entered by the user but calculated from other
data in the document)

332 XML XML in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

SPSs are created specifically for viewing and editing XML documents in Authentic View and for generating
standard output (such as HTML, PDF, RTF, and Word 2007 documents) from XML. SPSs are created with
Altova StyleVision.

Editing document structure
Valid nodes can be added to the document at any time by selecting a location and then adding the required
node via the entry helpers (Elements and Attributes) or context menu. The nodes available at any given location
are restricted to the nodes that can be validly added as siblings or children at the selected location. For
example, when the cursor is located within a paragraph, you can append another paragraph if this is allowed by
the schema.

When editing the structure of an XML document in Authentic View, it could be useful to see the markup of the
document. Markup can therefore be switched on as tags (screenshot below) using the Authentic | Show
Large Markup command (or the corresponding toolbar icon).

Editing content
Content is created and edited by typing it into the nodes of the document. Entities and CDATA sections can be
added via the context menu (entities also via the Entities entry helper).

More about editing in Authentic View
For more details of how to edit in Authentic View, see the Authentic View section.

© 2018-2024 Altova GmbH

Entry Helpers (Text View, Authentic View) 333XML

Altova XMLSpy 2024 Enterprise Edition

5.6 Entry Helpers (Text View, Authentic View)

For XML documents in Text View and Authentic View, there are three entry helpers: Elements, Attributes, and
Entities. When an element is added via the Elements entry helper, it can be added together with mandatory
child elements, mandatory attributes, all child elements, or no child element or attribute, according to the
respective settings in the Editing section of the Options dialog . When empty attributes are added, they are
added with quotes.

Note that in the different views, the entry helpers are designed differently, in accordance with the functionality of
the respective view.

Elements entry helper
The following points should be noted:

· Text View: Elements are inserted at the cursor insertion point. Unused elements are displayed in red,
used elements in gray. Mandatory elements are indicated with an exclamation mark "!" before the
name of the element.

· Authentic View: Elements can be inserted before, after, or within the selected element. Additionally,
there is a document tree that shows the location of the currently selected element in the document's
tree structure. For more details of how to edit in Authentic View, see the Authentic View section.

Attributes entry helper
The following points should be noted:

· Text View: When the cursor is placed inside the start tag of an element and after a space, the
attributes declared for that element become visible. Unused attributes are displayed in red, used
attributes in gray. Mandatory attributes are indicated with an exclamation mark "!" before the name of
the attribute.

To insert an attribute, double-click the required attribute. The attribute is inserted at the cursor point
together with an equals-to sign and quotes to delimit the attribute value. The cursor is placed between
the quotes, so you can start typing in the attribute value directly.

· Authentic View: When an element is selected, the attributes declared for that element become visible.
Enter the value of the attribute in the entry helper.

Entities entry helper
Any parsed or unparsed entity that is declared inline (within the XML document) or in an external DTD, is
displayed in the Entities entry helper. In all three views (Text, Grid, and Authentic), an entity is inserted at the
cursor insertion point by double-clicking it. In Grid View, entities are displayed in the Append, Insert, and Add
Child tabs.

Note that if you add an internal entity, you will need to save and reopen your document before the entity
appears in the Entities entry helper.

1520

334 XML Validating XML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.7 Validating XML Documents

The XML | Validate (F8) command validates an XML document against an associated DTD, XML Schema, or
other schema. If a document is valid, a successful-validation message is displayed in the Messages window.
Otherwise, the causes of the error are displayed in the left-hand pane (see screenshot below). If a cause is
selected in the left-hand pane, then smart fixes for it, if available, are displayed in the right-hand pane. Smart fix
suggestions are based on information in the associated schema. To apply a smart fix, either (i) double-click it,
or (ii) select it and click either the Fix or Fix + Validate options (see screenshot below).

Error indicators and smart fixes
Error indicators
In Text View, there are two additional indicators of a validation error (see screenshot below): (i) a red
exclamation-mark icon in the line-numbering margin, and (ii) a red marker-square in the scroll bar (on the right
of the window).

Note that the red marker-square appears on the left-hand side of the scroll bar (located at the right-hand side of
the window; see screenshot above). This is mentioned because here because scroll bar displays two other
kinds of marker-squares: (i) for highlighted text occurrences (brown, left-hand side of the scroll bar; see
Navigating the Document); (ii) Find occurrences (brown, right-hand-side of the scroll bar; see the Find
command).

Smart fixes
If a smart fix is available for an error, then a light bulb icon is shown on the line that generates the error (see
screenshot below). When you place the mouse over icon, a popup appears that lists available smart fixes (see
screenshot). Select a fix to apply it immediately.

148 1224

© 2018-2024 Altova GmbH

Validating XML Documents 335XML

Altova XMLSpy 2024 Enterprise Edition

Note the following points:

· Validation error indicators and smart fixes are available for document types that can be validated in
XMLSpy, for example JSON documents.

· The validation error indicators and smart fixes described above are refreshed only when the XML |
Validate (F8) command is executed; they are not updated in the background. So, after correcting an
error, you must run the Validate (F8) command again to make sure that the error has indeed been
fixed.

For more information about validating an XML document, see the description of the Validate command.

Validation and Schema Manager
If a document is validated against a schema that is not installed but is available via Schema Manager , then
the installation via Schema Manager will be triggered automatically. However, if the schema package to be
installed via Schema Manager contains namespace mappings, then there will be no automatic installation; in
this case, you must start Schema Manager, select the package/s you want to install, and run the installation.
If, after installation, XMLSpy is not able to correctly locate a schema component, then restart XMLSpy and try
again.

Validate on editing
When the Validate on Edit mode is toggled on, well-formed checks and validation checks are carried out as
you modify a document in Text View (and also in JSON Grid View). For validation to be carried out (additional
to well-formed checks), a DTD or an XML Schema must be assigned to the XML document (a JSON Schema
must be assigned to a JSON document). Errors are shown by error indicators (see above) in the left margin and
on the lines containing the errors.

The Validate on Edit mode can be toggled on/off either (i) via the XML | Validate on Edit menu command,
(ii) the Validate on Edit toolbar button, or (iii) via the On Edit option of the Validation settings of the Options
dialog .

1269

420

1275

1514

336 XML Whitespace

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.8 Whitespace

Whitespace characters are the space, tab, carriage return, and linefeed characters. You can switch on the
display of whitespace markers (space, tab, and end-of-line (EOL) markers) in the Text View Settings dialog
(View | Text View Settings).

In an XML document, whitespace characters occur for the following reasons:

· For XML syntax reasons, usually to delimit XML constructs. Such whitespace is marked yellow in the
screenshot below.

· Significant whitespace, which occurs within an element, attribute, or processing instruction, and should
not be ignored because it has meaning. These are marked blue in the screenshot below.

· Insignificant whitespace, which occurs between two elements that have no sibling text nodes.
Insignificant whitespace would therefore occur only in elements that are not mixed content. It is usually
used for formatting purposes and does not have any meaning. Insignificant whitespace is marked green
in the screenshot below.

In XMLSpy, whitespace is added when you pretty-print a document (Edit | Pretty-Print) . The pretty-print
action adds insignificant whitespace in order to format the document so that the document structure is clearly
shown. Pretty-printing might also collapse significant whitespace depending on the options that are currently
set for pretty-printing (see screenshot below).

1420

1224 1224

© 2018-2024 Altova GmbH

Whitespace 337XML

Altova XMLSpy 2024 Enterprise Edition

In the pretty-printing options , the following settings affect how whitespace is handled:

· Significant whitespace can be preserved or collapsed. If this option is set to Collapse, you can,
however, still preserve whitespace in specific elements by adding these elements to the Preserve
whitespace list.

· The Preserve whitespace option enables you to create a list of elements in which all whitespace (both
significant and insignificant) is preserved.

· If significant whitespace exists in an empty element, then it will be removed if Significant whitespace
has been set to Collapse. The setting of the Empty elements option would determine how the empty
element is displayed when its significant whitespace has been removed.

Note: When you change view between Text View and Grid View, any change that results from pretty-printing

will be retained. In the case of a change to/from one of these views to another view, changes will not be
applied.

1521

338 XML Inserting XML Fragments

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.9 Inserting XML Fragments

You can insert XML fragments from other applications and web pages. These fragments can be inserted in one
of two ways:

· By using drag-and-drop to Text View or Grid View. If you drag-and-drop to Grid View, the intelligent
information available in drag overlays can help you decide where to drop the fragment.

· By using copy-and-paste to Text View or Grid View.

Example
The following example shows how a fragment can be added quickly and to the correct location in an XML
document.

1. The fragment that is highlighted below (from an XML tutorial at w3schools.com) is selected. It is an
element named food that contains a number of child elements.

2. The screenshot below shows the Grid View of an XML document, where two food elements are

displayed as the rows of a table. When the fragment from the web page is dragged to the food table, a

drag overlay appears containing the information that the dragged XML fragment will be dropped as a
food element into the food table as its last row.

181

181

© 2018-2024 Altova GmbH

Inserting XML Fragments 339XML

Altova XMLSpy 2024 Enterprise Edition

3. When the fragment is dropped, it is placed exactly where it is wanted—as the last food element child

of breakfast_menu (see screenshot below).

340 XML Processing with XSLT and XQuery

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.10 Processing with XSLT and XQuery

XML documents can be processed with XSLT or XQuery documents to produce output documents. XMLSpy
has built-in XSLT 1.0, XSLT 2.0, XSLT 3.0, XQuery 1.0, and XQuery 3.0 processors. The following processing-
related features are available in the GUI:

· Assigning XSLT stylesheets
· Go to XSLT
· XSLT parameters and XQuery variables
· XSLT transformations
· XQuery executions
· Automating XML tasks with RaptorXML

Assigning XSLT stylesheets
You can assign an XSLT stylesheet to an XML document via the XSL/XQuery | Assign XSL command
(browse for the file in the dialog (screenshot below) that pops up). The assignment is entered in the XML
document as a processing instruction (PI) having the standard XSLT target defined by the W3C: xml-
stylesheet. This assignment is used when an XSLT transformation is invoked (XSL/XQuery | XSL
Transformation).

Additionally, an XSLT-for-FO stylesheet can be assigned with the XSL/XQuery | Assign XSL:FO command
(browse for the file in the dialog (screenshot below) that pops up). The assignment is entered in the XML
document as a processing instruction (PI) having the Altova-defined target: altova_xslfo. This assignment is
used when an XSLT-for-FO transformation is invoked (XSL/XQuery | XS:FO Transformation).

You can also select a global resource to specify the XSLT file. A global resource is an alias for a file or folder.
The target file or folder can be changed within the GUI by changing the active configuration of the global
resource (via the menu command Tools | Active Configuration). Global resources therefore enable the
assigned XSLT file to be switched from one to another, which can be useful for testing. How to use global
resources is described in the section Altova Global Resources .

If a previous assignment using either of these PI targets exists, then you are asked whether you wish to
overwrite the existing assignment.

Go to XSLT
The XSL/XQuery | Go to XSL command opens the XSLT file that has been assigned to the XML document.

340

340

341

341

341

341

991

© 2018-2024 Altova GmbH

Processing with XSLT and XQuery 341XML

Altova XMLSpy 2024 Enterprise Edition

XSLT parameters and XQuery variables
XSLT parameters and XQuery variables can be defined, edited, and deleted in the dialog that appears on
clicking the command XSL/XQuery | XSLT Parameters / XQuery Variables. The parameter/variable values
defined here are used for all XSLT transformations and XQuery executions in XMLSpy. However, these values
will not be passed to external engines such as MSXML. For the details of how to use this feature, see the User
Reference section .

XSLT transformations
Two types of XSLT transformation are available:

· Standard XSLT transformation (XSL/XQuery | XSL Transformation): The output of the transformation
is displayed in a new window or, if specified in the stylesheet, is saved to a file location. The engine
used for the transformation is specified in the XSL tab of the Options dialog (Tools | Options).

· XSL-for-FO transformation (XSL/XQuery | XSL-FO Transformation): The XML document is
transformed to PDF in a two-step process. In the first step, the XML document is transformed to an FO
document using the XSLT processor specified in the XSL tab of the Options dialog (Tools |
Options); note that you can also select (at the bottom of the tab) the XSLT engine that comes with
some FO processors such as FOP. In the second step, the FO document is processed by the FO
processor specified in the XSL tab of the Options dialog (Tools | Options) to produce PDF
output.

Note: An FO document (which is a particular type of XML document) can be transformed to PDF by clicking
the XSL:FO transformation command. When the source document is an FO document, the second
step of the two-step process for this command is executed directly.

XQuery executions
An XQuery document can be executed on the active XML document by clicking the command XSL/XQuery |
XQuery Execution. You are prompted for the XQuery file, and the result document is displayed in a new
window in the GUI.

Automating XML tasks with RaptorXML
Altova RaptorXML is an application that provides XML validation, XSLT transformations, and XQuery executions.
It can be used from the command line, via a COM interface, in Java programs, and in .NET applications. Tasks
such as XSLT transformation can therefore be automated with the use of RaptorXML. For example, you can
create a batch file that calls RaptorXML to transform a set of documents. See the RaptorXML documentation for
details.

1329

1544 1513

1544

1513

1544 1513

http://www.altova.com/documentation.html

342 XML PDF Fonts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.11 PDF Fonts

How the formatter and PDF Viewer use fonts
The formatter (for example, FOP) creates the PDF and the PDF Viewer (typically Adobe's Adobe Reader) reads
it.

In order to lay out the PDF, the formatter needs to know details about the fonts used in the document,
particularly the widths of all the glyphs used. It needs this information to calculate line lengths, hyphenation,
justification, etc. This information is known as the metrics of the font, and it is stored with each font. Some
formatters can read the metrics directly from the system's font folder. Others (such as FOP) need the metrics
in a special format it can understand. When the metrics of a font are available to the formatter, the formatter
can successfully lay out the PDF. You must ensure that the font metrics files of all the fonts you use in your
document are available to the formatter you are using.

The formatter can either reference a font or embed it in the PDF file. If the font is referenced, then the PDF
Viewer (for example, Adobe Reader) typically will look for that font in its own font resource folder (which
contains the Base 14 fonts) first, and then in the system's font folder. If the font is available, it will be used
when the PDF is displayed. Otherwise the Viewer will use an alternative from its resource folder or generate an
error. An alternative font may have different metrics and could therefore generate display errors.

If the formatter embeds a font in the PDF file, then the PDF Viewer uses the embedded font. The formatter may
embed the entire character set of a font or only a subset that contains the glyphs used in the document. This
factor affects the size of the PDF file and, possibly, copyright issues surrounding font use (see note below).
You might be able to influence the choice between these two options when you set the options for your
formatter.

XMLSpy and PDF fonts
In XMLSpy, a PDF is generated from an XSL-FO document (from now on FO document) by processing the XSL-
FO document with an external FO processor such as FOP. (In the Options dialog, you can specify the location
of the FO processor. This allows the FO processing to be started from within the XMLSpy GUI.)

The XSL-FO document itself is generated by processing an XML document with an XSLT stylesheet. (You can
use either Altova's XSLT engine (which is built into XMLSpy) or an external XSLT engine to do this.)

The formatting for the PDF document, including the font properties of all text, is specified in the XSL-FO
document. If the formatter you are using can read the metrics of the required font directly from the font, then all
you need to do is to set up the formatter to access the font. If, however, you are using FOP as your formatter,
you will need to provide it with the correct font metrics files for fonts other than the Base-14 fonts.

Making fonts available to the formatter
Most formatters (including FOP) already have available to them the Base 14 fonts. It is important to know the
names by which the formatter recognizes these fonts so that you correctly indicate them to the formatter. This
is the basic font support provided by formatters. You can, however, increase the number of fonts available to the
formatter by carrying out a few straightforward steps specific to the formatter you are using. The steps for FOP
are given below.

General procedure for setting up additional font support in FOP
To make additional fonts available to FOP, you would need to do the following:

© 2018-2024 Altova GmbH

PDF Fonts 343XML

Altova XMLSpy 2024 Enterprise Edition

1. Generate a font metrics file for the required font from the PostScript or TrueType font files. FOP
provides PFM Reader and TTF Reader utilities to convert PostScript and TrueType fonts, respectively,
to XML font metrics file. For details of how to do this, see the FOP: Fonts page.

2. Set up the FOP configuration file to use the required font metrics files. You do this by entering
information about the font files in an FOP configuration file. See FOP: Fonts.

3. In the file fop.bat, change the last line:

"%JAVACMD%" […] org.apache.fop.cli.Main %FOP_CMD_LINE_ARGS%

to include the location of the configuration file:

"%JAVACMD%" […] org.apache.fop.cli.Main %FOP_CMD_LINE_ARGS% -c conf\fop.xconf

After the metrics files are registered with FOP (in a FOP configuration file) and the FOP executable is set to
read the configuration file, the additional fonts are available for PDF creation.

Setting up the FOP configuration file
The FOP configuration file is called fop.xconf and is located in the conf folder in the FOP installation folder.
This file, which is an XML document, must be edited so that FOP reads the font metrics files correctly. For
each font that you wish to have FOP render, add a font element at the location indicated by the font-element
placeholder in the document:

 <font-triplet name="Arial" style="normal" weight="normal"/>
 <font-triplet name="ArialMT" style="normal" weight="normal"/>

In the example above,

arial.xml is the URL of the metrics file; it is best to use an absolute path.

arial.ttf is the name of the TTF file (usually located in %WINDIR%\Fonts).

Arial specifies that the above metrics and TTF files will be used if the font-family is
defined as Arial.

style="normal" specifies that the above metrics and TTF files will be used if the font-style is
defined as normal (not, say, italic).

weight="normal" specifies that the above metrics and TTF files will be used if the font-weight is
defined as normal (not, say, bold).

Note on font copyrights: Font usage is subject to copyright laws, and the conditions for use vary. Before
embedding a font—especially if you are embedding the entire font—make sure that you are allowed to do so
under the license you have purchased for that font.

Character sets
Note that the character sets of fonts differ from each other. The Base 14 fonts cover the ISO-8859-1 characters
plus the glyphs in the Symbol and Zapf Dingbats fonts. If your document contains a character that is not

http://xml.apache.org/fop/fonts.html
http://xml.apache.org/fop/fonts.html

344 XML PDF Fonts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

covered by the Base 14 fonts, then you will have to use a font that contains this character in its character set.
Some fonts, such as Arial Unicode, offer the characters covered by Unicode.

© 2018-2024 Altova GmbH

Charts 345XML

Altova XMLSpy 2024 Enterprise Edition

5.12 Charts

When an XML document is open in Text View or Grid View, a chart (pie chart, bar chart, etc) representing
selected data in the XML document can be generated in the Charts Window (which is one of the Output
Windows). The chart can then be exported as an image file or as an XSLT or XQuery fragment to the
clipboard. The Charts feature is useful for quickly representing selected numeric data in an XML document
graphically.

The following chart types are available:

· Pie charts (2D, 3D)
· Bar charts, single bars (2D, 3D)
· Bar charts, grouped bars (2D, 3D)
· Stacked bar charts
· Category line graphs
· Value line graphs
· Area charts and stacked area charts
· Candlestick charts
· Gauge charts (round and bar)
· Overlay charts

Overview: from creation to export
The steps to create a chart are described broadly below. For a more detailed account, see the subsections of
this section.

1. In Text View or Grid View, select the node that you wish to use as the context node for the data
selection. You can also select a range of nodes. The implications of the various selection methods are
explained in the section Source XPath .

2. Right-click and, from the context menu that appears, select the command New Chart. Alternatively, in
the Charts output window, click the New Chart button. This pops up the Select Columns dialog
(screenshot below), in which the X-Axis and Y-Axis data will be selected and in which the
Source XPath can be modified.

126

113

352

355 360

352

346 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. On clicking OK, the chart is created in the Charts Window (see screenshot below).

© 2018-2024 Altova GmbH

Charts 347XML

Altova XMLSpy 2024 Enterprise Edition

4. The chart's data selection and other settings can subsequently be edited. Not only can its Source
XPath and column selection be edited, but also its type and appearance. The data selection for the
chart's axes can be edited by clicking the Select Data button. And the chart's type and appearance
can be modified by clicking the Change Type button and Change Appearance button, respectively.

5. The chart can be exported as an image file or as an XSLT or XQuery fragment to the clipboard.

Other features
The following features help to make usage easier:

· Multiple tabs: If you wish to create a new chart without deleting the current chart, then create the new
chart in any one of the other tabs marked one to nine (see screenshot above). Note that, even when an
XML document is closed, charts generated from that document will stay open in their respective tabs in
the Charts Window.

· Auto Reloading: If the Auto button (see screenshot above) is toggled on, then the chart will be
automatically reloaded every time data in the XML document is modified. Otherwise, the chart will have
to be manually updated by clicking the Reload button.

Example file
In this section and subsection, explanations about how charts work reference an XML file called
YearlySales.xml. This file is available in the folder C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\Tutorial.

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

348 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

5.12.1 Creating a Chart

The New Chart button pops up the Select Columns dialog (screenshot below), in which three fundamental data
selection parameters for the chart are specified. These parameters (listed below) are used to build up the chart
data table.

· Source XPath: An XPath expression is automatically entered when the dialog opens. It selects the
node in the XML document that was selected when the Select Columns dialog was accessed. It can
be edited in the dialog using the keyboard. The Include Indices checkbox determines whether
predicate filters in the XPath will be used or not (see Source XPath for details). Descendant nodes
of the node/s selected by the Source XPath will be available for selection as X-Axis and Y-Axis data
columns. The Column Search Depth combo box determines how many descendant levels will be
searched to return nodes that may be used for X-Axis and Y-Axis data selection. After the Source
XPath has been edited, Update Columns must be clicked for the change to take effect and for the X-
Axis and Y-Axis lists in the dialog to be refreshed.

· X-Axis: The selection in this combo box specifies which node will be used as the X-Axis. The
sequence returned for this selection will give the labels that occur on the X-Axis. The Auto-Enumerated
option of the combo box provides numbered labels for the X-Axis. Note that XPath expressions created
for the Y-Axis are also available for selection in the X-Axis combo box.

· Y-Axis: The entries that are checked in this pane will be the nodes, the numeric values of which will be
represented on the numeric Y-Axis. The Clear All and Mark All buttons deselect all items and select
all items in the Y-Axis pane, respectively. The Insert XPath button enables a series to be generated
that is not available because it is not a descendant of the node the Source XPath returns. The node or
XPath expression selected for the X-Axis is not available for Y-Axis selection and is grayed out.

352

© 2018-2024 Altova GmbH

Charts 349XML

Altova XMLSpy 2024 Enterprise Edition

How the chart data table is created
The data that is used for the chart is determined by the selection made in the Select Columns dialog. We will
explain how the chart data is selected with the help of an example. Since the XML document (see screenshot
further below) contains three Region elements, the Source XPath /Data/Region selects each of them in turn.
With each Region element as the context node, the columns of data are then generated. For each Region
element selected because of the Source XPath the following is done:

1. The X-Axis expression generates the first column (by default this column will be the column used for
the X-Axis labels).

2. For each series (Y-Axis selections) a column is generated.

The chart data generated for the Select Columns dialog shown above can be visualized as in the following table.

Source XPath X-Axis Y-Axis (Series columns)

Region[1] @id Year[1] Year[2] Year[3] Year[4] Year[5] Year[6]

Region[2] @id Year[1] Year[2] Year[3] Year[4] Year[5] Year[6]

350 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Region[3] @id Year[1] Year[2] Year[3] Year[4] Year[5] Year[6]

A bar chart generated from this data would look something like this:

The following important points should be noted:

· The number of ticks on the X-Axis is determined by the size of the sequence returned by the Source
XPath expression (in this case three).

· The nodes returned by the Source XPath will be the context nodes, respectively, for generating two
sets of data for each tick on the X-Axis: (i) the X-Axis tick label (made with the X-Axis selection), and
(ii) all the series to be plotted for that tick (these series are selected with the Y-Axis selection). The
XPath expressions entered for the X-Axis and Y-Axis will be evaluated as XPath expressions in the
context of these (Source XPath) nodes.

· The sequence returned by the X-Axis selection will be, respectively, the label for each tick. If there are
fewer labels than there are ticks, then some ticks will remain unlabelled.

· Each series (for example Year[1]) is evaluated once for each context node. For some charts, like pie
charts or single-bar charts, only one series can be used.

· The legends are obtained from the names of series items.

The XML document used for the example above is given here for reference. It is named YearlySales.xml and
is available in the folder C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\Tutorial.

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

© 2018-2024 Altova GmbH

Charts 351XML

Altova XMLSpy 2024 Enterprise Edition

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

The data selection shown in the Select Columns dialog above can be seen in the table of the Select Data
dialog (screenshot below). The Select Data dialog is accessed by clicking the Select Data button in the
Charts output window.

For more details about the individual parameters of the Select Columns dialog, see the individual sections:
Source XPath , X-Axis Selection , Y-Axis Selection , and Chart Data .352 355 360 364

352 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.12.2 Source XPath

The Source XPath is specified in the Select Columns dialog. It determines what nodes in the document are
available for selection as X-Axis and Y-Axis data. The Column Search Depth combo box determines how many
descendant levels will be searched to return nodes that may be used for the X-Axis and Y-Axis data.

After a new Source XPath has been selected, clicking Update Columns refreshes the available selections (in
the dialog) for the X-Axis and Y-Axis. If predicates are included in the XPath expression (for
example, /Data/Region[1] uses the [1] predicate to select the first Region element), then the Include
Indices check box must be checked. If you modify the Source XPath expression be sure to click Update
Columns.

© 2018-2024 Altova GmbH

Charts 353XML

Altova XMLSpy 2024 Enterprise Edition

Source XPath from cursor location
To explain what Source XPath is selected when the Select Columns dialog is opened, we'll use the XML
document shown below. It is named YearlySales.xml and is available in the folder C:\Documents and
Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Tutorial.

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

The following cases are possible:

· If the cursor is placed anywhere inside the start tag (including in an attribute-value) or end tag of the
Data element, or anywhere inside the Data element but not within a descendant node, the Source
XPath will be: /Data

· If the cursor is placed anywhere inside the start tag (including in an attribute-value) or end tag of any
Region element, or anywhere inside a Region element but not within a descendant node, the Source
XPath will be: /Data/Region

· If the cursor is placed anywhere inside the start tag (including in an attribute-value) or end tag of a Year
element, or anywhere inside a Year element, the Source XPath will be: /Data/Region[N]/Year. The
predicate filter [N] selects the particular Region element inside which the selected Year element is.
So the X-Axis and Y-Axis data selections will be restricted to Year elements of this particular Region
element.

· If you wish to select just one Region element, say: /Data/Region[1], then highlight this element, that
is, the first Region element as shown in the screenshot below.

354 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Similarly, highlighting two Region elements will generate an XPath expression that selects these two
Region elements only.

The Source XPath expression can be edited subsequently in the Select Columns dialog.

In Grid View, selection is done by clicking a node or marking a range. The Source XPath that is generated from
the Grid View selection is as described above for Text View.

Include indices in XPath
The Include Indices check box determines whether predicate filters in the XPath expression are used, whether
these predicate filters are entered automatically at the time the Select Columns dialog is called or whether they
are entered manually. For example, if the cursor is placed inside a descendant element of the first Region
element of the document and the Include Indices check box is checked, then the automatically entered XPath
expression will be, for example: /Data/Region[1]/Year. If the Include Indices check box were not checked,
then the expression would be: /Data/Region/Year.

The Include Indices check box also determines whether any predicate entered manually is retained. Therefore,
if you wish to use predicates in the Source XPath expression, you must check the Include Indices check box.

Implications of Source XPath selections
Note the following implications of the Source XPath selection.

· The number of items in the sequence returned by the Source XPath determines the number of ticks on
the X-Axis. The number of ticks on the X-Axis can be changed in only one other way besides by
modifying the Source XPath: by selecting a number of labels for any series, which number is more than
the number of ticks. See X-Axis Selection for more information about this scenario.

· The Source XPath node is the ancestor node for all nodes available for X-Axis and Y-Axis data
selection and for all XPath expressions you may enter.

· As a result of the above two points, note that any change to the Source XPath expression affects not
only the number of ticks on the X-Axis but also the context for any XPath expression related to the
chart.

For example, here are the implications of some XPath expressions with respect to the XML document shown
above.

355

© 2018-2024 Altova GmbH

Charts 355XML

Altova XMLSpy 2024 Enterprise Edition

· /Data/Region: Returns the three Region elements, so three ticks on the X-Axis. Each Region element
will in turn be the context node for XPath expressions.

· /Data/Region/Year: Returns 18 Year elements, so 18 ticks on the X-Axis. Each Year element will in
turn be the context node for XPath expressions.

· /Data/Region[1]/Year: Returns the six Year element children of the first Region element, so six ticks
on the X-Axis. Each Year element of the first Region element will in turn be the context node for XPath
expressions.

· distinct-values(//Year/@id): Returns six items (the distinct values of the Year/@id attribute: 2005,
2006, 2007, 2008, 2009, 2010). However, since this XPath expression returns no node item, it cannot
be a context node for any XPath expression. If the items in this sequence are to be used to target
nodes in the XML document (using, say, the current() function (shorthand: .)), then the XPath
expression using the current item must start from the document root in order for the context to be
established. For example: /Data/Region[1]/Year[@id eq .].

5.12.3 X-Axis Selection

The X-Axis selection is specified in the Select Columns dialog (screenshot below). This selection determines
the labels that appear on the X-Axis. The labels can subsequently be edited in the Select Data dialog (see
below).

356 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Consider the following XML document example. (It is named YearlySales.xml and is available in the folder C:
\Documents and Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Tutorial.) The
cursor is placed in the start tag of the first Region element and the New Chart button of the Charts output
window is clicked. The Select Columns dialog appears, with the Source XPath: /Data/Region (see screenshot
above).

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

© 2018-2024 Altova GmbH

Charts 357XML

Altova XMLSpy 2024 Enterprise Edition

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

As explained in the Source XPath section, this Source XPath sets up a chart with three ticks on the X-Axis
(because the Source XPath returns three items: the three Region elements). Since we want the labels of these
three ticks in the chart to be the names of the three regions, we select the @id attribute in the combo box of
the X-Axis selection (see screenshot of Select Columns dialog above).

To produce the chart data for each tick, each Region element is evaluated in turn. For each Region element,
the id attribute generates the correct label for the X-Axis tick. The X-Axis would look something like in the
screenshot below.

If another XPath expression is selected in the X-Axis combo box, then that expression is evaluated within the
respective Region element context and the evaluated result will be the label of the respective tick. The Auto-
Enumerated option generates a number sequence that corresponds to the tick number: the first tick will be
numbered 1, the second 2, and so on.

352

358 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Modifying the X-Axis labels and the number of X-Axis ticks
The selection of labels for the X-Axis can be modified in the Select Data dialog (accessed by clicking the
Select Data button of the Charts output window).

In the Select Data dialog shown in the screenshot below, for example, click in the X-Axis text box of the Axis
Values pane. This enables the X-Axis selection to be modified. Now click the B1 field and drag the mouse to F1
to make the B1:F1 selection. Click OK to see the new chart.

This selection will now provide the labels for the ticks, as shown in the screenshot below. Notice also that
since the new selection contains five items, five ticks have been generated. However, only the first three are
populated. This is because the Source XPath returns three nodes and these are the nodes that will be
processed for the charts. These three nodes correspond to the rows of the table shown in the Select Data
dialog. Note that the number of rows in the table can only be modified by changing the Source XPath.

349

© 2018-2024 Altova GmbH

Charts 359XML

Altova XMLSpy 2024 Enterprise Edition

For more information about how the Source XPath and X-Axis selections interact, see How Chart Data Is
Created .

349

360 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.12.4 Y-Axis Selection

The Y-Axis (see screenshot below) is also known as the Series Axis.

The selection you make for this axis determines how many series are plotted for each X-Axis tick. If only one
series is selected, then at each X-Axis tick, the value returned by the XPath expression for that series is
plotted. If more series are selected, as in the screenshot below, in which six series are selected, then the chart
data selection will be as in the table below. (The context node for the Y-Axis data selection is the respective
Region element.)

Source XPath X-Axis Y-Axis (Series columns)

Region[1] @id Year[1] Year[2] Year[3] Year[4] Year[5] Year[6]

Region[2] @id Year[1] Year[2] Year[3] Year[4] Year[5] Year[6]

Region[3] @id Year[1] Year[2] Year[3] Year[4] Year[5] Year[6]

The resulting chart will look something like this:

349

© 2018-2024 Altova GmbH

Charts 361XML

Altova XMLSpy 2024 Enterprise Edition

There are three X-Axis ticks, labeled with the value of the respective Region/@id attributes. At each X-Axis
tick, the XPath expression for each series is evaluated. In our example, for each X-Axis tick, each of the six
series is evaluated and plotted. For example, the first series (Year[1]) is plotted for all three regions, so also
Year[2] to Year[6].

Note: Some charts, such as pie charts and single-bar charts, take only one axis. In a single-bar chart for
example, each X-Axis tick will have just a single bar: that representing the single series. In a pie
chart, the values of the single series will sum up to 100% of the pie, with each value being assigned to
one X-Axis tick.

Y-Axis legends
The legends that appear below the chart are the names of the series. These names can be modified in the
Select Data dialog .

Switching the X-Axis and Y-Axis selections
In the example above, the regions are on the X-Axis and the yearly sales are plotted on the Y-Axis for each
region; the Year elements are the series. But what if we wished to plot the years on the X-Axis and compare
the regional sales for each year as in the bar chart below? We would need six X-Axis ticks (obtained via the
Source XPath selection), then to label the X-Axis ticks with the respective years, and finally to select three
series (for the regions), all of which will be represented at each X-Axis tick. The screenshot below, of the Select
Columns dialog, shows how this data selection might be achieved.

364

362 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Selecting the series
To make a node a series for the chart, check that node's check box. You can modify the Source XPath and the
Column Search Depth to make the required node available in the Series pane. Alternatively, you can add an
XPath expression to select a node, as in the screenshot below. See Chart Example: Advanced for a
description of this scenario.

396

© 2018-2024 Altova GmbH

Charts 363XML

Altova XMLSpy 2024 Enterprise Edition

Reference
The XML document used for the example in this section is given here for reference. It is named
YearlySales.xml and is available in the folder C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\Tutorial.

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

364 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

5.12.5 Chart Data

Clicking the Select Data button pops up the Select Data dialog (screenshot below), which consists of three
panes: (i) the Series pane, (ii) the Axis Values pane, and (iii) the chart data table. Each of these is described
below.

The Select Columns button pops up the Select Columns dialog , in which you can change the Source
XPath and modify the data selection for the X-Axis and Y-Axis.

Series pane
The series contained originally in the Series pane are those that were selected in the Select Columns dialog
. The series present in this pane when you click OK will be the series that appear in the chart. In the Series
pane you can carry out three operations:

348

348

© 2018-2024 Altova GmbH

Charts 365XML

Altova XMLSpy 2024 Enterprise Edition

· Add and delete series: This enables you to control the number of series appearing in the chart.
· Edit series names: The names of series are the legends that appear in the chart.
· Select data for individual series: With a series selected in the Series pane, the X-Axis and Y-Axis data

can be specified in the Axis Values pane. How to do this is described below.

Axis Values pane
The X-Axis and Y-Axis data can be specified in the respective text boxes in the Axis Values pane. When you
click in either text box, the value in it can be edited; this is indicated by an asterisk to the right of the text box.
The data can be selected as a range from the chart data table, a range being either (i) an entire column or row,
or (ii) part of a column or a row. Alternatively, the data can be entered via the keyboard (for example, A or 3 or
B1:F1). To mark a range, select the first cell in the range and drag the cursor to the last cell in the range. To
mark an entire column or row, select the column or row header, respectively.

The X-Axis selection determines the labels of the X-Axis nodes and applies to all series. It does not change the
number of X-Axis ticks.

The Y-Axis selection determines which range of cells is to be used for the selected series. If the number of
cells selected is less than the number of X-Axis ticks, then this series will be unrepresented for the latter X-
Axis ticks. If the number of cells selected exceeds the number of X-Axis ticks, then additional ticks will be
created. The extra ticks will be equal to the number of extra selected cells. The extra values will be represented
for this series on the extra number of ticks.

Chart data table
The structure of the chart data table (at the bottom of the Select Data dialog) is obtained from the selections in
the Select Columns dialog .

· The number of rows in the table is equal to the number of items in the sequence returned by the
Source XPath.

· The columns are named starting from A. The purpose of this naming is to enable selection in the Axis
Values pane (for example B1:F1).

· The first column is obtained by evaluating the X-Axis selection in the Select Columns dialog in the
context of nodes returned by the Source XPath expression.

· All other columns except the first are obtained by evaluating the Y-Axis selections in the Select
Columns dialog . Each series in the Y-Axis selection of the Select Columns dialog corresponds
to a column in the chart data table.

The chart data table can be viewed as a superset of data that is selected using the parameters in the Select
Columns dialog . From this superset, you can then select ranges of data you require (in the Axis Values
pane) for individual series.

5.12.6 Overlays

An overlay is a chart that is overlaid on the base chart. To add an overlay, do the following:

1. Click the Overlays button to display the Overlays menu (screenshot below).

348

348

348 348

348

366 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Click Append. A new layer will be added.
3. With the new layer selected, click the New Chart button and select the data as described in the

section Creating a Chart .
4. To modify the chart type and its appearance, click the Change Type and Change Appearance

button, respectively.

You can add as many overlays as you like. Each new layer will be appended to the existing layers and, in the
diagram, will be superimposed on them. If you wish to change the order of layers, you must re-create them in
the correct order. You can delete the currently selected layer by clicking Delete Current.

Note: Each overlay will obscure the layers beneath it. Since only area charts can be made transparent, some
layer arrangements might not be optimal. For example a bar chart that is layered over a line chart
would obscure parts of the line. You should keep this in mind when planning the layering order.

5.12.7 Chart Settings: Quick Reference

Chart type
To select the chart type in the Change Type dialog (screenshot below), select the chart type you want and
click OK. The Chart Type dialog is accessed by clicking the Change Type button.

348

© 2018-2024 Altova GmbH

Charts 367XML

Altova XMLSpy 2024 Enterprise Edition

After the chart type has been selected, chart settings (such as title, height, and width) must be made in the
Change Appearance dialog (screenshot below) and the chart data must be specified. How data is selected for
each chart type is described in the sections, Creating a Chart and Chart Data .

Chart appearance
Chart settings (such as the chart's title, color scheme, and font sizes) are made in the Change Appearance
dialog (screenshot below, which shows the Settings dialog of a bar chart). This dialog is accessed with the
Change Appearance button and the settings in it are different according to the chart type.

The various settings are organized into the following common tabs:

· General: The chart title (see screenshot below) can be edited in this tab, as well as the chart's
background color and the plot's border and background color. In the screenshot below, the plot has
been given a pale green background color. The legends are at the bottom of the chart; they explain the
color codes in the chart and can be turned on or off in the dialog.

348 364

368 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Color scheme: Four predefined color schemes are available plus a user-defined color scheme. You
can modify any of the color schemes by adding and/or deleting colors to a scheme. The color scheme
selected in the Color Scheme tab will be used in the chart.

· Sizes: Sizes of various aspects of the chart can be set, either as pixels or as a percentage ratio.
· Font: The font properties of the chart title and of legends and labels can be specified in this tab. Sizes

can be set as a percentage of the chart size or as pixels.

Additionally, each type of chart has settings specific to its type. These are listed below:

· Pie charts: Settings for: (i) the angle from which the first slice should be drawn; (ii) the direction in
which slices should be drawn; (iii) the outline color; (iv) whether the colors receive highlights (in 3D pie
charts: whether dropshadows and transparency are used); (v) whether labels should be drawn; and (vi)
whether values and percentages should be added to labels and how many decimal places should be
added to the percentages.

· Bar charts: Settings for: (General) Drawing the X and Y axes exchanged generates a horizontal bar
chart (for 2D bar charts only); (Bar) Bar outlines and dropshadows (dropshadows in 2D bar charts
only); (X-Axis) Label and color of the x-axis, and vertical gridlines; (Y-Axis) Label and color of the y-
axis, horizontal gridlines, the range of values to be displayed, and the tick marks on the y-axis; (Z-
Axis, 3D only) Label and color of the z-axis; (3D) the vertical tilt, horizontal rotation, and the width of
the view.

· Line graphs: Settings for: (General) Drawing the X and Y axes exchanged; (Line) including the plot
points or not; (X-Axis) Label and color of the x-axis, and vertical gridlines; (Y-Axis) Label and color of
the y-axis, horizontal gridlines, the range of values to be displayed, and the tick marks on the y-axis.

· Gauge: Settings for: (i) the angle at which the gauge starts and the angular sweep of the scale (Round
Gauge only); (ii) the range of the values displayed (Round and Bar Gauges); (iii) the interval and color of
major and minor ticks (Round and Bar Gauges); (iv) colors of the dial, the needle, and the border.

© 2018-2024 Altova GmbH

Charts 369XML

Altova XMLSpy 2024 Enterprise Edition

5.12.8 Chart Settings and Appearance

Chart settings are organized as follows:

· Basic Chart Settings : The most basic setting is the chart type. To select the chart type, click
Change Type in the toolbar of the chart window. The Change Type dialog is displayed.

· Advanced Chart Settings ,which enable you to change the appearance of a chart (its title, legend,
colors, fonts, etc). Advanced settings are defined in the Change Appearance dialog . To access this
dialog, click Change Appearance in the toolbar of the chart window.

5.12.8.1 Basic Chart Settings

This section:

· Setting the chart type
· List of chart types
· Other basic settings

Setting the chart type
The most basic chart setting is the chart type. To select the chart type, click Change Type in the toolbar of
the chart window.

Chart types
The various types of charts that are available are listed below. In the Change Type dialog (screenshot
above), select the chart type you want and click OK.

369

369

374

374

369

369

374

369

370 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Pie charts

In pie charts, one column/axis provides the values, another column/axis provides labels for these values.
The labeling column/axis can take non-numeric values.

Bar charts

Bar charts can have two sets of values used along two axes (below).

They can also use three sets of values, as in the example below: (i) continent, (ii) year, (iii) sales volume.
Bar charts can be displayed in 2D (below) or 3D (above).

© 2018-2024 Altova GmbH

Charts 371XML

Altova XMLSpy 2024 Enterprise Edition

 A three-axis bar chart can also be stacked if you need to show totals. Compare the stacked chart below
with the chart above. The stacked chart shows the total of sales on all continents.

Line charts

The difference between a line chart (below left) and a value line chart (below right) is that value line charts
only take numerical values for the X-axis. If you need to display line charts with text values on the X-axis,
use line charts.

372 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Area charts

Area charts are a variation of line charts, in which the areas below the lines are also colored. Note that
area charts can also be stacked (see bar graphs above).

© 2018-2024 Altova GmbH

Charts 373XML

Altova XMLSpy 2024 Enterprise Edition

Candlestick charts

A candlestick chart can be used to depict price movements of securities, commodities, currencies, etc
over a period of time. The chart indicates not only how prices developed over time, but also the daily
close, high, low, and (optionally) open. The Y-axis takes three or four series (close, high, low, and
(optionally) open). The screenshot below shows a four-series candlestick chart.

Gauge charts

374 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Gauge charts are used to illustrate a single value and show its relation to a minimum and a maximum
value.

Other basic settings
In the Chart Settings pane, you can also set the title of the chart (see screenshot below).

5.12.8.2 Advanced Chart Settings

This section:

· Accessing the advanced settings 375

© 2018-2024 Altova GmbH

Charts 375XML

Altova XMLSpy 2024 Enterprise Edition

· Overview of advanced settings
· Loading, saving, resetting chart settings

Accessing the advanced settings
To access a chart's advanced settings do the following: Click Change Appearance in the toolbar of the chart
window. This displays the Change Appearance dialog for that particular chart type (the screenshot below shows
the Change Appearance dialog of a pie chart).

Overview of advanced settings
The advanced settings are organized into tabs that are common to all chart types and those that are specific to
a single chart type.

Common chart settings
General

The chart title (see screenshot below) is the same as the basic setting (see above) and can be edited as
an advanced setting also. Other settings in this dialog are the background color of the chart and the plot.
In the screenshot below, the plot has been given a pale green background color. An image file can also be
set as the background image of the chart and/or the plot. This image can be stretched to cover the entire
area of the chart or plot; zoomed to fit so that the zoom matches one of the two dimensions (of chart/plot);
centered; or tiled. The legend is the key to the color codes in the chart, and it can be turned on or off.

375

377

376 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Color scheme

Four predefined color schemes are available plus a user-defined color scheme. You can modify any of the
color schemes by adding colors to and/or deleting colors from a scheme. The color scheme selected in
this tab will be used in the chart.

Sizes

Sizes of various aspects of the chart can be set, either as pixels or as a percentage ratio.

Font

The font properties of the chart title and of legends and labels can be specified in this tab. Sizes can be
set as a percentage of the chart size or absolutely as points.

Load/Save button

Settings can be saved to an XML file and can be loaded from an XML file having the correct structure. To
see the structure, save the settings of a chart and then open the XML file. Clicking this button also gives
you the option of resetting chart settings to the default.

Type-specific chart settings
Pie charts

Settings for: (i) the angle from which the first slice should be drawn; (ii) the direction in which slices should
be drawn; (iii) the outline color; (iv) whether the colors receive highlights (in 3D pie charts: whether

© 2018-2024 Altova GmbH

Charts 377XML

Altova XMLSpy 2024 Enterprise Edition

dropshadows and transparency are used); (v) whether labels should be drawn; and (vi) whether values and
percentages should be added to labels and how many decimal places should be added to the
percentages.

Bar charts

Settings for: (General) Drawing the X and Y axes exchanged generates a horizontal bar chart; (Bar) Bar
outlines and dropshadows (dropshadows in 2D bar charts only); (X-Axis) Label and color of the x-axis, and
vertical gridlines; (Y-Axis) Label and color of the y-axis, horizontal gridlines, the range of values to be
displayed, and the tick marks on the y-axis; (Z-Axis, 3D only) Label and color of the z-axis; (3D) the
vertical tilt, horizontal rotation, and the width of the view.

Line graphs

Settings for: (General) Drawing the X and Y axes exchanged; (Line) including the plot points or not; (X-
Axis) Label and color of the x-axis, and vertical gridlines; (Y-Axis) Label and color of the y-axis, horizontal
gridlines, the range of values to be displayed, and the tick marks on the y-axis.

Gauge charts

Settings for: (i) the angle at which the gauge starts and the angular sweep of the scale; (ii) the range of
the values displayed; (iii) the interval and color of major and minor ticks; (iv) colors of the dial, the needle,
and the border.

Area charts

The transparency of areas can be set as a value from 0 (no transparency) to 255 (maximum
transparency). In the case of non-stacked area charts transparency makes parts of areas that lie under
other areas visible to the viewer. Outlines for the areas can also be specified.

Candlestick charts

The fill color can be specified for the two situations: (i) when the closing value is greater than the opening
value, and (ii) when the opening value is greater than the closing value. In the latter case, the Series color
is also available as an option. The Series color is specified in the Color Schema tab of the Change
Appearance dialog.

Loading, saving, resetting chart settings
Chart settings that are different from the default settings can be saved in an XML file. These settings can
subsequently loaded as the settings of a chart, which can help you save time and effort. The Load/Save
button (see first screenshot in this section) provides the following options when clicked:

· Set to default: Rejects changes made to the settings, and restores the default settings to all settings
sections.

374

378 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Load from file: Enables settings to be imported that have been previously saved in an XML file (see
next command). The command displays the Open dialog, in which you enter the location of the
required file.

· Save to file: Opens the Save As dialog box. You can specify an XML file in which to save the
settings. This file lists those settings that are different from the default settings.

5.12.8.2.1 General

The General section of the Change Appearance dialog box lets you define the title of the chart, add or remove a
legend, and define background pictures and colors and—for bar, line, area, and candlestick charts—orientation
of the chart.

Chart
Enter a descriptive title for your chart into the Chart Title field and select a background color for the entire
chart from the drop-down list. You can choose a solid background, vertical gradient, or horizontal gradient and
define start and end colors for the gradient, if applicable. In addition, or instead of a colored background, you
can also define a background image and choose one of the available display options from the drop-down list:

· Stretched: the image will be stretched to the height and width of the chart
· Zoom to Fit: the image will be fit into the frame of the chart and the aspect ratio of the image will be

maintained
· Center: the image will be displayed in its original size in the center of the chart
· Tiled: if the image is smaller than the chart, duplicates of the image will be displayed to fill the

background area
The Draw Legend check box is activated by default, clear the check box if you do not want to display a legend
in your chart.

© 2018-2024 Altova GmbH

Charts 379XML

Altova XMLSpy 2024 Enterprise Edition

Plot
The Plot is the area where the actual data of the chart is displayed. You can draw a border around the plot and
specify a different background color and/or image for the plot area. In the screenshot below, the background
color of the chart has been changed to gray (vertical gradient) whereas the plot is still white, a red border has
been drawn around it, and a background image has been added.

Orientation
If you have a small series of large values it may be convenient to swap the X and Y axis for a better illustration.
Note that in the screenshot below also the background color of the plot has been set to "Transparent" and the
background image has been applied to the chart.

Note that this option is not available for pie and gauge charts.

380 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.12.8.2.2 Type-Related Features

For each of the chart types, and even for the various sub-types, the Change Appearance dialog box provides a
section where you can define the type-related features of the chart.

Pie chart
Most settings are the same for the 2d and 3d versions. In 2d pie charts, you can additionally draw highlights.

In 3d pie charts, you can display drop shadows, add transparency and define the 3d tilt.

The Start Angle value defines where the first row of the selected column will be displayed in the chart. An
angle of 0 degrees corresponds to 12 o'clock on a watch.
You can show labels in addition to, or instead of, the legend, add values and/or percentage to the labels, and
define for the percentage values the number of decimal digits to be displayed.
The color that you can select next to the Draw Outline check box is used for the optional border drawn around
the chart and the individual pie segments. The Clockwise check box allows you to specify whether the rows
should be listed clockwise or counter-clockwise.
In 3d pie charts, you can draw a drop shadow and define its color, add transparency to the chart, and define the
3d tilt. In 2d charts, the Draw Highlights option adds additional structure to the chart.

© 2018-2024 Altova GmbH

Charts 381XML

Altova XMLSpy 2024 Enterprise Edition

Bar chart

For bar charts, you can make the following setting:

· Add an outline to the bars and define its color.
· In 2d bar charts, you can also draw a drop shadow and define its color (this option is not available for

3d bar charts).
· By default, the shape of the bars resembles a cylinder, however you can also choose "Vertical

Gradient" or "Solid" from the Fill style drop-down list (this option is available for 2d bar charts only).
· The values of a bar (corresponding to the height of the bar on the Y-axis) can be drawn on the bar. The

font of the values can be specified in the Fonts settings (this option is available only for 2d bar charts,
not stacked).

· The distance between the series of a bar-group and between bar-groups can be specified as a decimal
fraction of the width of a single bar. For example, in the screenshot below, which shows bar-groups
that each consist of a blue series and a green series, the distance between the series has been set to
a 25% (=0.25) of the width of a bar; the distance between bar-groups has been set to 100% (=1.0) of

the width of a bar. This option is available only for 2d bar charts.

382 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Line chart

To draw connection shapes that mark the values in line charts, you need to activate at least one check box in
the Draw Connection Shapes group box. You can use five different shapes to mark a series: square, rhomb,
triangle, inverted triangle, and circle. If there are more than five series in your chart you can combine the
connection shapes by selecting more than one option in the Draw Connection Shapes group box. In the
screenshot below, both Filled and Slashed have been selected and the Slashed type is used for the sixth
series and beyond.

The Draw Line option enables the graph to be drawn with (i) only connection shapes, or (ii) with connection
shapes joined by a line.

Connection shapes are available for both line charts and value line charts.

Area chart

Among the properties that you can change for area charts is transparency; this way you can prevent that one
series is hidden by another series in the chart. In addition, you can add an outline to the individual data areas
and define its color (see screenshot below).

© 2018-2024 Altova GmbH

Charts 383XML

Altova XMLSpy 2024 Enterprise Edition

Candlestick chart

If both opening and closing value are defined as series, you can choose the colors and whether or not the
candle should be filled if the closing value is greater than the opening value.

384 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Gauge chart

The Start value in the Angles group box defines the position of the 0 mark and the Sweep value is the angle
that is used for display. In the Value Range group box you can define the minimum and maximum values to be
displayed. Tick marks are displayed with (major ticks) or without (minor ticks) the corresponding value; you can
define separate colors for them. In the Colors group box you can define colors for the dial fill, needle, needle
base (hides the first part of the needle in the center of the chart), and the border that surrounds the chart. The
current value and an extra label can be shown at any angle you like.

5.12.8.2.3 Colors

Depending on the chart type you have selected, XMLSpy provides two different sections for the definition of
colors to be used in charts:

· Color Schema for pie, bar, line, area, and candlestick charts
· Color Range for gauge charts

© 2018-2024 Altova GmbH

Charts 385XML

Altova XMLSpy 2024 Enterprise Edition

Color Schema
The Color Schema section of the Change Appearance dialog box provides four predefined color schemas (i.e.,
default, grayscale, colorful, and pastel) that can be customized; in addition you can also define your own color
schema from scratch.

The top color will be used for the first series, then the second color and so on. You can change the order of the
colors by selecting a color and dragging it to its new position with the mouse. To add a new or delete an
unwanted color, click the corresponding button. In candlestick charts, only the first color will be used.

If you have appended one or several layers of overlay charts to a Charts window, the Color Schema section of
the Change Appearance dialog box contains the additional radio button Use subsequent colors from
previous chart layer which is activated by default.

When the radio button is activated, the color schema from the previous layer will be used and you cannot
choose a separate color schema for the overlay. The series of the active layer will be displayed using
subsequent colors from the color schema of the previous layer. This way, all series of the Charts window have
different colors and can therefore be distinguished more easily.

You can break this link on any additional layer that you add and choose a different color schema that then can
also be re-used in subsequent layers.

386 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Color Range
In gauge charts, you can customize the appearance of the gauge by applying colors to certain value ranges.

The definition shown in the screenshot above will appear in the gauge charts as follows:

5.12.8.2.4 X-Axis

In the X-axis section of the Change Appearance dialog box, you can enter a label for the axis, and define colors
for the axis and the grid lines (if displayed). You can also define whether or not you want to display tick marks
and axis values. This section is the same for all bar, line, area, and candlestick charts. The Show Categories
options enables you to specify that only a subset of all categories (X-Axis values) are displayed, that is, only
the ticks, grid lines, and values of the selected categories will be displayed. Create the subset of displayed
categories by entering (i) the index of the first value to display, and (ii) the number of indices to step. For
example, if there are 101 categories, from 1900, 1901, 1902 ... 1999, 2000, then you can show every
tenth year from 1900 to 2000 by setting First index to 1 and Step to 10.

© 2018-2024 Altova GmbH

Charts 387XML

Altova XMLSpy 2024 Enterprise Edition

In Value Line Charts however, you can also define the value range, and define at what interval tick marks should
be displayed.

388 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Label
The text entered into the Label field will be printed below the axis as a description of the X-axis.

Range
By default, the Auto radio button is selected in the Range group box. If you want to display a fragment of the
chart in greater detail, activate the Manual radio button and enter minimum and maximum values into the
respective fields. If the column that is used for the X-axis does not include zero, you can deactivate the
Include Zero check box and the X-axis will start with the minimum value that is available in the series. The
Invert Axis option enables you to invert the values of the X-Axis. For example, if the values run from the 0 to

360, selecting this option will generate the X-Axis so that 360 is at the origin and the values progress down to 0

as the X-Axis goes upwards.

Line
The axis is displayed in the color that you choose from the Line drop-down-list. You can use one of the
preselected colors, or click the Other color... button to choose a standard color or define a custom color.
Click the Select... button on the Custom tab and use the pipette to pick a color that is displayed somewhere
on your screen.

Grid lines
If the Show Grid lines check box is activated, you can choose a color from the corresponding drop-down list
box.

© 2018-2024 Altova GmbH

Charts 389XML

Altova XMLSpy 2024 Enterprise Edition

Tick Interval
If you are not satisfied with the default tick marks, you can activate the Manual radio button in the Tick Interval
group box and enter the difference between the individual tick marks into the corresponding field.

Tick Drawing
You can switch the display of tick marks on the axis and/or axis values on or off.

Axis Position
From the drop-down list, you can choose the position where the axis is to be displayed. When selecting "At
Value / On Category Number", you can also position the axis anywhere within the plot.

5.12.8.2.5 Y-Axis

In the Y-axis section of the Change Appearance dialog box, you can enter a label for the axis, define colors for
the axis and the grid lines (if displayed), define the value range, and decide if and where tick marks should be
displayed and whether or not you want to show the axis values. This section is the same for all bar and line
charts.

Label
The text entered into the Label field will be printed to the left of the axis as a description of the Y-axis.

390 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Range
By default, the Auto radio button is selected in the Range group box. If you want to display a fragment of the
chart in greater detail, activate the Manual radio button and enter minimum and maximum values into the
respective fields. If the column that is used for the Y-axis does not include zero, you can deactivate the
Include Zero check box and the Y-axis will start with the minimum value that is available in the series. The
Invert Axis option enables you to invert the values of the Y-Axis. For example, if the values run from the 0 to

360, selecting this option will generate the Y-Axis so that 360 is at the origin and the values progress down to 0

as the Y-Axis goes upwards.

Line
The axis is displayed in the color that you choose from the Line drop-down-list. You can use one of the
preselected colors, or click the Other color... button to choose a standard color or define a custom color.
Click the Select... button on the Custom tab and use the pipette to pick a color that is displayed somewhere
on your screen.

Grid lines
If the Show Grid lines check box is activated, you can choose a color from the corresponding drop-down list
box.

Tick Interval
If you are not satisfied with the default tick marks, you can activate the Manual radio button in the Tick Interval
group box and enter the difference between the individual tick marks into the corresponding field.

Tick Drawing
You can switch the display of tick marks on the axis and/or axis values on or off.

Axis Position
From the drop-down list, you can choose the position where the axis is to be displayed. When selecting "At
Value / On Category Number", you can also position the axis anywhere within the plot.

5.12.8.2.6 Z-Axis

In the Z-axis section of the Change Appearance dialog box, you can enter a label for the axis, define colors for
the axis, and decide whether or not you want to show tick marks on the axis. This section is the same for all
3d bar charts (Bar Chart 3d and Bar Chart 3d Grouped).

© 2018-2024 Altova GmbH

Charts 391XML

Altova XMLSpy 2024 Enterprise Edition

Label
The text entered into the Label field will be printed to the right of the axis as a description of the Z-axis.

Line
The axis is displayed in the color that you choose from the Line drop-down-list. You can use one of the
preselected colors, or click the Other color... button to choose a standard color or define a custom color.
Click the Select... button on the Custom tab and use the pipette to pick a color that is displayed somewhere
on your screen.

Tick Drawing
You can switch the display of tick marks on the axis on or off.

5.12.8.2.7 3D Angles

In 3d bar charts you can customize the 3d appearance of the chart in the 3d Angles section of the Change
Appearance dialog box.

The Field of view option causes the diagram to appear as if observed from a small or great distance. Values
ranging from 1 through 120 are valid. Higher values cause the diagram to appear as if observed from a greater
distance.

The Tilt value determines the rotation around the X-axis, whereas the Rotation value defines the rotation
around the Y-axis. You can automatically adapt the size of the chart axis to the Chart window width by
selecting the corresponding check box.

If the Automatic Chart Axis Size check box is selected, XMLSpy will automatically calculate the optimum
size of the X-axis as well as the Y-axis for the current Chart window size. The width and height of the chart will
change dynamically when you resize the Chart window.

5.12.8.2.8 Sizes

In the Sizes section of the Change Appearance dialog box, you can define different margins as well as the size
of axis and gauge ticks. Note that not all the properties listed below are available for all chart types.

General
Outside margin Space between the plot and the edge of the Chart window.

392 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Title to Plot Space between the chart title and the upper edge of the plot.
Legend to Plot Space between the lower edge of the plot and the legend.

Pie
Plot to Label In pie charts, the space between the most left and right edge of the pie and its labels.
Pie Height In 3d pie charts, the height of the pie.
Pie Drop Shadow In 3d pie charts, the length of the shadow (if it is activated in the Pie section).

X-Axis
X-Axis to Axis
Label

In bar and line charts, the space between the X-axis and its label.

X-Axis to Plot In 2d bar charts and line charts, the space between the X-axis and the plot.
X-Axis Tick Size In bar and line charts, the length of the ticks on the X-axis.

Y-Axis
Y-Axis to Axis
Label

In bar and line charts, the space between the Y-axis and its label.

Y-Axis to Plot In 2d bar and line charts, the space between the Y-axis and the plot.
Y-Axis Tick Size In bar and line charts, the length of the ticks on the Y-axis.

Z-Axis
Z-Axis to Axis
Label

In 3d bar charts, the space between the Z-axis and its label.

Z-Axis Tick Size In 3d bar charts, the length of the ticks on the Z-axis.

Line Drawing
Connection Shape
Size

In line charts, the size of the squares that mark the values in the chart.

Line width In line charts, the width of the line.

3d Axis Sizes
Manual X-Axis
Size of Base

In 3d bar charts, defines the relation between the length of the X-axis and the Chart
window size. Please note that the Automatic Chart Axis Size check box in the 3d
Angles section must be deactivated, otherwise the size will still be calculated
automatically.

Manual Y-Axis
Size of Base

In 3d bar charts, defines the relation between the length of the Y-axis and the Chart
window size. Please note that the Automatic Chart Axis Size check box in the 3d
section must be deactivated, otherwise the size will still be calculated automatically.

Z-Axis Series
Margin

In 3d bar charts, the distance on the Z-axis between the individual series.

Gauge
Border Width In round gauge charts, the width of the border around the gauge.

Gauge Ticks
Border to Tick
Distance

In round gauge charts, the space between the inner edge of the border and the ticks that
mark the values.

Major Tick Length In round gauge charts, the length of the major ticks (i.e., ticks that show a label).
Major Tick Width In round gauge charts, the width of the major ticks (i.e., ticks that show a label).
Minor Tick Length In round gauge charts, the length of ticks that do not have a value displayed.
Minor Tick Width In round gauge charts, the width of ticks that do not have a value displayed.

Gauge Needle

© 2018-2024 Altova GmbH

Charts 393XML

Altova XMLSpy 2024 Enterprise Edition

Needle Length In round gauge charts, the length of the needle. (Note that the percentage is calculated
from the diameter of the gauge, so if you choose a value greater than 50%, the needle will
point to somewhere outside the gauge!)

Needle Width at
Base

In round gauge charts, the width of the needle at the center of the gauge.

Needle Base
Radius

In round gauge charts, the radius of the base that covers the center of the gauge.

Gauge Color Range
Border to Color
Range Distance

In round gauge charts, the space between the inner edge of the border and the outer edge
of the color range .

Color Range WidthIn round gauge charts, the width of the customizable color range. (Note that the
percentage is calculated from the diameter of the gauge!)

Gauge Value
Offset to Center Distance from the center at which the gauge value is displayed.

Extra Value
Offset to Center Distance from the center at which the extra label (defined in the Gauge Chart settings)

is displayed.

5.12.8.2.9 Fonts

The Fonts section of the Change Appearance dialog box lets you configure fonts for objects in the Chart
window.

Font settings
You can choose the font face, size, and style for the individual elements displayed in the Chart window. You
can define the size as a percentage of the chart size and define a minimum size in points, or specify an

386

380

394 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

absolute value (in points). To apply the same font and/or size to all text elements, activate the respective Use
the same for all check box.
The element names in the list box are defined as follows:

· Title: The name of a chart
· Legend: The key to the colors used in the chart
· Labels: The designation of the pieces of a pie chart
· Axis Title: The name of the X, Y, and Z axis in a bar or line chart
· Axis Values: The units displayed on an axis in a bar or line chart
· Tick Values: The units displayed on a gauge chart
· Values: The values displayed on the bars of a bar chart

5.12.9 Export

Clicking the Export button gives you the following options:

· Save the chart as an image to file: The image formats available are PNG, GIF, BMP, and JPG.
· Copy the currently sized image or a resized to the clipboard: Enables the chart to be subsequently

copied from the clipboard into a report in another application.
· Print chart: Sends the image to a printer on your network. The height and width of the image can each

be specified as a percentage of the page size.
· Copy XSLT or XQuery code to the clipboard: Creates an XSLT fragment or XQuery fragment. Each is

essentially the Altova extension function CreateChart. This function can be used with other Altova
extension functions and processed with XMLSpy to generate charts. To help you use the CreateChart
extension function, a commented-out usage example is also created with each fragment.

5.12.10 Chart Example: Simple

Consider the following XML document. (It is named YearlySales.xml and is available in the folder C:
\Documents and Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Tutorial.)

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

© 2018-2024 Altova GmbH

Charts 395XML

Altova XMLSpy 2024 Enterprise Edition

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

We wish to produce a chart that plots the three regions on the X-Axis and gives the yearly sales for each
region. Our chart should look something like the bar chart below.

This is a simple chart to create because we can select the Region element as the Source XPath. The Source
XPath expression returns a sequence of three items: the three Region elements. Each Region element will, in
turn, be the context node for the X-Axis and Y-Axis data selections.

396 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For the series we want the Year elements of each region, so a search depth of one level will suffice. We select
the Region element's id attribute for the X-Axis. The id attribute values will therefore be used as the labels of
the three X-Axis ticks. All the Year series are checked because we wish to include all the Year elements in the
chart data table.

Clicking the OK button generates the chart we wanted. For more advanced charts, see the section, Chart
Example: Advanced .

5.12.11 Chart Example: Advanced

Consider the following XML document. (It is named YearlySales.xml and is available in the folder C:
\Documents and Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Tutorial.)

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<Region id="Americas">

396

© 2018-2024 Altova GmbH

Charts 397XML

Altova XMLSpy 2024 Enterprise Edition

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

We wish to produce a chart that plots the years on the X-Axis and compare the regional sales for each year.
Our chart should look something like the bar chart below.

398 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

We show two ways in which this can be done. These two ways together demonstrate how the different data
selection parameters can be combined to produce the required results.

Method 1: Modifying Axis Values
In the first method, the axes that were selected in the Select Columns dialog are modified in the Select Data
dialog. All that must be ensured is that all the required data is available for selection in the chart data table in
the Select Data dialog.

1. In the Select Columns dialog, makes sure that all the required nodes will be available for X-Axis and Y-
Axis selection. In the screenshot below, notice that the Column Search Depth has been set to 2 so
that the Year/@id attributes are also selected.

2. In the Select Data dialog (screenshot below), the chart data table has the following columns: the first
column is the X-Axis selection (which is the Auto-Enumerated selection), the remaining columns are
the series (Y-Axis) columns, which are the Region/@id attributes, the Year element contents, and the
Year/@id attributes. Notice also that: (i) there are only three rows, so three X-Axis ticks; (but we need
six X-Axis ticks for the six years); (ii) there are 13 series columns.

© 2018-2024 Altova GmbH

Charts 399XML

Altova XMLSpy 2024 Enterprise Edition

3. In the Series pane, we delete any 10 of the 13 series rows and rename the remaining three series to
Americas, Europe, and Asia, as shown in the screenshot above. The order selected here will be the
order of the X-Axis tick labeling.

4. In the Series pane, select the Americas series. In the Axis Values pane, click in the X-Axis box to
enable modification. Then click the cell I1 in the chart data table and drag to the cell N1. In the Y-Axis
text box either enter C1:H1 or make the selection by dragging from C1 to H1.

5. For the Europe and Asia series, select C2:H2 and C3:H3, respectively for the Y-Axis. The X-Axis
selection can be the same as that for the Americas series.

6. Click OK. The required chart is generated.

Note: The number of X-Axis ticks (defined by default by the number of rows in the chart data table) is
increased from three to six because the number of X-Axis labels is six.

Method 2: Generating series with XPath expressions
In the second method, XPath expressions are inserted to generate series. This is necessary because the
Source XPath (see screenshot below) does not have as its descendants the nodes wanted for the series.
However, the Source XPath does generate six X-Axis ticks (by selecting the Year elements of the first Region
element). In order for the first Region element to be selected using the [1] predicate, the Include Indices
check box must be checked and the Update Columns button clicked.

400 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the Select Columns dialog, the Region[1]/Year element has only two descendants: @id and text(). The
@id attribute is selected for the X-Axis, thereby generating the correct X-Axis label for each of the six X-Axis
ticks. The chart data table would be evaluated as follows.

Source XPath X-Axis Y-Axis (Series columns)

Region[1]/Year[1] @id text() XPath-1 XPath-2

Region[1]/Year[2] @id text() XPath-1 XPath-2

Region[1]/Year[3] @id text() XPath-1 XPath-2

Region[1]/Year[4] @id text() XPath-1 XPath-2

Region[1]/Year[5] @id text() XPath-1 XPath-2

Region[1]/Year[6] @id text() XPath-1 XPath-2

Note that the context node is each of the six Region[1]/Year elements in turn. The first XPath expression
looks for the current Year/@id attribute value and returns the Region[2]/Year element that has the same
Year/@id value as the @id value of the current Region[1]/Year. The second XPath expression does the same
for the Region[3]/Year elements. In this way, for each of the six years: the three Y-Axis series are the Year
element children, respectively, of each of the three Region elements. (The text() node returns the contents of
the Region[1]/Year elements.)

The chart data table in the Select Data dialog would look something like this.

© 2018-2024 Altova GmbH

Charts 401XML

Altova XMLSpy 2024 Enterprise Edition

The names of the series in the Select Data dialog can be changed from XPath expressions (as in the
screenshot above) into meaningful legends (screenshot below). For each series the correct data column can be
assigned in the Axis Values pane (by clicking in the Y-Axis text box and then selecting the required column in
the chart data table).

402 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Both the methods shown above generate identical charts. The different approaches are intended to show how
the data selection parameters are to be used.

5.12.12 Chart Example: Candlestick

Candlestick charts are typically used for representing the movement of share prices on the stockmarket. There
are two types of candlestick charts:

· Four-series candlestick charts, representing the opening, the highest, the lowest, and the closing
prices of the day.

· Three-series candlestick charts, representing the the highest, the lowest, and the closing prices of the
day.

The file Candlestick.xml, which is available in the folder C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\Tutorial, is an example of an XML document structure that could
be used for candlestick charts. The listing below shows the essential structure of the file.

<Trades>
 <Stock name="MyStock">
 <Day id="20110103" year="2011" month="Jan" week="01" date="03">
 <Open>90</Open>
 <High>110</High>
 <Low>88</Low>

© 2018-2024 Altova GmbH

Charts 403XML

Altova XMLSpy 2024 Enterprise Edition

 <Close>105</Close>
 </Day>

 </Stock>
</Trades>

A candlestick chart can be created for the file mentioned above as follows:

1. With the cursor inside the Day element tag, click the New Chart button of the Charts window . This
pops up the Select Columns dialog (screenshot below). If the Include Indices check box is not
checked, then check it and click Update Columns.

2. Click the Insert XPath button and insert the XPath expression: concat(@date, '-', @month).
3. From the dropdown list of the First Column combo box, select the XPath expression you just entered.

This will create the date and month of each Day element as the labels of the X-Axis ticks.
4. For the Y-Axis series, select the Open, High, Low, and Close check boxes in the Series Columns

pane.
5. Click OK.
6. Click the Change Type button of the Charts window and change the chart type to Candlestick.
7. Click OK. This will create a candlestick chart like the one in the screenshot below.

345

404 XML Charts

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Selecting a data subset
If you wish to view a subset of the chart data selected in the Select Columns dialog, for example, if you wish to
view a certain range of dates within the chart data selection, click the Select Data button of the Charts
window. This pops up the Select Data dialog (screenshot below).

© 2018-2024 Altova GmbH

Charts 405XML

Altova XMLSpy 2024 Enterprise Edition

In the Axis Values pane, enter the X-Axis range, for example, the cells A80:A127, as in the screenshot above.
For the various series, first click in the Y-Axis text box, then select the series in the Series pane, and then
enter the range for that series. Do this for each of the four series. For example, the screenshot above shows
the Y-Axis range selected for the Open series. For more information about the Select Data dialog, see the
section, Chart Data .364

406 XML XML Signatures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.13 XML Signatures

An XML file can be digitally signed and the signature can be subsequently verified. If the file has been changed
after it was signed, then the verification will fail. XMLSpy supports both the creation and the verification of XML
signatures.

XML signatures in XMLSpy views
XML signatures can be created for all types of XML files, including for XML Schema, WSDL, and XBRL files.
The XML | Create XML Signature and XML | Verify XML Signature commands, therefore, are
available in all XMLSpy views: Text View , Grid View , Schema View , WSDL View , and XBRL
View .

How XML signatures work
The process from signature-creation to signature-verification works as follows:

1. The XML file is signed using either the private key of a certificate or a password. In XMLSpy you can
create a signature using the XML | Create XML Signature command. The signature is obtained
by processing: (i) the XML document, and (ii) the private key of a certificate, or a password.

2. The signature can be either included with the XML file or stored in a separate file.
3. The signature of the XML file is verified by using either the public key of the certificate or the password

(depending on how the signature was created; see Step 1 above). The verification process works by,
first, processing: (i) the XML document, and (ii) the public key of the certificate or the password,
whichever is submitted, and, second, comparing this result with the signature. If the XML file was
changed after it was signed, then the verification will fail. In XMLSpy you can verify a signature using
the XML | Verify XML Signature command.

The details of how to create and verify signatures in XMLSpy are described in sub-sections of this section:

· Creating XML Signatures
· Verifying XML Signatures

How certificates are used in XML signatures
To be used with XML signatures, certificates must have a private key and public key. The private key is used to
create the XML signature, the public key is used to verify the XML signature.

In a typical scenario, the sender of an XML document has access to the private key of a certificate and creates
the XML signature with it. The receiver of the document will have access to the public key of the certificate. This
access can be of two types: (i) The sender sends the public key information with the signature; (ii) The receiver
has access to a public-key version of the certificate used by the sender.

For more details about certificates, see the sub-section, Working with Certificates .

Note: XMLSpy's XML Signature feature supports all required algorithms.

XML document validity
If an XML signature is embedded in the XML document, a Signature element in the namespace
http://www.w3.org/2000/09/xmldsig# is added to the XML document. In order for the document to remain

408 411

139 155 213 290

302

408

411

408

411

414

https://www.w3.org/TR/xmldsig-core1/#sec-AlgID

© 2018-2024 Altova GmbH

XML Signatures 407XML

Altova XMLSpy 2024 Enterprise Edition

valid according to a schema, the schema must contain the appropriate element declarations. XMLSpy embeds
signatures in two ways:

· Enveloped: The Signature element is created as the last child element of the root (or document)
element.

· Enveloping: The Signature element is created as the root (or document) element, and the original
XML document element is placed inside a child element of the signature element named Object.

If you do not wish to modify the schema of the XML document, the XML signature can be created in an external
file. For more details, see the description of the placement options in the section, Creating XML Signatures .

Given below are excerpts from XML Schemas that show how the Signature element of an enveloped signature
can be allowed. You can use these examples as guides to modify your own schemas.

In the first of the two listings below, the XML Signature Schema is imported into the user's schema. The XML
Signature Schema is located at the web address: http://www.w3.org/TR/xmldsig-core/xmldsig-core-
schema.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsig="http://www.w3.org/2000/09/xmldsig#"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
 schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>
 <xs:element name="Root">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="FirstChildOfRoot"/>
 <xs:element ref="SecondChildOfRoot" minOccurs="0"/>
 <xs:element ref="ThirdChildOfRoot" minOccurs="0"/>
 <xs:element ref="xsig:Signature" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 ...
</xs:schema>

A second option (listing below) is to add a generic wildcard element which matches any element from other
namespaces. Setting the processContents attribute to lax causes the validator to skip over this element—
because no matching element declaration is found. Consequently, the user does not need to reference the XML
Signatures Schema. The drawback of this option, however, is that any element (not just the Signature
element) can be added at the specified location in the XML document without invalidating the XML document.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="Root">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="selection"/>
 <xs:element ref="newsitems" minOccurs="0"/>
 <xs:element ref="team" minOccurs="0"/>

408

http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd
http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd

408 XML XML Signatures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 <xs:any namespace="##other" minOccurs="0" processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 ...
</xs:schema>

W3C Specification
For more details about XML signatures, see the W3C specification for XML signatures at
https://www.w3.org/TR/xmldsig-core1/.

5.13.1 Creating XML Signatures

To create an XML signature for an XML document, open the XML document for which you wish to create a
signature. Then click the menu command XML | Create XML Signature. This opens the Create XML
Signature dialog (screenshot below), the settings of which are explained below.

https://www.w3.org/TR/xmldsig-core1/

© 2018-2024 Altova GmbH

XML Signatures 409XML

Altova XMLSpy 2024 Enterprise Edition

Authentication method: certificate or password
The signature can be based on a certificate or a password. Select the radio button of the method you wish to
use.

· Certificate: Click the Select button and browse for the certificate you want. The certificate you select
must have a private key. The signature is generated using the private key of the certificate. To verify the
signature, access to the certificate (or to a public-key version of it) is required. The public key of the
certificate is used to verify the signature. For more details about certificates, see the section Working
with Certificates .

414

410 XML XML Signatures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Password: Enter a password with a length of five to 16 characters. This password will subsequently be
required to verify the signature.

Note: XMLSpy's XML Signature feature supports all required algorithms.

Transformations
The XML data is transformed and the result of the transformation is used for the creation of the signature. You
can specify the canonicalization algorithm to be applied to the file's XML data (the SignedInfo content) prior to
performing signature calculations. Significant points of difference between the algorithms are noted below:

· Canonical XML with or without comments: If comments are included for signature calculation, then any
change to comments in the XML data will result in verification failure. Otherwise, comments may be
modified or be added to the XML document after the document has been signed, and the signature will
still be verified as authentic.

· Base64: The root (or document) element of the XML document is considered to be Base64 encoded,
and is read in its binary form. If the root element is not Base64, an error is returned or the element is
read as empty.

· None: No transformation is carried out and the XML data from the binary file saved on disk is passed
directly for signature creation. Any subsequent change in the data will result in a failed verification of
the signature. However, if the Strip Whitespace check box option is selected, then all whitespace is
stripped and changes in whitespace will be ignored. A major difference between the None option and a
Canonicalization option is that canonicalization produces an XML data stream, in which some
differences, such as attribute order, are normalized. As a result, a canonicalization transformation will
normalize any changes such as that of attribute order (so verification will succeed), while no-
transformation will reflect such a change (verification will fail). Note, however, that a default
canonicalization is performed if the signature is embedded (enveloped or enveloping). So the XML data
will be used as is (i.e. with no transformation), when the signature is detached, None is selected, and
the Strip Whitespaces checkbox is unchecked.

Signature placement
The signature can be placed within the XML file or be created as a separate file. The following options are
available:

· Enveloped: The Signature element is created as the last child element of the root (document)
element.

· Enveloping: The Signature element is created as the root (document) element and the XML document
is inserted as a child element.

· Detached: The XML signature is created as a separate file. In this case, you can specify the file
extension of the signature file and whether the file name is created with: (i) the extension appended to
the name of the XML file (for example, test.xml.xsig), or (ii) the extension replacing the XML
extension of the XML file (for example, test.xsig). You can also specify whether, in the signature file,
the reference to the XML file is a relative or an absolute path.

Note: XML signatures for XML Schema (.xsd) files can be created from Schema View as detached signature
files (not embedded). XML signatures for XBRL files can be created from XBRL View as detached
signature files (not embedded). XML signatures for WSDL files can be created from WSDL View as
detached signature files, or they can be "enveloped" in the WSDL file.

Note: If the XML signature is created as a detached (separate) file, then the XML file and signature file are
associated with each other via a reference in the signature file. Consequently, signature verification in

https://www.w3.org/TR/xmldsig-core1/#sec-AlgID

© 2018-2024 Altova GmbH

XML Signatures 411XML

Altova XMLSpy 2024 Enterprise Edition

cases where the signature is in an external fie must be done with the signature file active—not with the
XML file active.

Append key information
The Append Keyinfo option is available when the signature is certificate-based. It is unavailable if the signature
is password-based.

If the option is selected, public-key information is placed inside the signature, otherwise key information is not
included in the signature. The advantage of including key information is that the certificate itself (specifically the
public-key information in it) will not be required for the verification process (since the key information is present
in the signature).

5.13.2 Verifying XML Signatures

An XML signature will be correctly verified if the XML file has not been changed since having been signed.
Otherwise the verification will fail. XML signatures can be verified in XMLSpy in the following circumstances as
described below:

· XML file contains certificate-based signature, certificate key information included in signature
· XML file contains certificate-based signature, certificate key information not contained in signature
· Certificate-based signature in external file, certificate key information contained in signature
· Certificate-based signature in external file, certificate key information not contained in signature
· XML file contains password-based signature
· Password-based signature in external file

Start the verification by clicking XML | Verify XML Signature. Before the verification process starts, the Verify
XML Signature dialog (screenshot below) appears.

Select the options you want:

· Ignore certificate errors: Selecting this option enables you to verify the signatures a document despite
certificate errors such as an expiry date that has passed. This is of course only relevant if the
document contains a signature that was created from a certificate .

· Show verification details: Selecting this option is useful for tracing the verification steps. If the
document has multiple signatures, for example, seeing the details will enable you to discover which
signatures could be verified and which could not be. If this option is not selected and verification details
are, as a result, not shown, then the verification process simply returns the overall result: whether all
signatures were verified or not.

412

412

413

413

413

413

408

412 XML XML Signatures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

After selecting your options, click OK to proceed with the verification.

XML file contains certificate-based signature, key information included in signature
To verify the XML signature in this scenario, make the XML file active in XMLSpy. On clicking the XML | Verify
XML Signature command, the verification process will be executed and the result will be displayed in the
Messages window (verification succeeded or failed).

XML file contains certificate-based signature, key information not contained in signature
If no key information is contained in the certificate-based signature, XMLSpy will prompt you for the certificate
from which public-key information for the verification can be read. Verification is done with the XML file active in
XMLSpy. On clicking the XML | Verify XML Signature command, you will be prompted to select the
certificate store in which the certificate is stored (screenshot below).

On selecting a certificate store and clicking OK, a dialog displaying the certificates in that store pops up
(screenshot below). Select the certificate required for the verification and click OK.

414

414

© 2018-2024 Altova GmbH

XML Signatures 413XML

Altova XMLSpy 2024 Enterprise Edition

The verification process is executed and the result is displayed in the Messages window.

Certificate-based signature in external file, key information contained in signature
If a certificate-based XML signature is in an external file, the signature is verified with the signature file active in
XMLSpy. On clicking the XML | Verify XML Signature command, the verification process will be executed
and the result will be displayed in the Messages window (verification succeeded or failed).

Certificate-based signature in external file, key information not contained in signature
If a certificate-based XML signature is in an external file, the signature is verified with the signature file active in
XMLSpy. On clicking the XML | Verify XML Signature command, XMLSpy will prompt you for the certificate
from which public-key information for the verification can be read. Select the certificate as described in the

section: XML file contains certificate-based signature, key information not contained in signature . The
verification process will be executed and the result will be displayed in the Messages window (verification
succeeded or failed).

XML file contains password-based signature
If the XML file contains a password-based XML signature, the signature is verified with the XML file active in
XMLSpy. On clicking the XML | Verify XML Signature command, a dialog pops up prompting you for the
password (screenshot below).

Enter the password, which must be five to sixteen characters long, and then click OK. The verification process
will be executed and the result will be displayed in the Messages window (verification succeeded or failed).

Password-based signature in external file
If a password-based XML signature is in an external file, the signature is verified with the signature file active in
XMLSpy. On clicking the XML | Verify XML Signature command, a dialog pops up prompting you for the
password (screenshot below).

412

414 XML XML Signatures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Enter the password, which must be five to sixteen characters long, and then click OK. The verification process
will be executed and the result will be displayed in the Messages window (verification succeeded or failed).

5.13.3 Working with Certificates

Authorization certificates are commonly used to create and verify XML signatures. This section contains
information about obtaining, importing, and exporting certificates. It is organized into the following sub-sections:

· Obtaining a certificate with a private-public-key pair
· Importing a private-public-key certificate
· The certificate stores on a Windows machine
· Exporting a public-key certificate

Obtaining a certificate with a private-public-key pair
A certificate can be obtained in the following ways:

· From a certificate authority. The certificate authority verifies the identity of the certificate's owner.
Certificates obtained in this way are in contrast to self-signed certificates, which can be created by
anyone with a certificate creation tool.

· By creating a self-signed certificate. Such certificates are not verified by any authority, but often
provide adequate security. A number of certificate creation tools, such as Microsoft's Visual Studio, are
available.

For use with XML signatures you will need a certificate with a private-public-key pair.

Note: XMLSpy's XML Signature feature supports certificates of type RSA-SHA1, DSA-SHA1, and SHA-256

Importing a private-public-key certificate
After a private-public-key certificate has been obtained, you will need to import it to your Windows certificate
store. Do this as follows:

1. Double-click the certificate file to open the Certificate Import Wizard (screenshot below), and click
Next.

414

414

415

416

© 2018-2024 Altova GmbH

XML Signatures 415XML

Altova XMLSpy 2024 Enterprise Edition

2. In the File to Import window, ensure that the certificate file is selected, then click Next.
3. Type in the password for the private key. You must know the password if you intend to use the private

key to create an XML signature. The password for the private key will be supplied to you when you
obtain the certificate. After typing in the password, click Next.

4. You can allow the wizard to automatically select the store in which to place the certificate—according
to the certificate type—or you can select the store yourself. (It might be better to select the store
yourself, so you know the location of the certificate.) Click Next when done.

5. Click Finish to complete the process.

Certificate stores on a Windows machine
The certificate store on a Windows XP machine can be accessed as follows:

1. In the Start menu, select Run.
2. Type in mmc and click OK. A Console window pops up (screenshot below).

416 XML XML Signatures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. In the Console window, select the command File | Add/Remove Snap-in.
4. In the Standalone tab of the Add/Remove Snap-in dialog that pops up, click Add.
5. In the Add Standalone Snap-in dialog that pops up, select Certificates and click Add.
6. Close the Add Standalone Snap-in dialog.
7. In the Add/Remove Snap-in dialog, click OK.
8. The Console Root in the Console window will now contain a Certificates item (see screenshot above).

This Certificates item contains the certificate stores of your machine.
9. Save the Console as a Microsoft Management Console File (.msc file) via the File | Save command of

the Console window. You can subsequently use this MSC file (via the File | Open command of a
Console window) to access the certificate stores on your machine.

Exporting a public-key certificate
If you have a certificate with a private-public key, you might wish to export this certificate with only a public key.
This public-key certificate can then be sent to receivers for use in verifying signatures created with the private
key of the certificate.

A public-key certificate can be exported from an existing private-public-key certificate as follows:

1. Open the certificate stores in a Console window. Do this as follows: (i) Enter mmc on the Start menu's
Run command line; (ii) In the Console window that pops up, select File | Open, and select the MSC
file in which the certificate stores were saved (see section immediately above this section).

2. Browse for the certificate that you wish to export as a public-key certificate and right-click it.

© 2018-2024 Altova GmbH

XML Signatures 417XML

Altova XMLSpy 2024 Enterprise Edition

3. In the context menu that pops up, select All Tasks | Export. This pops up the Certificate Export
Wizard (screenshot below).

4. Select Next.
5. In the Export Private Key window, select No, do not export the private key, and click Next.
6. In the Export File Format window, select the required format (leave the default DER format unchanged if

you are not sure), and click Next.
7. In the File to Export window, browse for the location where you wish to save the file and provide a name

for the file (without a file extension, which will be automatically appended). Click Next when done.
8. Click Finish to complete the export.

A public-key certificate will be created at the location you specified. This public-key certificate can be sent to
receivers of XML files signed with the corresponding private key. The receiver can then import this public-key
certificate to a certificate store on his or her machine and use the public key of this certificate for verification.

418 XML Additional Features

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5.14 Additional Features

Additional features for working with XML files are listed below.

· Encoding
· Generating DTDs and XML Schemas
· Find and Replace
· Evaluating XPath
· Importing and exporting text

Encoding
The encoding of XML files (and other types of documents) can be set via the menu command File |
Encoding . The default encoding of XML and non-XML files can be specified in the Options | Encoding
section.

Generating DTDs and XML Schemas
If you wish to create a schema that describes the structure of an XML document, use the DTD/Schema |
Generate DTD/Schema menu command. In the Generate DTD/Schema dialog that appears, you can
select whether to generate a DTD or an XML Schema as well as certain XML Schema options, such as whether
to generate enumerations from the values contained in the XML document.

Find and Replace
The Find and Replace features (accessed via the Edit menu) provide powerful search capabilities. The
search term can be defined additionally in terms of casing and whether whole words should be matched, and it
can also be expressed as a regular expression. The search range can be restricted to a selection in the
document and to particular node types (see screenshot below).

For a description of the Find and Replace functionality, see the descriptions of the Find and Replace
commands of the Edit menu .

Evaluate XPath
An XPath expression, which you enter in the XPath/XQuery Window, can be evaluated against the active XML
document. The results of the evaluation are displayed in the XPath/XQuery Window, and clicking a node in the
result highlights that node in the document display in the Main Window. Note that the XPath/XQuery Window
can be made active by clicking XML | Evaluate XPath command.

Importing and exporting text
Text data can be imported from, and exported to, other application formats. Commands for these features are in
the Convert menu.

418

418

418

418

418

1204 1519

1289

1224 1230

1224 1230

1215

1384

© 2018-2024 Altova GmbH

 419DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

6 DTDs and XML Schemas

Altova website: XML Schema Editor

This section provides an overview of how to work with DTDs and XML Schemas . It also describes
SchemaAgent and the powerful Find in Schemas feature. In addition to the editing features, XMLSpy
provides the following powerful DTD/Schema features:

Catalog mechanism
Support for the OASIS catalog mechanism enables the re-direction of URIs to local addresses, thus
facilitating use across multiple workstations.

Schema rules
An XML Schema can be assigned a set of additional constraints defined by the user. XMLSpy contains a
Schema Rule Editor in which a Schema Rule Set for an XML Schema can be created and edited.

Schema subsets
Components of a large schema can, in Schema View, be created as a separate file. These smaller schema
subsets can then be included in the larger schema. The reverse operation, known as flattening a schema, puts
the components of included files directly in the larger schema. How to generate schema subsets and flatten
schemas is described in the section, Schema Subsets .

Converting DTDs to XMLSchemas and vice versa
A DTD can be converted to an XML Schema and vice versa, and both types of documents can be flattened via
commands in the DTD/Schema menu. When a DTD is flattened, components in included/imported
modules are saved directly in the parent file, and unused components are deleted.

Generate Sample XML file
You can generate, via the DTD/Schema | Generate Sample XML/JSON File menu command, a skeleton
XML document based on the active DTD or XML Schema file. This is very useful for quickly creating an XML file
based on the active schema.

Go to definition
When the cursor is located within a node in an XML document, clicking the DTD/Schema | Go to
Definition menu command opens the schema file and highlights the definition of the selected XML node.

436 439

457 468

451

440

1285

1296

1288

https://www.altova.com/xmlspy-xml-editor/xsd-editor

420 DTDs and XML Schemas Schema Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6.1 Schema Manager

XML Schema Manager is an Altova tool that provides a centralized way to install and manage XML schemas
(DTDs for XML and XML Schemas) for use across all Altova's XML-Schema-aware applications, including
XMLSpy.

· On Windows, Schema Manager has a graphical user interface (screenshot below) and is also available
at the command line. (Altova's desktop applications are available on Windows only; see list below.)

· On Linux and macOS, Schema Manager is available at the command line only. (Altova's server
applications are available on Windows, Linux, and macOS; see list below.)

© 2018-2024 Altova GmbH

Schema Manager 421DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Altova applications that operate with Schema Manager

Desktop applications (Windows only) Server applications (Windows, Linux, macOS)

XMLSpy (all editions) RaptorXML Server, RaptorXML+XBRL Server

422 DTDs and XML Schemas Schema Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

MapForce (all editions) StyleVision Server

StyleVision (all editions)

Authentic Desktop Enterprise Edition

Installation and de-installation of Schema Manager
Schema Manager is installed automatically when you first install a new version of Altova Mission Kit or of any
of Altova's XML-schema-aware applications (see table above).

Likewise, it is removed automatically when you uninstall the last Altova XML-schema-aware application from
your computer.

Schema Manager features
Schema Manager provides the following features:

· Shows XML schemas installed on your computer and checks whether new versions are available for
download.

· Downloads newer versions of XML schemas independently of the Altova product release cycle. (Altova
stores schemas online, and you can download them via Schema Manager.)

· Install or uninstall any of the multiple versions of a given schema (or all versions if necessary).
· An XML schema may have dependencies on other schemas. When you install or uninstall a particular

schema, Schema Manager informs you about dependent schemas and will automatically install or
remove them as well.

· Schema Manager uses the XML catalog mechanism to map schema references to local files. In the
case of large XML schemas, processing will therefore be faster than if the schemas were at a remote
location.

· All major schemas are available via Schema Manager and are regularly updated for the latest versions.
This provides you with a convenient single resource for managing all your schemas and making them
readily available to all of Altova's XML-schema-aware applications.

· Changes made in Schema Manager take effect for all Altova products installed on that machine.
· In an Altova product, if you attempt to validate on a schema that is not installed but which is available

via Schema Manager, then installation is triggered automatically. However, if the schema package
contains namespace mappings, then there will be no automatic installation; in this case, you must
start Schema Manager, select the package/s you want to install, and run the installation. If, after
installation, your open Altova application does not restart automatically, then you must restart it
manually.

How it works
Altova stores all XML schemas used in Altova products online. This repository is updated when new versions of
the schemas are released. Schema Manager displays information about the latest available schemas when
invoked in both its GUI form as well as on the CLI. You can then install, upgrade or uninstall schemas via
Schema Manager.

Schema Manager also installs schemas in one other way. At the Altova website
(https://www.altova.com/schema-manager) you can select a schema and its dependent schemas that you want
to install. The website will prepare a file of type .altova_xmlschemas for download that contains information

about your schema selection. When you double-click this file or pass it to Schema Manager via the CLI as an
argument of the install command, Schema Manager will install the schemas you selected.431

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html
https://www.altova.com/schema-manager

© 2018-2024 Altova GmbH

Schema Manager 423DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Local cache: track ing your schemas
All information about installed schemas is tracked in a centralized cache directory on your computer, located
here:

Windows C:\ProgramData\Altova\pkgs\.cache

Linux /var/opt/Altova/pkgs\.cache

macOS /var/Altova/pkgs

This cache directory is updated regularly with the latest status of schemas at Altova's online storage. These
updates are carried out at the following times:

· Every time you start Schema Manager.
· When you start XMLSpy for the first time on a given calendar day.
· If XMLSpy is open for more than 24 hours, the cache is updated every 24 hours.
· You can also update the cache by running the update command at the command line interface.

The cache therefore enables Schema Manager to continuously track your installed schemas against the
schemas available online at the Altova website.

Do not modify the cache manually!
The local cache directory is maintained automatically based on the schemas you install and uninstall. It
should not be altered or deleted manually. If you ever need to reset Schema Manager to its original
"pristine" state, then, on the command line interface (CLI): (i) run the reset command, and (ii) run the
initialize command. (Alternatively, run the reset command with the --i option.)

6.1.1 Run Schema Manager

Graphical User Interface
You can access the GUI of Schema Manager in any of the following ways:

· During the installation of XMLSpy: Towards the end of the installation procedure, select the check box
Invoke Altova XML-Schema Manager to access the Schema Manager GUI straight away. This will
enable you to install schemas during the installation process of your Altova application.

· After the installation of XMLSpy: After your application has been installed, you can access the
Schema Manager GUI at any time, via the menu command Tools | XML Schema Manager.

· Via the .altova_xmlschemas file downloaded from the Altova website: Double-click the downloaded file

to run the Schema Manager GUI, which will be set up to install the schemas you selected (at the
website) for installation.

After the Schema Manager GUI (screenshot below) has been opened, already installed schemas will be shown
selected. If you want to install an additional schema, select it. If you want to uninstall an already installed
schema, deselect it. After you have made your selections and/or deselections, you are ready to apply your
changes. The schemas that will be installed or uninstalled will be highlighted and a message about the

434

432

430

https://www.altova.com/schema-manager

424 DTDs and XML Schemas Schema Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

upcoming changes will be posted to the Messages pane at the bottom of the Schema Manager window (see
screenshot).

© 2018-2024 Altova GmbH

Schema Manager 425DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Command line interface
You can run Schema Manager from a command line interface by sending commands to its executable file,
xmlschemamanager.exe.

The xmlschemamanager.exe file is located in the following folder:

· On Windows: C:\ProgramData\Altova\SharedBetweenVersions
· On Linux or macOS (server applications only): %INSTALLDIR%/bin, where %INSTALLDIR% is the

program's installation directory.

You can then use any of the commands listed in the CLI command reference section .

To display help for the commands, run the following:

· On Windows: xmlschemamanager.exe --help
· On Linux or macOS (server applications only): sudo ./xmlschemamanager --help

6.1.2 Status Categories

Schema Manager categorizes the schemas under its management as follows:

· Installed schemas. These are shown in the GUI with their check boxes selected (in the screenshot
below the checked and blue versions of the EPUB and HL7v3 NE schemas are installed schemas). If
all the versions of a schema are selected, then the selection mark is a tick. If at least one version is
unselected, then the selection mark is a solid colored square. You can deselect an installed schema
to uninstall it; (in the screenshot below, the DocBook DTD is installed and has been deselected,
thereby preparing it for de-installation).

· Uninstalled available schemas. These are shown in the GUI with their check boxes unselected. You
can select the schemas you want to install.

429

426 DTDs and XML Schemas Schema Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Upgradeable schemas are those which have been revised by their issuers since they were installed.

They are indicated in the GUI by a icon. You can patch an installed schema with an available
revision.

Points to note

· In the screenshot above, both CBCR schemas are checked. The one with the blue background is
already installed. The one with the yellow background is uninstalled and has been selected for
installation. Note that the HL7v3 NE 2010 schema is not installed and has not been selected for
installation.

· A yellow background means that the schema will be modified in some way when the Apply button is
clicked. If a schema is unchecked and has a yellow background, it means that it will be uninstalled
when the Apply button is clicked. In the screenshot above the DocBook DTD has such a status.

· When running Schema Manager from the command line, the list command is used with different
options to list different categories of schemas:

xmlschemamanager.exe list Lists all installed and available schemas; upgradeables are also
indicated

xmlschemamanager.exe list

-i
Lists installed schemas only; upgradeables are also indicated

xmlschemamanager.exe list

-u
Lists upgradeable schemas

431

© 2018-2024 Altova GmbH

Schema Manager 427DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Note: On Linux and macOS, use sudo ./xmlschemamanager list

6.1.3 Patch or Install a Schema

Patch an installed schema
Occasionally, XML schemas may receive patches (upgrades or revisions) from their issuers. When Schema
Manager detects that patches are available, these are indicated in the schema listings of Schema Manager and
you can install the patches quickly.

In the GUI

Patches are indicated by the icon. (Also see the previous topic about status categories .) If patches are
available, the Patch Selection button will be enabled. Click it to select and prepare all patches for installation.

In the GUI, the icon of each schema that will be patched changes from to , and the Messages pane at
the bottom of the dialog lists the patches that will be applied. When you are ready to install the selected
patches, click Apply. All patches will be applied together. Note that if you deselect a schema marked for
patching, you will actually be uninstalling that schema.

On the CLI
To apply a patch at the command line interface:

1. Run the list -u command. This lists any schemas for which upgrades are available.
2. Run the upgrade command to install all the patches.

Install an available schema
You can install schemas using either the Schema Manager GUI or by sending Schema Manager the install
instructions via the command line.

Note: If the current schema references other schemas, the referenced schemas are also installed.

In the GUI
To install schemas using the Schema Manager GUI, select the schemas you want to install and click Apply.

You can also select the schemas you want to install at the Altova website and generate a downloadable
.altova_xmlschemas file. When you double-click this file, it will open Schema Manager with the schemas you

wanted pre-selected. All you will now have to do is click Apply.

On the CLI
To install schemas via the command line, run the install command:

xmlschemamanager.exe install [options] Schema+

where Schema is the schema (or schemas) you want to install or a .altova_xmlschemas file. A schema is

referenced by an identifier of format <name>-<version>. (The identifiers of schemas are displayed when

you run the list command.) You can enter as many schemas as you like. For details, see the
description of the install command.

425

431

434

431

431

431

https://www.altova.com/schema-manager

428 DTDs and XML Schemas Schema Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Installing a required schema
When you run an XML-schema-related command in XMLSpy and XMLSpy discovers that a schema it needs for
executing the command is not present or is incomplete, Schema Manager will display information about the
missing schema/s. You can then directly install any missing schema via Schema Manager.

In the Schema Manager GUI, you can view all previously installed schemas at any time by running Schema
Manager from Tools | Schema Manager.

6.1.4 Uninstall a Schema, Reset

Uninstall a schema
You can uninstall schemas using either the Schema Manager GUI or by sending Schema Manager the
uninstall instructions via the command line.

Note: If the schema you want to uninstall references other schemas, then the referenced schemas are also
uninstalled.

In the GUI
To uninstall schemas in the Schema Manager GUI, clear their check boxes and click Apply. The selected
schemas and their referenced schemas will be uninstalled.

To uninstall all schemas, click Deselect All and click Apply.

On the CLI
To uninstall schemas via the command line, run the uninstall command:

xmlschemamanager.exe uninstall [options] Schema+

where each Schema argument is a schema you want to uninstall or a .altova_xmlschemas file. A schema

is specified by an identifier that has a format of <name>-<version>. (The identifiers of schemas are

displayed when you run the list command.) You can enter as many schemas as you like. For details,
see the description of the uninstall command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Reset Schema Manager
You can reset Schema Manager. This removes all installed schemas and the cache directory.

· In the GUI, click Reset Selection.
· On the CLI, run the reset command.

433

431

433

432

© 2018-2024 Altova GmbH

Schema Manager 429DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

After running this command, make sure to run the initialize command in order to recreate the cache
directory. Alternatively, run the reset command with the -i option.

Note that reset -i restores the original installation of the product, so it is recommended to run the
update command after performing a reset. Alternatively, run the reset command with the -i and -u
options.

6.1.5 Command Line Interface (CLI)

To call Schema Manager at the command line, you need to know the path of the executable. By default, the
Schema Manager executable is installed here:

C:\ProgramData\Altova\SharedBetweenVersions\XMLSchemaManager.exe

Note: On Linux and macOS systems, once you have changed the directory to that containing the
executable, you can call the executable with sudo ./xmlschemamanager. The prefix ./ indicates that

the executable is in the current directory. The prefix sudo indicates that the command must be run with

root privileges.

Command line syntax
The general syntax for using the command line is as follows:

<exec> -h | --help | --version | <command> [options] [arguments]

In the listing above, the vertical bar | separates a set of mutually exclusive items. The square brackets []

indicate optional items. Essentially, you can type the executable path followed by either --h, --help, or --
version options, or by a command. Each command may have options and arguments. The list of commands
is described in the following sections.

6.1.5.1 help

This command provides contextual help about commands pertaining to Schema Manager executable.

Syntax
<exec> help [command]

Where [command] is an optional argument which specifies any valid command name.

Note the following:

· You can invoke help for a command by typing the command followed by -h or --help, for example:

<exec> list -h

· If you type -h or --help directly after the executable and before a command, you will get general help

(not help for the command), for example: <exec> -h list

430

432

432

434 432

430 DTDs and XML Schemas Schema Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Example
The following command displays help about the list command:

xmlschemamanager help list

6.1.5.2 info

This command displays detailed information for each of the schemas supplied as a Schema argument. This
information for each submitted schema includes the title, version, description, publisher, and any referenced
schemas, as well as whether the schema has been installed or not.

Syntax
<exec> info [options] Schema+

· The Schema argument is the name of a schema or a part of a schema's name. (To display a schema's

package ID and detailed information about its installation status, you should use the list
command.)

· Use <exec> info -h to display help for the command.

Example
The following command displays information about the latest DocBook-DTD and NITF schemas:

xmlschemamanager info doc nitf

6.1.5.3 initialize

This command initializes the Schema Manager environment. It creates a cache directory where information
about all schemas is stored. Initialization is performed automatically the first time a schema-cognizant Altova
application is installed. You would not need to run this command under normal circumstances, but you would
typically need to run it after executing the reset command.

Syntax
<exec> initialize | init [options]

Options
The initialize command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

431

© 2018-2024 Altova GmbH

Schema Manager 431DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Example
The following command initializes Schema Manager:

xmlschemamanager initialize

6.1.5.4 install

This command installs one or more schemas.

Syntax
<exec> install [options] Schema+

To install multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas you want, run the list command. You can also use an
abbreviated identifier if it is unique, for example docbook. If you use an abbreviated identifier, then the

latest version of that schema will be installed.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The install command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command installs the CBCR 2.0 (Country-By-Country Reporting) schema and the latest DocBook
DTD:

xmlschemamanager install cbcr-2.0 docbook

6.1.5.5 list

This command lists schemas under the management of Schema Manager. The list displays one of the
following

431

420

432 DTDs and XML Schemas Schema Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· All available schemas
· Schemas containing in their name the string submitted as a Schema argument

· Only installed schemas
· Only schemas that can be upgraded

Syntax
<exec> list | ls [options] Schema?

If no Schema argument is submitted, then all available schemas are listed. Otherwise, schemas are listed as

specified by the submitted options (see example below). Note that you can submit the Schema argument

multiple times.

Options
The list command takes the following options:

--installed, --i List only installed schemas. The default is false.

--upgradeable, --u List only schemas where upgrades (patches) are available. The default is
false.

--help, --h Display help for the command.

Examples

· To list all available schemas, run: xmlschemamanager list

· To list installed schemas only, run: xmlschemamanager list -i

· To list schemas that contain either "doc" or "nitf" in their name, run: xmlschemamanager list doc

nitf

6.1.5.6 reset

This command removes all installed schemas and the cache directory. You will be completely resetting your
schema environment. After running this command, be sure to run the initialize command to recreate the
cache directory. Alternatively, run the reset command with the -i option. Since reset -i restores the original

installation of the product, we recommend that you run the update command after performing a reset and
initialization. Alternatively, run the reset command with both the -i and -u options.

Syntax
<exec> reset [options]

Options
The reset command takes the following options:

--init, --i Initialize Schema Manager after reset. The default is false.

--update, --u Updates the list of available schemas in the cache. The default is false.

430

434

© 2018-2024 Altova GmbH

Schema Manager 433DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Examples

· To reset Schema Manager, run: xmlschemamanager reset

· To reset Schema Manager and initialize it, run: xmlschemamanager reset -i

· To reset Schema Manager, initialize it,and update its schema list, run: xmlschemamanager reset -i

-u

6.1.5.7 uninstall

This command uninstalls one or more schemas. By default, any schemas referenced by the current one are
uninstalled as well. To uninstall just the current schema and keep the referenced schemas, set the option --k.

Syntax
<exec> uninstall [options] Schema+

To uninstall multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas that are installed, run the list -i command. You can also use

an abbreviated schema name if it is unique, for example docbook. If you use an abbreviated name, then

all schemas that contain the abbreviation in its name will be uninstalled.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The uninstall command takes the following options:

--keep-references, --k Set this option to keep referenced schemas. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command uninstalls the CBCR 2.0 and EPUB 2.0 schemas and their dependencies:

xmlschemamanager uninstall cbcr-2.0 epub-2.0

431

420

434 DTDs and XML Schemas Schema Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The following command uninstalls the eba-2.10 schema but not the schemas it references:
xmlschemamanager uninstall --k cbcr-2.0

6.1.5.8 update

This command queries the list of schemas available from the online storage and updates the local cache
directory. You should not need to run this command unless you have performed a reset and
initialize .

Syntax
<exec> update [options]

Options
The update command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command updates the local cache with the list of latest schemas:

xmlschemamanager update

6.1.5.9 upgrade

This command upgrades all installed schemas that can be upgraded to the latest available patched version.
You can identify upgradeable schemas by running the list -u command.

Note: The upgrade command removes a deprecated schema if no newer version is available.

Syntax
<exec> upgrade [options]

Options
The upgrade command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

432

430

431

© 2018-2024 Altova GmbH

Schema Manager 435DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

--help, --h Display help for the command.

436 DTDs and XML Schemas DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6.2 DTDs

A DTD document can be edited in Text View and Grid View. The default view can be set in the File Types
section of the Options dialog.

Text View
In Text View, the document is displayed with syntax coloring and must be typed in. Given below is a sample of
a DTD fragment:

<?xml version="1.0" encoding="UTF-8"?>

<!--Element declarations-->

<!ELEMENT document (header, para+, img+, link+)>

<!ELEMENT header (#PCDATA)>

<!ELEMENT img EMPTY>

 <!ATTLIST img

 src CDATA #REQUIRED

 >

<!-- Notation Declarations -->

<!NOTATION GIF PUBLIC "urn:mime:img/gif">

Indentation is indicated by indentation guides and is best obtained by using the tab key. The amount of tab
indentation can be set in the Text View Settings dialog .

Grid View
In Grid View, the DTD document is displayed as a table. The screenshot below shows the Grid View display of
the DTD listed above.

1516

142

© 2018-2024 Altova GmbH

DTDs 437DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Editing DTD structure

· When the cursor is inside a cell you can insert or append nodes, or add a child node, via the context
menu or the XML menu.

· Click the node's type icon at the top left of the cell to change the node type.
· Change the content model (sequence, mixed, empty, etc) and occurrence modifier (exactly 1, 1 or

more, etc) of a node by clicking the respective icon and selecting the option you want.
· You can also use drag-and-drop to move nodes to new locations in the document, as well as copy–

paste to copy nodes to new locations.

Editing DTD values

· To edit values such as element and attribute names and comments, double-click in the cell and edit.

Grid View toolbar
The Grid View toolbar provides access to the view's settings dialog and contains commands, such as to set
magnification and word-wrapping.

DTD features in XMLSpy
XMLSpy offers the following very useful features:

· Convert DTD to XML Schema: With the DTD/Schema | Convert DTD to Schema command,
DTDs can be converted to XML Schemas.

1291

438 DTDs and XML Schemas DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Generate sample XML file from DTD: With the DTD/Schema | Generate Sample XML/JSON
File command, an XML document can be generated that is based on the active DTD.1296

© 2018-2024 Altova GmbH

XML Schemas 439DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

6.3 XML Schemas

XML Schema documents can be edited in Text View, Grid View, and Schema View. The default view in which
XML Schema documents open can be set in the File Types section of the Options dialog. You can switch
between views while you edit, using the view that is most useful for the current purpose. XML Schema
documents are typically saved with the extension .xsd or .xs.

Editing in Text View
In Text View an XML Schema is edited as an XML document; the editing features available for XML
documents are also available for XML Schemas. As with all XML documents where the schema is identified
and accessible, Text View entry helpers display the items available for addition at the cursor location point.

Editing in Grid View
In Grid View an XML Schema is edited as an XML document; the editing features available for XML
documents are also available for XML Schemas. When an item in Grid View is selected, Grid View entry
helpers display the items available for addition at the cursor location point.

Editing in Schema View
Schema View is a graphical interface for designing schemas. While you create/edit the schema in Schema
View, XMLSpy generates a corresponding text document behind the interface. How to create and edit XML
Schema documents in Schema View is described in detail in the section Editing Views | Schema View .

Altova website: XML Schema Editor

XML Schema features in XMLSpy
Additionally, XMLSpy offers the following very useful features:

· Convert XML Schema to DTD: With the DTD/Schema | Convert Schema to DTD command, XML
Schemas can be converted to DTDs.

· Generate sample XML file from XML Schema: With the DTD/Schema | Generate Sample XML
File command, an XML document can be generated that is based on the active XML Schema.
Sample values can also be specified for elements and attributes in the sample XML.

· XML signatures for XML Schema (.xsd) files in Schema View can be created as external signature
files. How to work with signatures is described in the section, XML Signatures .

1516

327

151

155

164

213

1294

1296

406

406

https://www.altova.com/xmlspy-xml-editor/xsd-editor

440 DTDs and XML Schemas Schema Subsets

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6.4 Schema Subsets

One or more components of an XML Schema can be created as a separate schema file, known as a schema
subset. The advantage of using smaller schema subsets to compose the larger schema (by means of Includes)
is that the smaller files are more manageable than the single full schema.

In Schema View, one possible work scenario that describes various aspects of the Schema Subsets feature is
as follows:

1. Create a schema subset that contains one or more components of the active schema. How to do this
is described below ,

2. Create additional schema subsets as required.
3. Include the newly created schema subset/s to compose the larger schema. Do this for each schema

subset by appending or inserting an Include component in the Schema Overview window , and
selecting the newly created schema subset file.

4. Delete any components that were present in the original full schema but are now duplicated because of
the included subset/s.

You can also do the reverse in Schema View, that is, flatten the included schema subsets so that: (i) the
components contained in the schema subsets are added directly to the main schema, and (ii) the included
schema subsets are deleted from the main schema. How to flatten a schema is described further below .

Creating schema subsets
To create a schema subset, do the following:

1. With the required XML Schema active in Schema View, select the command Schema Design |
Create Schema Subset. This pops up the Select Schema Components dialog (screenshot below).

2. In the dialog, check the component or components you wish to create as a single schema subset,
then click Next. (Note that a check box below the pane enables components from all referenced files
to also be listed for selection.)

440

219

442

© 2018-2024 Altova GmbH

Schema Subsets 441DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

3. In the Schema Subset Generation dialog that now appears (screenshot below), enter the name/s you
want the file/s of the schema subset package to have. You must also specify the folder in which the
new schema subset files are to be saved. A schema subset package could have multiple files if one or
more of the components being created is an imported component in the original schema. A separate
schema file is created for each namespace in the schema subset. The filenames displayed in the
dialog are, by default, the names of the original files. But since you are not allowed to overwrite the
original files, use new filenames if you wish to save the files in the same folder as the original files.

442 DTDs and XML Schemas Schema Subsets

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. On clicking OK, the schema subset file with the namespace corresponding to that of the active file is
opened in Schema View. Any other files in the package are created but not opened in Schema View.

Flattening a schema
Flattening the active schema in Schema View is the process of: (i) adding the components of all included
schemas as global components of the active schema, and (ii) deleting the included schemas.

To flatten the active schema, select the command Schema Design | Flatten Schema. This pops up the
Flatten Schema dialog (screenshot below), which contains the names of separate files, one for each
namespace that will be in the flattened schema. These default names are the same as the original filenames.
But since you are not allowed to overwrite the original files, the filenames must be changed if you wish to save
in the same folder as the active file. You can browse for a folder in which the flattened schema and its
associated files will be saved.

© 2018-2024 Altova GmbH

Schema Subsets 443DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

On clicking OK, the flattened schema file will be opened in Schema View.

444 DTDs and XML Schemas Schema Rules

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6.5 Schema Rules

A Schema Rule Set is a set of rules one can use to validate an XML Schema. For example, a rule can specify
that attribute names, as defined in the XML Schema, begin with a lowercase alphabet, or that a given complex
type can only be extended from a specific type.

A set of schema rules is saved in a Rule Set file, which is an XML (.xml) file. XMLSpy contains a Schema
Rules Editor in which you can edit schema rules graphically. In XMLSpy, one or more Rule Set files can
then be assigned to an XML Schema . The XML Schema is validated in Schema View against the assigned
Rule Sets by selecting the XML | Validate (F8) command.

6.5.1 Managing Rule Sets

One or more Schema Rule Set files (.xml files) can be assigned to the active XML Schema (.xsd file). This is
done via the Schema tab of the Info Window (screenshot below).

Adding Rule Sets for extended validation

To add a Schema Rule Set file, click the context menu button. This pops up a menu (see screenshot
above) in which you can select how you wish to add Schema Rule Set files to the XML Schema. The following
options are available:

· Add Predefined Rule Set: You can select from a list of predefined Schema Rule Sets that have been
supplied with XMLSpy. These Rule Set files are saved in the Extended Schema Validation folder in
the XMLSpy application folder. Any Rule Set file added to this folder will be displayed in the Predefined
Rule Set dialog and will be available for addition.

· Browse for Existing Rule Set: You can browse for a non-predefined Schema Rule Set file.
· Create a New Rule Set: Pops up the Schema Rule Editor, in which you can edit the Schema Rules in

a Schema Rule Set file. How to work with the Schema Rules Editor is described in the section,
Defining a Rule Set . After you save a Schema Rule Set file created via this command, it is added to
the listing for the active XML Schema (see screenshot below).

446

444

446

© 2018-2024 Altova GmbH

Schema Rules 445DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Any number of Schema Rule Sets can be added (see screenshot above). When more than one Schema Rule
Set is assigned to an XML Schema, the rules in all the added Schema Rule Sets are used when the XML
Schema is validated in Schema View (XML | Validate).

Enabling and disabling extended schema validation
Extended schema validation can be enabled or disabled by clicking the Enable Extended Schema Validation
check box.

Editing and removing Rule Sets
Individual Rule Sets assigned to an XML Schema can be managed via the context menu that appears on

clicking the context menu button (screenshot below).

The following options are available:

· Apply Rule Set to imported and included schemas: If a Rule Set is applied, rules in it will be used for
all schemas that the main schema imports or includes.

· Edit Rule: Opens the Schema Rule Set in the Schema Rules Editor.
· Remove Rule Set: Removes the Rule Set from the list of added Rule Sets.
· Remove Rule Set and delete from disk : This command is enabled for all non-predefined Rule Sets. In

addition to removing the Rule Set from the list of added Rule Sets, this command also deletes the Rule
Set.

446 DTDs and XML Schemas Schema Rules

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6.5.2 Defining a Rule Set

A Schema Rule Set can be opened for editing in the Schema Rules Editor (screenshot below). You can then
create, edit, and delete schema rules in that Schema Rule Set file. To open a Rule Set in the Schema Rules
Editor, do the following:

1. Select the Rule Set in the list of Rule Sets in the Info window.

2. Clicking the context menu button of that Rule Set.
3. In the context menu that appears, select Edit Rule.

The Schema Rules Editor dialog has two panes:

· A Rules pane (in the top part of the Editor), in which you can add and delete rules. An empty line for a
rule can be appended or inserted by clicking on the respective button (Append or Insert) in the top left
of the pane. A rule can be deleted by selecting it and clicking the Delete button in the top right of the
pane. Each rule in this pane has a name, a descriptive message text, and a severity level (if the rule is
contradicted, validation can be set to return an error or a warning).

· A Rule pane (in the bottom part of the Editor). This pane displays the details of the rule that has been
selected in the Rules pane above it, and enables the details of the rule to be edited. For details about
defining rules, see the section, Defining a Rule , below.

After the rules in a Rule Set file have been edited, click Save to save the rules to the Rule Set File.

447

© 2018-2024 Altova GmbH

Schema Rules 447DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Defining a rule
To define or edit a rule, select the rule from the listing in the upper Rules pane. The definition of the rule will be
displayed in the Rule pane and can be edited. The screenshot below displays a rule which can be defined as
follows: If a complex type is an extension of a simple type, then it must have a child k ind AttributeGroup.

The Validate condition set and Filter condition set

· Each rule has one set of Validate conditions and one set of Filter conditions (see first column in
screenshot above).

· The set of Filter conditions must eventually evaluate to true in order for the Validate condition to be
evaluated.

· Each set of conditions (Validate or Filter) consists of one or more Condition Groups, with each
Condition Group containing one or more conditions. In the screenshot above, the Validate set contains
one Condition Group of one condition, and the Filter set contains three Condition Groups, each having
one condition. In the screenshot below, the Filter set contains three Condition Groups: The first
contains contains two conditions, the second contains three conditions, and the third contains one
condition.

· Each individual condition can be negated by checking its Not check box (located to the left of the
condition).

· Within a Condition Group, the logical connectors and or or indicate, respectively, whether all conditions
in the group or one condition in the Condition Group must evaluate to true in order for the entire
Condition Group to evaluate to true. In the GUI, these logical operators are the inner of the two columns
of logical operators.

· Each Condition Group can be negated by checking its Not check box (located to the left of the
Condition Group's logical operator).

448 DTDs and XML Schemas Schema Rules

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The outer logical connector and or or indicates, respectively, whether all the Condition Groups in the
set (Validate or Filter) or one Condition Group must evaluate to true in order for the entire set (Validate
or Filter) to evaluate to true.

· Logical connectors can be changed by selecting the appropriate option in the combo box for the outer
logical connector (the Condition Group connector). The value of the inner logical connectors (the
connectors for conditions within a Condition Group) are all switched to the opposite value as that of the
outer logical connector.

· A Condition Group or Condition can be appended or inserted relative to the selected condition. Do this
by selecting a condition, then clicking the Append or Insert button (at the top left of the pane) and
then selecting the required item (Condition Group or Condition) from the menu (see screenshot below).

Kinds of condition
A condition can belong to one of three groups (also see screenshot below):

· Component kind (in the dropdown list the kinds beginning with Component; see screenshot below)
· Property kind (Property Value)
· A combination of component and property kinds (kinds with Property and Component in their names)

The kind of a condition is selected from the dropdown list in the Condition column of the condition (screenshot
above). Each of the three groups of conditions is described below.

Conditions of Component k ind
For conditions of the Component kind (kinds beginning with Component), the component must be specified
subsequently in the Component column (see screenshot below). The component is selected from the dropdown
list in the Component field of a sub-condition. Since no other field (Property, Comparator Value) is to be defined
for conditions of the Component kind, all other fields are grayed out.

© 2018-2024 Altova GmbH

Schema Rules 449DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

In the screenshot above, the Filter condition specifies that the rule concerns components of kind Element. If the
Validate condition then specifies that the component must have a child of kind Notation, then the complete rule
can be stated as: An Element component must have a child of kind Notation. If the Validate condition had its
NOT option checked, then the rule would be stated as: An Element component must not have a child of kind
Notation.

Conditions of Property k ind
The condition of the Property kind is Property Value (see screenshot below). This kind of condition specifies the
nature of a property. It therefore requires entries in the Property and Comparator columns, and, optionally, an
entry in the Value column. No entry is required in the Component column, which is therefore grayed out.
Properties listed in the dropdown lists of the Property column include not only XML attributes (such as default
and maxOccurs) but also the logical properties of components (such as derivedBy).

The screenshot above shows a rule in which the Model property has a value equal to All and is negated (via the
Not check box). Taken in conjunction with the filter on the Model Group component, this rule simply states that
a schema must not contain any xsd:all element.

Note: The following points should be noted:

· When using the IsQNameEqualTo comparator, the corresponding value must be written in the form:
{URI}localName. For example, a value could be: {http://www.w3.org/2001/XMLSchema}

NOTATION.
· The default property can be present and empty (<element name default=""/>) or it can be

absent (<element name/>).

Conditions that combine Component and Property k inds
Conditions that are a combination of Component and Property kinds are:

· ComponentHasChildOfKindWithPropertyValue: Specifies the component kind of a child element and
the property's value.

450 DTDs and XML Schemas Schema Rules

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· PropertyResolvesToComponentOfKind: A property is specified that resolves to a component kind.
The Comparator and Value columns are empty.

Negating a condition
A condition is negated by checking the Not check box to its immediate left (the inner Not check boxes). A
Condition Group is negated by checking the Not check box to the left of the logical connector for conditions in
that Condition Group..

© 2018-2024 Altova GmbH

Catalogs in XMLSpy 451DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

6.6 Catalogs in XMLSpy

XMLSpy supports a subset of the OASIS XML catalogs mechanism. The catalog mechanism enables XMLSpy
to retrieve commonly used schemas (as well as stylesheets and other files) from local user folders. This
increases the overall processing speed, enables users to work offline (that is, not connected to a network), and
improves the portability of documents (because URIs would then need to be changed only in the catalog files.)

The catalog mechanism in XMLSpy works as outlined in this section:

· How Catalogs Work
· Catalog Structure in XMLSpy
· Customizing Your Catalogs
· Environment Variables

For more information on catalogs, see the XML Catalogs specification.

6.6.1 How Catalogs Work

Catalogs can be used to redirect both DTDs and XML Schemas. While the concept behind the mechanisms of
both cases is the same, the details are different and are explained below.

DTDs
Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by mapping, in the
catalog file, public or system identifiers to the required local URI. So when the DOCTYPE declaration in an XML

file is read, its public or system identifier locates the required local resource via the catalog file mapping.

For popular schemas, the PUBLIC identifier is usually pre-defined, thus requiring only that the URI in the catalog

file map the PUBLIC identifier to the correct local copy. When the XML document is parsed, the PUBLIC

identifier in it is read. If this identifier is found in a catalog file, then the corresponding URL in the catalog file will
be looked up and the schema will be read from this location. So, for example, if the following SVG file is
opened in XMLSpy:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="20" height="20" xml:space="preserve">

 <g style="fill:red; stroke:#000000">

 <rect x="0" y="0" width="15" height="15"/>

 <rect x="5" y="5" width="15" height="15"/>

 </g>

</svg>

The catalog is searched for the PUBLIC identifier of this SVG file. Let's say the catalog file contains the

following entry:

<catalog>

 ...

451

452

453

455

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

452 DTDs and XML Schemas Catalogs in XMLSpy

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 <public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svg11.dtd"/>

 ...
</catalog>

In this case, there is a match for the PUBLIC identifier. As a result, the lookup for the SVG DTD is redirected to

the URL schemas/svg/svg11.dtd (which is relative to the catalog file). This is a local file that will be used as

the DTD for the SVG file. If there is no mapping for the Public ID in the catalog, then the URL in the XML

document will be used (in the SVG fie example above, this is the Internet URL:
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd).

XML Schemas
In XMLSpy, you can also use catalogs with XML Schemas. In the XML instance file, the reference to the
schema will occur in the xsi:schemaLocation attribute of the XML document's top-level element. For example,

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

The value of the xsi:schemaLocation attribute has two parts: a namespace part (green above) and a URI part

(highlighted). The namespace part is used in the catalog to map to the alternative resource. For example, the
following catalog entry redirects the schema reference above to a schema at an alternative location.

<uri name="http://www.xmlspy.com/schemas/orgchart" uri="C:\MySchemas\OrgChart.xsd"/>

Normally, the URI part of the xsi:schemaLocation attribute's value is a path to the actual schema location.

However, if the schema is referenced via a catalog, the URI part need not point to an actual XML Schema but
must exist so that the lexical validity of the xsi:schemaLocation attribute is maintained. A value of foo, for

example, would be sufficient for the URI part of the attribute's value to be valid.

6.6.2 Catalog Structure in XMLSpy

When XMLSpy starts, it loads a file called RootCatalog.xml (structure shown in listing below), which contains

a list of catalog files that will be looked up. You can modify this file and enter as many catalog files to look up
as you like, each of which is referenced in a nextCatalog element. These catalog files are looked up and the

URIs in them are resolved according to their mappings.

Listing of RootCatalog.xml
<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"

 xmlns:spy="http://www.altova.com/catalog_ext"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog Catalog.xsd">
 <nextCatalog catalog="%PersonalFolder%/Altova/%AppAndVersionName%/CustomCatalog.xml"/>

 <!-- Include all catalogs under common schemas folder on the first directory level -->

 <nextCatalog spy:recurseFrom="%CommonSchemasFolder%" catalog="catalog.xml"

spy:depth="1"/>
 <nextCatalog spy:recurseFrom="%ApplicationWritableDataFolder%/pkgs/.cache"

catalog="remapping.xml" spy:depth="0"/>

 <nextCatalog catalog="CoreCatalog.xml"/>

</catalog>

© 2018-2024 Altova GmbH

Catalogs in XMLSpy 453DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

The listing above references a custom catalog (named CustomCatalog.xml) and a set of catalogs that locate

commonly used schemas (such as W3C XML Schemas and the SVG schema).

· CustomCatalog.xml is located in your Personal Folder (located via the variable %PersonalFolder%). It

is a skeleton file in which you can create your own mappings. You can add mappings to
CustomCatalog.xml for any schema you require that is not addressed by the catalog files in the

Common Schemas Folder. Do this by using the supported elements of the OASIS catalog mechanism
(see next section).

· The Common Schemas Folder (located via the variable %CommonSchemasFolder%) contains a set of

commonly used schemas. Inside each of these schema folders is a catalog.xml file that maps public

and/or system identifiers to URIs that point to locally saved copies of the respective schemas.
· Schemas related to XBRL and various XBRL taxonomies are large and are installed locally on demand

with the help of Altova's Taxonomy Manager. Individual schemas and taxonomies are mapped in the
catalog remapping.xml, which is located in the pkgs/.cache subfolder of the Program Data Folder

(located via the variable %ApplicationWritableDatFolder%). Please do not edit this file; the

smallest error could seriously compromise large sets of references.
· CoreCatalog.xml is located in the XMLSpy application folder, and is used to locate schemas and

stylesheets used by XMLSpy-specific processes, such as StyleVision Power Stylesheets which are
stylesheets used to generate Altova's Authentic View of XML documents.

Location variables
The variables that are used in RootCatalog.xml (listing above) have the following values:

%PersonalFolder%
Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder% C:\ProgramData\Altova\Common2024\Schemas

%
ApplicationWritableDataFolde
r% C:\ProgramData\Altova

Location of catalog files and schemas
Note the locations of the various catalog files.

· RootCatalog.xml and CoreCatalog.xml are in the XMLSpy application folder.

· CustomCatalog.xml is located in your MyDocuments\Altova\XMLSpy folder.

· The catalog.xml files are each in a specific schema folder, these schema folders being inside the

Common Schemas Folder.

6.6.3 Customizing Your Catalogs

When creating entries in CustomCatalog.xml (or any other catalog file that is to be read by XMLSpy), use only

the following elements of the OASIS catalog specification. Each of the elements below is listed with an
explanation of their attribute values. For a more detailed explanation, see the XML Catalogs specification. Note
that each element can take the xml:base attribute, which is used to specify the base URI of that element.

· <public publicId="PublicID of Resource" uri="URL of local file"/>

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

454 DTDs and XML Schemas Catalogs in XMLSpy

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· <system systemId="SystemID of Resource" uri="URL of local file"/>

· <uri name="filename" uri="URL of file identified by filename"/>

· <rewriteURI uriStartString="StartString of URI to rewrite" rewritePrefix="String to

replace StartString"/>
· <rewriteSystem systemIdStartString="StartString of SystemID"

rewritePrefix="Replacement string to locate resource locally"/>

Note the following points:

· In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the system element.

· A URI can be mapped to another URI using the uri element.
· The rewriteURI and rewriteSystem elements enable the rewriting of the starting part of a URI or

system identifier, respectively. This allows the start of a filepath to be replaced and consequently
enables the targeting of another directory. For more information on these elements, see the XML
Catalogs specification.

From release 2014 onwards, XMLSpy adheres closely to the XML Catalogs specification (OASIS Standard
V1.1, 7 October 2005) specification. This specification strictly separates external-identifier look-ups (those with
a Public ID or System ID) from URI look-ups (URIs that are not Public IDs or System IDs). Namespace URIs
must therefore be considered simply URIs—not Public IDs or System IDs—and must be used as URI look-ups
rather than external-identifier look-ups. In XMLSpy versions prior to version 2014, schema namespace URIs
were translated through <public> mappings. From version 2014 onwards, <uri> mappings have to be used.

Prior to v2014: <public publicID="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

V-2014 onwards: <uri name="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

How XMLSpy finds a referenced schema
A schema is referenced in an XML document via the xsi:scemaLocation attribute (shown below). The value of

the xsi:schemaLocation attribute has two parts: a namespace part (green) and a URI part (highlighted).

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

Given below are the steps, followed sequentially by XMLSpy, to find a referenced schema. The schema is
loaded at the first successful step.

1. Look up the catalog for the URI part of the xsi:schemaLocation value. If a mapping is found, including

in rewriteURI mappings, use the resulting URI for schema loading.

2. Look up the catalog for the namespace part of the xsi:schemaLocation value. If a mapping is found,

including in rewriteURI mappings, use the resulting URI for schema loading.

3. Use the URI part of the xsi:schemaLocation value for schema loading.

File extensions and intelligent editing according to a schema
Via catalog files you can also specify that documents with a particular file extension should have XMLSpy's
intelligent editing features applied in conformance with the rules in a schema you specify. For example, if you
create a custom file extension .myhtml for (HTML) files that are to be valid according to the HTML DTD, then
you can enable intelligent editing for files with these extensions by adding the following element of text to

CustomCatalog.xml as a child of the <catalog> element.

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

© 2018-2024 Altova GmbH

Catalogs in XMLSpy 455DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

<catalog>

 ...
<spy:fileExtHelper ext="myhtml" uri="schemas/xhtml/xhtml1-transitional.dtd"/>

 ...
</catalog>

This would enable intelligent editing (auto-completion, entry helpers, etc) of .myhtml files in XMLSpy according

to the XHTML 1.0 Transitional DTD. Refer to the catalog.xml file in the %AltovaCommonSchemasFolder%

\Schemas\xhtml folder, which contains similar entries.

XML Schema specifications
XML Schema specification information is built into XMLSpy and the validity of XML Schema (.xsd) documents
is checked against this internal information. In an XML Schema document, therefore, no references should be
made to any schema that defines the XML Schema specification.

The catalog.xml file in the %AltovaCommonSchemasFolder%\Schemas\schema folder contains references to

DTDs that implement older XML Schema specifications. You should not validate your XML Schema documents
against these schemas. The referenced files are included solely to provide XMLSpy with entry helper info for
editing purposes should you wish to create documents according to these older recommendations.

6.6.4 Environment Variables

Shell environment variables can be used in the nextCatalog element to specify the path to various system
locations (see RootCatalog.xml listing above). The following shell environment variables are supported:

%PersonalFolder%
Full path to the Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder
% C:\ProgramData\Altova\Common2024\Schemas

%
ApplicationWritableD
ataFolder% C:\ProgramData\Altova

%AltovaCommonFolder% C:\Program Files\Altova\Common2024

%DesktopFolder% Full path to the Desktop folder of the current user.

%ProgramMenuFolder% Full path to the Program Menu folder of the current user.

%StartMenuFolder% Full path to Start Menu folder of the current user.

%StartUpFolder% Full path to Start Up folder of the current user.

%TemplateFolder% Full path to the Template folder of the current user.

%AdminToolsFolder%

Full path to the file system directory that stores administrative tools of the current
user.

456 DTDs and XML Schemas Catalogs in XMLSpy

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

%AppDataFolder% Full path to the Application Data folder of the current user.

%CommonAppDataFolder
% Full path to the file directory containing application data of all users.

%FavoritesFolder% Full path of the Favorites folder of the current user.

%PersonalFolder% Full path to the Personal folder of the current user.

%SendToFolder% Full path to the SendTo folder of the current user.

%FontsFolder% Full path to the System Fonts folder.

%ProgramFilesFolder% Full path to the Program Files folder of the current user.

%CommonFilesFolder% Full path to the Common Files folder of the current user.

%WindowsFolder% Full path to the Windows folder of the current user.

%SystemFolder% Full path to the System folder of the current user.

%LocalAppDataFolder%

Full path to the file system directory that serves as the data repository for local
(nonroaming) applications.

%MyPicturesFolder% Full path to the MyPictures folder.

© 2018-2024 Altova GmbH

Working with SchemaAgent 457DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

6.7 Working with SchemaAgent

XMLSpy can be set up to work with Altova's SchemaAgent technology.

SchemaAgent technology
The SchemaAgent technology enables users to build and edit relationships between multiple schemas. It
consists of:

· A SchemaAgent Server, which holds and serves information about the relationships among schemas in
one or more search path/s (folder/s on the network) that you specify.

· A SchemaAgent client, Altova's SchemaAgent product, which uses schema information from the
SchemaAgent server to which it is connected (i) to build relationships between these schemas; and (ii)
to manage these schemas (rename, move, delete schemas, etc).

Two types of SchemaAgent server are available:

· Altova SchemaAgent Server, which can be installed on, and accessed from, a network, and
· Altova SchemaAgent, which is the SchemaAgent client product. It includes a lighter server version,

called LocalServer, which can only be used on the same machine on which SchemaAgent is installed.

XMLSpy uses SchemaAgent technology to directly edit schemas in Schema View using information about
other schemas it gets from a SchemaAgent server. In this setup, XMLSpy is connected to a SchemaAgent
server, and, in interaction with SchemaAgent Client, sends requests to SchemaAgent Server. When XMLSpy
has been set up to work with SchemaAgent, the Entry Helpers in Schema View not only list components from
the schema currently active in Schema View but also list components from other schemas in the search paths
of the SchemaAgent server to which it is connected. This provides you with direct access to these
components. You can view the content model of a component belonging to another schema in Schema View,
and reuse this component with or without modifications. You can also build relationships between schemas,
thereby enabling you to modularize and manage complex schemas directly from within XMLSpy.

Installing SchemaAgent and SchemaAgent Server
For details about installing SchemaAgent and SchemaAgent Server and configuring search paths on servers,
see the SchemaAgent user manual.

Setting up XMLSpy as a SchemaAgent client
In order for XMLSpy to work as a SchemaAgent client, you must do the following:

· Download SchemaAgent from the Altova website. You can now use SchemaAgent's LocalServer to
serve schemas. For information about configuring search paths on LocalServer, see the SchemaAgent
user manual.
Please note: SchemaAgent requires a valid license, which must be purchased after the free trial
period runs out. Also note that the Altova MissionKit product package, Enterprise Edition, includes the
SchemaAgent product and a license key for it. (The SchemaAgent Server application, however, is not
included in Altova MissionKit packages.)

· Additionally, you might want to download and install the network-based SchemaAgent Server from the
Altova website.

· Define the search path(s) for SchemaAgent server (also known as configuring SchemaAgent Server). A
detailed description of how to do this is given in the SchemaAgent user manual. (A search path is a

http://www.altova.com/download/
http://www.altova.com/download/

458 DTDs and XML Schemas Working with SchemaAgent

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

path to the folder containing the XML schemas that will be mapped for their relationships with each
other.)

· Start a connection from within XMLSpy to a SchemaAgent server.

Important: All SchemaAgent and SchemaAgent-related products from Altova (including XMLSpy) starting with
Version 2005 release 3 are not compatible with previous versions of SchemaAgent or SchemaAgent-related
products.

SchemaAgent commands in XMLSpy
The SchemaAgent functionality in XMLSpy is available only in Schema View and is accessed via menu
commands in the Schema Design menu (see screenshot) and by using the Entry Helpers in Schema View.

The menu commands provide general administrative functionality. The Entry Helpers (and standard GUI
mechanisms, such as drag-and-drop) are used to actually edit schemas.

This section describes how to use the SchemaAgent functionality available in Schema View.

6.7.1 Connecting to SchemaAgent Server

Please note: SchemaAgent Client must be installed in order for you to be able to make a connection.

Before you connect to SchemaAgent Server, only the Connect to SchemaAgent Server command is enabled
in the Schema Design menu; other SchemaAgent commands in the Schema Design menu are disabled (see
screenshot). The other menu items become enabled once a connection to a SchemaAgent Server has been
successfully made.

Connection steps
To connect to a SchemaAgent server:

1. Click the Connect to SchemaAgent server toolbar icon (Schema Design | Connect to
SchemaAgent Server). The Connect to SchemaAgent Server dialog (screenshot below) opens:

© 2018-2024 Altova GmbH

Working with SchemaAgent 459DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

2. You can use either the local server (the SchemaAgent server that is packaged with Altova
SchemaAgent) or a network server (the Altova SchemaAgent Server product, which is available free of
charge). If you select Work Locally, the local server of SchemaAgent will be started when you click OK
and a connection to it will be established. If you select Connect to Network Server, the selected
SchemaAgent Server must be running in order for a connection to be made.

Note on servers running with Windows XP SP2
If the SchemaAgent Server name is listed in the Connect to SchemaAgent Server dialog but
you cannot connect to it, it is possible that your server is not taking part in the name
resolution process of your network. Name resolution is blocked by the default settings of
the Windows XP SP2 Firewall.

To connect to such a server, do one of the following:

· Change the server settings to enable the name resolution process, or
· Enter the IP address of the server in the Edit field of the Connect Dialog box.

This need be done only once as SchemaAgent Client stores the connection string of the
last successful connection.

Schema View after connecting to SchemaAgent server
After a connection to a SchemaAgent server is established, Schema View will look something like this:

460 DTDs and XML Schemas Working with SchemaAgent

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Please note:

· At the top of the Globals view the text "Connected to SchemaAgent Server" appears, specifying the
server to which the connection has been made.

· You now have full access to all schemas and schema constructs available in the server search path.
SchemaAgent schema constructs such as global elements, complexTypes, and simpleTypes are
visible in bold blue text, below the constructs of the active schema (bold black text).

Schema constructs can be viewed by Type (Globals), by Namespace, or by Identity Constraints in the
respective tabs of the Components entry helper.

6.7.2 Opening Schemas Found in the Search Path

This example demonstrates how to open a schema found in a search path defined in SchemaAgent Server. It
uses the DB2schema.xsd file available in the ..\Tutorial folder as the active schema. The Global tab of the
Components entry helper is active.

© 2018-2024 Altova GmbH

Working with SchemaAgent 461DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

1. Scroll down to the blue Company entry in the Components entry helper, and double-click it. The Goto

Definition dialog box is opened.

2. Click the Addresslast.xsd entry, and click OK to confirm. This opens the addresslast.xsd schema
and displays the content model of the Company element.

Please note: Double-clicking a SchemaAgent schema construct, such as Element, complexType, or
simpleType, opens the associated schema (as well as all other included schemas) in XMLSpy.

6.7.3 Using IIRs

XML schema provides Import, Include, and Redefine (IIR) statements to help modularize schemas. Each
method has different namespace requirements. These requirements are automatically checked by
SchemaAgent Client and XMLSpy when you try to create IIRs.

Imports, Includes, and Redefines (IIRs)
Schema constructs can be "inserted" by different methods:

· Global elements can be dragged directly from the Components Entry Helper into the content model of
a schema component (in Schema View).

· Components, such as complexTypes and simpleTypes, can be selected from the list box that
automatically opens when defining new elements/attributes, etc.

· Components, such as complexTypes, can be selected from the Details Entry Helper when
creating/updating these type of constructs.

Incorporating schema components
This example uses the DB2schema.xsd file available in the ..\Tutorial folder as the active schema; the

Global tab of the Components Entry Helper is active.

462 DTDs and XML Schemas Working with SchemaAgent

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To use schema constructs from SchemaAgent Server schemas:

1. Make sure you are connected to a SchemaAgent server (see Connecting to SchemaAgent server).
2. Open and rename the DB2Schema.xsd file for this example, for example to Altova-office.

3. Click the icon of the Altova element in the Schema Overview to see its content model.
4. Right-click the Altova sequence compositor and select the menu option Add Child | Element. Note

that a list box containing all global elements within the server path opens automatically at this point.
Selecting one would incorporate that element.

5. Enter Altova-office as the name for this new element and press Enter.
6. Using the Details Entry Helper, click the type combo box and select the entry OfficeType.

458

© 2018-2024 Altova GmbH

Working with SchemaAgent 463DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

This opens the Select Definition For OfficeType dialog box.

7. Select Orgchart.xsd and click OK to confirm.

8. Click OK. The Import command was automatically selected for you. An expand icon appears in the
Altova-office element.

Please note: The type entry in the Details entry helper has changed; it is now displayed as

ns1:OfficeType due to the fact that the Orgchart.xsd schema file has been imported and the target
namespaces must be different in both schemas. An Import command has also been added to the
schema.

9. Click the Expand button to see the OfficeType content model.

464 DTDs and XML Schemas Working with SchemaAgent

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

10. Press F8 to validate the schema. The "Schema is valid" message should appear at this stage.

Cleaning up the schema:

1. Delete the Division element in the content model.

2. Click the Return to globals icon to switch to the Schema Overview.
3. Delete the following global elements: Division, Person and VIP.

4. Select the menu option Schema Design | Schema settings to see how the namespace settings have
changed.

The ns1 prefix has been automatically added to the www.xmlspy.com/schemas/orgchart namespace.
The Components (see screenshot) and Details Entry Helpers displays all imported constructs with the
ns1: namespace prefix.

© 2018-2024 Altova GmbH

Working with SchemaAgent 465DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Please note:
· Changes made to schemas under SchemaAgent Server control using XMLSpy automatically update

other schemas in the SchemaAgent Server path that referenced the changed schema.
· It is possible to see duplicates of constructs element, simpleTypes etc. in entry helpers (in black and

blue), if the schema you are working on is also in the SchemaAgent Server path.

6.7.4 Viewing Schemas in SchemaAgent

To work with the active schema and its related schemas in SchemaAgent, select the menu option Schema
Design | Show in SchemaAgent | schema or related schemas (see screenshot).
You have the option of opening only the active schema in SchemaAgent (File only command), or the active
schema together with either (i) all directly referenced schemas, or (ii) all directly referencing schemas, or (iii) all
directly related schemas.

6.7.5 SchemaAgent Validation

XMLSpy, in conjunction with SchemaAgent, allows you to validate not only the currently active schema but
also schemas related to the currently active schema. We call this SchemaAgent validation. There are two
types of related schemas that SchemaAgent distinguishes for extended validation: (i) directly dependent
schemas (directly referenced and directly referencing schemas), and (ii) all dependent schemas (in addition to
direct dependencies, these include indirect dependencies,which is the set of schemas that are related to
another schema via an intermediary schema.

How to carry out SchemaAgent validation is demonstrated below by means of an example. This example
assumes that the schema file address.xsd is the active schema in Schema View of XMLSpy. For the
SchemaAgent Validation command to be enabled, make sure that the search paths on SchemaAgent Server
contain the active file and some dependent files. Then do the following:

466 DTDs and XML Schemas Working with SchemaAgent

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1. Click the SchemaAgent Validation icon in the toolbar or the menu item Schema Design |
SchemaAgent Validation. This opens the SchemaAgent Validation dialog box (screenshot below), in
which you can choose whether to validate the active schema only or one or more related schemas as
well.

2. To insert schemas into the list, click the Show Direct Dependencies or Show All Dependencies
button as required. In this example, we have clicked the Show All Dependencies button, and this
inserts all files that are directly referenced or indirectly referenced into the list.

At this point, you can remove a schema from the list (Remove from List) if you wish to.

© 2018-2024 Altova GmbH

Working with SchemaAgent 467DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

3. Click the Validate button to validate all the schemas in the list box.

The Validate column displays whether the validation was successful or whether it failed.

You can now open all the non-valid schemas or a set of selected non-valid schemas in XMLSpy.

468 DTDs and XML Schemas Find in Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6.8 Find in Schemas

In Schema View, XML Schemas can be searched intelligently using XMLSpy's Find & Replace in Schema View
feature.

The Find and Replace in Schema View feature is enabled when a schema is active in Schema View. It is
accessed in one of two ways:

· Via the Edit | Find and Edit | Replace menu commands.
· Via the Find and Replace buttons in the Find in Schemas window.

Clicking a command or a button pops up the Find or the Replace dialog, according to which command/button
was clicked. The Replace dialog (screenshots below) is different from the Find dialog in that it has a text entry
field for the Replace term.

The standard Replace dialog looks like this:

Clicking the More button expands the dialog to show additional search criteria (screenshot below).

© 2018-2024 Altova GmbH

Find in Schemas 469DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Usage is as follows:

· Enter the search and replace terms in the Search and Replace text fields
· Specify the schema components to be searched in the Components tab
· Specify the properties of the components to be searched ; this helps to narrow the search
· Set the scope of the search to the current document or project, or specify a folder to search
· Execute the command
· Use the Find in Schemas window to navigate to a component quickly

The Reset button at the bottom of the dialog resets the original settings, which are as follows:

· No search term, no replace term
· Components: all
· Namespaces: none specified
· Property restrictions: anywhere
· Additional property restrictions: none
· Scope: current file

Note: Regular expressions are not supported in the Replace field.

470

471

473

476

477

479

470 DTDs and XML Schemas Find in Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6.8.1 Search Term

The search term can be entered as a string (select the String radio button) or as a number (Numeric radio
button).

String search
In a string search (screenshot below), the entry can be: (i) text; (ii) a QName; or (iii) a regular expression. For
QName searches, the namespace is determined on the basis of either the prefix used in the document or by
the namespace URI, either of which must be entered. In the screenshot below, the ts: prefix is the prefix used
in the document to identify a certain namespace.

To search using a regular expression, check the Regular Expression check box and then enter the regular
expression. Entry helpers for regular expressions are available in a menu that is activated by clicking the right-
pointing arrowhead at the right of the Search entry field (screenshot below).

You can also select whether a search term must match a whole word in the document and/or whether the
casing in the document must match. Use the check boxes below the text entry field to specify these options.

If you wish to search in referenced objects (such as a complexType definition or a global element), then check
the Search In Referenced Objects check box. This option is available only in the Find dialog; it is disabled in
the Replace dialog.

© 2018-2024 Altova GmbH

Find in Schemas 471DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

Numeric search
When the Numeric Search radio button is selected, the search term can be a single operator-and-number
search parameter, or a set of two such operator-and-number search parameters joined by the logical connector
AND or OR. In the screenshot below, there are two search term parameters which create a search term for all
integers between, and including, 1 and 5.

6.8.2 Components

The search can be restricted to one or more component types and to one or more target namespaces. These
options are available in the Components tab. Expand the Find or Replace dialog by clicking the More button.
This will bring up the tabs for refining the search, one of which is the Components tab (screenshot below).

The Components tab consists of two parts: (i) for selecting the component types to be searched, and (ii) for
selecting the target namespaces to be searched.

Component selection

You can enter the component types to be searched by clicking the Add icon located to the right of the text
field (see screenshot above). This pops up the Component Restriction dialog (screenshot below), in which you

472 DTDs and XML Schemas Find in Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

can select the components to be searched by checking them. Checking the Components item at the top of the
list selects all components (text entry: all). Unchecking it de-selects all components (text entry: none)—
including individually selected components. Individual components, therefore, can be selected only when the
Components item is unchecked. The selected components are entered in the text field as a comma-separated
list (see screenshot above).

Note: Each time the Components tab or the Find/Replace dialog is opened, the previous component
selection is retained.

Namespace selection
To select one or more target namespaces to be searched, click the Add or Insert icons and enter the required
namespace/s. If no target namespace is specified, then all target namespaces are searched. To delete a target
namespace that has been entered in this pane, select the target namespace and click the Delete icon.

© 2018-2024 Altova GmbH

Find in Schemas 473DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

6.8.3 Properties

The search can be restricted to one or more component properties (details and facets) by using options in the
Properties tab, as well as to match the contents of properties. Expand the Find or Replace dialog by clicking
the More button, and then select the Properties tab (screenshot below).

The Properties tab consists of two parts: (i) for restricting the main search term (entered in the Find text box);
and (ii) for adding additional content restrictions (which have their own match term); see the section Additional
Restrictions below.

Properties selection

You can enter the property types to be searched by clicking the Add icon , which is to the right of the text
field (see screenshot above). This pops up the Property Restriction dialog (screenshot below), in which you
can select the properties to be searched by checking them. The properties are organized in three groups: (i)
Details; (ii) Facets; (iii) Advanced (such as the DerivedFrom property). Checking Details, Facets, or Advanced
selects all properties in that group. Unchecking a group de-selects all properties in that group, including
individually selected properties. Individual properties, therefore, can be selected only when the group item is
unchecked. The selected properties are entered in the text field (see screenshot above).

474

474 DTDs and XML Schemas Find in Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: Each time the Properties tab or the Find/Replace dialog is opened, the previous properties selection is
retained.

Additional restrictions
An additional restriction enables you to specify the value of the property to search for. For example, if you are
looking for an element called state which has an enumeration MA (for the US state of Massachusetts), you
could specify the value MA of the property enumeration with the Addition Restrictions option. You would do this
as follows:

1. In the Additional Restrictions pane, click the the Add or Insert icon (screenshot below).

2. This adds a row to the pane and pops up the Property Restriction dialog. Deselect all properties and
select only the enumeration property (screenshot below).

© 2018-2024 Altova GmbH

Find in Schemas 475DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

3. In the text field at the top of the dialog, enter the enumeration value to be searched for, in this case, MA
(see screenshot above).

4. Click OK. The additional restriction is entered in the newly created row in the Additional Restrictions
pane (screenshot below).

476 DTDs and XML Schemas Find in Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the screenshot above, notice that the search term is ipo:state. In the Properties tab, the anywhere
specifies that all properties will be searched, but the additional restriction specifies that the search
should be restricted to enumerations having a value of MA.

Multiple additional restrictions can be added to further narrow the search. To delete an additional restriction,
select the additional restriction and click the Delete icon.

Note: Each time the Properties tab or the Find/Replace dialog is opened, the previous additional restriction/s
are retained.

6.8.4 Scope

The scope of the search can be set in the Scope tab (screenshot below). You can select either file/s or the
currently selected schema component in Schema View.

© 2018-2024 Altova GmbH

Find in Schemas 477DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

If the File/s option is selected, you can further specify one from among the following options:

· Current file: An additional option to search included, imported and redefined files is also available.
· Open files: All XML Schema (XSD) files that are open in XMLSpy. Only the Find All and Replace All

commands are enabled; single-step searching is not available.
· Project: The currently active project is selected, with the option to skip external folders. Only the Find

All and Replace All commands are enabled; single-step searching is not available. If the default view for
the .xsd file extension (Tools | Options | File Types | Default View) is not Schema View, then the
.xsd files are not searched.

· Folder: You can browse for the required folder; an option to search sub-folders is also available. Only
the Find All and Replace All commands are enabled; single-step searching is not available.If the default
view for the .xsd file extension (Tools | Options | File Types | Default View) is not Schema View,
then the .xsd files are not searched.

· Included, imported, and redefined files can be included in the scope by checking the option for adding
them to the scope.

In the Replace dialog, you can choose whether to copy the replacement to the file on disk or whether to open
the file in XMLSpy. Do this by selecting the appropriate button in the dialog.

6.8.5 Find and Replace Commands

The Find command behaves differently in the Find and Replace dialogs. The behavior of the Find command in
both dialogs and of the Replace command is described below.

Find dialog
After you have entered the search term and, optionally, other criteria to refine the search, you can click either
the Find (F3) or Find All command (screenshot below).

478 DTDs and XML Schemas Find in Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Clicking the Find (Ctrl+F) command in the dialog closes the Find dialog and finds the next occurrence of the
search term within the specified scope and refinement criteria. The next occurrence is found relative to the
currently selected component in Schema View. If the search reaches the end of the scope, it will not start
automatically from the beginning of the scope. Therefore, you should make sure that the currently selected
component in Schema View before starting the search is located before the document part you wish to search.

The result of the Find is highlighted in Schema View and the result is also reported in the Find In Schemas
window. In the Find In Schemas window, you can click a result to highlight that item in Schema View.

Clicking the Find All command closes the Find dialog and lists all the search results in the Find In Schemas
window.

Replace dialog
In the Replace dialog (screenshot below), clicking the Find command finds the next occurrence of the search
term relative to the current selection in Schema View. You can then click Replace to replace this occurrence.

The Find All command closes the Replace dialog and lists all the search results in the Find In Schemas
window.

© 2018-2024 Altova GmbH

Find in Schemas 479DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

The Replace All command replaces all occurrences of the found term, closes the Replace dialog, and lists the
found terms in the Find In Schemas window.

Note: Regular expressions are not supported in the Replace field.

6.8.6 Results and Information

Each time a Find, Find All, Replace, or Replace All command is executed the results of the command
execution are displayed in the Find In Schemas window (screenshot below). The term that was searched for is
displayed in green; (in the screenshot below, it can be seen that email was the search term, with no case
restriction specified). Notice that the location of the schema file is also given.

The Find All and Replace All commands list all the found occurrences in the document.

Note: The Find and Replace buttons at the top of this window bring up the Find dialog and the Replace
dialog, respectively. The Find Next button can be used to find the next occurrence of the search term.

Features of the Find In Schemas window
Results are displayed in nine separate tabs (numbered 1 to 9). So you can keep the results of one search in
one tab, do a new search, and compare results. Clicking on a result in the Find In Schemas window pops up
and highlights the relevant component in the Main Window of Schema View. In this way you can search and
navigate quickly to the desired component.

The following Find In Schema toolbar commands are available:

· The Next and Previous icons select, respectively, the next and previous messages to the currently
selected message.

· The Copy Messages commands copy, respectively, the selected message, the selected message
and its children messages, and all messages, to the clipboard.

· The Find commands find text in the Find In Schemas window.
· The Clear command deletes all messages in the currently active tab.

480 DTDs and XML Schemas Find in Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6.8.7 Finding and Renaming Globals

Named global components of XML Schemas can be found and renamed in a selected file and in all schema
files related to the selected file. Named global components are all global components except: Include, Import,
Redefine, Annotation, Comment, and PI components

 The process works as follows:

1. In Schema Overview, the global component to be found or renamed is selected.
2. In the context menu that pops up on right-clicking the selected component, select the required

command (Find All References or Rename with All References).

3. In the dialog that pops up, select the scope of the search (or rename operation). In the case of a
Rename operation, enter the new name of the global component.

4. On clicking OK, the search results are displayed in the Find in Schemas window (screenshot below).

The locations of all files in which references to the global component are found are listed (see
screenshot above). All renamed components that were found and renamed are also listed.

Find All References
To open the Find All References dialog (screenshot below), do the following: (i) Right-click the global
component in Schema Overview, (ii) In the context menu that pops up select the Find All References
command.

© 2018-2024 Altova GmbH

Find in Schemas 481DTDs and XML Schemas

Altova XMLSpy 2024 Enterprise Edition

The global component name is displayed in the Component Name field, which is grayed out and cannot be
edited. You can choose whether the search should be carried out in the current file or in another file you can
browse for (or select from a list of open files). You can also then specify whether related files (included,
imported, redefined) should be searched, by checking the Add Referenced Schema Files check box at the
bottom of the dialog.

Rename with All References
To rename a global component, right-click it and select Rename with All References from the context menu
that pops up. This pops up the Rename with All References dialog (screenshot below).

The new name you wish to give the selected global component must be entered in the Component Name text
field. You can choose whether the search and renaming should be carried out in the current file or in another file
you can browse for (or select from a list of open files). You can also then specify whether related files (included,
imported, redefined) should be searched, by checking the Add Referenced Schema Files check box at the
bottom of the dialog.

482 XSLT

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

7 XSLT

Altova website: XSLT Editor

This section on XSLT is organized into the following sections:

· Editing XSLT documents : describes the editing support for XSLT documents in XMLSpy
· XSLT Processing : shows the various ways in which XSLT transformations can be carried out in the

XMLSpy GUI using engines of your choice. This section also explains important XSLT settings in
XMLSpy.

· XSL Outline : describes the XSL Outline and XSL Info Windows, which together provide a powerful
way to view, navigate, and manage a collection of XSLT files.

XPath Evaluation
When an XML document is active, you can use the XPath/XQuery Window to evaluate XPath expressions.
This is a very useful feature to quickly check how an XPath expression will be evaluated. Type in an XPath
expression and specify whether it should be evaluated relative to the document root or to a selected context
node in the XML document. The result of the evaluation will be displayed immediately in the XPath/XQuery
Window. How to use the XPath/XQuery Window is described in the section GUI and Environment |
XPath/XQuery Window .

XSLT Profiler and Debugger
XMLSpy also contains an XSLT Profiler and XSLT Debugger to help you create correct and efficient XSLT
stylesheets faster. These two features are described in the section XSLT and XQuery Debugger .

Additional XSLT features
Additional and more detailed information about the various features described in this section is in the
descriptions of the relevant menu commands (in the User Reference section).

Altova XSLT Engines
For details about how the Altova XSLT 1.0, 2.0, and 3.0 Engines are implemented, see XSLT and XQuery
Engine Information in the Appendices .

RaptorXML for command line and batch processing
The XMLSpy GUI enables batch processing via the projects functionality. However, if you are looking for more
flexibility, you should try Altova's RaptorXML product, which provides fast XML validation, XSLT transformation,
and XQuery execution functionality. RaptorXML is ideal if you wish to perform XSLT transformations from the
command line, or batch processing.

483

485

488

121

121

543 523

523

1325

2071 2070

https://www.altova.com/xmlspy-xml-editor/xslt-editor
http://www.altova.com/raptorxml.html

© 2018-2024 Altova GmbH

XSLT Documents 483XSLT

Altova XMLSpy 2024 Enterprise Edition

7.1 XSLT Documents

XSLT 1.0, 2.0, and 3.0 documents can be edited in Text View and Grid View , and are edited like any
other XML document in Text View and Grid View . The default view in which an XSLT document is opened
can be set in the File Types section of the Options dialog.

Entry helpers
Entry helpers are available for elements, attributes, and entities. Information about the items displayed in the
entry helpers is built into XMLSpy, and is not dependent on references contained in the XSLT document.

The following points should be noted:

1. If a new XSLT document is created via the Create a New Document dialog (File | New), then the
appropriate XSLT elements and attributes (XSLT 1.0, XSLT 2.0, or XSLT 3.0, depending upon which
document type was created) are loaded into the entry helpers. Additionally, HTML elements and
attributes are loaded, as well as the HTML 4.0 entity sets, Latin-1, special characters, and symbols.

2. If an XML document is created via the Create a New Document dialog (File | New) and given XSLT
content, no entry helper items are available except for XML character entities.

3. If an XSLT document is opened that was created as an XSLT document via the Create a New
Document dialog (File | New), then the entity helpers will be as in Point 1 above.

4. If an XSLT document is opened that was not created as an XSLT document via the Create a New
Document dialog (File | New), then the entity helpers will be as in Point 1 above. Additionally, XSL-FO
elements and attributes will be listed in the Text View entry helpers.

5. The prefixes of elements in the Elements entry helper are as follows and are invariable: xsl: prefix for
XSLT elements; no prefix for HTML elements; fo: prefix for XSL-FO elements. Consequently, in order
to use the entry helpers, the namespace declarations in the XSLT document must define prefixes that
match the built-in prefixes shown in the entry helpers.

Auto-completion
In Text View, auto-completion is available in a pop-up as you type. The first item in the pop-up list that matches
the typed text is highlighted. When an element is being typed, a list of elements pops up with the first nearest
match in alphabetical order being highlighted. Similarly, when an attribute is being typed in, a list of applicable
attributes pops up. The items in the list are determined according to the rules described in the previous section
about entry helpers.

139 155

327 155

http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_Latin-1_characters
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_Special_characters
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_Symbols

484 XSLT XSLT Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XPath intelligent editing
At locations in the XSLT document where XPath expressions can be entered (for example, inside the value of a
select attribute, inside attribute value templates, and XSLT 3.0 value templates), the following features are
available.

· Syntax coloring for the XPath constructs, including matching brackets during typing.
· A hover tip if the cursor is placed over an XPath function. The tip contains information about the

function.
· XPath functions and axes are suggested in popups as you type. You can move up or down the list of

suggestions with the Up/Down cursors. If the item that is highlighted in the popup is a function, then
information about the function (its signature) is displayed in an additional popup.

· If an XML file has been assigned in the Info window , then the elements and attributes of the XML file
will also be available in the popup.

Validating XSLT documents
The XSLT document can be validated against the XSLT schema built into XMLSpy (click XML | Validate (F8)).
The correct built-in schema is automatically selected according to whether the XSLT document is XSLT 1.0,
XSLT 2.0, or XSLT 3.0 (specified in the version attribute of the xsl:stylesheet element).

492

© 2018-2024 Altova GmbH

XSLT Processing 485XSLT

Altova XMLSpy 2024 Enterprise Edition

7.2 XSLT Processing

In the XMLSpy GUI, two types of XSLT transformation are available:

· The XSL/XQuery | XSL Transformation (F10) command is used for straightforward XML
transformations with an XSLT stylesheet to result formats specified and described in the stylesheets.

· The XSL/XQuery | XSL-FO Transformation command is used: (i) for transformations of XML to FO
to PDF in two steps, and (ii) for one-step transformations of FO to PDF.

Specifying the XSLT processor for the transformation
The XSLT engine that will be used for transformations is specified in the XSL section of the Options dialog
(screenshot below).

The available options are explained in the User Reference section. The engine specified in the XSL section
will be used for all XSLT transformations. Note that for the XSL-FO transformation, an additional XSLT engine
option is available: the XSLT engine that is packaged with some FO processors. To select this option, select
the corresponding radio button at the bottom of the XSL section (see screenshot above).

Specifying the FO processor
The FO processor that will be used for transformations of FO to PDF is specified in the text box at the bottom
of the XSL section of the Options dialog (screenshot above).

1544

1544

1544

486 XSLT XSLT Processing

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XSLT 1.0, 2.0, 3.0 and Altova's XSLT engines
The XSLT version of a stylesheet is specified in the version attribute of the xsl:stylesheet (or
xsl:transform) element. XMLSpy contains the built-in Altova XSLT 1.0, Altova XSLT 2.0, and Altova XSLT 3.0
engines, and the appropriate engine is selected according to the value of the version attribute (1.0 or 2.0 or
3.0).

XSLT Transformation
The XSLT Transformation (F8) command can be used in the following scenarios:

· To transform an XML document that is active in the GUI and has an XSLT document assigned to it.
If no XSLT document is assigned, you are prompted to make an assignment when you click the XSLT
Transformation (F8) command.

· To transform an XSLT document that is active in the GUI. On clicking the XSLT Transformation (F8)
command, you are prompted for the XML file you wish to process with the active XSLT stylesheet.

· To transform project folders and files. Right-click the project folder or file and select the command.

Back-mapping
With the Back-mapping feature enabled, XSLT transformations will be carried out so that the result
document can be mapped back on to the originating XSLT+XML documents. If you click on a node in the result
document, then the XSLT instruction and the XML source data that generated that particular result node will
be highlighted. Additionally, if you click on an XSLT instruction or an XML data node, then the corresponding
nodes in the other two documents are highlighted. See the XSL/XQuery | Enable Back-Mapping
command for details.

XSL:FO Transformation
The XSL:FO Transformation command can be used in the following scenarios:

· To transform an XML document that is active in the GUI and has an XSLT document assigned to it.
The XML document will first be transformed to FO using the specified XSLT engine. The FO document
will then be processed with the specified FO processor to produce the PDF output. If no XSLT
document is assigned, you are prompted to make an assignment when you click the XSL:FO
Transformation command.

· To transform an FO document to PDF using the specified FO processor.
· To transform an XSLT document that is active in the GUI. On clicking the XSL:FO Transformation

command, you are prompted for the XML file you wish to process with the active XSLT stylesheet.
· To transform project folders and files. Right-click the project folder or file and select the command.

For a description of the options in the XSL:FO output dialog , see the User Reference section .

Parameters for XSLT
If you are using the Altova XSLT engines, XSLT parameters can be stored in a convenient GUI dialog. All the
stored parameters are passed to the XSLT document each time you transform. For more information, see the
description of the XSLT Parameters / XQuery Variables command.

1335

1333

1333

1335

1328 1328

1329

© 2018-2024 Altova GmbH

XSLT Processing 487XSLT

Altova XMLSpy 2024 Enterprise Edition

Batch processing with RaptorXML
RaptorXML is a standalone application that contains Altova's newest XML validator, XSLT engines, and XQuery
engines. It can be used from the command line, via a COM interface, in Java programs, and in .NET
applications to validate XML documents, transform XML documents using XSLT stylesheets, and execute
XQuery documents.

XSLT transformation tasks can therefore be automated with the use of RaptorXML. For example, you can
create a batch file that calls RaptorXML to transform a set of documents. See the RaptorXML documentation for
details.

http://www.altova.com/documentation.html

488 XSLT XSL Outline

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

7.3 XSL Outline

When an XSLT document is the active document in XMLSpy, information about the structure of the document is
displayed in the XSL Outline window and information about the files related to the active XSLT document is
displayed in the XSLT tab of the Info Window (which is displayed only when an XSLT document is the active
document in XMLSpy). Additionally, via these two windows, a number of commands are available that facilitate
editing the XSLT document and managing files related to it.

In the XSL Outline window (screenshot below), you can do the following:

· View the templates and functions in the active XSLT document and in all imported and included XSLT
documents.

· Sort the templates and functions on the basis of their names or match expressions, mode, priority, or
comments.

· Search for specific templates on the basis of their names/expressions.
· Use the XSL Outline to navigate to the corresponding template in the XSLT document.
· Quickly insert calls to named templates.
· Set a selected named template as the entry point for transformations.

See the section XSL Outline window for details.

In the XSLT tab of the Info Window (screenshot below), you can do the following:

489

492

489

489

492

© 2018-2024 Altova GmbH

XSL Outline 489XSLT

Altova XMLSpy 2024 Enterprise Edition

· View information about all the files related to the active XSLT document, such as the locations of
imported and included files.

· Set an XML file for transformation with the active XSLT document. Also, the schema (XSD/DTD) file can
be set for validating the selected XML file.

· Open a related file from within the Info Window.
· Quickly organize all related files into XMLSpy projects.
· Zip all related files to a user-defined location.

The XSL Outline window and the XSLT tab of the Info Window are described in detail in the sub-sections
of this section.

7.3.1 XSL Outline Window

In the XSL Outline Window (screenshot below), all templates and functions in the active XSLT document are
listed. Templates are indicated with blue icons (templates without a parameter; and templates containing
parameters). Functions are indicated with a red icon. In the combo box in the bottom left-hand of the window,
you can select whether the templates and functions listed are from: (i) only the active XSLT document (as in
the screenshot below), or (ii) the active XSLT document and all included and imported stylesheets.

489 492

490 XSLT XSL Outline

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

There are two types of templates: (i) named templates, and (ii) templates that match an XPath expression.
Each template is listed with:

· Its name (if the template has a name attribute) and/or XPath expression (if the template has a match
attribute). If the template has both, a name and a match attribute, then both are listed, with the value of
the name attribute first: namevalue, matchvalue (see the template named bold in the screenshot
above).

· Its mode, if any. Note that a template may have more than one mode (see screenshot above).
· Its priority, if any;
· The comment that directly precedes the template or function, if any.

Functions in the stylesheet are listed by their names. Functions have neither mode nor priority.

Operations
The following operations can be performed in the XSL Outline Window:

· Filtering: The list displayed in the window can be filtered to show one of the following: (i) all templates
and functions (the default setting each time XMLSpy is started); (ii) named templates only; (iii) XPath-
expression templates only; (iv) functions only. To select the required filter, click the dropdown arrow to
the right of the Search box at bottom right of the window (screenshot below), and select the required
filter (the second group of commands in the menu). The selected filter is applied immediately and
applies from this moment onwards till it is modified or till XMLSpy is closed.

© 2018-2024 Altova GmbH

XSL Outline 491XSLT

Altova XMLSpy 2024 Enterprise Edition

· Sorting and locating: Each column can be sorted alphabetically by clicking the column header. Each
subsequent click reverses the previous sorting order. After a column has been sorted in this way, if you
select any item in the list and then quickly type in a term from the sorted column, the first item in the
list that contains that term will be highlighted. In this way, you can quickly go to templates of a
particular name/expression, mode, or priority.

· Searching: Enter in the Search box (at bottom right) the name or XPath expression for which you wish
to search. The search results are displayed as you type. The following search options are available in
the dropdown list of the Search box (screenshot above): (i) whether the name or expression either
starts with or contains the search term (the first group of commands in the menu); the starts-with
option is the default each time XMLSpy is started; (ii) whether the search results should be displayed
as a reduced list or be highlighted (the third group of commands in the menu); the reduced-list option is
the default each time XMLSpy is opened. These selections are applied immediately and remain in
effect till changed or till XMLSpy is closed.

· Reloading: After the stylesheet has been modified, click the Synchronize icon in the window's
toolbar to update the XSL outline.

· Go to item: When a template or function is selected in the XSL Outline window, clicking the the Go to

Definition icon in the window's toolbar highlights the template or function in the document in
Design View. Alternatively, double-click an entry to go to it.

· Named template actions: Two groups of actions can be carried out involving named templates: (i) Calls
to the named template (with xsl:call-template) can be inserted in the stylesheet at the cursor
insertion point; and (ii) A named template can be set as the entry point for a transformation. The
commands for these actions are carried out via icons in the toolbar and are described below.

Template mode for transformation
The combo box in the toolbar, called Set mode for transformation, lists (i) all the modes in the stylesheet, plus
(ii) an empty entry (which selects the default mode) and, in the case of XSLT 3.0 stylesheets, (iii) the #unnamed
mode. Selecting a mode from the dropdown list, sets the selected mode as the mode for the transformation.
The #unnamed mode (for all XSLT versions) applies to all templates that have no mode attribute.

In the case of XSLT 1.0 and XSLT2.0 stylesheets, the default mode is the #unnamed mode. So selecting the
empty entry selects the default mode (which is the #unnamed mode and which therefore applies to all templates
with no mode attribute).

In XSLT 3.0 stylesheets, the top-level xslt element can have a default-mode attribute, which holds the default
mode for the transformation. If, in the Set mode for transformation combo box, the empty entry (default mode)
is selected, then the mode specified in the default-mode attribute will be used as the transformation mode. If
#unnamed mode is selected in the combo box, then the transformation will be applied to all templates with an
unnamed mode, that is, to templates with no mode attribute.

492 XSLT XSL Outline

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: A template can be given a mode value of #all to make it applicable to all modes.

Named templates
When a named template is selected, one or more commands in the window's toolbar relating to named
templates become enabled (screenshot below).

The commands in the toolbar (screenshot above) are, from left to right:

· Insert xsl:call-template: This command becomes active when a named template is selected in the XSL
Outline window. The command inserts an xsl:call-template element at the cursor insertion point in
the stylesheet. The name attribute of the xsl:call-template element that is inserted in the stylesheet
is given a value that is the value of the name attribute of the selected named template. This makes the
xsl:call-template a call to the selected named template.

· Insert xsl:call-template with param: This command becomes active when a named template having one
or more xsl:param child elements is selected in the XSL Outline window. As with the Insert xsl:call-
template command, the command inserts an xsl:call-template element, but in this case with a
corresponding xsl:with-param child element for every xsl:param child element of the selected
named template. The names of the inserted xsl:call-template and its xsl:with-param child
elements correspond to the names of the selected named template and its xsl:param children.

· Set the selected named template as entry point for transformation: When a named template is set as
the entry point for a transformation, transformations executed in XMLSpy start at this named template.
In the XSL Outline Window, such a named template is indicated in boldface (see screenshot at the
start of this section).

· Clear named template as entry point for transformation: Becomes active once a named template has
been set as the entry point for transformations.

· Jump to the named template selected as the entry point for transformations: Becomes active once a
named template has been set as the entry point for transformations. When the focus in the XSL
Outline window is at some other point than the named template set as the entry point for
transformations, clicking this icon highlights the named template in the XSL Outline window, thus
making access to it faster.

7.3.2 Info Window

The XSLT tab of the Info Window is displayed only when an XSLT document is the active document in XMLSpy.
It displays all the imported and included XSLT files related to the active XSLT document. You can also select
an XML file to transform with the XSLT when transformation is started with the XSLT being the active document.

© 2018-2024 Altova GmbH

XSL Outline 493XSLT

Altova XMLSpy 2024 Enterprise Edition

The following files are displayed in the XSLT tab of the Info Window:

· XSLT files: All imported and included XSLT files are listed (see screenshot above). The location of
each file is displayed in a pop-up when the mouse cursor is placed over the file. Double-clicking an
imported or included file, or selecting it and then clicking the Open icon in the Info Window toolbar,
opens the file in a new window. The Go to Include/Import Location icon in the toolbar highlights the
include/import declaration in the active XSLT document.

· XML file: An XML file can be assigned to the active XSLT stylesheet for transformations. The location of
the assigned XML file is displayed in a pop-up when the mouse cursor is placed over the file. If an XML
file is specified and the menu command XSL/XQuery | XSL Transformation (F10) is clicked, a
transformation is executed on the defined XML file using the active XSLT document as the stylesheet.
The XML file can be selected by clicking the XML icon and browsing; the selected file is displayed in
bold face. Alternatively, the XML file can be assigned via the Project Properties dialog (Input XML for
XSL/XQuery/Update transformation) or via a processing instruction in the XSLT document: <?
altova_samplexml "Products.xml"?>. In each case, the XML file will be shown in the Info Window
with the relevant icon:

assigned via the Project Properties dialog

assigned via a processing instruction in the XSLT document

assigned by clicking the XML icon and browsing for the required file; entry is
in bold font face

In the event that more than one of the above assignments exists, the selection priority is: (i) project; (ii)
processing instruction; (iii) browsed by user. The XML file can be opened by double-clicking it or by
selecting it and clicking the Open toolbar icon.

494 XSLT XSL Outline

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· XSD/DTD file: If the selected XML file has a reference to a schema (XML Schema or DTD), then this
schema file is displayed in the XSD/DTD entry. Alternatively, just as with the XML file, the schema file
can be selected via the Project Properties dialog (Validation) or by clicking the XSD/DTD icon and
browsing for the required schema file. If the schema file is selected via the Projects Properties dialog, a
Projects icon is displayed next to the entry, otherwise the clickable XSD/DTD icon is displayed with
the file entry either in a normal font face (when the schema is referenced from the XML file) or bold font
face (schema browsed for by the user via the XSD/DTD icon). Should the schema file be assigned via
more than one method, then the order of priority is as follows: (i) project; (ii) browsed by user; (iii)
reference in XML document. The location of the assigned XSD file is displayed in a pop-up when the
mouse cursor is placed over the file. The schema file can be opened by double-clicking it or by
selecting it and clicking the Open toolbar icon.

Note: If an XML or XSD/DTD file is selected via the Project Properties dialog, then to clear this selection, you
must go to the Project Properties dialog and clear the setting there. If the selection has been made by
browsing via the XML or XSD/DTD icons, then to clear this setting, select the file and click the Clear
icon in the Info Window toolbar.

Options
XPath intelligent editing: If an XML file has been assigned, the structure of the XML document is known and
intelligent XPath editing will extend to elements and attributes. At locations in the XSLT document where an
XPath expression can be entered, available elements and attributes will be shown in a popup. This option is
switched on by default. To disable XPath intelligent editing, uncheck the check box. The setting is saved for
each XSLT file separately when the file is closed, and will be used each time the file is opened.

Toolbar icons
The Info Window toolbar icons (screenshot below) are, from left to right:

· Reload info: Updates the Info Window to reflect modifications made in the XSLT document.
· Clear XML/XSD assignment: Clears an XML or XSD/DTD assignment made by the user by browsing

via the XML or XSD/DTD icons, respectively. Select the file to clear and then click this icon.
· Open document: Opens the selected document.
· Go to import/include location: When an imported or included file is selected, clicking this icon

highlights the relevant import or include declaration in the XSLT document.
· Zip all local documents: Zips all the documents listed in the Info Window to a user-defined location.

Alternatively, only the selected documents can be zipped; do this by selecting, in the dropdown menu
of this icon, the command Zip selected local documents.

· Add all files to projects: Adds all files to the current projects. Alternatively, only the selected
documents can be added; do this by selecting, in the dropdown menu of this icon, the command Add
selected files to project.

483

© 2018-2024 Altova GmbH

XSL Speed Optimizer 495XSLT

Altova XMLSpy 2024 Enterprise Edition

7.4 XSL Speed Optimizer

The XSL Speed Optimizer (also referred to in this section as the Optimizer) enables XSLT stylesheets to be
optimized so that transformations are carried out faster. The Optimizer works by running the XSLT stylesheet
over an XML document, and analyzing the stylesheet's performance. An optimization strategy is derived from
this analysis and can be saved with the XSLT stylesheet (as a processing instruction at the end of the
stylesheet). The optimized stylesheet can be used subsequently to produce faster transformations.

Optimizing an XSLT stylesheet
To optimize an XSLT stylesheet, you will need, in addition to the XSLT stylesheet, an XML document that will
serve as a sample. The XML document must be large enough for all parts of the XSLT stylesheet to be used so
that it is properly analysed. Do the optimization as follows:

1. With either the XSLT stylesheet or the XML document active, click the menu command XSL/XQuery |
XSL Speed Optimizer or click the Optimizer's icon in the main toolbar.

2. You will be prompted to select, depending on whether an XSLT or XML document is active,
respectively, an XML document or XSLT stylesheet. On clicking OK, the analysis starts. (If the XSLT or
XML document has already been assigned, then this step is skipped and the analysis will be started
directly the command is invoked.)

3. If the optimization analysis is unsuccessful, a message to that effect is displayed. (The possible
reasons for an unsuccessful optimization analysis are described below.) If the analysis is
successful, a dialog showing the results of the analysis appears (screenshot below).

The dialog gives you the option of saving the optimization (instructions) in the XSLT stylesheet (as a
processing instruction at the end of the stylesheet). Click Yes to save the optimization, No to discard
it. Whenever an optimization is saved, it overwrites any previously saved optimization.

The optimized stylesheet can now be used to carry out faster transformations.

Reasons for unsuccessful optimization analysis
If the XSL Speed Optimizer is unable to derive an optimization, this could be for one or more of the following
reasons:

1327

495

496 XSLT XSL Speed Optimizer

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The XSLT stylesheet is already time-efficient and does not need to be optimized.
· The XML document that was submitted is too small to optimize. Try again with a larger document.
· The threshold/s for optimization might be too high. Change the thresholds in the XSL Speed Optimizer

section of the Options dialog . See below.
· Optimizations for this specific XSLT structure are not available to the Optimizer. Please contact Altova

Support.

XSL Speed Optimizer settings
Settings for the Optimizer are made in the XSL Speed Optimizer section of the Options dialog (Tools |
Options, screenshot below).

A time threshold for single XSLT instructions in an XSLT stylesheet can be specified for the Optimizer. Values
range from 0.1% of total transformation time to 99% of total time. If an instruction takes more time to execute
than that specified as the threshold, then optimization analysis is invoked. Otherwise no analysis is carried out.
If optimization analysis is unsuccessful, the reason might be that the time threshold in the Optimizer settings
is too high. Consider lowering it.

1547

1547

© 2018-2024 Altova GmbH

 497XQuery

Altova XMLSpy 2024 Enterprise Edition

8 XQuery

Altova website: XQuery Editor

XQuery and XQuery Update documents can be edited in Text View. This view (see screenshot) provides
entry helpers, syntax coloring, and intelligent editing to make editing easy. In addition, you can validate your
XQuery document and run it (with an optional XML file if required) using the built-in Altova XQuery Engine.

Note: XQuery and XQuery Update files can be edited only in Text View. No other views of XQuery files are
available.

XQuery and XQuery Update file associations
In XMLSpy, XQuery and XQuery Update documents are recognized as two different document types. Typically
XQuery documents have the .xq extension, while XQuery Update documents have the .xqu file extension. You

can associate additional file extensions with these filetypes, and also change filetype associations, at any
time, in the File Type section of the Options dialog (Tools | Options | FileType).

The document type association of a file extension is important because, depending on the this association,
either an XQuery execution or an XQuery Update will be carried out when the XQuery/ Update Execution
command is run.

511

1516

511

https://www.altova.com/xmlspy-xml-editor/xquery-editor

498 XQuery

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In this section
This section is organized as follows:

· Editing XQuery Documents
· XQuery Evaluation
· XQuery Validation
· XQuery Execution/Update
· XQuery Update Facility
· XQuery and XML Databases

Other related features and information:

· XSLT/XQuery Debugger and Profiler
· XQuery Engine Implementation
· Output Window: XPath/XQuery
· Tools | Options | File Types
· Tools | Options | XQuery

RaptorXML for command line and batch processing
The XMLSpy GUI enables batch processing via the projects functionality. However, if you are looking for more
flexibility, you should try Altova's RaptorXML product, which contains Altova's newest XQuery Engine.
RaptorXML is ideal if you wish to perform XQuery executions from the command line, or batch processing.

499

506

507

508

511

518

522

2071

121

1516

1547

http://www.altova.com/raptorxml.html

© 2018-2024 Altova GmbH

Editing XQuery Documents 499XQuery

Altova XMLSpy 2024 Enterprise Edition

8.1 Editing XQuery Documents

In XMLSpy, XQuery and XQuery Update documents are recognized as two different document types. The
document type (XQuery or XQuery Update) is assigned to a file extension in the File Types section of the
Options dialog (Tools | Options | FileType , screenshot below). When a file of XQuery or XQuery Update
type is opened in XMLSpy, the XQuery editing features of Text View are available for that file.

File extensions currently defined as XQuery and XQuery Update in XMLSpy

XQuery .xq .xql .xqr .xquery

XQuery Update .xqu

Note: The editing features described in this section are identical for XQuery and XQuery Update documents.

XQuery Execution/Update
The GUI command XSL/XQuery | XQuery/ Update Execution automatically runs either an XQuery execution
or XQuery update depending on the filetype of the XQuery file that is selected to be run. See the section
XQuery Execution/Update for more details.

1516

508

500 XQuery Editing XQuery Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

8.1.1 XQuery Documents

An XQuery or XQuery Update document is opened automatically in XQuery editing mode of Text View if it is
XQuery or XQuery Update conformant. A file is defined as conforming to a certain document type in the File
Types section of the Options dialog (Tools | Options | FileType , screenshot below).

File extensions currently defined as XQuery and XQuery Update in XMLSpy

XQuery .xq .xql .xqr .xquery

XQuery Update .xqu

Setting additional file extensions to be XQuery conformant
To set additional file extensions to be XQuery conformant:

1. Select Tools | Options. The Options dialog appears (screenshot below).

2. Select the File Types section.
3. Click Add new file extension to add the new file extension to the list of file types.
4. Under Conformance, select XQuery conformant., and then XQuery or XQuery Update.

1516

© 2018-2024 Altova GmbH

Editing XQuery Documents 501XQuery

Altova XMLSpy 2024 Enterprise Edition

You should also make the following settings:

· Description: XML Query Language or XQuery Update Facility
· Content type: text/xml
· If you wish to use XMLSpy as the default editor for XQuery files, activate the Use XMLSpy as default

editor check box.

8.1.2 XQuery Entry Helpers

There are three Entry Helpers in XQuery mode of Text View: XQuery Keywords (blue), XQuery Variables
(purple), and XQuery Functions (olive).

Note the following points:

· The color of items in the three Entry Helpers are different and correspond to the syntax coloring used in
the text. These colors cannot be changed.

· The listed keywords and functions are those supported by the Altova XQuery Engines.
· The variables are defined in the XQuery document itself. When a $ and a character are entered in Text

View, the character is entered in the Variables Entry Helper (unless a variable consisting of exactly
that character exists). As soon as a variable name that is being entered matches a variable name that
already exists, the newly entered variable name disappears from the Entry Helper.

· To navigate in any Entry Helper, click an item in the Entry Helper, and then use either the scrollbar,
mouse wheel, or page-down and page-up to move up and down the list.

To insert any of the items listed in the Entry Helpers into the document, place the cursor at the required
insertion point and double-click the item. Note that some character strings represent both a keyword and a
function (empty, unordered, and except). The appropriate item is inserted depending on what you double-click.

8.1.3 XQuery Syntax Coloring

An XQuery document can consist of XQuery code as well as XML code. The default syntax coloring for the
XQuery code is described in this section. The syntax coloring for XML code in an XQuery document is the

502 XQuery Editing XQuery Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

same as that used for regular XML documents. All syntax coloring (for both XQuery code and XML code) is set
in the Fonts and Colors section of the Options dialog (Tools | Options). Note that XQuery code can be
contained in XML elements by enclosing the XQuery code in curly braces {} (see screenshot for example).

In XQuery code in the XQuery Mode of Text View, the following default syntax coloring is used:

· (: Comments, including 'smiley' delimiters, are in gray :)

· XQuery Keywords are in blue: keyword

· XQuery Variables, including the dollar sign, are in purple: $start

· XQuery Functions, but not their parentheses, are in green: function()

· Strings are in orange: "Procedure"

· All other text, such as path expressions, is black (shown underlined below). So:
for $s in doc("report1.xml")//section[section.title = "Procedure"]

return ($s//incision)[2]/instrument)

You can change these default colors and other font properties in the Fonts and Colors section of the
Options dialog (Tools | Options).

1534

1534

© 2018-2024 Altova GmbH

Editing XQuery Documents 503XQuery

Altova XMLSpy 2024 Enterprise Edition

8.1.4 XQuery Intelligent Editing

The XQuery mode of Text View provides the following intelligent editing features.

· Bracket-matching
· Keywords
· Variables
· Functions
· Visual guides

Bracket-matching
The bracket-matching feature highlights the opening and closing brackets of a pair of brackets, enabling you to
clearly see the contents of a pair of brackets. This is particularly useful when brackets are nested, as in
XQuery comments (see screenshot below).

· Bracket-matching is activated when the cursor is placed either immediately before or immediately after
a bracket (either opening or closing). That bracket is highlighted (bold black) together with its
corresponding bracket. Notice the cursor position in the screenshot above.

· Bracket-matching is enabled for round parentheses (), square brackets [], and curly braces {}. The

exception is angular brackets <>, which are used for XML tags.

Note: When you place the cursor just inside a start or end bracket, both brackets are highlighted. Pressing
Ctrl+E moves the cursor to the other member of the pair. Pressing Ctrl+E repeatedly enables you to
switch between the start and end brackets. This is another aid to quickly navigating your document.

Keywords
XQuery keywords are instructions used in query expressions, and they are displayed in blue. You select a
keyword by placing the cursor inside a keyword, or immediately before or after it. With a keyword selected,
pressing Ctrl+Space causes a complete list of keywords to be displayed in a pop-up menu. You can scroll
through the list and double-click a keyword you wish to have replace the selected keyword.

In the screenshot above, the cursor was placed in the let keyword. Double-clicking a keyword from the list

causes it to replace the let keyword.

503

503

504

504

504

504 XQuery Editing XQuery Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Variables
Names of variables are prefixed with the $ sign, and they are displayed in purple. This mechanism of the

intelligent editing feature is similar to that for keywords. There are two ways to access the pop-up list of all
variables in a document:

· After typing a $ character, press Ctrl+Space

· Select a variable and press Ctrl+Space. (A variable is selected when you place the cursor
immediately after the $ character, or within the name of a variable, or immediately after the name of a

variable.)

To insert a variable after the $ character (when typing), or to replace a selected variable, double-click the

variable you want in the pop-up menu.

Functions
Just as with keywords and variables, a pop-up menu of built-in functions is displayed when you select a
function (displayed in olive) and press Ctrl+Space. (A function is selected when you place the cursor within a
function name, or immediately before or after a function name. The cursor must not be placed between the
parentheses that follow the function's name.) Double-clicking a function name in the pop-up menu replaces the
selected function name with the function from the pop-up menu.

To display a tip containing the signature of a function (screenshot below), place the cursor immediately after
the opening parenthesis and press Ctrl+Space. Note that the signature can be displayed only for standard
XQuery functions.

The downward-pointing arrowhead indicates that there is more than one function with the same name but with
different arguments or return types. Click on the arrowhead to display the signature of the next function (if
available); click repeatedly to cycle through all the functions with that name. Alternatively, you can use the
Ctrl+Shift+Up or Ctrl+Shift+Down key-combinations to move through a sequence.

Visual guides
Text folding (or source folding) is enabled on XQuery curly braces, XQuery comments, XML elements, and XML
comments, and refers to the ability to expand and collapse these nodes. Such nodes are indicated in the
source folding margin by a +/- sign (see screenshot below). The margin can be toggled on and off in the Text

View Settings dialog . When a node is collapsed, this is visually indicated by an ellipsis (see screenshot
below). If the mouse cursor is placed over an ellipsis, the content of the collapsed node is displayed in a popup

1420

© 2018-2024 Altova GmbH

Editing XQuery Documents 505XQuery

Altova XMLSpy 2024 Enterprise Edition

(see screenshot). If the content is too large for a popup, this is indicated by an ellipsis at the bottom of the
popup.

The Toggle All Folds icon in the Text toolbar toggles all nodes to their expanded forms or collapses all
nodes to the top-level document element.
The following options are available when clicking on the node's +/- icon:

Click [-] Collapses the node.

Click [+] Expands the node so that descendant nodes are shown expanded or collapsed according to
how they were before the node was collapsed.

Shift+Click
[-]

Collapses all descendant nodes, but leaves the node that was clicked in its expanded form.

Ctrl+Click [+] Expand the clicked node as well as all its descendant nodes.

506 XQuery XQuery Evaluation

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

8.2 XQuery Evaluation

XQuery expressions can be evaluated against one or more documents in the XPath/XQuery Output Window
(screenshot below).

Do this as follows:

1. Enter the XQuery expression in the top pane of the window.
2. In the Where combo box (see screenshot above), select where the XML document to be queried is

located. The options are: (i) Current file; (ii) Open files; (iii) Project; (iv) Folder.
3. Click Evaluate XPath/XQuery Expression (F5). The expression is evaluated against the XML file/s. If

the specified (Where) location contains more than one XML file, all the XML files are searched for data
structures or content matching the expression. Results of all available matches are displayed in the
lower pane.

In the screenshot above, a query is made for a section element that has the attribute @id='intro'. The query
returns the number of sub-sections of this intro section, and their titles.

For more information, see also Output Window: XPath/XQuery and Previewing and Applying XQuery
Updates .

121

511

© 2018-2024 Altova GmbH

XQuery Validation 507XQuery

Altova XMLSpy 2024 Enterprise Edition

8.3 XQuery Validation

To validate an XQuery or XQuery Update document, do the following:

1. Make the XQuery document the active document.
2. Select XML | Validate, or press the F8 key, or click the Validate toolbar icon.

Validate toolbar icon

The document will be validated for correct XQuery syntax.

508 XQuery XQuery/Update Execution

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

8.4 XQuery/Update Execution

An XQuery or XQuery Update document can be run in the following ways:

· When the XQuery or XQuery Update document is active.
· When an XML document is active.

Note: Whether a document is an XQuery document or XQuery Update document is determined by the
document's file extension. XMLSpy recognizes file type associations according to the definitions made
in Filetypes section of the Options dialog. (Tools | Options | Filetypes).

Note: For XQuery Update, you can also enter Update expressions in the XPath/XQuery output window and
preview updates. If the updates are acceptable, you can apply the updates and then save the updated
file. See XQuery Update Facility and Previewing and Applying Updates for more details.

Execution with XQuery or XQuery Update document active
To execute an XQuery or XQuery Update document with the XQuery / XQuery Update document active, do the
following

1. Make the XQuery or XQuery Update document the active document.
2. Select XSL/XQuery | XQuery/ Update Execution or click the command's toolbar icon. This opens

the Define an XML or JSON Input for the XQuery dialog (screenshot below).

3. Either browse for an XML/JSON file and execute, or skip the selection of an XML source.

XQuery/ Update Execution toolbar icon

Typically, an XQuery document is not associated with a specific XML/JSON document. (However, an
association might be made with the XQuery doc() function.) In XMLSpy, before executing individual

XQuery documents you can select a source XML/JSON document for the execution. In such cases, the
document node of the selected source is the starting context item of the XQuery document.

Note: The XQuery/ Update Execution command is also available in the context menu of Project
Window items.

1516

511 511

116

© 2018-2024 Altova GmbH

XQuery/Update Execution 509XQuery

Altova XMLSpy 2024 Enterprise Edition

Result of execution / update
· XQuery execution: The result document is generated as a temporary file that can be saved to any

location with the desired file format and extension.
· XQuery update: The update is saved to file, or the updated file is opened, allowing you to preview it,

and then either save or close without saving. You can specify which of the two actions to carry out.
This is done in the the XQuery section of the Options dialog (Tools | Options | XQuery).

Execution with XML document active
To execute an XQuery or XQuery Update document on an active XML document, do the following

1. Make the XML document the active document.
2. Select XSL/XQuery | XQuery/ Update Execution or click the command's toolbar icon. This opens

the Choose XQuery/Update File dialog (screenshot below).

3. Browse for the XQuery or XQuery Update file and click OK.

XQuery/ Update Execution toolbar icon

Result of execution / update
· XQuery execution: The result document is generated as a temporary file that can be saved to any

location with the desired file format and extension.
· XQuery update: The update is saved to file, or the updated file is opened, allowing you to preview it,

and then either save or close without saving. You can specify which of the two actions to carry out.
This is done in the the XQuery section of the Options dialog (Tools | Options | XQuery).

Back-mapping
With the Back-mapping feature enabled, XQuery execution will be carried out so that the result document
can be mapped back on to the originating XQuery+XML documents. If you click on a node in the result
document, then the XQuery instruction and the XML source data that generated that particular result
fragment will be highlighted. Additionally, if you click on an XQuery instruction or an XML data node, then the
corresponding nodes in the other two documents are highlighted. See the XSL/XQuery | Enable Back-
Mapping command for details.

XQuery Variables
If you are using the Altova XQuery engines, XQuery variables can be stored in a convenient GUI dialog. All the
stored variables are passed to the XQuery document each time you execute an XQuery document via XMLSpy.
For more information, see the description of the XSLT Parameters / XQuery Variable command.

1547

1547

1333

1333

1329

510 XQuery XQuery/Update Execution

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Altova XQuery Engines
For details about how the Altova XQuery Engines are implemented and will process XQuery files, see XQuery
Engine Implementation .2071

© 2018-2024 Altova GmbH

XQuery Update Facility 511XQuery

Altova XMLSpy 2024 Enterprise Edition

8.5 XQuery Update Facility

The XQuery Update Facility is an extension of the XQuery language that enables parts of XML documents to be
modified. In normal XQuery execution, the entire document is regenerated, and has to be stored back to its
location. This could be inefficient when only small parts of the document need to be modified. With the Update
Facility, only those parts of the document that need to be modified are updated.

The XQuery Update Facility is described as extensions to XQuery 1.0 and XQuery 3.1, in the following
specifications, respectively:

· XQuery Update Facility 1.0 (W3C Recommendation of 17 March 2011)
· XQuery Update Facility 3.0 (W3C Working Draft of 19 February 2015)

The XQuery Update Facility in XMLSpy
The following points explain how XQuery Update works in XMLSpy:

· An update is carried out by an update expression. For example, an update expression can specify that
a node in an XML document is renamed:
rename node /documents/doc-01 as "document-01"

· In practice, multiple update expressions are entered in a single document—the XQuery Update
document.

· As each update expression in the update document executes, the result is not applied immediately,
but is added to a Pending Updates List (PUL). As a result, the PUL contains the results of all the
update expressions. All updates in the PUL are then applied all together at once.

· In XMLSpy, the PUL updates are applied in one of two ways:
(i) After being previewed by the user in the GUI. The advantage is that the update can be aborted if
the preview shows undesirable results. Previewing is available on running the XQuery/Update
Execution command , or on evaluating XQuery Update expressions in the XPath/XQuery output
window . How to set the preview option is explained in the respective descriptions.
(ii) Directly and without any user intervention. The advantage is that the update is carried out silently
without requiring user intervention. The direct application of updates (without a preview) is available on
running the XQuery/Update Execution command , or on evaluating XQuery Update expressions in
the XPath/XQuery output window . How to set the direct-update option is explained in the respective
descriptions.

XMLSpy provides a powerful XQuery Update Preview feature, which enables you to preview the effect of update
expressions on the active XML document and then apply it. This feature is described the section Previewing
and Applying Updates .

8.5.1 Previewing and Applying Updates

If you wish to modify an XML document using XQuery Update, you can preview updates before applying them to
the XML document and saving the modified document.

In the XPath/XQuery output window (screenshot below), you can enter one or more update expressions and
then preview updates in the pending update list (PUL) that is displayed in the bottom pane (see screenshot
below). If the PUL is as you want it, you can apply the updates to the document and then save the modified

508

511

508

511

511

http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-30/

512 XQuery XQuery Update Facility

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

document. If you wish not to go ahead with the modifications in the PUL, you can choose either to not apply
modifications or to not save the file.

To create a PUL for an active XML file, do the following:

1. In the toolbar of the XPath/XQuery output window (screenshot above), select either the XQU 1.0 or XQU

3.0 icon (respectively for XQuery Update 1.0 or XQuery Update 3.0).
2. Enter one or more update expressions in the top pane of the window. For a description of update

expressions and their syntax, see the section, Update Operations and Syntax .
3. In the toolbar's Where combo box, select the location to be scanned for the updates:

Current file: Only the currently active file is scanned. If the location selected for scanning is Current
file, then the Evaluate XPath/XQuery Expression on Typing toolbar icon is enabled
Open files: All files that are currently open in XMLSpy will be scanned
Project: The currently active project is scanned
Folder: You can select a folder to scan

4. To execute the update expression/s and display the PUL, click the Evaluate XPath/XQuery
Expression toolbar icon.

XPath/XQuery output window toolbar
The toolbar commands of the XPath/XQuery output window (screenshot below) are described in the table below.

Start
Evaluation/Debugging (F5)

Enables selection of Evaluation Mode, and starts the evaluation

514

© 2018-2024 Altova GmbH

XQuery Update Facility 513XQuery

Altova XMLSpy 2024 Enterprise Edition

Stop
Evaluation/Debugging
(Shift+F5)

Enabled during evaluation. It is useful if the evaluation takes very
long or goes into an endless loop, and you therefore want to stop
the evaluation

Validate XML When toggled on, the target XML document/s are validated

Copy XPath of Current
Selection

Copies the locator path of the node in the XML document to the last
cursor position in the Expression pane

Set current selection as
context

Toggles expression context between root node and the current
selection

Load Snippet Loads an XPath/XQuery snippet from an XQuery file to the evaluator
pane, overwriting the current contents of teh pane

Save Snippet Saves an XPath/XQuery snippet from the evaluator pane to an
XQuery file

XML/JSON Evaluation
Mode (toggles between
XML and JSON evaluation
modes)

The highlighted icon of the pair is the active option. When
evaluation scope is multiple files, both icons are enabled and one
can be selected. Otherwise, evaluation mode is auto-detected
according to file type; the other icon is disabled.

Switch to Builder Switches to Expression Builder mode, which provides context-
sensitive entry helpers to help construct expressions

Evaluation on typing Switches on the evaluation of expressions while the expression is
being typed

Show Options Opens an Options dialog for setting the display options of results

Horizontal/Vertical Layout Switches between horizontal and vertical layouts

The Pending Update List (PUL) pane
The PUL pane shows all the updates that will be carried out. If the Show Header option has been toggled on in
the window's toolbar, the locations of target files are displayed. The PUL display is divided into three vertical
sections (see screenshot below): (i) the update action to carry out; (ii) the content of the target node to be
updated; (iii) the update action result.

514 XQuery XQuery Update Facility

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The following PUL pane toolbar commands are available:

· The Next and Previous icons select, respectively, the next and previous messages to the currently
selected message.

· The Copy Selected Line and Copy All Messages commands copy, respectively, the selected line and
all messages to the clipboard.

· The Copy Includes All Columns command is a toggle command that switches on/off the copying of all
columns.

· The Find commands find text in the PUL pane.
· The Expand with Children command expands the selected node and all its descendants.
· The Collapse with Children command collapses the selected node and, within it, all its descendants.
· The Clear command deletes all lines in the PUL pane.
· The Apply Update(s) command applies the pending updates to the target locations. On updating, the

updates can be saved to file, or the updated file can be displayed (and subsequently saved manually or
not). See the next option.

· The Open Files on Updating combo box allows you to select (i) whether updated files are opened and
made active in XMLSpy, or (ii) whether files are updated silently on disk. If the former option is
selected, then non-open or non-active target files are opened and/or are made active. You then have
the choice of saving the modified document or not.

Note: If one or more files have been updated directly on disk, a list of changed files is displayed. each item in
the list shows the location of the file and is a clickable link to the file.

8.5.2 Update Operations and Syntax

The XQuery Update Facility enables the following operations:

· Delete one or several nodes
· Insert one or more nodes before, after, or inside a specified node
· Rename a node
· Replace a node with a sequence of items
· Replace Value of a node with the string value of a sequence of items

The keywords and syntax of these operations are described in the sub-sections of this section.

515

515

516

516

517

© 2018-2024 Altova GmbH

XQuery Update Facility 515XQuery

Altova XMLSpy 2024 Enterprise Edition

8.5.2.1 Delete Nodes

Description and syntax
Deletes one or more nodes.

delete node nodeSequence

delete nodes nodeSequence

Details

· The expression nodeSequence returns a sequence of the node/s to delete. All selected nodes will be

marked for deletion.
· It does not matter whether the singular node or plural nodes is used. No correspondence is needed

with the number of items in nodeSequence.

Examples

for $i in /book/section return
delete nodes $i/@id

8.5.2.2 Insert Nodes

Description and syntax
Inserts one or more nodes before, after, or inside the specified target node.

insert (node|nodes) items into targetNode

insert (node|nodes) items as first into targetNode

insert (node|nodes) items as last into targetNode

insert (node|nodes) items before targetNode

insert (node|nodes) items after targetNode

Details

· The expression items must return a sequence of items. Even though the keyword node|nodes is

used, items can be a sequence of non-node items.

· The expression targetNode must point to a single target node.

· If the keyword into is used, targetNode must be an element node or document-element node.

· If the keyphrase as first or as last is used, the insertion is as first or last children, respectively.

· If the keyword into is used alone, then attributes are appended to existing attributes, and elements

are inserted as first children.
· If the keyword before or after is used, targetNode can be of any type.

· If an attribute is being inserted, its name must not duplicate that of an already existing attribute.

516 XQuery XQuery Update Facility

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Examples

for $i in /book/section return
insert nodes (attribute id { 'somevalue' }, <newelement>some content including the numbers

"{ 1 to 3}"</newelement>)
into $i

8.5.2.3 Rename Node

Description and syntax
Renames an element, attribute, or processing instruction node.

rename node targetNode as name

Details

· The expression targetNode must point to a single target node, which can be an element, attribute, or

processing instruction.
· The expression name must evaluate to a QName or string.

· If a QName is constructed, the mandatory namespace is declared locally.

Examples

rename node /book/title as 'header-1'

rename node /book/title as QName("http://www.altova.com/xquf", "header-1")

8.5.2.4 Replace Node

Description and syntax
Replaces a node with a sequence of any kind of items.

replace node targetNode with items

Details

· The expression targetNode must point to a single target node.

· The expression items must return a sequence of items. This sequence will replace the target node.

· Except for attribute nodes, a target node can be replaced by any type of sequence.
· An attribute node can only be replaced with an attribute node. See example below.

Examples

replace node //hr with '<line/>'

© 2018-2024 Altova GmbH

XQuery Update Facility 517XQuery

Altova XMLSpy 2024 Enterprise Edition

for $i in //@height return
replace node $i with (attribute line-height{'12pt'})

8.5.2.5 Replace Value of Node

Description and syntax
Replaces the value of a node with the string value of a sequence of items.

replace value of node targetNode with items

Details

· The expression targetNode must point to a single target node.

· The expression items must return a sequence of items.

· The contents of the target node are replaced by the string value of the sequence returned by the items

expression. This means that the target node will contain one text node only.

Examples

for $i in //title return
replace value of node $i with ('Draft Title')

8.5.2.6 The fn:put Function

The fn.put function is provided by XQuery Update Facility 1.0 as an extension to the XQuery built-in function

library. (The fn: namespace prefix in this section is assumed to be bound to the namespace:

http://www.w3.org/2005/xpath-functions.)

fn:put($node as node(), $uri as xs:string) as empty-sequence()

The function stores a document or element to the location specified by $uri. It is normally invoked to create a
resource on an external storage system such as a file system or a database. The external effects of fn:put
are implementation-defined, since they occur outside the domain of XQuery. The intent is that, if fn:put is
invoked on a document node and no error is raised, a subsequent query can access the stored document by
invoking fn:doc with the same URI.

See the specification for more details.

http://www.w3.org/TR/xquery-update-10/#id-func-put

518 XQuery XQuery and XML Databases

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

8.6 XQuery and XML Databases

An XQuery document can be used to query an XML database (XML DB). Currently this XQuery functionality is
supported only for IBM DB2 databases. The mechanism for querying an XML DB using XQuery essentially
involves: (i) indicating to the XQuery engine that XML in a DB is to be queried—as opposed to XML in an XML
document; and (ii) accessing the XML data in the DB.

The steps for implementing this mechanism are as follows and are described in detail below:

1. Set up the XQuery document to query the XML DB by inserting the XQUERY keyword at the start of
the document.

2. For the active XQuery document, enable DB support (via the Info window) and connect to the DB
(using the Quick Connect dialog).

3. In the XQuery document, insert DB-specific XQuery extensions so as to access the DB data and
make it available for XQuery operations.

4. Execute the XQuery document in XMLSpy.

Setting up the XQuery document to query the XML DB
To set up the XQuery document to query an XML DB, open the XQuery document (or create a new XQuery
document) and enter the keyword XQUERY (casing is irrelevant) at the start of the document (before the prolog);
see examples below.

XQUERY (: Retrieve details of all customers :)
declare default element namespace "http://www.altova.com/xquery/databases/db2";
<a> {db2-fn:xmlcolumn("CUSTOMER.INFO")}

If the document uses the optional xquery version expression, the XQUERY keyword is still required:

XQUERY xquery version "1.0"; (: Retrieve details of all customers :)
declare default element namespace "http://http://www.altova.com/xquery/databases/db2";
<a> {db2-fn:xmlcolumn("CUSTOMER.INFO")}

Note: XMLSpy's built-in XQuery Engines read the XQUERY keyword as indicating that an XML DB is to be
accessed. As a result, attempting to execute an XQuery document containing the XQUERY keyword on
any XML document other than one contained in an XML DB will result in an error.

Enable DB support for XQuery and connect to the DB
DB support for an XQuery document is enabled by checking the Enable Database Support check box in the
Info window (screenshot below). Note that DB Support must be enabled for each XQuery document separately
and each time an XQuery document is opened afresh.

518

518 518

519

518

© 2018-2024 Altova GmbH

XQuery and XML Databases 519XQuery

Altova XMLSpy 2024 Enterprise Edition

When you enable DB support in the Info window, a Quick Connect dialog pops up, which enables you to
connect to a database. Currently, only IBM DB2 databases are supported. How to connect to a DB is
described in the section, Connecting to a Database . If connections to data sources already exist, then
these are listed in the Data Sources combo box of the Info window (screenshot below), and one of these data
sources can be selected as the data source for the active XQuery document. In the Info window, you can also
select the root object from among those available in the Root Object combo box.

The Quick Connect dialog (which enables you to connect to a DB) can be accessed at any time by clicking the

 icon in the Info window.

Note: When you close an XQuery document the connection to the DB is closed as well. If you subsequently
re-open the XQuery document, you will also have to re-connect to the DB.

IBM DB2-specific XQuery language extensions
Two IBM DB2-specific functions can be used in XQuery documents to retrieve data from an IBM DB2 database:

· db2-fn:xmlcolumn retrieves an entire XML column without searching or filtering the column.
· db2-fn:sqlquery retrieves values based on an SQL SELECT statement

The XML data retrieved using these functions can then be operated on using standard XQuery constructs. See
examples below.

db2-fn:xmlcolumn: The argument of the function is a case-sensitive string literal that identifies an XML

column in a table. The string literal argument must be a qualified column name of type XML. The function

returns all the XML data in the column as a sequence, without applying a search condition to it. In the following
example, all the data of the INFO (XML) column of the CUSTOMER table is returned within a top-level
<newdocelement> element:

904

520 XQuery XQuery and XML Databases

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XQUERY (: Retrieve details of all customers :)
declare default element namespace "http://www.altova.com/xquery/databases/db2";
<newdocelement> {db2-fn:xmlcolumn("CUSTOMER.INFO")} </newdocelement>

The retrieved data can then be queried with XQuery constructs. In the example below, the XML data retrieved
from the INFO (XML) column of the CUSTOMER table is filtered using an XQuery construct so that only the profiles
of customers from Toronto are retrieved.

XQUERY (: Retrieve details of Toronto customers :)
declare default element namespace "http://www.altova.com/xquery/databases/db2";
<newdocelement> {db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo[addr/city='Toronto']}
</newdocelement>

Note: In the example above, the document element of the XML files in each cell is customerinfo and the
root node of the XML sequence returned by db2-fn:xmlcolumn is considered to be an abstract node
above the customerinfo nodes.

db2-fn:sqlquery: The function takes an SQL Select statement as its argument and returns a sequence of

XML values. The retrieved sequence is then queried with XQuery constructs. In the following example, the INFO
column is filtered for records in the CUSTOMER table that have a CID field with a value between 1000 and 1004.
Note that while SQL is not case-sensitive, XQuery is.

XQUERY (: Retrieve details of customers by Cid:)
declare default element namespace "http://www.altova.com/xquery/databases/db2";

<persons>
 {db2-fn:sqlquery("SELECT info FROM customer WHERE CID>1000 AND CID<1004")/
 <person>
 <id>{data(@Cid)}</id>
 <name>{data(name)}</name>
 </person>}
</persons>

The XQuery document above returns the following output:

<persons xmlns="http://www.altova.com/xquery/databases/db2">
 <person>

<id>1001</id>
<name>Kathy Smith</name>

 </person>
 <person>

<id>1002</id>
<name>Jim Jones</name>

 </person>
 <person>

<id>1003</id>
<name>Robert Shoemaker</name>

 </person>
</persons>

Note the following points:

© 2018-2024 Altova GmbH

XQuery and XML Databases 521XQuery

Altova XMLSpy 2024 Enterprise Edition

· The default element namespace declaration in the prolog applies for the entire XQuery document and is
used for navigation of the XML document as well as for construction of new elements. This means that
the XQuery selector name is expanded to <default-element-namespace>:name, and that constructed
elements, such as persons, are in the default element namespace.

· The SQL Select statement is not case-sensitive.
· The WHERE clause of the Select statement should reference another database item—not a node inside

the XML file being accessed.
· The "/" after the db2-fn:sqlquery function represents the first item of the returned sequence, and this

item is the context node for further navigation.

Execute the XQuery
To execute the XQuery document, select the XQuery Execution command (XSL/XQuery menu).

Alternatively, press Alt+F10 or click the XQuery Execution icon . The result of the execution is displayed in
a new document.

522 XSLT/XQuery Debugger and Profiler

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

9 XSLT/XQuery Debugger and Profiler

XMLSpy contains an XSLT/XQuery Debugger and an XSLT/XQuery Profiler to help you create correct
XSLT and XQuery documents faster. These two features are described in the sub-sections of this section.

523 543

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 523XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

9.1 XSLT and XQuery Debugger

The XSLT/XQuery Debugger enables you to debug XSLT stylesheets and XQuery documents. It presents
simultaneous views of the XSLT/XQuery document, the source XML/JSON document, and the output document.
You can go step-by-step through the XSLT/XQuery document to see what output is generated at each step. At
each step, the corresponding positions in the source XML/JSON document, the XSLT/XQuery document, and
the output document are highlighted, and debugging information is displayed in ancillary windows of the
debugger.

This section describes how to work with XSLT/XQuery Debugger and is organized into the following topics:

· Mechanism and Interface
· Commands and Toolbar Icons
· Breakpoints
· Tracepoints
· Information Windows
· Debugger Settings

Altova website: XSLT Debugger, XQuery Debugger

524

526

528

530

534

541

https://www.altova.com/xmlspy-xml-editor/xslt-debugger
https://www.altova.com/xmlspy-xml-editor#xquery

524 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

9.1.1 Mechanism and Interface

The broad mechanism used for debugging XSLT and XQuery files is given below.

Open a debugging session
You can open a debugging session from an XML, JSON, XSLT, or XQuery document by selecting the
XSL/XQuery | Start Debugger / Go command.

The XSLT/XQuery Debugger works only in Text View and Grid View. If the active document is not in Text View
or Grid View when you start the debugging session, then you will be prompted for permission to change to Text
View, which is the default view of the XSLT/XQuery Debugger. You can, in the Debugger Settings dialog ,
also choose to set this option permanently.

If the active document requires an associated file and if this file has been assigned to the active file, then the
debugging session is started immediately. (For example, an XML document could have an XSLT stylesheet
assigned to it via an xml-stylesheet processing instruction.) Otherwise, you are prompted to select the

required associated file. Note, however, that since XQuery files neither require nor contain an XML/JSON file
association, you can choose to be prompted for an optional XML/JSON file association or not each time you
start an XQuery debugging session (see screenshot below).

The Debugger toolbar with Debugger icons appears automatically when a debugging session is started.

Debugger interface
The XSLT/XQuery Debugger interface is shown in the diagram below. Alternatively to the view of the three
documents (XML/JSON, XSLT/XQuery, Output) shown below, you can opt for a view of two documents
(XSLT/XQuery and Output) or a view of any one of the documents. To do this, select the appropriate command
from among the Debugger's three view commands .

541

526

526

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 525XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

Information windows in the interface (see screenshot above) provide information about various aspects of the
transformation/execution (Variables, XPath Watch, Call Stack, Messages, Info, etc). See the topic lInformation
Windows for details.

Debugging
There are two broad ways to go through the XSLT or XQuery document:

· Use the XSL/XQuery | Start Debugger / Go command to go through the entire
transformation/execution, stopping only at breakpoints. If no breakpoint has been set, then the
transformation/execution is carried out in one step and no debug results are shown.

· Use the Step Into, Step Out, and Step Over commands to step through the XSLT or XQuery
document. If an XML file is associated with the session, the corresponding locations in the XML file are
highlighted. Simultaneously, output for corresponding steps is generated in the output file.
Consequently, you can see what is happening at each step of the transformation and note any effects
you might want to change.

Breakpoints can be set in any of the documents (XML or XSLT/XQuery) to interrupt the processing at selected
points. This speeds up debugging sessions since you do not need to step through each statement in the XSLT
or XQuery document. See the topic Breakpoints for more information. Additionally, tracepoints can be set in
the XML/JSON or XSLT/XQuery documents to separately view the output of individual instructions. See the
topic Tracepoints for more information.

During a debugging session, you can stop the debugger (not the same as ending the debugging session; see
below) with the XSL/XQuery | Stop Debugger command. When the debugger has been stopped, the
XSLT/XQuery Debugger interface stays open and you can edit any of the documents. All XMLSpy editing
features will be available for editing in the debugger interface. You can restart the debugger (from the beginning
of the XSLT/XQuery document) by selecting XSL/XQuery | Start Debugger or XSL/XQuery | Step Into.

534

528

530

526 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Stop the debugging session
Select XSL/XQuery | End Debugger Session to close a debugging session and return you to your previous
XMLSpy environment. The information windows will be closed, but breakpoint and tracepoint information is held
till the file is closed. (As a result, if you start another debugging session involving a file containing breakpoints,
the breakpoints will apply in the newly opened debugging session.)

9.1.2 Commands and Toolbar Icons

Debugger commands are available in the XSL/XQuery menu and as toolbar icons. The debugger icons are
automatically made available in the toolbar when a debugging session is opened. The debugger icons are listed
below.

Icon Command Name Description

Start Debugger/Go (Alt+F11) Starts or continues debugging till the end. If breakpoints
have been set, then is paused at breakpoints. Tracepoint
results are displayed in the Trace window when the
tracepoint instruction is carried out.

View the active document only Maximizes the window of the currently active document in the
debugger.

View XSLT/XQuery and Output Displays XSLT/XQuery and output documents while hiding the
XML document.

View XML, XSLT/XQuery and
Output

Displays the XML, XSLT/XQuery, and output documents. This
is the default view when an XML document is associated for the
debugging session.

Stop Debugger Stops the debugger. Not the same as stopping the debugger
session. This is convenient if you wish to edit a document in
the middle of a debugging session. After stopping the
debugger, you must restart from the beginning.

Step into (F11) Proceeds in single steps through all nodes and XPath
expressions. Also used to restart the debugger after it was
stopped.

Step Over (Ctrl+F11) Steps over the current node to the next node at the same level,
or to the next node at the next higher level from that of the
current node. Also used to restart the debugger after it was
stopped.

Step Out (Shift+F11) Steps out of the current node to the next sibling of the parent
node, or to the next node at the next higher level from that of
the parent node.

528

530

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 527XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

Show current execution node Displays/selects the current execution node in the
XSLT/XQuery document and the corresponding context node in
the XML document. Useful if you click in other tabs or go to
specific document locations and then want to return to the
current node of the debugging.

Restart Debugger Clears the output window and restarts the debugging session
with the currently selected files.

Insert/Remove Breakpoint (F9) Inserts or removes a breakpoint at the current cursor
position. Indicated by a dashed red line. The command is also
available in context menus.

Insert/Remove Tracepoint
(Shift+F9)

Inserts or removes a tracepoint at the current cursor
position. Inline tracepoints can be defined for nodes in XSLT
documents. Indicated by a dashed red line. The command is
also available in context menus.

Enable/Disable Breakpoint
(CTRL+F9)

This command (no toolbar icon exists) enables or disables
already defined breakpoints . The command is also available
in context menus.

Enable/Disable Tracepoint
(Shift+CTRL+F9)

This command (no toolbar icon exists) enables or disables
already defined tracepoints . The command is also available
in context menus.

End Debugger Session Ends the debugging session and returns you to the XMLSpy
view that was active before you started the debugging session.
Whether the output documents that were opened for the
debugging session stay open depends on a setting you make
in the XSLT/XQuery Debugger Settings dialog.

Breakpoints/Tracepoints Dialog This command opens the XSLT/XQuery Breakpoints /
Tracepoints dialog, which displays a list of all currently defined
breakpoints/tracepoints (including disabled ones) in all files in
the current debugging session.

Debugger shortcuts

F9 Insert/Remove Breakpoint

F9 + Shift Insert/Remove Tracepoint

F9 + CTRL Enable/Disable Breakpoint

F9 + Shift + CTRL Enable/Disable Tracepoint

F11 Step Into

F11 + Shift Step Out

F11 + CTRL Step Over

F11 + Alt Start Debugger/Go

528

530

528

530

541

528 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

9.1.3 Breakpoints

Breakpoints (dashed red lines in screenshot below) can be set in XML, XSLT, and XQuery documents.
Debugging will pause at breakpoints, which enables you to restrict restrict attention to these areas. You can
set any number of breakpoints.

After the debugger pauses on encountering a breakpoint, select XSL/XQuery | Start Debugger or
XSL/XQuery | Step Into to resume debugging.

Note the following points:

· A breakpoint is shown as a dashed red line.
· It is possible to set both a breakpoint and a tracepoint for the same instruction/node. The

instruction/node is then marked with a combined dashed blue and dashed red line (see second
breakpoint in screenshot above).

· Breakpoints that have been set for a document remain in that document until it is closed. If you switch
to a view that is not Text View or Grid View, breakpoints will be deleted.

Breakpoint locations
You can set breakpoints at the following locations:

· XML/JSON documents: Any node. The break in processing will occur at the start of that node.
· XSLT documents: (i) At the beginning of templates and template instructions (e.g., xsl:for-each); (ii)

On XPath expressions; (iii) On any node in a literally constructed XML fragment. The break in
processing will occur at the start of that node.

· XQuery documents: (i) At the beginning of XQuery statements, (ii) In XQuery expressions; (iii) On any
node in a literally constructed XML fragment. The break in processing will occur at the start of that
node.

Note: Breakpoints cannot be defined on closing nodes. Breakpoints on attributes in XSLT documents will be
ignored.

530

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 529XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

Insert and remove breakpoints
Breakpoints can be set in Text View and Grid View. Place the cursor at the point where you wish to insert the
breakpoint—or in the breakpoint if you want to remove it—and then do one of the following:

· Select XSL/XQuery | Insert/Remove Breakpoint.
· Press F9.
· Right-click and select Breakpoints/Tracepoints | Insert/Remove Breakpoint.

To remove a breakpoint, you can also use the XSLT Breakpoints/Tracepoints dialog (described below).

XSLT Breakpoints/Tracepoints dialog
Access the XSLT Breakpoints/Tracepoints dialog (screenshot below) by clicking either the menu command
XSL/XQuery | Breakpoints/Tracepoints... or the command's toolbar icon.

The XSLT Breakpoints/Tracepoints dialog provides the following functionality:

· List all breakpoints and tracepoints in all currently open XML, XSLT, and XQuery documents.
· Change a breakpoint to a tracepoint and vice versa, by using the arrow buttons between the respective

530 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

panes and clicking OK when done.
· Disable/enable a breakpoint or tracepoint by, respectively, unchecking/checking its check box and

clicking OK when done. Disabling a breakpoint or tracepoint enables you to skip over it without having
to remove it.

· Remove one or all breakpoints/tracepoints by clicking the respective button and clicking OK when
done.

· Go directly to the breakpoint/tracepoint in the respective document and edit the document. Click the
respective Edit Code button (see screenshot below).

9.1.4 Tracepoints

Tracepoints enable you to trace content generated by an XSLT instruction. In the screenshot below, each
tracepoint (up to that point in the debugging session) is listed in the Trace tab of the Trace window. Select one
of the Trace items to show the XSLT content generated at the tracepoint. The content will be displayed in the
Result pane to the right.

The screenshot above shows that two tracepoints have been set: (i) on the xsl:variable and the xsl:value-
of instructions. Since both these instructions occur inside an xsl:for-each instruction that selects the
n1:Office element, the processor loops through the n1:Office elements of the XML document. For each
n1:Office element, the $office variable will be set to the value of the n1:Name child element (of the current
n1:Office element). The xsl:value-of instruction outputs the value of the $office variable (which will be
that of the n1:Name element).

In the screenshot, the Debugger has progressed through two n1:Office elements. The xsl:variable and the
xsl:value-of instructions are listed for each of the two n1:Office elements. Select any of the four items to
show, in the Result pane, the result generated by that specific instruction.

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 531XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

You can set as many tracepoints as you like. As the debugger progresses through the XSLT document, all
encountered tracepoints will be listed in the Trace tab, and you can select any of the listed instructions to see
the result it generates.

Important points
Note the following points:

· Tracepoints can be set (i) on XSL instructions and literal results in XSLT stylesheets and (ii) on nodes
in XML and XQuery documents.

· Tracepoints cannot be defined on closing nodes.
· A tracepoint is shown as a dashed blue line.
· It is possible to set both a tracepoint and a breakpoint for the same instruction/node. The

instruction/node is then marked with a combined dashed blue and dashed red line (see screenshot
above).

· Results are displayed in the Trace window only after the traced instruction is completed.
· Tracepoints that have been set for a document remain in that document until it is closed. If you switch

to a view that is not Text View or Grid View, tracepoints will be deleted.
· You can also use a tracepoint to see what result would be generated by an XPath expression that has

tracepoint node as its context node. How to do this is described below.

Insert and remove tracepoints
Tracepoints can be set in Text View and Grid View. Place the cursor at the point where you wish to insert the
tracepoint—or in the tracepoint if you want to remove it—and then do one of the following:

· Select XSL/XQuery | Insert/Remove Tracepoint.
· Press Shift+F9.
· Right-click and select Breakpoints/Tracepoints | Insert/Remove Tracepoint.

To remove a tracepoint, you can also use the XSLT Breakpoints/Tracepoints dialog (described below).

XSLT Breakpoints/Tracepoints dialog
Access the XSLT Breakpoints/Tracepoints dialog (screenshot below) by clicking either the menu command
XSL/XQuery | Breakpoints/Tracepoints... or the command's toolbar icon.

528

532 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The XSLT Breakpoints/Tracepoints dialog provides the following functionality:

· List all breakpoints and tracepoints in all currently open XML, XSLT, and XQuery documents.
· Change a breakpoint to a tracepoint and vice versa, by using the arrow buttons between the respective

panes and clicking OK when done.
· Disable/enable a breakpoint or tracepoint by, respectively, unchecking/checking its check box and

clicking OK when done. Disabling a breakpoint or tracepoint enables you to skip over it without having
to remove it.

· Remove one or all breakpoints/tracepoints by clicking the respective button and clicking OK when
done.

· Go directly to the breakpoint/tracepoint in the respective document and edit the document. Click the
respective Edit Code button (see screenshot below).

· Set an XPath expression on a tracepoint to check the value the expression returns. How to do this is
described below.

Set an XPath expression on a tracepoint
If you set an XPath expression on a tracepoint, the tracepoint does not return the content generated by the
corresponding XSLT instruction. Instead, it returns the result of evaluating the XPath expression relative to the
context node of the tracepoint. This result is displayed in the Trace window.

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 533XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

For example, in the screenshot below, we have set three tracepoints. The first tracepoint (on line 21) has as its
context node the parent node of the n1:Office element. The other two tracepoints, because they are inside
the xsl:for-each instruction, would both have the n1:Office element as their respective context nodes.

Now, let's say we set, in the XSLT Breakpoints/Tracepoints dialog (see above), XPath expressions for each of
the three tracepoints as shown in the screenshot below. Note that the context node of the first tracepoint is the
parent node of the n1:Office element, which enables us to count the n1:Office elements as child nodes. For
the second tracepoint, where the context node is the n1:Office element, we can count child n1:Department
elements.

On running the Debugger (XSL/XQuery | Start Debugger), the results of the XPath expressions will be
displayed in the Trace window (see screenshot below).

534 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note the following points:

· Since there are three n1:Office elements in our example, the xsl:for-each loop is executed once for
each of the n1:Office elements. Consequently, the other two tracepoints within the loop are evaluated
for each office and return data corresponding to the respective offices.

· The XPath expression of the xsl:for-each tracepoint is evaluated when processing of the instruction
is completed.

9.1.5 Information Windows

Information windows in the debugger interface contain provide helpful debugging information about the XSLT
transformation or XQuery execution. There are eight information windows in XSLT debugging sessions and six
in XQuery debugging sessions. These windows are organized, by default, into two groups at the bottom of the
debugger interface (see illustration below). These windows are described in this section.

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 535XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

The first group comprises the following information windows:

· Context (XSLT debugging only)
· Variables
· XPath-Watch

The second group comprises the following information windows:

· Call Stack
· Templates (for XSLT debugging sessions only)
· Info
· Messages
· Trace

In each group, one tab is active at a time. In some tabs, you can use the information display as navigation
tools: clicking an item would take you to that item in the XML, XSLT, or XQuery file.

Managing and using information windows
Note the following visibility and locational features:

· The two information-window groups can be resized by dragging their borders.
· Individual windows can be dragged out of the containing group by clicking the tab name and dragging

the window out of the group.
· A window can be added to a group by dragging its title bar onto the title bar of the group. Note,

however, that there is no reset button to return the layout to the default layout.
· Individual windows can be hidden/shown by toggling their view off/on in the XSL/XQuery | Debug

Windows submenu.

536

537

537

538

538

539

540

540

536 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· To float, dock, or hide a window, select the respective command in the window's context menu
(obtained by right-clicking in the window).

· To dock a window in another window group or another location, drag the the window by its title bar or
tab and drop it at the desired location on the placement control.

9.1.5.1 Context Window

The Context Window is available for XSLT debugging only (not for XQuery debugging).

When processing an XML document with an XSLT stylesheet, the location reached by the processor at any
given time will always be within a certain context node. This context node is shown in the Context Window
together with all its descendants. In the screenshot below, the context node at this point is the Office node.

The last two rows of the window indicate that this Office context node is the first item of a sequence of three

items beings currently processed. Such a situation could arise, for instance, if an xsl:for-each instruction is
being processed that selects Office elements within, say, an Organization element.

Clicking an entry in the Context Window highlights that item in the XML document. If the XML document is not
currently displayed in the interface, a window for the XML document will be opened.

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 537XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

9.1.5.2 Variables Window

The Variables Window displays the in-scope variables and parameters, and their values, at any given time
during XSLT/XQuery debugging.

Parameters are indicated with P, global variables (declared at top-level of a stylesheet) are indicated with G, and

local variables (declared within an XSLT template) are indicated with L. The type of the values of variables and

parameters is also indicated.

9.1.5.3 XPath-Watch Window

The XPath-Watch Window enables you to see how an XPath expression would evaluate in one or more
contexts. As you step through the XSLT/XQuery document, the XPath expression you entered is evaluated in
the current context and the result is displayed in the Value column (see screenshot below).

To enter an XPath expression, double-click in the text field under the Name column and enter the XPath.
Alternatively, drag an XPath expression from a file and drop it into the XPath-Watch Window. Use expressions
that are correct according to the XPath version that corresponds to the XSLT/XQuery version of the
XSLT/XQuery document.

Note: If namespaces have been used in the XML document or XSLT/XQuery document, ensure that the
namespace prefixes in your XPath expression correctly target the nodes of the XML document.

538 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

9.1.5.4 Call Stack Window

The Call Stack Window displays a list of previously processed XSLT/XQuery templates/instructions, with the
current template/instruction appearing at the top of the list. The call stack shows the ancestor
templates/instructions of the current template/instruction. If the current template/instruction is a built-in
template, then the XSLT document window shows all built-in templates with the current built-in template
highlighted.

Click an item in the window to go to the corresponding XSLT/XQuery template/instruction.

9.1.5.5 Templates Window

The Templates Window is available for XSLT debugging only (not for XQuery debugging).

The Templates Window displays the various templates used in the XSLT stylesheet, including built-in templates
and named templates. Matched templates are listed by the nodes they match. Named templates are listed by
their name. For both types of template, the mode, priority, and location of the template are displayed.

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 539XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

The Templates Window displays all the templates of the XSLT stylesheet:

· Named templates are templates that are identified by a name. In the Templates Window such
templates are listed with their names in the Names column. In the screenshot above, there is one
named template; it has a name of section-summary.

· Matched templates are those templates that are matched by a test, such as a node-name test or a
node-type test. In the screenshot above, there are three matched templates: one that matches the root
element and two that match the element named OrgChart.

· Built-in templates are those that, according to the XSLT specifications, must be provided by the XSLT
processor. They can be identified by their entries in the Location column. In the screenshot above, for
example, the xslt-2.0 entry identifies these templates as the built-in templates of the Altova XSLT 2.0

processor (which is being used because the current XSLT stylesheet is an XSLT 2.0 document).

Note the following points:

· Click an entry in this window, to go to the corresponding template in the XSLT document window.
· If a template's mode attribute has been specified, then this value is shown in the Mode column of that

template. For example, in the screenshot above, we see that there are two templates that match the
element named OrgChart. One of them has a mode value set to DE, while the other has a mode value

set to EN. (Modes are used to process the same content in different ways. In our example, the

OrgChart content could be processed once with a template for DE output and values and once with a

template for EN output.)
· The Priority column lists the priority value assigned to a template. If there is more than one template

that matches a node, then the XSLT precedence rules for template selection are used to determine
which template will be used. If after all the precedence rules are exhausted and there is still more than
template that can be applied, then the template with the highest priority value will be used. While
debugging, you can compare priority values in this window to identify problems.

9.1.5.6 Info Window

The Info Window provides meta information about the current debugging session. This information includes what
debugger is being used, the names of the source and output documents, and the status of the debugger.

540 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

9.1.5.7 Messages Window

In XSLT debugging, the Messages Window displays error messages, the xsl:message instruction, or any

error messages that may occur during debugging.

In XQuery debugging, the Messages Window displays error messages.

9.1.5.8 Trace Window

The Trace Window (see screenshot below) shows information about the tracepoints that have been set in
the relevant documents (XML/JSON and XSLT/XQuery). If you click the XSL/XQuery | Start Debugger
command, then all tracepoints in the relevant documents are evaluated and are listed in the Trace Window. If,
however, you step through the debugging process, then tracepoints are listed as they are encountered.

The Trace Window is divided into two panes:

· The main pane on the left has lists the nodes on which the tracepoint has been set, together with the
name of the file containing the node and the result returned by the processing/execution at the
tracepoint.

· The right pane, which shows the evaluation result of a tracepoint that is selected in the left pane.

For a more detailed discussion, see the topic Tracepoints .

530

530

© 2018-2024 Altova GmbH

XSLT and XQuery Debugger 541XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

9.1.6 Debugger Settings

The Debug Settings dialog enables you to set debugging and output options for all debugging sessions. To

access the Settings dialog (screenshot below), click XSL/XQuery | Debug Settings or click the icon in
the toolbar. The settings of the dialog are described below.

Output Window
Sets the view of the output document window (Default, Text, Grid, or Browser). The Default View is that
selected for a file type (identified by its file extension, for example, .xslt or .xq) in the File Types section of
the Options dialog . For XSLT transformations, the output file type is defined in the XSLT file. For XQuery
executions, the output file type is determined by the serialization format you choose in the XQuery section of
the Options dialog .

The Close All Output Windows option gives you the opportunity to keep open the output document windows
that were opened in the debugging session when the debugging session ends.

Debugging
The Debug Built-in Templates setting causes the debugger to step into built-in templates code whenever
appropriate. It is not related to the display of built-in templates when clicking this type of template entry in the
Templates tab, or if the callstack shows a node from the built-in template file.

1516

1547

542 XSLT/XQuery Debugger and Profiler XSLT and XQuery Debugger

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The XSLT Debugger works only in Text View or Grid View. The Auto Change to Text View option enables you to
automatically switch to the Text View of a document for debugging if a document is not in Text View or Grid
View. (The XQuery Debugger works in Text View only.) If the On demand variable execution check box is
checked, the definition of a variable will be stepped into when the variable is called. Otherwise, the Debugger
will not step into the variable definition when it encounters a call to a variable, but will carry on to the next step.

Layout of Debugger Documents
The Debugger documents are those that are open in the Debugger. You can select whether these documents
should be tiled vertically, horizontally, or XML/XSLT horizontally with the result document tiled vertically relative
to the XML and XSLT.

© 2018-2024 Altova GmbH

XSLT and XQuery Profiler 543XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

9.2 XSLT and XQuery Profiler

Altova website: XSLT Profiler, XQuery Profiler

The XSLT/XQuery Profiler is a tool that is used to analyze the execution times of XSLT (1.0 and 2.0)
stylesheets and XQuery documents from within XMLSpy. It tells you how much time each instruction in the
XSLT stylesheet or XQuery document takes to execute, and you can use this information to optimize the
execution time of these files.

The Profiler is used to find the instructions that have the highest total execution time so that this information
can then be used to optimize these instructions. Instructions can have a high total execution time for one or
both of the following reasons:

· the instruction is time-intensive
· the instruction is evaluated often (high hit count)

Hitcount and Callgraph Profiling
The Profiler lets you choose between hitcount and callgraph profiling. Both types of profiling show execution
time statistics for each instruction.

For optimization purposes, you normally use hitcount profiling, which displays one line in the profiler for each
instruction.

Callgraph profiling shows the entire execution history of an XSLT transformation or XQuery execution, i.e.,
which templates/functions were called, and in which order, during the transformation. In the results of callgraph
profiling, there is one line for each time an instruction is called, rather than one line for each instruction.

To use the XSLT/XQuery Profiler, see XSLT Profiling or XQuery Profiling .

Profiler Views
The results of the analysis can be viewed in either of the following views by clicking the corresponding tab:

· List View: The profiling statistics are displayed as a list that can be sorted by, e.g., duration of
instruction execution or duration of execution of the instruction and its descendants.

548 552

https://www.altova.com/xmlspy-xml-editor#xslt
https://www.altova.com/xmlspy-xml-editor#xquery

544 XSLT/XQuery Debugger and Profiler XSLT and XQuery Profiler

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Tree View: The statistics are displayed in a tree-like structure. It is possible to see, e.g., how long a
function took to execute, and then expand the tree for that function and see how much time each
instruction in the function took to execute, and how many times it was executed.

Sorting Results
After you have run the Profiler, you can sort by the amount of time an instruction took to execute, or by the
number of times that instruction was called.

To sort information in the Profiler:

1. Click the List tab.
2. Click the column header of the column you want to sort by (e.g., Hit Count to sort by the number of

times an instruction was called or Duration to sort by the time the instruction takes to execute).

This screenshot shows the contents of the Profiler sorted by instruction duration in descending order.

© 2018-2024 Altova GmbH

XSLT and XQuery Profiler 545XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

Optimizing Your XSLT Stylesheets and XQuery Documents
Keep in mind the following guidelines when optimizing the execution time of instructions in XSLT stylesheets
and XQuery documents:

· Avoid using variables in an instruction if the variable is used only once, because initializing a variable
can be time-consuming.

The following XSLT code fragments show an example of how to optimize code by removing
unnecessary variables. Both do the same thing, but the second example does so without using the
variables name and containsResult:

Code fragment 1:
<xsl:for-each select="row">

<xsl:variable name="row" select="."/>
<xsl:for-each select="@name">

<xsl:variable name="name" select="."/>
<xsl:variable name="containsResult" select="fn:contains($name, '.exe')"/>
<xsl:if test="string($containsResult)='true'">

...

</xsl:if>
</xsl:for-each>

</xsl:for-each>

The screenshot below shows the results of the analysis of the file that contains this code fragment,
sorted by duration of instructions. The instruction in which the variable containsResult is initialized
needs about 19 seconds total execution time.

546 XSLT/XQuery Debugger and Profiler XSLT and XQuery Profiler

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The screenshot below shows the results in the tree view. Here we can see that the if-statement that
uses the variable containsResult needs about 50 seconds total execution time:

© 2018-2024 Altova GmbH

XSLT and XQuery Profiler 547XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

The XSLT tranformation takes a total of about 74 seconds:

Code fragment 2:
<xsl:for-each select="row">

<xsl:variable name="row" select="."/>
<xsl:for-each select="@name">

<xsl:if test="fn:contains(., '.exe')">

...

</xsl:if>

548 XSLT/XQuery Debugger and Profiler XSLT and XQuery Profiler

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

</xsl:for-each>
</xsl:for-each>

After the stylesheet is rewritten without using these variables, its total execution time is only about 4.3
seconds:

· Use variables if a value or expression is used repeatedly.
· Avoid creating local constant variables within a function; create global variables instead.
· Avoid creating constant tree fragments inside a function; create them globally instead.
· Limit your use of predicates, since filtering with predicates is evaluated separately for every node. You

can reduce the number of calls to predicates, for example, by prefiltering using names. In this
example, * is used with two predicates:

//*[node-name()=Book][author="Steve"]

In this equivalent statement, the name Book and only one predicate are used:

//Book[@Author="Steve"]

· Split up instructions such that parts of the instruction that only need to be executed once are only
executed once. Create global variables from parts that are only dependent on the global context.

9.2.1 XSLT Profiling

Starting the Profiler
Note that execution time results displayed in the Profiler may be influenced by other applications that are
running on your computer. When analyzing files using the Profiler, it is best to run only the XMLSpy
application.

To analyze an XSLT stylesheet:

1. In XMLSpy, open the XML file that will be used as input data for the XSLT transformation.
2. Activate the Profiler by selecting XSL/XQuery | Enable XSLT / XQuery profiling. A dialog opens.

© 2018-2024 Altova GmbH

XSLT and XQuery Profiler 549XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

3. Select Hitcount Profiling or Callgraph Profiling. Click OK to confirm. An empty Profiler window
appears.

4. Run the XSL transformation (XSL/XQuery | XSL Transformation). A dialog opens in which you select
the path to the XSLT stylesheet you want to analyze. When the transformation is finished, the
execution time statistics appear in the Profiler.

5. Click the "+" icons to expand rows in the Profiler to view the execution time statistics for the XSLT
stylesheet (see screenshot). Note that in the case of these screenshots, Hitcount Profiling was
selected.

Click on a row in the Profiler to highlight the corresponding instruction in the file that was analyzed.

The following screenshot shows the Tree View in the Profiler:

550 XSLT/XQuery Debugger and Profiler XSLT and XQuery Profiler

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The following screenshot shows List View in the Profiler for the same XSLT stylesheet:

© 2018-2024 Altova GmbH

XSLT and XQuery Profiler 551XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

Using the Information in the Profiler
The Profiler displays the following information about each instruction in the XSLT stylesheet:

· Index: A number assigned to each instruction in the order in which the instruction was called.
· Name: The name of the XSLT instruction.
· Hit Count: The total number of times the instruction was called during the transformation.

552 XSLT/XQuery Debugger and Profiler XSLT and XQuery Profiler

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Duration (ms) and %: The number of milliseconds that the instruction took to execute without taking
the execution time of its descendants into account, and the percentage of the total execution time.

· Descendants (ms): The number of milliseconds that the descendents of the instruction took to
execute.

· Descendants and Self and %: The number of milliseconds that the instruction and its descendants
took to execute, and the percentage of the total execution time.

· XPath: If the instruction contains an XPath statement, this column contains the time it took that
statement to execute.

Note: When using hitcount profiling, the times in the Profiler window are the sum total of execution time for
all the hits to the instruction. When using callgraph profiling, because each call of the instruction is
listed separately, the times shown in the Profiler window are the duration of a single execution of the
instruction.

9.2.2 XQuery Profiling

Starting the Profiler
Note that execution time results displayed in the Profiler may be influenced by other applications that are
running on your computer. When analyzing files using the Profiler, it is best to run only the XMLSpy
application.

To analyze an XQuery document:

1. In XMLSpy, open the XQuery document that you want to analyze.
2. Activate the Profiler by selecting XSL/XQuery | Enable XSLT 2 / XQuery profiling. A dialog opens.

3. Select Hitcount Profiling or Callgraph Profiling. Click OK to confirm. An empty Profiler window
appears.

4. Execute the XQuery (XSL/XQuery | XQuery Execution). When execution is finished, the execution
time statistics appear in the Profiler.

5. Click the "+" icons to expand rows in the Profiler to view the execution time statistics for the
instructions in the XQuery document (see screenshot). Note that in the case of these screenshots,
Hitcount Profiling was selected.

Click on a row in the Profiler to highlight the corresponding instruction in the file that was analyzed.

The following screenshot shows the Tree View in the Profiler:

© 2018-2024 Altova GmbH

XSLT and XQuery Profiler 553XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

The following screenshot shows List View in the Profiler for the same XQuery document:

554 XSLT/XQuery Debugger and Profiler XSLT and XQuery Profiler

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Using the Information in the Profiler
The Profiler displays the following information about each instruction in the XQuery document:

· Index: A number assigned to each instruction in the order in which the instruction was called.
· Name: The name of the XQuery instruction.

© 2018-2024 Altova GmbH

XSLT and XQuery Profiler 555XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

· Info: Information about the instruction. For example, if the instruction is a variable declaration, this
column contains the name of the variable and its value; if it is a function, then this contains the name
and parameters of the function.

· Hit Count: The total number of times the instruction was called during execution.
· Duration (ms) and %: The number of milliseconds that the instruction took to execute without taking

the execution time of its descendants into account, and the percentage of the total execution time.
· Descendants and Self (ms) and %: The total time spent executing the instruction and its

descendants, and the percentage of the total execution time.

Note: When using hitcount profiling, the times in the Profiler window are the sum total of execution time for
all the hits to the instruction. When using callgraph profiling, because each call of the instruction is
listed separately, the times shown in the Profiler window are the duration of a single execution of the
instruction.

9.2.3 Profiler Results: Exports and Charts

After running the XSLT/XQuery Profiler, the results can be exported to an XML file and to a chart that can be
saved as an image file.

Export
On clicking the Export button, you will be prompted to select a location and filename for the XML file to which
profiler results can be saved. To get a clearer view of the structure, it is best to view the XML file in Grid View.
For example, when viewing an XSLT Profiler result in Grid View, you will see the structure of the XML document
as consisting of three hierarchical levels, each identified by a node element. The first node element represents
the document root, the second node element the xsl:stylesheet element, and the third node element the
global elements (such as xsl:output and xsl:template). The profiling data is stored in attributes of each of
the node elements.

Chart
After running the XSLT/XQuery Profiler, a chart of the results or a subset of the results can be generated. In the
Profiler window (see screenshot below), click the Chart button to generate the chart in the Charts output
window (see screenshot below).

556 XSLT/XQuery Debugger and Profiler XSLT and XQuery Profiler

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note the following points:

· In the Profiler window (Tree View or List View), a subset of the results can be selected by marking
them. Click with the Ctrl and/or Shift keys to mark multiple items. In List View the results can be
sorted on the basis of a column's values by clicking on that column's header. This can be useful, for
example, for ordering result items according to the most time-intensive items and then selecting a
subset that takes up most of the transformation time. By selecting subsets unwanted result items can
be filtered out. In the screenshot above, the highlighted result items have been selected.

© 2018-2024 Altova GmbH

XSLT and XQuery Profiler 557XSLT/XQuery Debugger and Profiler

Altova XMLSpy 2024 Enterprise Edition

· After a chart has been created its type (pie chart, bar chart, line chart, etc) can be changed by clicking
the Change Type button of the Charts output window. The various types of charts are described in
detail in the Charts section of the documentation.

· Clicking the Select Data button of the Charts output window pops up the Select Data dialog
(screenshot below). In this dialog, you can select data for the X-Axis and Y-Axis from the data table
that is produced by the Select Columns process. To select data for the X-Axis click in the Axis Values
text box and then either enter the range of table values (for example, A1:A7) or drag the cursor from the
start of the range to the end of the range. Do the same for the Y-Axis.

Clicking the Select Columns button enables you to change the data selection for the data table. See
the Source XPath , X-Axis Selection , and Y-Axis Selection for information about how column
selection works.

For more detailed information about charts see the Charts section of the documentation.

366

345

352 355 360

345

558 XPath/XQuery Expressions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

10 XPath/XQuery Expressions

XPath and XQuery expressions are used to navigate XML trees. With the addition of support for maps and
arrays in version 3.1, XPath and XQuery expressions of version 3.1 can also be used to navigate JSON
structures. XPath is a subset of XQuery, and any expression that is valid in both languages will return the same
result in both languages. For more information about the two languages, see the XPath 3.1 Recommendation
and XQuery 3.1 Recommendation.

Evaluating XPath/XQuery expressions in XMLSpy
XMLSpy provides powerful features to build XPath/XQuery expressions, and to evaluate and debug expressions
against XML and JSON documents. This enables you to quickly build and test expressions against the XML or
JSON documents on which you plan to use them.

These analytic features are available in the XPath/XQuery Window, which is is an output window located by
default among the other output windows at the bottom of the application interface. The features of the
XPath/XQuery Window are described in the sub-sections of this section.

In a typical user scenario, you would do the following:

1. Open the XML or JSON document for which you want to build or evaluate an expression.
2. Enter the XPath/XQuery expression in the XPath/XQuery Window.
3. Run the Evaluator or Debugger to see the results. The Evaluator shows the end result, whereas the

Debugger enables you to go step-by-step through the evaluation process, showing you aspects of the
result at each step.

In this section
This section describes the features of the XPath/XQuery Window. It is organized as follows:

· About the XPath/XQuery Window
· Evaluate Mode : for evaluating XPath/XQuery expressions
· Debug Mode : for debugging XPath/XQuery expressions
· Expression Builder : for building XPath/XQuery expressions
· XQuery Expressions for JSON
· Points to Note

113

559

561

567

575

578

581

https://www.w3.org/TR/xpath-3/
https://www.w3.org/TR/xquery-31/

© 2018-2024 Altova GmbH

About the XPath/XQuery Window 559XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

10.1 About the XPath/XQuery Window

The XPath/XQuery Window (screenshot below) enables you to build, evaluate, and debug XPath and XQuery
expressions with respect to XML or JSON documents. (Features that enable JSON queries were introduced in
XPath/XQuery 3.1. See also JSON Transformations with XSLT/XQuery .)

For a broad description of the window and its toolbar, see XPath/XQuery Window in the description of the
interface.

Horizontal and vertical layouts
In the right-hand corner of the toolbar is a button (see screenshots above and below) that enables you to switch
between a vertical and a horizontal layout. You can switch layouts at any time and in any mode (see
Evaluation Mode and Debug Mode below). The screenshot above shows the vertical layout, which is useful
when the XPath/XQuery expression (in the left-hand pane in the screenshot above) spans multiple lines.

The horizontal layout (screenshot below) is useful in cases where the result has lines that have a large
horizontal extent..

Nine tabs
The XPath/XQuery Window has nine tabs, which are located at the left of the window (see screenshots above).
Having multiple tabs enables you to work with different expressions in different tabs and compare results. Click
the handle of the tab you want to switch to.

121

705

121

560

560 XPath/XQuery Expressions About the XPath/XQuery Window

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Evaluation Mode and Debug Mode
The XPath/XQuery Window can be used in two modes:

· Evaluation Mode , in which an XPath or XQuery expression is evaluated with respect to one or more
XML/JSON documents. The expression is entered in the Expression pane, and the result is displayed
in the adjoining Results pane. You can click nodes in the result to go to that node in the XML or JSON
document.

· Debug Mode , in which you can debug an XPath/XQuery expression as it applies to the currently
active XML document. You can set breakpoints and tracepoints, and go step-by-step through the
evaluation. At each step you can see the content of variables, as well as set custom Watch
expressions to check additional aspects of the evaluation.

To switch between the two modes, select the appropriate command in the Start Evaluation/Debugging
dropdown menu that is located in the left-hand corner of the window's toolbar (see screenshot below).

How to use the two modes is described in the sub-sections of this section.

XPath/XQuery Expression Builder
In both modes , the Expression Builder can be used to help you construct syntactically correct

expressions. Switch Expression Builder on/off with the Builder Mode button of the main toolbar .

121

561

567

560 575

575

© 2018-2024 Altova GmbH

Evaluating the Expression 561XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

10.2 Evaluating the Expression

The XPath/XQuery Window enables you to build an XPath or XQuery expression (in a language version that you
can select; see screenshot below), and then evaluate the expression within a scope that you specify in the
Where option (see screenshot). The expression can be evaluated on the current file, as well as on the following
sets of multiple files: (i) all currently open documents; (ii) files of the currently active XMLSpy project ; or (iii)
files of a selected folder. To simply test the expression, one suitable file as the scope would be appropriate.
The XPath/XQuery Window can, however, also be used to find specific data in one or more files and report
these in the Results pane; in this case, select an appropriate file-set in the scope.

The XPath/XQuery Window comprises a toolbar and two panes—the Expression pane (at left in the screenshot
above) and the Results pane (at right in the screenshot).

Evaluation procedure
To evaluate an XPath/XQuery expression, do the following (refer also to the screenshot above):

1. Select Evaluation Mode: Select Start Evaluation in the dropdown menu of the Start
Evaluation/Debugging (F5) command (located at top left of the toolbar; see screenshot below).

2. Horizontal/Vertical layout: To switch layout, click the Horizontal/Vertical Layout button (located at
the top right of the toolbar). Default is vertical layout.

3. Select language version: In the toolbar, select the language version for the expression you want to
evaluate; for example, XPath 3.1. Default is XPath 3.1. Also see the note below titled XML Schema
Selector and XML Schema Field .

4. Enter expression: In the Expression pane, enter the expression to evaluate. For help with constructing
an expression, use the entry helpers of the Expression Builder . For more information about editing
features of the Expression pane, also see the note below titled Editing in the Expression pane .

1009

563

575

563

562 XPath/XQuery Expressions Evaluating the Expression

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Select evaluation scope: In the toolbar's Where option, select the file/s on which the expression is to
be evaluated. The options are: Current file; Open files; (XMLSpy) Project; or Folder. Default is Current
File.

If Current file is selected, the file that is currently active is queried. Selecting Open files causes the
expression to be evaluated against all the files currently open in XMLSpy. Project refers to the currently
active XMLSpy project . (The external folders in an XMLSpy project can be excluded by checking
the Skip external folders icon.) The Folder option enables you to browse for the required folder; the
XPath expression will be evaluated against XML or JSON files in this folder.

6. Select XML or JSON evaluation: If the evaluation scope is the current file, the evaluation mode (XML or
JSON) is automatically determined by the conformance type of the document's file type (JSON
mode for JSON-conformant files, XML mode for non-JSON files). This auto-detected mode cannot be
changed, and the buttons are disabled. If the evaluation scope is a multiple-file option, then both
buttons are enabled and you can select the evaluation mode you want; the default is whichever of the
two options was previously selected.

7. Set the context node: The context node can be set to either: (i) the root node, or (ii) the current
selection in the active document. You can toggle between the two settings via the toolbar button Set
current selection as origin for XPath/XQuery. The default setting is the root node.

8. XML validation: If the Validate XML toolbar button is toggled on (the default setting), then the XML
files being evaluated will be validated. Errors are treated as warnings and are reported in the Results
pane (screenshot below), but evaluation continues.

9. Evaluate the expression: If the toolbar's toggle option Evaluate on typing is selected, then the result
of the evaluation is displayed in the Results pane as you type the expression. If this option is not
selected, then the evaluation must be explicitly started, by clicking the command Start
Evaluation/Debugging (F5) (located at top left of the toolbar).

Toolbar buttons used in the evaluation procedure

Start Enables selection of Evaluation Mode, and starts the evaluation

1009

1516

© 2018-2024 Altova GmbH

Evaluating the Expression 563XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

Evaluation/Debugging
(F5)

Stop
Evaluation/Debugging
(Shift+F5)

Enabled during evaluation. It is useful if the evaluation takes very
long or goes into an endless loop, and you therefore want to
stop the evaluation

Validate XML When toggled on, the target XML document/s are validated

Copy XPath of Current
Selection

Copies the locator path of the node in the XML document to the
last cursor position in the Expression pane

Set current selection as
context

Toggles expression context between root node and the current
selection

Load Snippet Loads an XPath/XQuery snippet from an XQuery file to the
evaluator pane, overwriting the current contents of teh pane

Save Snippet Saves an XPath/XQuery snippet from the evaluator pane to an
XQuery file

XML/JSON Evaluation
Mode (toggles between
XML and JSON
evaluation modes)

The highlighted icon of the pair is the active option. When
evaluation scope is multiple files, both icons are enabled and
one can be selected. Otherwise, evaluation mode is auto-
detected according to file type; the other icon is disabled.

Switch to Builder Switches to Expression Builder mode, which provides context-
sensitive entry helpers to help construct expressions

Evaluation on typing Switches on the evaluation of expressions while the expression
is being typed

Show Options Opens an Options dialog for setting the display options of
results

Horizontal/Vertical
Layout

Switches between horizontal and vertical layouts

XML Schema Selector and XML Schema Field
The XML Schema Selector and XML Schema Field options are used for a narrow subset of specific XPath 1.0
cases and are useful when unique identity constraints have been defined in the XML Schema. When either of
these options is selected, only name tests (and the wildcard *) are allowed in the XPath expression, and
predicates and XPath functions may not be used. Furthermore, for the XML Schema Selector option, only
expressions on the child axis are allowed; for the XML Schema Field option, expressions on the child axis and
attribute axis are allowed. For more information, see the W3C's XML Schema: Structures Recommendation.

Editing in the Expression pane
Note the following points about editing expressions in the Expression pane:

· To create the expression over multiple lines (for easier readability), use the Return key.
· To increase/decrease the size of text in the expression field, click in the expression field, then press

Ctrl and turn the scroll wheel. Note that this also applies in the Results pane.
· Instead of manually entering the locator path expression of a node, you can let XMLSpy enter it for

you. Do this as follows: (i) Place the cursor at the point in the XPath expression where you want to

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/structures.html#coss-identity-constraint

564 XPath/XQuery Expressions Evaluating the Expression

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

enter the locator path; (ii) Place the cursor inside the node you want to target; (iii) In the toolbar, click
the button Copy the XPath of the Current Selection. This enters the locator path of the selected
node in the expression. The locator path will be an absolute path starting at the root node of the
document.

XQuery and JSON evaluations

· For information about XQuery evaluations, see the section, XQuery Evaluation . (The XQ icons are for

XQuery evaluation ; the XQU icons are for XQuery Update executions .)

· For a description of querying JSON documents, see XQuery Expressions for JSON and JSON
Transformations with XSLT/XQuery .

Results pane
The Results pane is shown in the screenshot below, at right. Note that it has its own toolbar.

The Results pane has the following functionality:

· Toggle on the Show Header in Output icon if, in the output, you wish to show the location of the XML
file and the XPath expression (as in the screenshot below).

· The result list consists of two columns: (i) a node name or a datatype; (ii) the content of the node.
· If the XPath expression returns nodes (such as elements or attributes), you can select whether the

entire contents of the nodes should be shown as the value of the node. To do this, switch on the toggle
Show Complete Result.

· When the result contains a node (including a text node)—as opposed to expression-generated literals
—clicking that node in the Results pane highlights the corresponding node in the XML document in the
Main Window.

· If the evaluation is carried out on multiple files (specified in the Where option), then the results of each
file are listed separately under the path of that file (see screenshot below). If the evaluation mode is
XML, then XML-conformant files are evaluated, other types are skipped. If the evaluation mode is
JSON, then JSON-conformant files are evaluated, other types are skipped.

506

506 511

578

705

© 2018-2024 Altova GmbH

Evaluating the Expression 565XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

· If the results involve multiple files, clicking a filename in the results list opens the file in XMLSpy and
makes it the active file.

· You can copy both columns of a result sub-line, or only the value column. To copy all columns, right-
click a sub-line and toggle on Copying Includes All Columns. (Alternatively you can toggle the
command on/off via its icon in the toolbar of the Results pane.) Then right-click the sub-line you want to
copy and select either Copy Subline (for that subline) or Copy All (for all sublines).

Toolbar of the Results pane
The toolbar of the Results pane contains icons that provide navigation, search, and copy functionality. These
icons, starting from the left, are described in the table below. The corresponding commands are also available
in the context menu of result list items.

Icon What it does

Next, Previous Selects, respectively, the next and previous item in the result list

Copy the selected text
line to the clipboard

Copies the value column of the selected result item to the clipboard. To copy all
columns, toggle on the Copying includes all columns command (see below)

Copy all messages to
the clipboard

Copies the value column of all result items to the clipboard, including empty values.
Each item is copied as a separate line

Copying includes all
columns

Switches between copying (i) all columns, or (ii) only the value column. The column
separator is a single space

Find Opens a Find dialog to search for any string, including special characters, in the
result list

Find previous Finds the previous occurrence of the term that was last entered in the Find dialog

Find next Finds the next occurrence of the term that was last entered in the Find dialog

Expand with children Expands the selected item and all its descendants

Collapse with children Collapses the selected item and all its descendants

Clear Clears the result list

566 XPath/XQuery Expressions Evaluating the Expression

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Display options
When you click the Show Options button (gear icon) at the top right of the XPath/XQuery a dialog appears in
which you can specify display options of the Result pane. You can choose to display results as an expandable
tree structure or as a serialized XML string (a node is shown as a text string, just as it is written in an XML
document). Additionally you can choose to show attributes inline, which means that attributes and their values
are shown on the same line as the element (additional to being shown in the tree structure of the node).

© 2018-2024 Altova GmbH

Debugging the Expression 567XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

10.3 Debugging the Expression

The Debug Mode of the XPath/XQuery Window (screenshot below) enables you to debug an XPath/XQuery
expression as it applies to the active file.

In Debug Mode, two additional panes are added to the Results pane (see screenshot below):

· the Watch Expressions and Variables pane; both watch expressions and variables are shown together
in the same pane, with variables being able to be toggled on/off

· the Call Stack and Debug Points pane, each of which has a separate tab in the pane

The Expression and Result panes can adjoin each other horizontally or vertically. To switch between these
layouts, click the Horizontal/Vertical Layout button (at top right of the window's toolbar).

Debugger Mode offers the following features:

· Enables you to step into the XPath evaluation process, one step at a time to see how the XPath
expression is being evaluated. Use the Step Into (F11) toolbar button for this. At each evaluation step,
the part of the expression being currently evaluated is highlighted in yellow (see screenshot above),
while the result of evaluating that step is shown in the Results pane. For example, in the screenshot
above, all the section descendant elements of the book element have been selected, whether they

occur as child elements of book or are nested further below.

· The Watch Expressions and Variables pane always shows the context node of the expression step
that is being being currently evaluated. So, in the screenshot above, for example, the expression step
being currently evaluated is //section. Its context node is book. So the book node (and its content) is

displayed as the context item.
· Set breakpoints where you want to pause the evaluation and check results at these points. You can

then step through the evaluation by pausing only at breakpoints. Use the Start Debugging (F5)
toolbar button for this. This is quicker than pausing at every step with Step Into (F11).

568 XPath/XQuery Expressions Debugging the Expression

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Set tracepoints to see a report of results at the steps marked as tracepoints. The evaluation will not
pause (except at breakpoints), but all the tracepoint results will be displayed together in a list in the
Results pane.

· Watch expressions can be used to check information (such as document content or aspects of the
evaluation) as the evaluation progresses. Of great use is the display of the context item in the same
window. This enables you to assess how the result of the watch expression relates to the context
item. You can enter multiple watch expressions, which is useful to compare results of different
expressions within the same context item.

· Variables that are in scope, including their values, are displayed in the Watch Expressions and
Variables pane. You can toggle on/off global and variables separately. It can be very useful to see the
values of variables within a context item together with the result of watch expressions.

· Processor calls of an evaluation step are shown in the Call Stack tab of the Call Stack and Debug
Points pane.

· If breakpoints and tracepoints have been set, then these are displayed in the Debug Points tab of the
Call Stack and Debug Points pane.

For more information about these features, see their descriptions below.

Setting up Debug Mode
To switch to Debug Mode, click Start Debugging in the dropdown menu of the Start Evaluation/Debugging
(F5) command (located at top left of the toolbar; see screenshot below). When in Debug Mode, the Watch
Expressions pane and Call Stack and Debug Points pane will appear. To start debugging the current
expression, click Start Debugging or F5.

Note that Debug Mode works only with the current file; it cannot be used with multiple files. As a result, the
Where option will automatically be set to Current File when you switch to this mode and cannot be changed.

Buttons for setting up Debug Mode

Start
Evaluation/Debugging
(F5)

Enables selection of Evaluation Mode, and starts the evaluation

Stop
Evaluation/Debugging
(Shift+F5)

Enabled during evaluation. It is useful if the evaluation takes very
long or goes into an endless loop, and you therefore want to
stop the evaluation

Validate XML When toggled on, the target XML document/s are validated

Copy XPath of Current
Selection

Copies the locator path of the node in the XML document to the
last cursor position in the Expression pane

Set current selection as
context

Toggles expression context between root node and the current
selection

Load Snippet Loads an XPath/XQuery snippet from an XQuery file to the
evaluator pane, overwriting the current contents of teh pane

© 2018-2024 Altova GmbH

Debugging the Expression 569XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

Save Snippet Saves an XPath/XQuery snippet from the evaluator pane to an
XQuery file

XML/JSON Evaluation
Mode (toggles between
XML and JSON
evaluation modes)

The highlighted icon of the pair is the active option. When
evaluation scope is multiple files, both icons are enabled and
one can be selected. Otherwise, evaluation mode is auto-
detected according to file type; the other icon is disabled.

Switch to Builder Switches to Expression Builder mode, which provides context-
sensitive entry helpers to help construct expressions

Evaluation on typing Switches on the evaluation of expressions while the expression
is being typed

Show Options Opens an Options dialog for setting the display options of
results

Horizontal/Vertical
Layout

Switches between horizontal and vertical layouts

Running the Debugger
The broad steps for debugging an XPath/XQuery expression are, typically, as follows:

1. Make the XML/JSON file on which you wish to run the expression the active file.
2. Select the XPath/XQuery(Update) version of the expression you want to debug.
3. Enter the XPath/XQuery expression in the expression pane.
4. Set any breakpoints or tracepoints you want. A breakpoint is a point at which the evaluation is paused.

A tracepoint is a point in the evaluation that is recorded; tracepoints thus provide a traceable path of
evaluation results.

5. If you click Start Debugger, evaluation is carried out in one step to the end unless a breakpoint has
been marked in the expression. Click Start Debugger repeatedly to progress through each breakpoint
to the end of the evaluation.

6. Use the Step Into/Out/Over functionality to go step-by-step through the evaluation. You can also use
the Run to Cursor functionality to go directly to the expression step where you place the cursor

Buttons for debugging

Start Debugger (F5) Starts the debugger. Evaluation goes directly to the end,
stopping only for breakpoints

Stop Debugger (Shift+F5) Exits the evaluation and stops the debugger

Step Into (F11) Proceeds through the evaluation, one step at a time.

Step Out (Shift+F11) Steps out of the current evaluation step, and goes to the parent
step

Step Over (Ctrl+F11) Steps over descendant steps

570 XPath/XQuery Expressions Debugging the Expression

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Run to Cursor (Ctrl+F5) Evaluates directly to the expression step where the cursor is. A
second click evaluates to the end of the expression.

Insert/Remove Breakpoint
(F9)

Inserts/removes a breakpoint at the expression step where you
place the cursor

Insert/Remove Tracepoint
(Shift+F9)

Inserts/removes a tracepoint at the expression step where you
place the cursor

Stepping in, out, and over evaluation steps
The Step Into functionality enables you to go step-by-step through the evaluation. Each click of this command
takes you through the next step of the evaluation; the current step is shown by the highlighting in the
expression (see screenshot below). The Step Out functionality takes you to a step on a higher level as the
current step, whereas the Step Over functionality steps over lower-level steps and takes you to the next step
on the same level. You can try out the Stepping functionality by pasting the XQuery 3.1 expression given below
into the Expression pane and clicking the three Step buttons to see how they work.

XQuery 3.1 expression for trying the Step Into, Step Out, and Step Over functionality

declare function local:plus($a, $b) {
 $a + $b
};

declare function local:loop() {
 for $i in 1 to 10
 return (local:plus($i, $i+1), local:plus($i+1, $i+2))
};

local:loop()

The screenshot below shows the evaluation when processing has been paused on reaching the addition step
$a + $b during the first pass through the loop—that is, when $i=1. At this addition step, the result shows 3

(as a consequence of 1+2).

Breakpoints
Breakpoints are points where you want the Debugger to stop after it has been started with Start Debugger.
They are useful if you wish to analyze a specific part of the expression. When the Debugger stops at the

© 2018-2024 Altova GmbH

Debugging the Expression 571XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

breakpoint, you can check the result and could then use the Step Into functionality to display the results of the
next steps of the evaluation. To set a breakpoint, place the cursor in the expression at the point where you
want the breakpoint, and click the Insert/Remove Breakpoint (F9) toolbar button. The breakpoint will be
marked with a dashed red overline. To remove a breakpoint, select it and click Insert/Remove Breakpoint
(F9).

Also see Debug Points below.

Tracepoints
Tracepoints are points at which the results are recorded. These results are displayed in the Traces tree of the
Result tab (see screenshot below). This enables you to see all the evaluation results of particular parts of the
expression. For example, in the screenshot below, tracepoints have been set on $a, $b, and local:plus($i,

$i+1); the results at these tracepoints during the first iteration through the loop are shown in the Traces tree:

$a=1, $b=2, and local:plus($i, $i+1)=3.

To set a tracepoint, place the cursor at the point where you want the tracepoint, and click the toolbar button
Insert/Remove Tracepoint (Shift+F9). The tracepoint will be marked with a dashed blue overline (see
screenshot below). To remove a tracepoint, select it and click Insert/Remove Tracepoint (F9).

Note: If both a breakpoint and a tracepoint are set on a part of the expression, then the overline is composed
of alternating red and blue dashes.

Also see Debug Points below.

Watch Expressions and Variables
Watch expressions and variables are displayed in the Watch Expressions and Variables pane (bottom center
pane in the screenshot below).

573

573

572 XPath/XQuery Expressions Debugging the Expression

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Watch expressions
Watch expressions are expressions that you can enter, either before evaluation starts or during a pause in

evaluation. They can be used for the following purposes:

· To test specific conditions. For example in the screenshot above, the watch expression $i=1 to 5 is

used to test whether the $i variable has a value in the given range at any given time during processing.

The result true tells us that this condition has been met in the current processing context.

· To find data within a certain context. For example, within the context of a Company element, we could

enter a watch expression @id to look up that company's customer code in the target XML document.

· To generate additional data. For example in the screenshot above, the watch expression if ($i=1 to

5) then (concat("Iteration ", $i)) else "Out of Loop" can generate a suitable string to

indicate in which iteration of the loop the evaluation currently is.

To enter a watch expression, click Add Watch in the pane's toolbar, then enter the expression and click Enter
when done. To remove a watch expression, select it and click Remove Watch in the toolbar. If, during
debugging, the expression cannot be correctly evaluated for some reason (for example, if one of its variables is
out of scope), then the watch expression turns red.

Variables
Variables that have been declared in the expression and that are in scope in the current evaluation step will be
displayed together with their respective current values. For example, in the screenshot above, processing has
just reached the call to the local:plus function. The $i variable is in scope within the local:loop function

and has just been incremented to 2. So $i is displayed with its current value. You can toggle on/off the display

of local and global variables by clicking their respective toolbar icons.

Icons of the pane
Note the availability of the following features via the icons of the pane.

Icon What it does

Next, Previous Selects, respectively, the next and previous item in the result list

Copy the selected text Copies the value column of the selected result item to the clipboard. To copy all

© 2018-2024 Altova GmbH

Debugging the Expression 573XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

line to the clipboard columns, toggle on the Copying includes all columns command (see below)

Copy all messages to
the clipboard

Copies the value column of all result items to the clipboard, including empty values.
Each item is copied as a separate line

Copying includes all
columns

Switches between copying (i) all columns, or (ii) only the value column. The column
separator is a single space

Find Opens a Find dialog to search for any string, including special characters, in the
result list

Find previous Finds the previous occurrence of the term that was last entered in the Find dialog

Find next Finds the next occurrence of the term that was last entered in the Find dialog

Expand with children Expands the selected item and all its descendants

Collapse with children Collapses the selected item and all its descendants

Clear Clears the result list

Call stack
The Call Stack tab of the Call Stack and Debug Points pane (bottom right pane in the screenshot above)
displays the processor calls up to that point in the debugging. The current processor call is highlighted in
yellow. Note that only the calls that directly led to the current evaluation step are displayed. For example, in
the screenshot above, the current evaluation step is an arithmetic calculation expression within a function call
to the local:plus function. Now, although this is the second iteration of local:loop, the processor calls of

the first iteration are not displayed. This is because those calls are on a parallel level to the current function
call and did not lead to it.

Debug points
The Debug Points tab of the Call Stack and Debug Points pane (bottom right pane in the screenshot below)
shows the breakpoints (with red circles) and tracepoints (blue circles) that you have set on the expression.
Each debug point (breakpoint or tracepoint) is listed with its line and character number. For example,
FunctionCall@7:17 means that there is a debug point on line 7, character 17.

574 XPath/XQuery Expressions Debugging the Expression

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note the following features:

· For breakpoints, you can enter a break condition by double-clicking Enter break condition, entering
the expression for the condition, and pressing Enter. That breakpoint will be enabled only when the
break condition evaluates to true. For example, in the screenshot above, the break condition $i=3 will

enable the breakpoint on this function-call only when the value of $i is 3. The screenshot shows the

evaluation paused at this breakpoint.
· You can enable/disable all debug points by clicking their respective toolbar buttons: Enable All

Debug Points and Disable All Debug Points. When a debug point is disabled, it is deactivated for all
evaluations till it is enabled again.

· You can also enable/disable breaks in processing when a processing error is encountered by toggling
on/off the corresponding toolbar icon.

· You can enable/disable individual breakpoints in their respective context menus and by clicking their
circle icons. When a circle icon is gray, the debug point has been disabled.

Display options
When you click the Show Options button (gear icon) at the top right of the XPath/XQuery a dialog appears in
which you can specify display options of the Result pane and the Watch Expressions and Variables panes.
You can choose to display, for each pane separately:

· results as an expandable tree structure or as a serialized XML string (a node is shown as a text string,
just as it is written in an XML document), and

· attributes inline, which means that attributes and their values are shown on the same line as the
element (additional to being shown in the tree structure of the node).

© 2018-2024 Altova GmbH

Expression Builder 575XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

10.4 Expression Builder

The Expression Builder (or Builder Mode) is switched on/off by clicking the Builder Mode icon of the main

toolbar . (see screenshot below). The Expression Builder can be switched on in both modes (Evaluation
Mode and Debugging Mode). It has two entry-helper panes: (i) for operators and expressions; and (ii) for
functions (see screenshot below). The items in both panes can be shown either grouped hierarchically or as a
flat list. Select the option you want in the dropdown list at the top right of each pane (see screenshot below). In
the screenshot, both panes show their items in hierarchical groups.

Features of the Expression Builder:

· To view a text description of an item in either entry-helper pane, hover over the item.
· Each function is listed with its signature (that is, with its arguments, the datatypes of the arguments,

and the datatype of the function's output).
· If more than one signature exists for a single function name, each signature is listed as a separate

function. (These variants are known as overloads of that function name.) In the screenshot above, for
example, the contains function is shown twice: once for each of its two signatures.

· Arguments are listed by their names (if any) or by their datatypes. Select the option you want from the
dropdown list in the title bar of the Functions pane (circled in green in the screenshot above).

· Double-clicking an item in any of the panes (operator, expression, or function), inserts that item at the
cursor location in the expression. Functions are inserted with their arguments indicated by
placeholders (# symbols).

· If (i) text is selected in the expression's edit field, and (ii) an operator, expression or function that
contains a placeholder is double-clicked to insert it, then the text that was selected is inserted instead

559

576 XPath/XQuery Expressions Expression Builder

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

of the placeholder. This is a quick way to insert long text (such as a path expression) into an operator,
expression, or function.

· You can insert the path to a node in the active document by selecting that node and then clicking the
button Copy the XPath of the current selection of the window's main toolbar.

Toolbar buttons used in Expression Builder

Horizontal/Vertical Layout Switches between horizontal and vertical layouts

Switch to Builder Switches to Expression Builder mode, which provides context-
sensitive entry helpers to help construct expressions

Copy XPath of Current
Selection

Copies the locator path of the node in the XML document to
the last cursor position in the Expression pane

Set current selection as
context

Toggles expression context between root node and the current
selection

Load/Save XPath/XQuery
snippet

Respectively, loads/saves an XPath/XQuery snippet from/to an
XQuery file

After you have entered a function in the expression, hovering over the function name in the Expression pane
displays the function's signature and a text description of the function. If more than one signature exists for a
function, these are indicated with an overload factor at the bottom of the display. If you place the cursor within
the parentheses of the function and press Ctrl+Shift+Spacebar, you can view the signatures of the various
overloads of that function name (see screenshot below).

Open and save XPath/XQuery snippets from/to file
You can save an XPath/XQuery expression, or longer snippets, that you have entered in the XPath/XQuery
Window, together with the current settings of the window, to an XQuery file, and you can load XPath/XQuery
snippets from an XQuery file. To carry out these two functions, click their respective icons (Save Snippet or
Load Snippet), which are located in the window's toolbar.

After an XPath/XQuery snippet has been saved to file, it can be loaded into the XPath/XQuery Window of any
XMLSpy instance (version 2022 and later). This is useful if you want to use the snippet on another machine, or
pass it to another user, or even use it yourself later on the same machine. When the expression is loaded in
the XPath/XQuery Window from an XQuery file, the settings of the window will automatically switch to the
window settings that were saved to the file with the snippet.

© 2018-2024 Altova GmbH

Expression Builder 577XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

Save snippet to file
To save an XPath/XQuery expression or snippet to a file, do the following:

1. Define the window settings: (i) the evaluation language; (ii) the Where field setting; and (iii) in the case
of the Where field having been set to Project, whether external folders are to be skipped or not.

2. Enter the XPath/XQuery expression or snippet you want to save.
3. Click Save Snippet.
4. In the Save As dialog that appears, select the file, or enter the name of a new file, to which you want to

save the snippet, and click Save.

The snippet will be saved to the file, with the window settings being saved as a comment in the first line of the
file. Given below is the listing of a saved snippet file.

(: {"language":"XQuery3","where":"CurrentFile"} :)
for $i in //para[count(*)=0] return $i

Note: If you like, you can edit this file, including the comment line that contains the window settings.

Load snippet from file
To load an XPath/XQuery snippet from a file, do the following:

1. In the tab where you want to load the expression, click Load Snippet.
2. In the Open dialog that appears, browse for the XQuery file from which you want to load the snippet and

click Open.

The snippet will be loaded and the settings of the XPath/XQuery Window will change to those defined in the
XQuery file. If no settings are stored in the file, then the settings in the XPath/XQuery Window will not change. If
the Where setting is incorrectly set, then the window setting will default to Current File.

578 XPath/XQuery Expressions XQuery Expressions for JSON

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

10.5 XQuery Expressions for JSON

JSON documents can be queried by entering an XPath/XQuery 3.1 query expression in the XPath/XQuery
output window (see screenshot below).

To evaluate an expression on a JSON document, do the following:

1. Select either the XPath 3.1 icon or XQuery 3.1 icon.
2. Ensure that the window is in JSON evaluation mode.
3. Enter the XPath 3.1 or XQuery 3.1 expression.
4. Click Start Evaluation (at left in the toolbar).

XQuery 3.1 expressions for JSON
Since JSON data structures commonly use objects and arrays, it is the XQuery 3.1 lookup operator ? that is

used to locate nodes inside JSON objects (which are essentially maps from an XQuery perspective) and JSON
arrays. This way of locating a node is different than how path expressions are written to locate nodes in XML
documents. In these, the slash operator / is used to connect steps in a path expression (for example:

items/*). In XQuery expressions for JSON, the slash operator is not used for locating nodes.

Examples of XQuery expressions for JSON

?items?*

Read this to mean: Lookup the child node items and then lookup all its children nodes. Note that items is

expected to be a child node of the context node.

?Artists?1?Albums?2?Name

Read this to mean: Lookup the child node Artists and then lookup its first child node. Inside that node, lookup

the child node Albums and then lookup its second child node. Now return the Name node of that second child

node.

?Tracks?*[contains(?Writer, 'Brian')]

Read this to mean: Lookup the child node Tracks and then lookup all its children. While looking up the

children, lookup each child's Writer node children, and select only those that contain the string 'Brian'.

Notice that there are three lookup operators in this expression. Each is used in a new step, where a nodeset
must be looked up.

?Artists?*[?Name="Queen"]?Albums?*?Name

Read this to mean: Inside the root object, lookup the child node Artists and then lookup all its children that

have Name node with a value of "Queen". Inside these nodes, lookup all the child Albums nodes, and then their

121

http://docs.basex.org/wiki/XQuery_3.1

© 2018-2024 Altova GmbH

XQuery Expressions for JSON 579XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

children. Inside these children, lookup (and return) the respective Name nodes. In the screenshot below, this

expression is shown in the XPath/XQuery Window together with the JSON Grid View representation of
the target JSON document.

Results pane for JSON evaluation
The Results show the selected JSON components in bold in the left side of the Results pane, and the
component's value in the right side of the pane. In the screenshot below, the results are displayed in bold. The
array has been expanded to show its members.

558 660

580 XPath/XQuery Expressions XQuery Expressions for JSON

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Maps and arrays are displayed in short or verbose format according to whether the Show complete result icon
in the toolbar is toggled off or on. Maps and arrays in the left side of the pane can be expanded by clicking their
respective plus icons.

© 2018-2024 Altova GmbH

Points to Note 581XPath/XQuery Expressions

Altova XMLSpy 2024 Enterprise Edition

10.6 Points to Note

XPath 1.0 expressions

· XPath 1.0 functions must be entered without any namespace prefix.
· The four node tests by type are supported: node(), text(), comment(), and processing-

instruction().

XPath 2.0 and 3.1 expressions

· String (e.g. 'Hello') and numeric literals (e.g. 256) are supported. To create other literals based on XML
Schema types, you use a namespace-prefixed constructor (e.g. xs:date('2004-09-02')). The
namespace prefix that you use for XML Schema types must be bound to the XML Schema
namespace: http://www.w3.org/2001/XMLSchema, and this namespace must be declared in your
XML file.

· XPath 2.0 and 3.1 functions used by the XPath Evaluator belong to the namespace
http://www.w3.org/2005/xpath-functions. Conventionally, the prefix fn: is bound to this
namespace. However, since this namespace is the default functions namespace used by the XPath
Evaluator, you do not need to specify a prefix on functions. If you do use a prefix, make sure that the
prefix is bound to the XPath Functions namespace, which you must declare in the XML document.
Examples of function usage: current-date() (with Functions namespace not declared in XML
document); fn:current-date() (with Functions namespace not declared in XML document, or
declared in XML document and bound to prefix fn:). You can omit the namespace prefix even if the
Functions namespace has been declared in the XML document with or without a prefix; this is because
a function so used in an XPath expression is in the default namespace—which is the default
namespace for functions.

· Altova's XPath extensions are in the namespace http://www.altova.com/xslt-extensions.

Note: To summarize the namespace issue: If you use constructors or types from the XML Schema
namespace, you must declare the XML Schema namespace in the XML document and use the correct
namespace prefixes in the XPath expression. You do not need to use a prefix for XPath functions.

Datatypes in XPath 2.0 and 3.1
If you are evaluating an XPath 2.0 or 3.1 expression for an XML document that references an XML Schema and
is valid according to this schema, you must explicitly construct or cast datatypes that are not implicitly
converted to the required datatype by an operation. In the XPath 2.0 and 3.1 Data Models used by the built-in
XPath engine, all atomized node values from the XML document are assigned the xs:untypedAtomic
datatype. The xs:untypedAtomic type works well with implicit type conversions. For example, the expression
xs:untypedAtomic("1") + 1 results in a value of 2 because the xs:untypedAtomic value is implicitly
promoted to xs:double by the addition operator. Arithmetic operators implicitly promote operands to
xs:double. Comparison operators promote operands to xs:string before comparing.

In some cases, however, it is necessary to explicitly convert to the required datatype. For example, if you have
two elements, startDate and endDate, that are defined as being of type xs:date in the XML Schema, then,
for example, using the XPath 2.0 expression endDate - startDate will show an error. On the other hand, if
you use xs:date(endDate) - xs:date(startDate) or (endDate cast as xs:date) - (startDate cast
as xs:date), the expression will correctly evaluate to a singleton sequence of type xs:dayTimeDuration.

582 XPath/XQuery Expressions Points to Note

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: The XPath Engines used by the XPath Evaluator are also used by the Altova XSLT Engine, so XPath
2.0 or 3.1 expressions in XSLT stylesheets that are not implicitly converted to the required datatype
must be explicitly constructed as or cast to the required datatype.

String length of character and entity references
When character and entity references are used as the input string for the string-length() function, the
references cannot be resolved, and the length of the unresolved text string is returned. Within an XSLT
environment, however, these references would have meaning, and the length of the resolved string is returned.

XPath 2.0 and 3.1 Functions Support
See the appendices .2079

© 2018-2024 Altova GmbH

 583Authentic

Altova XMLSpy 2024 Enterprise Edition

11 Authentic

Authentic View (screenshot below) is a graphical representation of your XML document. It enables XML
documents to be displayed without markup and with appropriate formatting and data-entry features such as
input fields, combo boxes, and radio buttons. Data that the user enters in Authentic View is entered into the
XML file.

To be able to view and edit an XML document in Authentic View, the XML document must be associated with a
StyleVision Power Stylesheet (SPS), which is created in Altova's StyleVision product. An SPS (.sps file)

is, in essence, an XSLT stylesheet. It specifies an output presentation for an XML file that can include data-
entry mechanisms. Authentic View users can, therefore, write data back to the XML file or DB. An SPS is
based on a schema and is specific to it. If you wish to use an SPS to edit an XML file in Authentic View, you
must use one that is based on the same schema as that on which the XML file is based.

Using Authentic View

· If an XML file is open, you can switch to Authentic View by clicking the Authentic button at the bottom
of the Main Window. If an SPS is not already assigned to the XML file, you will be prompted to assign
one to it. You must use an SPS that is based on the same schema as the XML file.

· A new XML file is created and displayed in Authentic View by selecting the File | New command and
then clicking the "Select a StyleVision Stylesheet" button. This new file is a template file associated
with the SPS you open. It can have a variable amount of starting data already present in it. This
starting data is contained in an XML file (a Template XML File) that may optionally be associated with
the SPS. After the Authentic View of an XML file is displayed, you can enter data in it and save the file.

584 Authentic

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· You can also open an SPS via the Authentic | New Document command. If a Template XML File has
been assigned to the SPS, then the data in the Template XML File is used as the starting data of the
XML document template created in Authentic View.

In this section
This section contains an Authentic View tutorial, which shows you how to use Authentic View. It is followed by
the section, Editing in Authentic View, which explains individual editing features in detail.

More information about Authentic View
For more information about Authentic View, see (i) the section Authentic | Authentic View Interface ,
which describes the Authentic View editing window, and (ii) the Authentic menu section of the User
Reference part of this documentation.

583 598

1343

© 2018-2024 Altova GmbH

Authentic View Tutorial 585Authentic

Altova XMLSpy 2024 Enterprise Edition

11.1 Authentic View Tutorial

In Authentic View, you can edit XML documents in a graphical WYSIWYG interface (screenshot below), just
like in word-processor applications such as Microsoft Word. In fact, all you need to do is enter data. You do not
have to concern yourself with the formatting of the document, since the formatting is already defined in the
stylesheet that controls the Authentic View of the XML document. The stylesheet (StyleVision Power
Stylesheet, shortened to SPS in this tutorial) is created by a stylesheet designer using Altova's StyleVision
product.

Editing an XML document in Authentic View involves two user actions: (i) editing the structure of the document
(for example, adding or deleting document parts, such as paragraphs and headlines); and (ii) entering data (the
content of document parts).

This tutorial takes you through the following steps:

· Opening an XML document in Authentic View. The key requirement for Authentic View editing is that
the XML document be associated with an SPS file.

· A look at the Authentic View interface and a broad description of the central editing mechanisms.
· Editing document structure by inserting and deleting nodes.
· Entering data in the XML document.
· Entering (i) attribute values via the Attributes entry helper, and (ii) entity values.
· Printing the document.

Remember that this tutorial is intended to get you started, and has intentionally been kept simple. You will find
additional reference material and feature descriptions in the Authentic View interface section.598

586 Authentic Authentic View Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Tutorial requirements
All the files you need for the tutorial are in the Examples folder of your Altova application folder. These files are:

· NanonullOrg.xml (the XML document you will open)
· NanonullOrg.sps (the StyleVision Power Stylesheet to which the XML document is linked)
· NanonullOrg.xsd (the XML Schema on which the XML document and StyleVision Power Stylesheet

are based, and to which they are linked)
· nanonull.gif and Altova_right_300.gif (two image files used in the tutorial)

Note: At some points in the tutorial, we ask you to look at the XML text of the XML document (as opposed to
the Authentic View of the document). If the Altova product edition you are using does not include a
Text View (as with Authentic Desktop and Authentic Browser), then use a plain text editor like
Wordpad or Notepad to view the text of the XML document.

Caution: We recommend that you use a copy of NanonullOrg.xml for the tutorial, so that you can always
retrieve the original should the need arise.

11.1.1 Opening an XML Document in Authentic View

In Authentic View, you can edit an existing XML document or create and edit a new XML document. In this
tutorial, you will open an existing XML document in Authentic View (described in this section) and learn how
you can edit it (subsequent sections). Additionally, in this section is a description of how a new XML document
can be created for editing in Authentic View.

Opening an existing XML document
The file you will open is NanonullOrg.xml. It is in the Examples folder of your Altova application. You can open
NanonullOrg.xml in one of two ways:

· Click File | Open in your Altova product, then browse for NanonullOrg.xml in the dialog that appears,
and click Open.

· Use Windows Explorer to locate the file, right-click, and select your Altova product as the application
with which to open the file.

The file NanonullOrg.xml opens directly in Authentic View (screenshot below). This is because:

· The file already has a StyleVision Power Stylesheet (SPS) assigned to it, and
· In the Options dialog (Tools | Options), in the View tab, the option to open XML files in Authentic View

if an SPS file is assigned has been checked. (Otherwise the file would open in Text View.)

© 2018-2024 Altova GmbH

Authentic View Tutorial 587Authentic

Altova XMLSpy 2024 Enterprise Edition

Remember: It is the SPS that defines and controls how an XML document is displayed in Authentic View.
Without an SPS, there can be no Authentic View of the document.

Creating a new XML document based on an SPS
You can also create a new XML document that is based on an SPS. You can do this in two ways: via the File |
New menu command and via the Authentic | New Document menu command. In both cases an SPS is
selected.

Via File | New

1. Select File | New.
2. In the Create a New Document dialog, browse for the desired SPS.

If a Template XML File has been assigned to the SPS, then the data in the Template XML File is used as the
starting data of the XML document template created in Authentic View.

Via Authentic | New Document

1. Select Authentic | New Document.
2. In the Create a New Document dialog, browse for the desired SPS.

If a Template XML File has been assigned to the SPS, then the data in the Template XML File is used as the
starting data of the XML document template created in Authentic View.

11.1.2 The Authentic View Interface

The Authentic View editing interface consists of a main window in which you enter and edit the document data,
and three entry helpers. Editing a document is simple. If you wish to see the markup of the document, switch
on the markup tags. Then start typing in the content of your document. To modify the document structure, you
can use either the context menu or the Elements entry helper.

588 Authentic Authentic View Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Displaying XML node tags (document markup)
An XML document is essentially a hierarchy of nodes. For example:

<DocumentRoot>

<Person id="ABC001">

<Name>Alpha Beta</Name>

<Address>Some Address</Address>

<Tel>1234567</Tel>

</Person>

</DocumentRoot>

By default, the node tags are not displayed in Authentic View. You can switch on the node tags by selecting

the menu item Authentic | Show Large Markup (or the toolbar icon). Large markup tags contain the
names of the respective nodes. Alternatively, you can select small markup (no node names in tags) and mixed
markup (a mixture of large, small, and no markup tags, which is defined by the designer of the stylesheet; the
default mixed markup for the document is no markup).

You can view the text of the XML document in the Text View of your Altova product or in a text editor.

Entry helpers
There are three entry helpers in the interface (screenshot below), located by default along the right edge of the
application window. These are the Elements, Attributes, and Entity entry helpers.

© 2018-2024 Altova GmbH

Authentic View Tutorial 589Authentic

Altova XMLSpy 2024 Enterprise Edition

Elements entry helper
The Elements entry helper displays elements that can be inserted and removed with reference to the current
location of the cursor or selection in the Main Window. Note that the entry helper is context-sensitive; its
content changes according to the location of the cursor or selection. The content of the entry helper can be
changed in one other way: when another node is selected in the XML tree of the Elements entry helper, the
elements relevant to that node are displayed in the entry helper. The Elements entry helper can be expanded to
show the XML tree by checking the Show XML Tree check box at the top of the entry helper (see screenshot
above). The XML tree shows the hierarchy of nodes from the top-level element node all the way down to the
node selected in the Main Window.

Attributes entry helper
The Attributes entry helper displays the attributes of the element selected in the Main Window, and the values
of these attributes. Attribute values can be entered or edited in the Attributes entry helper. Element nodes from
the top-level element down to the selected element are available for selection in the combo box of the Attributes
entry helper. Selecting an element from the dropdown list of the combo box causes that element's attributes to
be displayed in the entry helper, where they can then be edited.

590 Authentic Authentic View Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Entities entry helper
The Entities entry helper is not context-sensitive, and displays all the entities declared for the document.
Double-clicking an entity inserts it at the cursor location. How to add entities for a document is described in the
section Authentic View interface .

Context menu
Right-clicking at a location in the Authentic View document pops up a context menu relevant to that (node)
location. The context menu provides commands that enable you to:

· Insert nodes at that location or before or after the selected node. Submenus display lists of nodes that
are allowed at the respective insert locations.

· Remove the selected node (if this allowed by the schema) or any removable ancestor element. The
nodes that may be removed (according to the schema) are listed in a submenu.

· Insert entities and CDATA sections. The entities declared for the document are listed in a submenu.
CDATA sections can only be inserted within text.

· Cut, copy, paste (including pasting as XML or text), and delete document content.

Note: For more details about the interface, see Authentic View interface

11.1.3 Node Operations

There are two major types of nodes you will encounter in an Authentic View XML document: element nodes
and attribute nodes. These nodes are marked up with tags, which you can switch on . There are also other
nodes in the document, such as text nodes (which are not marked up) and CDATA section nodes (which are
marked up, in order to delimit them from surrounding text).

The node operations described in this section refer only to element nodes and attribute nodes. When trying out
the operations described in this section, it is best to have large markup switched on .

Note: It is important to remember that only same- or higher-level elements can be inserted before or after
the selected element. Same-level elements are siblings. Siblings of a paragraph element would be
other paragraph elements, but could also be lists, a table, an image, etc. Siblings could occur before
or after an element. Higher-level elements are ancestor elements and siblings of ancestors. For a
paragraph element, ancestor elements could be a section, chapter, article, etc. A paragraph in a valid
XML file would already have ancestors. Therefore, adding a higher-level element in Authentic View,
creates the new element as a sibling of the relevant ancestor. For example, if a section element is
inserted after a paragraph, it is created as a sibling of the section that contains the current paragraph
element.

Carrying out node operations
Node operations can be carried out by selecting a command in the context menu or by clicking the node
operation entry in the Elements entry helper . In some cases, an element or attribute can be added by
clicking the Add Node link in the Authentic View of the document. In the special cases of elements defined
as paragraphs or list items, pressing the Enter key when within such an element creates a new sibling
element of that kind. This section also describes how nodes can be created and deleted by using the Apply
Element , Remove Node , and Clear Element mechanisms.

598

598

587

587

590

588

591

591

592 592 592

© 2018-2024 Altova GmbH

Authentic View Tutorial 591Authentic

Altova XMLSpy 2024 Enterprise Edition

Inserting elements
Elements can be inserted at the following locations:

· The cursor location within an element node. The elements available for insertion at that location are
listed in a submenu of the context menu's Insert command. In the Elements entry helper, elements

that can be inserted at a location are indicated with the icon. In the NanonullOrg.xml document,
place the cursor inside the para element, and create bold and italic elements using both the
context menu and Elements entry helper.

· Before or after the selected element or any of its ancestors, if allowed by the schema. Select the
required element from the submenu/s that roll out. In the Elements entry helper, elements that can be

inserted before or after the selected element are indicated with the and icons, respectively. Note
that in the Elements entry helper, you can insert elements before/after the selected element only; you
cannot insert before/after an ancestor element. Try out this command, by first placing the cursor inside
the para element and then inside the table listing the employees.

Add Node link
If an element or attribute is included in the document design, and is not present in the XML document, an Add
Node link is displayed at the location in the document where that node is specified. To see this link, in the line
with the text, Location of logo, select the @href node within the CompanyLogo element and delete it (by
pressing the Delete key). The add @href link appears within the CompanyLogo element that was edited
(screenshot below). Clicking the link adds the @href node to the XML document. The text box within the @href
tags appears because the design specifies that the @href node be added like this. You still have to enter the
value (or content) of the @href node. Enter the text nanonull.gif.

If the content model of an element is ambiguous, for example, if it specifies that a sequence of child elements
may appear in any order, then the add... link appears. Note that no node name is specified. Clicking the link
will pop up a list of elements that may validly be inserted.

Note: The Add Node link appears directly in the document template; there is no corresponding entry in the
context menu or Elements entry helper.

Creating new elements with the Enter key
In cases where an element has been formatted as a paragraph or list item (by the stylesheet designer),
pressing the Enter key when inside such a node causes a new node of that kind to be inserted after the current
node. You can try this mechanism in the NanonullOrg.xml document by going to the end of a para node (just
before its end tag) and pressing Enter.

592 Authentic Authentic View Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Applying elements
In elements of mixed content (those which contain both text and child elements), some text content can be
selected and an allowed child element be applied to it. The selected text becomes the content of the applied
element. To apply elements, in the context menu, select Apply and then select from among the applicable
elements. (If no elements can be applied to the selected text, then the Apply command does not appear in the
context menu.) In the Elements entry helper, elements that can be applied for a selection are indicated with the

 icon. In the NanonullOrg.xml document, select text inside the mixed content para element and
experiment with applying the bold and italic elements.

The stylesheet designer might also have created a toolbar icon to apply an element. In the NanonullOrg.xml
document, the bold and italic elements can be applied by clicking the bold and italic icons in the
application's Authentic toolbar.

Removing nodes
A node can be removed if its removal does not render the document invalid. Removing a node causes a node
and all its contents to be deleted. A node can be removed using the Remove command in the context menu.
When the Remove command is highlighted, a submenu pops up which contains all nodes that may be
removed, starting from the selected node and going up to the document's top-level node. To select a node for
removal, the cursor can be placed within the node, or the node (or part of it) can be highlighted. In the Elements

entry helper, nodes that can be removed are indicated with the icon. A removable node can also be
removed by selecting it and pressing the Delete key. In the NanonullOrg.xml document, experiment with
removing a few nodes using the mechanisms described. You can undo your changes with Ctrl+Z.

Clearing elements
Element nodes that are children of elements with mixed content (both text and element children) can be
cleared. The entire element can be cleared when the node is selected or when the cursor is placed inside the
node as an insertion point. A text fragment within the element can be cleared of the element markup by
highlighting the text fragment. With the selection made, select Clear in the context menu and then the element
to clear. In the Elements entry helper, elements that can be cleared for a particular selection are indicated with

the icon (insertion point selection) and icon (range selection). In the NanonullOrg.xml document, try
the clearing mechanism with the bold and italic child elements of para (which has mixed content).

Tables and table structure
There are two types of Authentic View table:

· SPS tables (static and dynamic). The broad structure of SPS table is determined by the stylesheet
designer. Within this broad structure, the only structural changes you are allowed are content-driven.
For example, you could add new rows to a dynamic SPS table.

· XML tables, in which you decide to present the contents of a particular node (say, one for person-
specific details) as a table. If the stylesheet designer has enabled the creation of this node as an XML
table, then you can determine the structure of the table and edit its contents. XML tables are
discussed in detail in the Tables in Authentic View section.616

© 2018-2024 Altova GmbH

Authentic View Tutorial 593Authentic

Altova XMLSpy 2024 Enterprise Edition

11.1.4 Entering Data in Authentic View

Data is entered into the XML document directly in the main window of Authentic View. Additionally for
attributes, data (the value of the attribute) can be entered in the Attributes entry helper . Data is entered (i)
directly as text, or (ii) by selecting an option in a data-entry device, which is then mapped to a predefined text
entry.

Adding text content
You can enter element content and attribute values directly as text in the main window of Authentic View. To
insert content, place the cursor at the location where you want to insert the text, and type. You can also copy
text from the clipboard into the document. Content can also be edited using standard editing mechanisms,
such as the Caps and Delete keys. For example, you can highlight the text to be edited and type in the
replacement text with the Caps key on.

For example, to change the name of the company, in the Name field of Office, place the cursor after Nanonull,
and type in USA to change the name from Nanonull, Inc. to Nanonull USA, Inc.

If text is editable, you will be able to place your cursor in it and highlight it, otherwise you will not be able to.
Try changing any of the field names (not the field values), such as "Street", "City", or "State/Zip," in the
address block. You are not able to place the cursor in this text because such text is not XML content; it is
derived from the StyleVision Power Stylesheet.

Inserting special characters and entities
When entering data, the following type of content is handled in a special way:

· Special characters that are used for XML markup (ampersand, apostrophe, greater than, less than,
and quotes). These characters are available as built-in entities and can be entered in the document
by double-clicking the respective entity in the Entities entry helper. If these characters occur frequently
(for example, in program code listings), then they can be entered within CDATA sections. To insert a
CDATA section, right-click at the location where you wish to enter the CDATA section, and select
Insert CDATA Section from the context menu. The XML processor ignores all markup characters
within CDATA sections. This also means that if you want a special character inside a CDATA section,
you should enter that character and not its entity reference.

· Special characters that cannot be entered via the keyboard should be entered by copying them from
the character map of your system to the required location in the document.

· A frequently used text string can be defined as an entity , which appears in the Entities entry helper.
The entity is inserted at the required locations by placing the cursor at each required location and

595

596

631

596

594 Authentic Authentic View Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

double-clicking the entity in the entry helper. This is useful for maintenance because the value of the
text string is held in one location; if the value needs to be changed, then all that needs to be done is to
change the entity definition.

Note: When markup is hidden in Authentic View, an empty element can easily be overlooked. To make sure
that you are not overlooking an empty element, switch large or small markup on .

Try using each type of text content described above.

Adding content via a data-entry device
In the content editing you have learned above, content is added by directly typing in text as content. There is
one other way that element content (or attribute values) can be entered in Authentic View: via data-entry
devices.

Given below is a list of data-entry devices in Authentic View, together with an explanation of how data is
entered in the XML file for each device.

Data-Entry Device Data in XML File

Input Field (Text Box) Text entered by user

Multiline Input Field Text entered by user

Combo box User selection mapped to value

Check box User selection mapped to value

Radio button User selection mapped to value

Button User selection mapped to value

In the static table containing the address fields (shown below), there are two data-entry devices: an input field
for the Zip field and a combo-box for the State field. The values that you enter in the text fields are entered
directly as the XML content of the respective elements. For other data-entry devices, your selection is mapped
to a value.

For the Authentic View shown above, here is the corresponding XML text:

587

© 2018-2024 Altova GmbH

Authentic View Tutorial 595Authentic

Altova XMLSpy 2024 Enterprise Edition

<Address>

<ipo:street>119 Oakstreet, Suite 4876</ipo:street>

<ipo:city>Vereno</ipo:city>

<ipo:state>DC</ipo:state>

<ipo:zip>29213</ipo:zip>

</Address>

Notice that the combo-box selection DC is mapped to a value of DC. The value of the Zip field is entered directly
as content of the ipo:zip element.

11.1.5 Entering Attribute Values

An attribute is a property of an element, and an element can have any number of attributes. Attributes have
values. You may sometimes be required to enter XML data as an attribute value. In Authentic View, you enter
attribute values in two ways:

· As content in the main window if the attribute has been created to accept its value in this way
· In the Attributes entry helper

Attribute values in the main window
Attribute values can be entered as normal text or as text in an input field, or as a user selection that will be
mapped to an XML value. They are entered in the same way that element content is entered: see Entering Data
in Authentic View . In such cases, the distinction between element content and attribute value is made by
the StyleVision Power Stylesheet and the data is handled appropriately.

Attribute values in the Attributes Entry Helper
If you wish to enter or change an attribute value, you can also do this in the Attributes Entry Helper. First, the
attribute node is selected in Authentic View, then the value of the attribute is entered or edited in the Attributes
entry helper. In the NanonullOrg.xml document, the location of the logo is stored as the value of the href
attribute of the CompanyLogo element. To change the logo to be used:

1. Select the CompanyLogo element by clicking a CompanyLogo tag. The attributes of the CompanyLogo
element are displayed in the Attributes Entry Helper.

2. In the Attributes Entry Helper, change the value of the href attribute from nanonull.gif to
Altova_right_300.gif (an image in the Examples folder).

This causes the Nanonull logo to be replaced by the Altova logo.

Note: Entities cannot be entered in the Attributes entry helper.

593

596 Authentic Authentic View Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

11.1.6 Adding Entities

An entity in Authentic View is typically XML data (but not necessarily), such as a single character; a text
string; and even a fragment of an XML document. An entity can also be a binary file, such as an image file. All
the entities available for a particular document are displayed in the Entities Entry Helper (screenshot below). To
insert an entity, place the cursor at the location in the document where you want to insert it, and then double-
click the entity in the Entities entry helper. Note that you cannot enter entities in the Attributes entry helper.

The ampersand character (&) has special significance in XML (as have the apostrophe, less than and greater
than symbols, and the double quote). To insert these characters, entities are used so that they are not
confused with XML-significant characters. These characters are available as entities in Authentic View.

In NanonullOrg.xml, change the title of Joe Martin (in Marketing) to Marketing Manager Europe & Asia. Do
this as follows:

1. Place the cursor where the ampersand is to be inserted.
2. Double-click the entity listed as "amp". This inserts an ampersand (screenshot below).

Note: The Entities Entry Helper is not context-sensitive. All available entities are displayed no matter where
the cursor is positioned. This does not mean that an entity can be inserted at all locations in the
document. If you are not sure, then validate the document after inserting the entity: XML | Validate
XML (F8).

Defining your own entities
As a document editor, you can define your own document entities. How to do this is described in the section
Defining Entities in Authentic View .

631

© 2018-2024 Altova GmbH

Authentic View Tutorial 597Authentic

Altova XMLSpy 2024 Enterprise Edition

11.1.7 Printing the Document

A printout from Authentic View of an XML document preserves the formatting seen in Authentic View.

To print NanonullOrg.xml, do the following:

1. Switch to Hide Markup mode if you are not already in it. You must do this if you do not want markup to
be printed.

2. Select File | Print Preview to see a preview of all pages. Shown below is part of a print preview page,
reduced by 50%. Notice that the formatting of the page is the same as that in Authentic View.

3. To print the file, click File | Print.

Note that you can also print a version of the document that displays markup. To do this, switch Authentic View
to Show small markup mode or Show large markup mode, and then print.

598 Authentic Authentic View Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

11.2 Authentic View Interface

Authentic View is enabled by clicking the Authentic tab of the active document. If no SPS has been assigned
to the XML document, you are prompted to assign one. You can assign an SPS at any time via the Authentic |
Assign a Stylevision Stylesheet command.

This section provides:

· An overview of the interface
· A description of the toolbar icons specific to Authentic View
· A description of viewing modes available in the main Authentic View window
· A description of the Entry Helpers and how they are to be used
· A description of the context menus available at various points in the Authentic View of the XML

document

Additional sources of Authentic View information are:

· An Authentic View Tutorial, which shows you how to use the Authentic View interface. This tutorial is
available in the documentation of the Altova XMLSpy and Altova Authentic Desktop products (see the
Tutorials section), as well as online.

· For a detailed description of Authentic View menu commands, see the User Reference section of your
product documentation.

Altova website: XML content editing, XML authoring

11.2.1 Overview of the GUI

Authentic View has a menu bar and toolbar running across the top of the window, and three areas that cover
the rest of the interface: the Project Window, Main Window, and Entry Helpers Window. These areas are
shown below.

http://www.altova.com/manual_Authentic/
https://www.altova.com/authentic
https://www.altova.com/authentic

© 2018-2024 Altova GmbH

Authentic View Interface 599Authentic

Altova XMLSpy 2024 Enterprise Edition

Menu bar
The menus available in the menu bar are described in detail in the User Reference section of your product
documentation.

Toolbar
The symbols and icons displayed in the toolbar are described in the section, Authentic View toolbar icons .

Project window
You can group XML, XSL, XML schema, and Entity files together in a project. To create and modify the list of
project files, use the commands in the Project menu (described in the User Reference section of your product
documentation). The list of project files is displayed in the Project window. A file in the Project window can be
accessed by double-clicking it.

Info window
This window provides information about the node that is currently selected in Authentic View.

Main window
This is the window in which the XML document is displayed and edited. It is described in the section, Authentic
View main window .

Entry helpers
There are three entry helper windows in this area: Elements, Attributes, and Entities. What entries appear in
these windows (Elements and Attributes Entry Helpers) are context-sensitive, i.e. it depends on where in the
document the cursor is. You can enter an element or entity into the document by double-clicking its entry
helper. The value of an attribute is entered into the value field of that attribute in the Attributes Entry Helper. See
the section Authentic View Entry Helpers for details.

Status Bar
The Status Bar displays the XPath to the currently selected node.

Context menus
These are the menus that appear when you right-click in the Main Window. The available commands are
context-sensitive editing commands, i.e. they allow you to manipulate structure and content relevant to the
selected node. Such manipulations include inserting, appending, or deleting a node, adding entities, or cutting
and pasting content.

11.2.2 Authentic View Toolbar Icons

Icons in the Authentic View toolbar are command shortcuts. Some icons will already be familiar to you from
other Windows applications or Altova products, others might be new to you. This section describes icons
unique to Authentic View. In the description below, related icons are grouped together.

599

602

604

600 Authentic Authentic View Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Show/hide XML markup
In Authentic View, the tags for all, some, or none of the XML elements or attributes can be displayed, either
with their names (large markup) or without names (small markup). The four markup icons appear in the toolbar,
and the corresponding commands are available in the Authentic menu.

Hide markup. All XML tags are hidden except those which have been collapsed. Double-
clicking on a collapsed tag (which is the usual way to expand it) in Hide markup mode will
cause the node's content to be displayed and the tags to be hidden.

Show small markup. XML element/attribute tags are shown without names.

Show large markup. XML element/attribute tags are shown with names.

Show mixed markup. In the StyleVision Power Stylesheet, each XML element or attribute can
be specified to display (as either large or small markup), or not to display at all. This is called
mixed markup mode since some elements can be specified to be displayed with markup and
some without markup. In mixed markup mode, therefore, the Authentic View user sees a
customized markup. Note, however, that this customization is created by the person who has
designed the StyleVision Power Stylesheet. It cannot be defined by the Authentic View user.

Editing dynamic table structures
Rows in a dynamic SPS table are repetitions of a data structure. Each row represents an occurrence of a
single element. Each row, therefore, has the same XML substructure as the next.

The dynamic table editing commands manipulate the rows of a dynamic SPS table. That is, you can modify the
number and order of the element occurrences. You cannot, however, edit the columns of a dynamic SPS table,
since this would entail changing the substructure of individual element occurrences.

The icons for dynamic table editing commands appear in the toolbar, and are also available in the Authentic
menu.

Append row to table

Insert row in table

Duplicate current table row (i.e. cell contents are duplicated)

Move current row up by one row

Move current row down by one row

© 2018-2024 Altova GmbH

Authentic View Interface 601Authentic

Altova XMLSpy 2024 Enterprise Edition

Delete the current row

Note: These commands apply only to dynamic SPS tables. They should not be used inside static SPS
tables. The various types of tables used in Authentic View are described in the Using Tables in
Authentic View section of this documentation.

Creating and editing XML tables
You can insert your own tables should you want to present your data as a table. Such tables are inserted as
XML tables. You can modify the structure of an XML table, and format the table. The icons for creating and
editing XML tables are available in the toolbar, and are shown below. They are described in the section XML
table editing icons .

The commands corresponding to these icons are not available as menu items. Note also that for you to be
able to use XML tables, this function must be enabled and suitably configured in the StyleVision Power
Stylesheet. A detailed description of the types of tables used in Authentic View and of how XML tables are to
be created and edited is given in Using Tables in Authentic View .

Text formatting icons
Text in Authentic View is formatted by applying to it an XML element or attribute that has the required
formatting. If such formatting has been defined, the designer of the StyleVision Power Stylesheet can provide
icons in the Authentic View toolbar to apply the formatting. To apply text formatting using a text formatting
icon, highlight the text you want to format, and click the appropriate icon.

DB Row Navigation icons

The arrow icons are, from left to right, Go to First Record; Go to Previous Record; Open the Go to Record #
dialog; Go to Next Record; and Go to Last Record.

This icon opens the Edit Database Query dialog in which you can enter a query. Authentic
View displays the queried record/s.

XML database editing
The Select New Row with XML Data for Editing command enables you to select a new row from the
relevant table in an XML DB, such as IBM DB2. This row appears in Authentic View, can be edited there, and
then saved back to the DB.

616

621

616

602 Authentic Authentic View Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Portable XML Form (PXF) toolbar buttons
The following PXF toolbar buttons are available in the Authentic View of XMLSpy and Authentic Desktop:

Clicking the individual buttons generates HTML, RTF, PDF, and/or DocX output.

These buttons are enabled when a PXF file is opened in Authentic View. Individual buttons are enabled if the
PXF file was configured to contain the XSLT stylesheet for that specific output format. For example, if the PXF
file was configured to contain the XSLT stylesheets for HTML and RTF, then only the toolbar buttons for HTML
and RTF output will be enabled while those for PDF and DocX (Word 2007+) output will be disabled.

11.2.3 Authentic View Main Window

There are four viewing modes in Authentic View: Large Markup; Small Markup; Mixed Markup; and Hide All
Markup. These modes enable you to view the document with varying levels of markup information. To switch
between modes, use the commands in the Authentic menu or the icons in the toolbar (see the previous
section, Authentic View toolbar icons).

Large markup
This shows the start and end tags of elements and attributes with the element/attribute names in the tags:

The element Name in the figure above is expanded, i.e. the start and end tags, as well as the content of the
element, are shown. An element/attribute can be contracted by double-clicking either its start or end tag. To
expand the contracted element/attribute, double-click the contracted tag.

In large markup, attributes are recognized by the equals-to symbol in the start and end tags of the attribute:

Small markup
This shows the start and end tags of elements/attributes without names:

599

© 2018-2024 Altova GmbH

Authentic View Interface 603Authentic

Altova XMLSpy 2024 Enterprise Edition

Notice that start tags have a symbol inside them while end tags are empty. Also, element tags have an
angular-brackets symbol while attribute tags have an equals sign as their symbol (see screenshot below).

To collapse or expand an element/attribute, double-click the appropriate tag. The example below shows a
collapsed element (highlighted in blue). Notice the shape of the tag of the collapsed element and that of the
start tag of the expanded element to its left.

Mixed markup
Mixed markup shows a customized level of markup. The person who has designed the StyleVision Power
Stylesheet can specify either large markup, small markup, or no markup for individual elements/attributes in the
document. The Authentic View user sees this customized markup in mixed markup viewing mode.

604 Authentic Authentic View Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Hide all markup
All XML markup is hidden. Since the formatting seen in Authentic View is the formatting of the printed
document, this viewing mode is a WYSIWYG view of the document.

Content display
In Authentic View, content is displayed in two ways:

· Plain text. You type in the text, and this text becomes the content of the element or the value of the
attribute.

· Data-entry devices. The display contains either an input field (text box), a multiline input field, combo
box, check box, or radio button. In the case of input fields and multiline input fields, the text you enter
in the field becomes the XML content of the element or the value of the attribute.

In the case of the other data-entry devices, your selection produces a corresponding XML value, which
is specified in the StyleVision Power Stylesheet. Thus, in a combo box, a selection of, say, "approved"
(which would be available in the dropdown list of the combo box) could map to an XML value of "1", or
to "approved", or anything else; while "not approved" could map to "0", or "not approved", or anything
else.

Optional nodes
When an element or attribute is optional (according to the referenced schema), a prompt of type add
[element/attribute] is displayed:

Clicking the prompt adds the element, and places the cursor for data entry. If there are multiple optional nodes,
the prompt add... is displayed. Clicking the prompt displays a menu of the optional nodes.

11.2.4 Authentic View Entry Helpers

There are three entry helpers in Authentic View: for Elements, Attributes, and Entities. They are displayed as
windows down the right side of the Authentic View interface (see screenshot below).

© 2018-2024 Altova GmbH

Authentic View Interface 605Authentic

Altova XMLSpy 2024 Enterprise Edition

The Elements and Attributes Entry Helpers are context-sensitive, i.e. what appears in the entry helper depends
on where the cursor is in the document. The entities displayed in the Entities Entry Helper are not context-
sensitive; all entities allowed for the document are displayed no matter where the cursor is.

Each of the entry helpers is described separately below.

Elements Entry Helper
The Elements Entry Helper consists of two parts:

· The upper part, containing an XML tree that can be toggled on and off using the Show XML tree
check box. The XML tree shows the ancestors up to the document's root element for the current
element. When you click on an element in the XML tree, elements corresponding to that element (as
described in the next item in this list) appear in the lower part of the Elements Entry Helper.

606 Authentic Authentic View Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The lower part, containing a list of the nodes that can be inserted within, before, and after; removed;
applied to or cleared from the selected element or text range in Authentic View. What you can do with
an element listed in the Entry Helper is indicated by the icon to the left of the element name in the
Entry Helper. The icons that occur in the Elements Entry Helper are listed below, together with an
explanation of what they mean.

To use a node from the Entry Helper, click its icon.

 Insert After Element
The element in the Entry Helper is inserted after the selected element. Note that it is appended at the correct
hierarchical level. For example, if your cursor is inside a //sect1/para element, and you append a sect1
element, then the new sect1 element will be appended not as a following sibling of //sect1/para but as a
following sibling of the sect1 element that is the parent of that para element.

 Insert Before Element
The element in the Entry Helper is inserted before the selected element. Note that, just as with the Insert After
Element command, the element is inserted at the correct hierarchical level.

 Remove Element
Removes the element and its content.

 Insert Element
An element from the Entry Helper can also be inserted within an element. When the cursor is placed within an
element, then the allowed child elements of that element can be inserted. Note that allowed child elements can
be part of an elements-only content model as well as a mixed content model (text plus child elements).

An allowed child element can be inserted either when a text range is selected or when the cursor is placed as
an insertion point within the text.

· When a text range is selected and an element inserted, the text range becomes the content of the
inserted element.

· When an element is inserted at an insertion point, the element is inserted at that point.

After an element has been inserted, it can be cleared by clicking either of the two Clear Element icons that
appear (in the Elements Entry Helper) for these inline elements. Which of the two icons appears depends on
whether you select a text range or place the cursor in the text as an insertion point (see below).

 Apply Element
If you select an element in your document (by clicking either its start or end tag in the Show large markup view)
and that element can be replaced by another element (for example, in a mixed content element such as para,
an italic element can be replaced by the bold element), this icon indicates that the element in the Entry
Helper can be applied to the selected (original) element. The Apply Element command can also be applied to
a text range within an element of mixed content; the text range will be created as content of the applied
element.

· If the applied element has a child element with the same name as a child of the original element
and an instance of this child element exists in the original element, then the child element of the
original is retained in the new element's content.

· If the applied element has no child element with the same name as that of an instantiated child of
the original element, then the instantiated child of the original element is appended as a sibling of any
child element or elements that the new element may have.

© 2018-2024 Altova GmbH

Authentic View Interface 607Authentic

Altova XMLSpy 2024 Enterprise Edition

· If the applied element has a child element for which no equivalent exists in the original element's
content model, then this child element is not created directly but Authentic View offers you the option
of inserting it.

If a text range is selected rather than an element, applying an element to the selection will create the applied
element at that location with the selected text range as its content. Applying an element when the cursor is an
insertion point is not allowed.

 Clear Element
This icon appears when text within an element of mixed content is selected. Clicking the icon clears the
element from around the selected text range.

 Clear Element (when insertion point selected)
This icon appears when the cursor is placed within an element that is a child of a mixed-content element.
Clicking the icon clears the inline element.

Attributes Entry Helper
The Attributes Entry Helper consists of a drop-down combo box and a list of attributes. The element that you
have selected (you can click the start or end tag, or place the cursor anywhere in the element content to select
it) appears in the combo box. The Attributes Entry Helper shown in the figures below has a para element in the
combo box. Clicking the arrow in the combo box drops down a list of all the para element's ancestors up to
the document's root element, which in this case is OrgChart.

Below the combo box, a list of valid attributes for that element is displayed, in this case for para. If an attribute
is mandatory on a given element, then it appears in bold. (In the example below, there are no mandatory
attributes except the built-in attribute xsi:type.)

To enter a value for an attribute, click in the value field of the attribute and enter the value. This creates the
attribute and its value in the XML document.

608 Authentic Authentic View Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note the following:

· In the case of the xsi:nil attribute, which appears in the Attributes Entry Helper when a nillable
element has been selected, the value of the xsi:nil attribute can only be entered by selecting one of
the allowed values (true or false) from the dropdown list for the attribute's value.

· The xsi:type attribute can be changed by clicking in the value field of the attribute and then either (i)
selecting a value from the dropdown list that appears, or (ii) entering a value. Values displayed in the
dropdown list are the available abstract types defined in the XML Schema on which the Authentic View
document is based.

Entities Entry Helper
The Entities Entry Helper allows you to insert an entity in your document. Entities can be used to insert special
characters or text fragments that occur often in a document (such as the name of a company). To insert an
entity, place the cursor at the point in the text where you want to have the entity inserted, then double-click the
entity in the Entities Entry Helper.

Note: An internal entity is one that has its value defined within the DTD. An external entity is one that has its
value contained in an external source, e.g. another XML file. Both internal and external entities are
listed in the Entities Entry Helper. When you insert an entity, whether internal or external, the entity—
not its value—is inserted into the XML text. If the entity is an internal entity, Authentic View displays
the value of the entity. If the entity is an external entity, Authentic View displays the entity—and not
its value. This means, for example, that an XML file that is an external entity will be shown in the
Authentic View display as an entity; its content does not replace the entity in the Authentic View
display.

You can also define your own entities in Authentic View and these will also be displayed in the entry helper:
see Define Entities in the Editing in Authentic View section.

11.2.5 Authentic View Context Menus

Right-clicking on some selected document content or node pops up a context menu with commands relevant to
the selection or cursor location.

Inserting elements
The figure below shows the Insert submenu, which is a list of all elements that can be inserted at that current
cursor location. The Insert Before submenu lists all elements that can be inserted before the current element.
The Insert After submenu lists all elements that can be inserted after the current element. In the figure below,
the current element is the para element. The bold and italic elements can be inserted within the current
para element.

631

© 2018-2024 Altova GmbH

Authentic View Interface 609Authentic

Altova XMLSpy 2024 Enterprise Edition

As can be seen below, the para and Office elements can be inserted before the current para element.

The node insertion, replacement (Apply), and markup removal (Clear) commands that are available in the
context menu are also available in the Authentic View entry helpers and are fully described in that section.

Insert entity
Positioning the cursor over the Insert Entity command rolls out a submenu containing a list of all declared
entities. Clicking an entity inserts it at the selection. See Define Entities for a description of how to define
entities for the document.

Insert CDATA Section
This command is enabled when the cursor is placed within text. Clicking it inserts a CDATA section at the
cursor insertion point. The CDATA section is delimited by start and end tags; to see these tags you should
switch on large or small markup. Within CDATA sections, XML markup and parsing is ignored. XML markup
characters (the ampersand, apostrophe, greater than, less than, and quote characters) are not treated as
markup, but as literals. So CDATA sections are useful for text such as program code listings, which have XML
markup characters.

Remove node
Positioning the mouse cursor over the Remove command pops up a menu list consisting of the selected node
and all its removable ancestors (those that would not invalidate the document) up to the document element.
Click the element to be removed. This is a quick way to delete an element or any removable ancestor. Note
that clicking an ancestor element will remove all its descendants, including the selected element.

Clear
The Clear command clears the element markup from around the selection. If the entire node is selected, then
the element markup is cleared for the entire node. If a text segment is selected, then the element markup is
cleared from around that text segment only.

Apply
The Apply command applies a selected element to your selection in the main Window. For more details, see
Authentic View entry helpers .

604

631

604

610 Authentic Authentic View Interface

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Copy, Cut, Paste
These are the standard Windows commands. Note, however, that the Paste command pastes copied text
either as XML or as Text, depending on what the designer of the stylesheet has specified for the SPS as a
whole. For information about how the Copy as XML and Copy as Text commands work, see the description of
the Paste As command immediately below.

Paste As
The Paste As command offers the option of pasting as XML or as text an Authentic View XML fragment (which
was copied to the clipboard). If the copied fragment is pasted as XML it is pasted together with its XML markup.
If it is pasted as text, then only the text content of the copied fragment is pasted (not the XML markup, if any).
The following situations are possible:

· An entire node together with its markup tags is highlighted in Authentic View and copied to the
clipboard. (i) The node can be pasted as XML to any location where this node may validly be placed. It
will not be pasted to an invalid location. (ii) If the node is pasted as text, then only the node's text
content will be pasted (not the markup); the text content can be pasted to any location in the XML
document where text may be pasted.

· A text fragment is highlighted in Authentic View and copied to the clipboard. (i) If this fragment is
pasted as XML, then the XML markup tags of the text—even though these were not explicitly copied
with the text fragment—will be pasted along with the text, but only if the XML node is valid at the
location where the fragment is pasted. (ii) If the fragment is pasted as text, then it can be pasted to
any location in the XML document where text may be pasted.

Note: Text will be copied to nodes where text is allowed, so it is up to you to ensure that the copied text
does not invalidate the document. The copied text should therefore be: (i) lexically valid in the new
location (for example, non-numeric characters in a numeric node would be invalid), and (ii) not
otherwise invalidate the node (for example, four digits in a node that accepts only three-digit numbers
would invalidate the node).

Note: If the pasted text does in any way invalidate the document, this will be indicated by the text being
displayed in red.

Delete
The Delete command removes the selected node and its contents. A node is considered to be selected for this
purpose by placing the cursor within the node or by clicking either the start or end tag of the node.

© 2018-2024 Altova GmbH

Editing in Authentic View 611Authentic

Altova XMLSpy 2024 Enterprise Edition

11.3 Editing in Authentic View

This section describes important features of Authentic View in detail. Features have been included in this
section either because they are frequently used or because the mechanisms or concepts involved require
explanation.

The section explains the following:

· There are three distinct types of tables used in Authentic View. The section Using tables in Authentic
View explains the three types of tables (static SPS, dynamic SPS, and XML), and when and how
to use them. It starts with the broad, conceptual picture and moves to the details of usage.

· The Date Picker is a graphical calendar that enters dates in the correct XML format when you click a
date. See Date Picker .

· An entity is shorthand for a special character or text string. You can define your own entities, which
allows you to insert these special characters or text strings by inserting the corresponding entities.
See Defining Entities for details.

· In the Enterprise and Professional editions of Altova products, Authentic View users can sign XML
documents with digital XML signatures and verify these signatures.

· What image formats can be displayed in Authentic View.

Altova website: XML content editing, XML authoring

11.3.1 Basic Editing

When you edit in Authentic View, you are editing an XML document. Authentic View, however, can hide the
structural XML markup of the document, thus displaying only the content of the document (first screenshot
below). You are therefore not exposed to the technicalities of XML, and can edit the document as you would a
normal text document. If you wish, you could switch on the markup at any time while editing (second
screenshot below).

An editable Authentic View document with no XML markup.

616

630

631

633

634

https://www.altova.com/authentic
https://www.altova.com/authentic

612 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

An editable Authentic View document with XML markup tags.

Inserting nodes
Very often you will need to add a new node to the Authentic XML document. For example, a new Person
element might need to be added to an address book type of document. In such cases the XML Schema would
allow the addition of the new element. All you need to do is right-click the node in the Authentic View document
before which or after which you wish to add the new node. In the context menu that appears, select Insert
Before or Insert After as required. The nodes available for insertion at that point in the document are listed in a
submenu. Click the required node to insert it. The node will be inserted. All mandatory descendant nodes are
also inserted. If a descendant node is optional, a clickable link, Add NodeName, appears to enable you to add
the optional node if you wish to.

If the node being added is an element with an abstract type, then a dialog (something like in the screenshot
below) appears containing a list of derived types that are available in the XML Schema.

© 2018-2024 Altova GmbH

Editing in Authentic View 613Authentic

Altova XMLSpy 2024 Enterprise Edition

The screenshot above pops up when a Publication element is added. The Publication element is of type
PublicationType, which is an abstract complex type. The two complex types BookType and MagazineType
are derived from the abstract PublicationType. Therefore, when a Publication element is added to the XML
document, one of these two concrete types derived from Publication's abstract type must be specified. The
new Publication element will be added with an xsi:type attribute:

<Publication xsi:type="BookType"> ... </Publication>

<Publication xsi:type="MagazineType"> ... </Publication>

 ...
<Publication xsi:type="MagazineType"> ... </Publication>

Selecting one of the available derived types and clicking OK does the following:

· Sets the selected derived type as the value of the xsi:type attribute of the element
· Inserts the element together with the descendant nodes defined in the content model of the selected

derived type.

The selected derived type can be changed subsequently by changing the value of the element's xsi:type
attribute in the Attributes Entry Helper. When the element's type is changed in this way, all nodes of the
previous type's content model are removed and nodes of the new type's content model are inserted.

Text editing
An Authentic View document will essentially consist of text and images. To edit the text in the document,
place the cursor at the location where you wish to insert text, and type. You can copy, move, and delete text
using familiar keystrokes (such as the Delete key) and drag-and-drop mechanisms. One exception is the
Enter key. Since the Authentic View document is pre-formatted, you do not—and cannot—add extra lines or
space between items. The Enter key in Authentic View therefore serves to append another instance of the
element currently being edited, and should be used exclusively for this purpose.

614 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Copy as XML or as text
Text can be copied and pasted as XML or as text.

· If text is pasted as XML, then the XML markup is pasted together with the text content of nodes. The
XML markup is pasted even if only part of a node's contents has been copied. For the markup to be
pasted it must be allowed, according to the schema, at the location where it is pasted.

· If text is pasted as text, XML markup is not pasted.

To paste as XML or text, first copy the text (Ctrl+C), right-click at the location where the text is to be pasted,
and select the context menu command Paste As | XML or Paste As | Text. If the shortcut Ctrl+V is used, the
text will be pasted in the default Paste Mode of the SPS. The default Paste Mode will have been specified by
the designer of the SPS. For more details, see the section Context Menus .

Alternatively, highlighted text can be dragged to the location where it is to be pasted. When the text is dropped,
a pop-up appears asking whether the text is to be pasted as text or XML. Select the desired option.

Text formatting
A fundamental principle of XML document systems is that content be kept separate from presentation. The
XML document contains the content, while the stylesheet contains the presentation (formatting). In Authentic
View, the XML document is presented via the stylesheet. This means that all the formatting you see in
Authentic View is produced by the stylesheet. If you see bold text, that bold formatting has been provided by
the stylesheet. If you see a list or a table, that list format or table format has been provided by the stylesheet.
The XML document, which you edit in Authentic View contains only the content; it contains no formatting
whatsoever. The formatting is contained in the stylesheet. What this means for you, the Authentic View user, is
that you do not have to—nor can you—format any of the text you edit. You are editing content. The formatting
that is automatically applied to the content you edit is linked to the semantic and/or structural value of the data
you are editing. For example, an email address (which could be considered a semantic unit) will be formatted
automatically in a certain way because it is an email. In the same way, a headline must occur at a particular
location in the document (both a structural and semantic unit) and will be formatted automatically in the way
the stylesheet designer has specified that headlines be formatted. You cannot change the formatting of either
email address or headline. All that you do is edit the content of the email address or headline.

In some cases, content might need to be specially presented; for example, a text string that must be
presented in boldface. In all such cases, the presentation must be tied in with a structural element of the
document. For example, a text string that must be presented in boldface, will be structurally separated from
surrounding content by markup that the stylesheet designer will format in boldface. If you, as the Authentic
View user, need to use such a text string, you would need to enclose the text string within the appropriate
element markup. For information about how to do this, see the Insert Element command in the Elements Entry
Helper section of the documentation.

Using RichEdit in Authentic View
In Authentic View, when the cursor is placed inside an element that has been created as a RichEdit
component, the buttons and controls in the RichEdit toolbar (screenshot below) become enabled. Otherwise
they are grayed out.

608

605

© 2018-2024 Altova GmbH

Editing in Authentic View 615Authentic

Altova XMLSpy 2024 Enterprise Edition

Select the text you wish to style and specify the styling you wish to apply via the buttons and controls of the
RichEdit toolbar. RichEdit enables the Authentic View user to specify the font, font-weight, font-style, font-
decoration, font-size, color, background color and alignment of text. The text that has been styled will be
enclosed in the tags of the styling element.

Inserting entities
In XML documents, some characters are reserved for markup and cannot be used in normal text. These are the
ampersand (&), apostrophe ('), less than (<), greater than (>), and quote (") characters. If you wish to use
these characters in your data, you must insert them as entity references, via the Entities Entry Helper
(screenshot below).

XML also offers the opportunity to create custom entities. These could be: (i) special characters that are not
available on your keyboard, (ii) text strings that you wish to re-use in your document content, (iii) XML data
fragments, or (iv) other resources, such as images. You can define your own entities within the Authentic
View application. Once defined, these entities appear in the Entities Entry Helper and can then be inserted
as in the document.

Inserting CDATA sections
CDATA sections are sections of text in an XML document that the XML parser does not process as XML data.
They can be used to escape large sections of text if replacing special characters by entity references is
undesirable; this could be the case, for example, with program code or an XML fragment that is to be
reproduced with its markup tags. CDATA sections can occur within element content and are delimited by <!
[CDATA[and]]> at the start and end, respectively. Consequently the text string]]> should not occur within a
CDATA section as it would prematurely signify the end of the section. In this case, the greater than character
should be escaped by its entity reference (>). To insert a CDATA section within an element, place the
cursor at the desired location, right-click, and select Insert CDATA Section from the context menu. To see the
CDATA section tags in Authentic View, switch on the markup display . Alternatively, you could highlight the
text that is to be enclosed in a CDATA section, and then select the Insert CDATA section command.

Note: CDATA sections cannot be inserted into input fields (that is, in text boxes and multiline text boxes).
CDATA sections can only be entered within elements that are displayed in Authentic View as text
content components.

608

631

608

599

616 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Editing and following links
A hyperlink consists of two parts: the link text and the target of the link. You can edit the link text by clicking in
the text and editing. But you cannot edit the target of the link. (The target of the link is set by the designer of
the stylesheet (either by typing in a static target address or by deriving the target address from data contained
in the XML document).) From Authentic View, you can go to the target of the link by pressing Ctrl and clicking
the link text. (Remember: merely clicking the link will set you up for editing the link text.)

11.3.2 Tables in Authentic View

The three table types fall into two categories: SPS tables (static and dynamic) and CALS/HTML Tables.

SPS tables are of two types: static and dynamic. SPS tables are designed by the designer of the StyleVision
Power Stylesheet to which your XML document is linked. You yourself cannot insert an SPS table into the XML
document, but you can enter data into SPS table fields and add and delete the rows of dynamic SPS tables.
The section on SPS tables below explains the features of these tables.

CALS/HTML tables are inserted by you, the user of Authentic View. Their purpose is to enable you to insert
tables at any allowed location in the document hierarchy should you wish to do so. The editing features of
CALS/HTML Tables and the CALS/HTML Table editing icons are described below.

11.3.2.1 SPS Tables

Two types of SPS tables are used in Authentic View: static tables and dynamic tables.

Static tables
Static tables are fixed in their structure and in the content-type of cells. You, as the user of Authentic View,
can enter data into the table cells but you cannot change the structure of these tables (i.e. add rows or
columns, etc) or change the content-type of a cell. You enter data either by typing in text, or by selecting from
options presented in the form of check-box or radio button alternatives or as a list in a combo-box. After you
enter data, you can edit it.

Note: The icons or commands for editing dynamic tables must not be used to edit static tables.

616

617 621

© 2018-2024 Altova GmbH

Editing in Authentic View 617Authentic

Altova XMLSpy 2024 Enterprise Edition

Dynamic tables
Dynamic tables have rows that represent a repeating data structure, i.e. each row has an identical data
structure (not the case with static tables). Therefore, you can perform row operations: append row, insert row,
move row up, move row down, and delete row. These commands are available under the Authentic menu and
as icons in the toolbar (shown below).

To use these commands, place the cursor anywhere in the appropriate row, and then select the required
command.

To move among cells in the table, use the Up, Down, Left, and Right arrow keys. To move forward from one cell
to the next, use the Tab key. Pressing the Tab key in the last cell of the last row creates a new row.

11.3.2.2 CALS/HTML Tables

CALS/HTML tables can be inserted by you, the user of Authentic View, for certain XML data structures that
have been specified to show a table format. There are three steps involved when working with CALS/HTML
tables: inserting the table; formatting it; and entering data. The commands for working with CALS/HTML tables
are available as icons in the toolbar (see CALS/HTML table editing icons).

Inserting tables
To insert a CALS/HTML table do the following:

1. Place your cursor where you wish to insert the table, and click the icon. (Note that where you can
insert tables is determined by the schema.) The Insert Table dialog (screenshot below) appears. This

621

618 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

dialog lists all the XML element data-structures for which a table structure has been defined. For
example, in the screenshot below, the informaltable element and table element have each been
defined as both a CALS table as well as an HTML table.

2. Select the entry containing the element and table model you wish to insert, and click OK.
3. In the next dialog (screenshot below), select the number of columns and rows, and specify whether a

header and/or footer is to be added to the table and whether the table is to extend over the entire
available width. Click OK when done.

For the specifications given in the dialog box shown above, the following table is created.

By using the Table menu commands, you can add and delete columns, and create row and column
joins and splits. But to start with, you must create the broad structure.

Formatting tables and entering data
The table formatting will already have been assigned in the document design. However, you might, under
certain circumstances, be able to modify the table formatting. These circumstances are as follows:

© 2018-2024 Altova GmbH

Editing in Authentic View 619Authentic

Altova XMLSpy 2024 Enterprise Edition

· The elements corresponding to the various table structure elements must have the relevant CALS or
HTML table properties defined as attributes (in the underlying XML Schema). Only those attributes that
are defined will be available for formatting. If, in the design, values have been set for these attributes,
then you can override these values in Authentic View.

· In the design. no style attribute containing CSS styles must have been set. If a style attribute
containing CSS styles has been specified for an element, the style attribute has precedence over any
other formatting attribute set on that element. As a result, any formatting specified in Authentic View
will be overridden.

To format a table, row, column, or cell, do the following:

1. Place the cursor anywhere in the table and click the (Table Properties) icon. This opens the Table
Properties dialog (see screenshot), where you specify formatting for the table, or for a row, column, or
cell.

2. Set the cellspacing and cellpadding properties to "0". Your table will now look like this:

3. Place the cursor in the first row to format it, and click the (Table Properties) icon. Click the Row
tab.

620 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Since the first row will be the header row, set a background color to differentiate this row from the other
rows. Note the Row properties that have been set in the figure above. Then enter the column header
text. Your table will now look like this:

Notice that the alignment is centered as specified.
4. Now, say you want to divide the "Telephone" column into the sub-columns "Office" and "Home", in

which case you would need to split the horizontal width of the Telephone column into two columns.
First, however, we will split the vertical extent of the header cell to make a sub-header row. Place the

cursor in the "Telephone" cell, and click the (Split vertically) icon. Your table will look like this:

5. Now place the cursor in the cell below the cell containing "Telephone", and click the (Split
horizontally) icon. Then type in the column headers "Office" and "Home". Your table will now look like
this:

© 2018-2024 Altova GmbH

Editing in Authentic View 621Authentic

Altova XMLSpy 2024 Enterprise Edition

Now you will have to split the horizontal width of each cell in the "Telephone" column.

You can also add and delete columns and rows, and vertically align cell content, using the table-editing icons.
The CALS/HTML table editing icons are described in the section titled, CALS/HTML Table Editing Icons .

Moving among cells in the table
To move among cells in the CALS/HTML table, use the Up, Down, Right, and Left arrow keys.

Entering data in a cell
To enter data in a cell, place the cursor in the cell, and type in the data.

Formatting text
Text in a CALS/HTML table, as with other text in the XML document, must be formatted using XML elements or
attributes. To add an element, highlight the text and double-click the required element in the Elements Entry
Helper. To specify an attribute value, place the cursor within the text fragment and enter the required attribute
value in the Attributes Entry Helper. After formatting the header text bold, your table will look like this.

The text above was formatted by highlighting the text, and double-clicking the element strong, for which a

global template exists that specifies bold as the font-weight. The text formatting becomes immediately visible.

Note: For text formatting to be displayed in Authentic View, a global template with the required text
formatting must have been created in StyleVision for the element in question.

11.3.2.3 CALS/HTML Table Editing Icons

The commands required to edit CALS/HTML tables are available as icons in the toolbar, and are listed below.
Note that no corresponding menu commands exist for these icons. For a full description of when and how
CALS/HTML Tables are to be used, see CALS/HTML Tables .

Insert table

The "Insert Table" command inserts a CALS/HTML table at the current cursor position.

621

617

622 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Delete table

The "Delete table" command deletes the currently active table.

Append row

The "Append row" command appends a row to the end of the currently active table.

Append column

The "Append column" command appends a column to the end of the currently active table.

Insert row

The "Insert row" command inserts a row above the current cursor position in the currently active table.

Insert column

The "Insert column" command inserts a column to the left of the current cursor position in the currently
active table.

Join cell left

The "Join cell left" command joins the current cell (current cursor position) with the cell to the left. The
tags of both cells remain in the new cell, the column headers remain unchanged and are concatenated.

Join cell right

The "Join cell right" command joins the current cell (current cursor position) with the cell to the right.
The contents of both cells are concatenated in the new cell.

Join cell below

The "Join cell below" command joins the current cell (current cursor position) with the cell below. The
contents of both cells are concatenated in the new cell.

Join cell above

The "Join cell above" command joins the current cell (current cursor position) with the cell above. The
contents of both cells are concatenated in the new cell.

Split cell horizontally

The "Split cell Horizontally" command creates a new cell to the right of the currently active cell. The
size of both cells, is now the same as the original cell.

Split cell vertically

The "Split cell Vertically" command creates a new cell below the currently active cell.

Align top

This command aligns the cell contents to the top of the cell.

Center vertically

This command centers the cell contents.

© 2018-2024 Altova GmbH

Editing in Authentic View 623Authentic

Altova XMLSpy 2024 Enterprise Edition

Align bottom

This command aligns the cell contents to the bottom of the cell.

Table properties

The "Table properties" command opens the Table Properties dialog box. This icon is only made active
for HTML tables, it cannot be clicked for CALS tables.

11.3.3 Editing a DB

In Authentic View, you can edit database (DB) tables and save data back to a DB. This section contains a full
description of interface features available to you when editing a DB table. The following general points need to
be noted:

· The number of records in a DB table that are displayed in Authentic View may have been deliberately
restricted by the designer of the StyleVision Power Stylesheet in order to make the design more
compact. In such cases, only that limited number of records is initially loaded into Authentic View.
Using the DB table row navigation icons (see Navigating a DB Table), you can load and display the
other records in the DB table.

· You can query the DB to display certain records.
· You can add, modify, and delete DB records, and save your changes back to the DB. See Modifying a

DB Table .

To open a DB-based StyleVision Power Stylesheet in Authentic View, click Authentic | Edit Database Data,
and browse for the required StyleVision Power Stylesheet.

624

624

628

624 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: In Authentic View, data coming from a SQLite database is not editable. When you attempt to save
SQLite data in Authentic View, a message box will inform you of this known limitation.

11.3.3.1 Navigating a DB Table

The commands to navigate DB table rows are available as buttons in the Authentic View document. Typically,
one navigation panel with either four or five buttons accompanies each DB table.

The arrow icons are, from left to right, Go to First Record in the DB Table; Go to Previous Record; Open the Go
to Record dialog (see screenshot); Go to Next Record; and Go to Last Record.

To navigate a DB table, click the required button.

XML Databases
In the case of XML DBs, such as IBM DB2, one cell (or row) contains a single XML document, and therefore a
single row is loaded into Authentic View at a time. To load an XML document that is in another row, use the
Authentic | Select New Row with XML Data for Editing menu command.

11.3.3.2 DB Queries

A DB query enables you to query the records of a table displayed in Authentic View. A query is made for an
individual table, and only one query can be made for each table. You can make a query at any time while
editing. If you have unsaved changes in your Authentic View document at the time you submit the query, you
will be prompted about whether you wish to save all changes made in the document or discard all changes.
Note that even changes made in other tables will be saved/discarded. After you submit the query, the table is
reloaded using the query conditions.

Note: If you get a message saying that too many tables are open, then you can reduce the number of tables
that are open by using a query to filter out some tables.

To create and submit a query:

1. Click the Query button for the required table in order to open the Edit Database Query dialog (see
screenshot). This button typically appears at the top of each DB table or below it. If a Query button is

1346

© 2018-2024 Altova GmbH

Editing in Authentic View 625Authentic

Altova XMLSpy 2024 Enterprise Edition

not present for any table, the designer of the StyleVision Power Stylesheet has not enabled the DB
Query feature for that table.

2. Click the Append AND or Append OR button. This appends an empty criterion for the query (shown
below).

3. Enter the expression for the criterion. An expression consists of: (i) a field name (available from the
associated combo-box); (ii) an operator (available from the associated combo-box); and (iii) a value (to
be entered directly). For details of how to construct expressions see the Expressions in criteria
section.

626

626 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. If you wish to add another criterion, click the Append AND or Append OR button according to which
logical operator (AND or OR) you wish to use to join the two criteria. Then add the new criterion. For
details about the logical operators, see the section Re-ordering criteria in DB Queries .

Expressions in criteria
Expressions in DB Query criteria consist of a field name, an operator, and a value. The available field names
are the child elements of the selected top-level data table; the names of these fields are listed in a combo-box
(see screenshot above). The operators you can use are listed below:

= Equal to

<> Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

LIKE Phonetically alike

NOT LIKE Phonetically not alike

IS NULL Is empty

NOT NULL Is not empty

If IS NULL or NOT NULL is selected, the Value field is disabled. Values must be entered without quotes (or any
other delimiter). Values must also have the same formatting as that of the corresponding DB field; otherwise
the expression will evaluate to FALSE. For example, if a criterion for a field of the date datatype in an MS
Access DB has an expression StartDate=25/05/2004, the expression will evaluate to FALSE because the
date datatype in an MS Access DB has a format of YYYY-MM-DD.

Using parameters with DB Queries
You can enter the name of a parameter as the value of an expression when creating queries. Parameters are
variables that can be used instead of literal values in queries. When you enter it in an expression, its value is
used in the expression. Parameters that are available have been defined by the SPS designer in the SPS and
can be viewed in the View Parameters dialog (see screenshot below). Parameters have been assigned a default
value in the SPS, which can be overridden by passing a value to the parameter via the command line (if and
when the output document is compiled via the command line).

To view the parameters defined for the SPS, click the Parameters button in the Edit Database Query dialog.
This opens the View Parameters dialog (see screenshot).

627

© 2018-2024 Altova GmbH

Editing in Authentic View 627Authentic

Altova XMLSpy 2024 Enterprise Edition

The View Parameters dialog contains all the parameters that have been defined for the stylesheet in the SPS
and parameters must be edited in the stylesheet design.

Re-ordering criteria in DB Queries
The logical structure of the DB Query and the relationship between any two criteria or sets of criteria is
indicated graphically. Each level of the logical structure is indicated by a square bracket. Two adjacent criteria
or sets of criteria indicate the AND operator, whereas if two criteria are separated by the word OR then the OR

operator is indicated. The criteria are also appropriately indented to provide a clear overview of the logical
structure of the DB Query.

The DB Query shown in the screenshot above may be represented in text as:

628 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

State=CA AND (City=Los Angeles OR City=San Diego OR (City=San Francisco AND
CustomerNr=25))

You can re-order the DB Query by moving a criterion or set of criteria up or down relative to the other criteria in
the DB Query. To move a criterion or set of criteria, do the following:

1. Select the criterion by clicking on it, or select an entire level by clicking on the bracket that represents
that level.

2. Click the Up or Down arrow button in the dialog.

The following points should be noted:

· If the adjacent criterion in the direction of movement is at the same level, the two criteria exchange
places.

· A set of criteria (i.e. criterion within a bracket) changes position within the same level; it does not
change levels.

· An individual criterion changes position within the same level. If the adjacent criterion is further
outward/inward (i.e. not on the same level), then the selected criterion will move outward/inward, one
level at a time.

To delete a criterion in a DB Query, select the criterion and click Delete.

Modifying a DB Query

To modify a DB Query:

1. Click the Query button . The Edit Database Query dialog box opens. You can now edit the
expressions in any of the listed criteria, add new criteria, re-order criteria, or delete criteria in the DB
Query.

2. Click OK. The data from the DB is automatically re-loaded into Authentic View so as to reflect the
modifications to the DB Query.

11.3.3.3 Modifying a DB Table

Adding a record
To add a record to a DB table:

1. Place the cursor in the DB table row and click the icon (to append a row) or the icon (to insert
a row). This creates a new record in the temporary XML file.

2. Click the File | Save command to add the new record in the DB. In Authentic View a row for the new
record is appended to the DB table display. The AltovaRowStatus for this record is set to A (for
Added).

When you enter data for the new record it is entered in bold and is underlined. This enables you to differentiate
added records from existing records—if existing records have not been formatted with these text formatting
properties. Datatype errors are flagged by being displayed in red.

© 2018-2024 Altova GmbH

Editing in Authentic View 629Authentic

Altova XMLSpy 2024 Enterprise Edition

The new record is added to the DB when you click File | Save. After a new record is saved to the DB, its
AltovaRowStatus field is initialized (indicated with ---) and the record is displayed in Authentic View as a
regular record.

Modifying a record
To modify a record, place the cursor at the required point in the DB table and edit the record as required. If the
number of displayed records is limited, you may need to navigate to the required record (see Navigating a DB
Table).

When you modify a record, entries in all fields of the record are underlined and the AltovaRowStatus of all
primary instances of this record is set to U (for Updated). All secondary instances of this record have their

AltovaRowStatus set to u (lowercase). Primary and secondary instances of a record are defined by the
structure of the DB—and correspondingly of the XML Schema generated from it. For example, if an Address
table is included in a Customer table, then the Address table can occur in the Design Document in two types of
instantiations: as the Address table itself and within instantiations of the Customer table. Whichever of these
two types is modified is the type that has been primarily modified. Other types—there may be more than one
other type—are secondary types. Datatype errors are flagged by being displayed in red.

The modifications are saved to the DB by clicking File | Save. After a modified record is saved to the DB, its
AltovaRowStatus field is initialized (indicated with ---) and the record is displayed in Authentic View as a
regular record.

Note the following points:

· If even a single field of a record is modified in Authentic View, the entire record is updated when the
data is saved to the DB.

· The date value 0001-01-01 is defined as a NULL value for some DBs, and could result in an error
message.

Deleting a record
To delete a record:

1. Place the cursor in the row representing the record to be deleted and click the icon. The record to
be deleted is marked with a strikethrough. The AltovaRowStatus is set as follows: primary instances
of the record are set to D; secondary instances to d; and records indirectly deleted to X. Indirectly
deleted records are fields in the deleted record that are held in a separate table. For example, an
Address table might be included in a Customer table. If a Customer record were to be deleted, then its
corresponding Address record would be indirectly deleted. If an Address record in the Customer table
were deleted, then the Address record in the Customer table would be primarily deleted, but the same
record would be secondarily deleted in an independent Address table if this were instantiated.

2. Click File | Save to save the modifications to the DB.

Note: Saving data to the DB resets the Undo command, so you cannot undo actions that were carried out
prior to the save.

11.3.4 Working with Dates

There are two ways in which dates can be edited in Authentic View:

624

630 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Dates are entered or modified using the Date Picker .
· Dates are entered or modified by typing in the value .

The method the Authentic View user will use is defined in the SPS. Both methods are described in the two
sub-sections of this section.

Note on date formats
In the XML document, dates can be stored in one of several date datatypes. Each of these datatypes requires
that the date be stored in a particular lexical format in order for the XML document to be valid. For example, the
xs:date datatype requires a lexical format of YYYY-MM-DD. If the date in an xs:date node is entered in
anything other than this format, then the XML document will be invalid.

In order to ensure that the date is entered in the correct format, the SPS designer can include the graphical
Date Picker in the design. This would ensure that the date selected in the Date Picker is entered in the correct
lexical format. If there is no Date Picker, the Authentic View should take care to enter the date in the correct
lexical format. Validating the XML document could provide useful tips about the required lexical format.

11.3.4.1 Date Picker

The Date Picker is a graphical calendar used to enter dates in a standard format into the XML document.
Having a standard format is important for the processing of data in the document. The Date Picker icon appears
near the date field it modifies (see screenshot).

To display the Date Picker (see screenshot), click the Date Picker icon.

630

631

© 2018-2024 Altova GmbH

Editing in Authentic View 631Authentic

Altova XMLSpy 2024 Enterprise Edition

To select a date, click on the desired date, month, or year. The date is entered in the XML document, and the
date in the display is modified accordingly. You can also enter a time zone if this is required.

11.3.4.2 Text Entry

For date fields that do not have a Date Picker (see screenshot), you can edit the date directly by typing in the
new value.

Errors
The following types of error will be flagged:

· If you edit a date and change it such that it is out of the valid range for dates, the date turns red to alert
you to the error. If you place the mouse cursor over the invalid date, an error message appears (see
screenshot).

· If you try to change the format of the date, the date turns red to alert you to the error. (In the
screenshot below, slashes are used instead of hyphens).

11.3.5 Defining Entities

About entities
You can define entities for use in Authentic View, whether your document is based on a DTD or an XML
Schema. Once defined, these entities are displayed in the Entities Entry Helper and in the Insert Entity
submenu of the context menu. When you double-click on an entity in the Entities Entry Helper, that entity is
inserted at the cursor insertion point.

632 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

An entity is useful if you will be using a text string, XML fragment, or some other external resource in multiple
locations in your document. You define the entity, which is basically a short name that stands in for the
required data, in the Define Entities dialog. After defining an entity you can use it at multiple locations in your
document. This helps you save time and greatly enhances maintenance.

Types of entity
There are two broad types of entityyou can use in your document: a parsed entity, which is XML data (either a
text string or a fragment of an XML document), or an unparsed entity, which is non-XML data such as a binary
file (usually a graphic, sound, or multimedia object). Each entity has a name and a value. In the case of parsed
entities the entity is a placeholder for the XML data. The value of the entity is either the XML data itself or a URI
that points to a .xml file that contains the XML data. In the case of unparsed entities, the value of the entity is

a URI that points to the non-XML data file.

Defining entities
To define an entity:

1. Click Authentic | Define XML Entities. This opens the Define Entities dialog (screenshot below).

2. Enter the name of your entity in the Name field. This is the name that will appear in the Entities Entry
Helper.

3. Enter the type of entity from the drop-down list in the Type field. The following types are possible: An
Internal entity is one for which the text to be used is stored in the XML document itself. Selecting
PUBLIC or SYSTEM specifies that the resource is located outside the XML file, and will be located
with the use of a public identifier or a system identifier, respectively. A system identifier is a URI that
gives the location of the resource. A public identifier is a location-independent identifier, which enables
some processors to identify the resource. If you specify both a public and system identifier, the public
identifier resolves to the system identifier, and the system identifier is used.

4. If you have selected PUBLIC as the Type, enter the public identifier of your resource in the PUBLIC
field. If you have selected Internal or SYSTEM as your Type, the PUBLIC field is disabled.

5. In the Value/Path field, you can enter any one of the following:

· If the entity type is Internal, enter the text string you want as the value of your entity. Do not enter
quotes to delimit the entry. Any quotes that you enter will be treated as part of the text string.

· If the entity type is SYSTEM, enter the URI of the resource or select a resource on your local
network by using the Browse button. If the resource contains parsed data, it must be an XML file
(i.e., it must have a .xml extension). Alternatively, the resource can be a binary file, such as a GIF
file.

© 2018-2024 Altova GmbH

Editing in Authentic View 633Authentic

Altova XMLSpy 2024 Enterprise Edition

· If the entity type is PUBLIC, you must additionally enter a system identifier in this field.

6. The NDATA entry tells the processor that this entity is not to be parsed but to be sent to the
appropriate processor. The NDATA field must therefore contain some value to indicate that the entity is
an unparsed entity.

Dialog features
You can do the following in the Define Entities dialog:

· Append entities
· Insert entities
· Delete entities
· Sort entities by the alphabetical value of any column by clicking the column header; clicking once

sorts in ascending order, twice in descending order.
· Resize the dialog box and the width of columns.
· Locking. Once an entity is used in the XML document, it is locked and cannot be edited in the Define

Entities dialog. Locked entities are indicated by a lock symbol in the first column. Locking an entity
ensures that the XML document is valid with respect to entities. (The document would be invalid if an
entity is referenced but not defined.)

· Duplicate entities are flagged.

Limitations of entities

· An entity contained within another entity is not resolved, either in the dialog, Authentic View, or XSLT
output, and the ampersand character of such an entity is displayed in its escaped form, i.e. &.

· External unparsed entities that are not image files are not resolved in Authentic View. If an image in the
design is defined to read an external unparsed entity and has its URI set to be an entity name (for
example: 'logo'), then this entity name can be defined in the Define Entities dialog (see screenshot
above) as an external unparsed entity with a value that resolves to the URI of the image file (as has
been done for the logo entity in the screenshot above).

11.3.6 XML Signatures

An SPS can be designed with an XML signature configured for Authentic View. When XML signatures are
enabled in the SPS, the Authentic View user can digitally sign the Authentic XML file with the enabled
signature. After the document has been signed, any modification to it will cause the verification of the signature
to fail. Whenever a signed Authentic XML document is opened in the Authentic View of any Altova product, the
verification process will be run on the document and the result of the verification will be displayed in a window.

Note: XML signatures can be used, and will be verified, in the Authentic View of Enterprise and Professional
editions of the following Altova products: Authentic Desktop, Authentic Browser, XMLSpy, and
StyleVision.

XML signature actions
The following Authentic View user actions for signatures are possible:

634 Authentic Editing in Authentic View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Choosing the certificate/password: Signatures are authenticated with either a certificate or a password.
The authentication object (certificate or password) is required when the signature is created and again
when it is verified. If an Authentic XML document has a signature-enabled SPS assigned to it, the SPS
might specify a default certificate or password for the signature. Whether a default certificate or
password has been specified or not, the signature can be configured to allow the Authentic View user
to select an own certificate/password. The Authentic View user can do this at any time in the XML
Signature dialog (screenshot below). Selecting an own certificate/password overrides the default
certificate/password. The own certificate/password is stored in memory and is used for the current
session. If, after an own certificate/password has been selected, the Authentic View user closes the
file or the application, the SPS reverts to its default setting for the certificate/password.

· Signing the document: The Authentic XML document can be signed either automatically or manually.
Automatic signing will have been specified in the signature configuration by the SPS designer and
causes the Authentic XML document to be signed automatically when it is saved. If the automatic-
signing option has not been activated, the document can be signed manually. This is done by clicking

the XML Signature toolbar icon or the Authentic | XML Signature command, and, in the XML
Signature dialog that then pops up (screenshot above), clicking the Sign Document button. Note that
signing the document with an embedded signature would require the schema to allow the Signature
element as the last child element of the root (document) element. Otherwise the document will be
invalid against the schema. When signing the document, the authentication object and the placement
of the signature are determined according to the signature configuration. You must ensure that you
have access to the authentication information. For more information about this, consult your SPS
designer.

· Verifying the Authentic XML document: If an SPS has XML Signatures enabled, the verification process
will be run on the signature each time the Authentic View XML document is loaded. If the password or
certificate key information is not saved with the SPS and signature, respectively, the Authentic View
user will be prompted to enter the password or select a certificate for verification. Note that if an
embedded signature is generated, it will be saved with the XML file when the XML file is saved. The
generated signature must be explicitly removed (via the Remove Signature button of the XML
Signature dialog; see screenshot above) if you do not wish to save it with the XML file. Similarly, if a
detached signature is generated, it too must be explicitly removed if it is not required.

11.3.7 Images in Authentic View

Authentic View allows you to specify images that will be used in the final output document (HTML, RTF, PDF
and Word 2007). You should note that some image formats might not be supported in some formats or by
some applications. For example, the SVG format is supported in PDF, but not in RTF and would require a
browser add-on for it to be viewed in HTML. So, when selecting an image format, be sure to select a format that

© 2018-2024 Altova GmbH

Editing in Authentic View 635Authentic

Altova XMLSpy 2024 Enterprise Edition

is supported in the output formats of your document. Most image formats are supported across all the output
formats (see list below).

Authentic View is based on Internet Explorer, and is able to display most of the image formats that your version
of Internet Explorer can display. The following commonly used image formats are supported:

· GIF
· JPG
· PNG
· BMP
· WMF (Microsoft Windows Metafile)
· EMF (Enhanced Metafile)
· SVG (for PDF output only)

Relative paths
Relative paths are resolved relative to the SPS file.

11.3.8 Keystrokes in Authentic View

The Enter key
In Authentic View the Enter key is used to append additional elements when it is in certain cursor locations.
For example, if the chapter of a book may (according to the schema) contain several paragraphs, then pressing
Enter inside the text of the paragraph causes a new paragraph to be appended immediately after the current
paragraph. If a chapter can contain one title and several paragraphs, pressing Enter inside the chapter but
outside any paragraph element (including within the title element) causes a new chapter to be appended after
the current chapter (assuming that multiple chapters are allowed by the schema).

Note: The Enter key does not insert a new line. This is the case even when the cursor is inside a text node,
such as paragraph.

Using the keyboard
The keyboard can be used in the standard way, for typing and navigating. Note the following special points:

· The Tab key moves the cursor forward, stopping before and after nodes, and highlighting node
contents; it steps over static content.

· The add... and add Node hyperlinks are considered node contents and are highlighted when tabbed.
They can be activated by pressing either the spacebar or the Enter key.

636 Authentic Authentic Scripting

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

11.4 Authentic Scripting

The Authentic Scripting feature provides more flexibility and interactivity to SPS designs. These designs can
be created or edited in StyleVision Enterprise and Professional editions, and can be viewed in the Authentic
View of the Enterprise and Professional editions of Altova products.

A complete listing of support for this feature in Altova products is given in the table below. Note, however, that
in the trusted version of Authentic Browser plug-in, internal scripting is turned off because of security concerns.

Altova Product Authentic Scripts
Creation

Authentic Scripts
Enabled

StyleVision Enterprise Yes Yes

StyleVision Professional Yes Yes

StyleVision Standard * No No

XMLSpy Enterprise No Yes

XMLSpy Professional No Yes

XMLSpy Standard No No

AuthenticDesktop Enterprise No Yes

Authentic Browser Plug-in

Enterprise Trusted **
No Yes

Authentic Browser Plug-in
Enterprise Untrusted

No Yes

* No AuthenticView
** Scripted designs displayed. No internal macro execution or event handling. External events fired.

Authentic Scripts behave in the same way in all Altova products, so no product-specific code or settings are
required.

Authentic Script Warning Dialog
If a PXF file, or an XML file linked to an SPS, contains a script and the file is opened or switched to Authentic
View, then a warning dialog (screenshot below) pops up.

You can choose one of the following options:

© 2018-2024 Altova GmbH

Authentic Scripting 637Authentic

Altova XMLSpy 2024 Enterprise Edition

· Click Yes. to add the folder containing the file to the Trusted Locations list for Authentic scripts.
Subsequently, all files in the trusted folder will be opened In Authentic View without this warning dialog
being displayed first. The Trusted Locations list can be accessed via the menu command Authentic |
Trusted Locations , and modified.

· Click No to not add the folder containing the file to the Trusted Locations list. The file will be displayed
in Authentic View with scripts disabled. The Authentic Script Warning dialog will appear each time this
file is opened in Authentic View. To add the file's folder to the Trusted Locations list subsequently,
open the Trusted locations dialog via the menu command Authentic | Trusted Locations , and add
the folder or modify as required.

For a description of the Trusted Locations dialog, see the description of the Authentic | Trusted Locations
 menu command in the User Reference.

Note: When XMLSpy is accessed via its COM interface (see Programmers' Reference to see how this
can be done), the security check is not done and the Authentic Script Warning dialog is not
displayed.

How Authentic Scripting works
The designer of the SPS design can use Authentic Scripting in two ways to make Authentic documents
interactive:

· By assigning scripts for user-defined actions (macros) to design elements, toolbar buttons, and
context menu items.

· By adding to the design event handlers that react to Authentic View events.

All the scripting that is required for making Authentic documents interactive is done within the StyleVision GUI
(Enterprise and Professional editions). Forms, macros and event handlers are created within the Scripting
Editor interface of StyleVision and these scripts are saved with the SPS. Then, in the Design View of
StyleVision, the saved scripts are assigned to design elements, toolbar buttons, and context menus. When an
XML document based on the SPS is opened in an Altova product that supports Authentic Scripting (see table
above), the document will have the additional flexibility and interactivity that has been created for it.

Documentation for Authentic Scripting
The documentation for Authentic Scripting is available in the documentation of StyleVision. It can be viewed
online via the Product Documentation page of the Altova website.

1353

1353

1353

1572

http://www.altova.com/download_doc/
http://www.altova.com

638 HTML and CSS

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

12 HTML and CSS

XMLSpy provides intelligent editing features for HTML and CSS , documents. Both types of documents
can be edited in Text View , and the active HTML document can be previewed in Browser View.

The intelligent editing features of each type of document is described separately in the sub-sections of this
section: HTML and CSS .

639 641

139

639 641

© 2018-2024 Altova GmbH

HTML 639HTML and CSS

Altova XMLSpy 2024 Enterprise Edition

12.1 HTML

HTML documents can be edited in Text View, and the edited page can then be viewed immediately in Browser
View. Text View provides a number of useful HTML editing features. These are described in detail in Text
View , but the main features, as well as HTML-specific options, are listed below.

Support level
XMLSpy supports HTML 4.0 and HTML 5.0. Entry-helper and intelligent editing are available for the respective
HTML versions. These features are described below.

Entry helpers
Elements, Attributes and Entities entry helpers are available when an HTML document is active. The entry
helpers are context-sensitive; the items displayed in the entry helpers are those available at the current cursor
location. Use the HTML entry helpers as described in Text View .

Auto-completion
As you type markup text into your HTML document, XMLSpy provides Auto-completion help. A pop-up
containing a list of all nodes available at the cursor insertion point is displayed. As you type, the selection
jumps to the first closest match in the list (see screenshot below). Click the selected item to insert it at the
cursor insertion point.

Auto-completion for elements appears when the left bracket of node tags is entered. When the start tag of an
element node is entered in the document, the end tag is automatically inserted as well. This ensures well-
formedness.

Auto-completion for attributes appears when a space is entered after the element name in a start tag. When
you click an attribute name in the Auto-completion pop-up, the attribute is entered with quotes characters and
the cursor positioned between the quotes.

The Entities entry helper contains character entities from the HTML 4.0 and HTML 5.0 entity sets, Latin-1,
special characters, and symbols.

139

151

http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_Latin-1_characters
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_Special_characters
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_Symbols

640 HTML and CSS HTML

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

HTML Info window
The HTML Info window (screenshot below) lists applications that can be used to quickly access the active
HTML file. For example, if an HTML file is active in XMLSpy, double-clicking the Mozilla Firefox item in the
HTML Info Window starts an instance of Mozilla Firefox and loads the active HTML document in it.

Note the following usage points:

· The icon to the right of the Open HTML With item enables applications to be added to the Open HTML
With list. All the browsers installed on the system, or any other application (such as a text editor), can
be added via the menu commands accessed via the Open HTML With icon. The associated
applications would typically be browser or editor applications.

· After an application has been added to the Open HTML With list (except when added with the Add
Installed Browsers command), its name in the Open HTML With list can be changed by selecting it,
pressing F2, and editing the name.

· The icons to the right of each application listed in the Open HTML With list each opens a menu
containing commands to: (i) open the application; (ii) open the application and load the linked HTML
file; (iii) remove the application from the list. Double-clicking an application name opens the linked
HTML file in that application.

· Applications added to or removed from the Open HTML With list are also added to or removed from the
CSS Info window.

Assigning a DTD
For XHTML documents, a DTD or XML Schema can be assigned via the DTD/Schema menu, which enables
you to browse for the required DTD or XML Schema file. An XHTML document can be edited exactly like an
XML document .

Browser View commands
Browser View commands are available in the Browser menu.

327

© 2018-2024 Altova GmbH

CSS 641HTML and CSS

Altova XMLSpy 2024 Enterprise Edition

12.2 CSS

CSS documents can be edited using Text View's intelligent editing features. These features, as they apply to
the editing of CSS documents, are listed below.

Syntax coloring
A CSS rule consists of a selector, one or more properties, and the values of those properties. These three
components may be further sub-divided into more specific categories; for example, a selector may be a class,
pseudo-class, ID, element, or attribute. Additionally, a CSS document can contain other items than rules: for
example, comments. In Text View, each such category of items can be displayed in a different color
(screenshot below) according to settings you make in the Options dialog (see below).

You can set the colors of the various CSS components in the Fonts and Colors section of the Options dialog
(screenshot below). In the combo box at top left, select CSS, and then select the required color (in the Styles
pane) for each CSS item.

642 HTML and CSS CSS

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Source folding
Source folding refers the ability to expand and collapse each CSS rule, which is indicated in the source folding
margin by a +/- sign. The margin can be toggled on and off in the Text View Settings dialog . When a rule is

collapsed, this is visually indicated by an ellipsis. If the mouse cursor is placed over an ellipsis, the content of
the collapsed rule is displayed in a popup. If the content is too large for a popup, this is indicated by an ellipsis
at the bottom of the popup.

The Toggle All Folds icon in the Text toolbar toggles all rules to their expanded forms or collapses all
rules to the top-level document element.
 Note: that the pair of curly braces that delimit a rule (screenshot above) turns bold when the cursor is placed
either before or after one of the curly braces. This indicates clearly where the definition of a particular rule starts
and ends.

CSS outline
The CSS Outline entry helper (screenshots below) provides an outline of the document in terms of its selectors.
Clicking a selector in the CSS Outline highlights it in the document. In the screenshot at left below, the
selectors are unsorted and are listed in the order in which they appear in the document. In the screenshot at
right, the Alphabetical Sorting feature has been toggled on (using the toolbar icon), and the selectors are sorted
alphabetically.

1420

© 2018-2024 Altova GmbH

CSS 643HTML and CSS

Altova XMLSpy 2024 Enterprise Edition

You should note the following points: (i) For evaluating the alphabetical order of selectors, all parts of the
selector are considered, including the period, hash, and colon characters; (ii) If the CSS document contains
several selectors grouped together to define a single rule (e.g. h4, h5, h6 {...}), then each selector in the
group is listed separately.

The icons in the toolbar of the CSS Outline entry helper, from left to right, do the following:

Toggles automatic synchronization (with the document) on and off. When auto-
synchronization is switched on, selectors are entered in the entry helper even as
you type them into the document.

Synchronizes the entry helper with the current state of the document.

Toggles alphabetical sorting on and off. When off, the selectors are listed in the
order in which they appear in the document. When sorted alphabetically, ID
selectors appear first because they are prefaced by a hash (e.g. #intro).

Properties entry helper
The Properties entry helper (screenshot below) provides a list of all CSS properties, arranged alphabetically. A
property can be inserted at the cursor insertion point by double-clicking the property.

644 HTML and CSS CSS

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Auto-completion of properties and tooltips for properties
As you start to type the name of a property, XMLSpy prompts you with a list of properties that begin with the
letters you have typed (screenshot below). Alternatively, you can place the cursor anywhere inside a property
name and then press Ctrl+Space to pop up the list of CSS properties.

You can view a tooltip containing the definition of a property and its possible values by scrolling down the list or
navigating the list with the Up and Down keys of your keyboard. The tooltip for the highlighted property is
displayed. To insert a property, either press Enter when it is selected, or click it.

CSS Info window
When a CSS file is active, the CSS Info window (screenshot below) is enabled. The CSS Info window provides
the following functionality:

· It enables you to switch between CSS 2.1 and CSS 3.0. The entry helpers and intelligent editing
features of the GUI will be switched according to the CSS version selected in the toolbar of the Info
window.

· It enables the CSS file to be linked to an HTML file. This functionality enables you to modify the CSS
document and view the effect of changes immediately. Additionally, the linked HTML file can be opened
in multiple browsers via the CSS Info window, thus enabling changes in the CSS document to be
viewed in multiple browsers.

© 2018-2024 Altova GmbH

CSS 645HTML and CSS

Altova XMLSpy 2024 Enterprise Edition

· The CSS Info window lists the imported CSS stylesheets, thus giving you an overview of the import
structure of the active CSS stylesheet.

Note the following usage points:

· The toolbar of the Info window contains icons for CSS 2.1 and CSS 3.0. Select the version you want in
order to switch entry helpers and intelligent editing features to the selected CSS version.

· Only one HTML file can be linked to the active CSS document. Do this by clicking the icon to the right
of the Linked HTML item, then selecting the command Set Link to HTML and browsing for the
required HTML file. The linked HTML file will be listed under the Linked HTML item in the Info window
(see screenshot above). Creating this link does not modify the CSS document or the HTML document
in any way. The link serves to set up an HTML file to which the active CSS document can be applied
for testing.

· Double-clicking the Linked HTML file listing opens the HTML file in XMLSpy.
· The toolbar icons enable you to horizontally and vertically tile the CSS document and the HTML file.
· When changes to the CSS document are saved, the HTML file that is open in XMLSpy can be

automatically updated. To enable these automatic updates, check the Update Linked HTML Browser
check box. Note that these updates will only occur if the HTML file contains a reference to the CSS
document being edited.

· To change the linked HTML file, select another HTML file via the Set Link to HTML command.
· To remove the link to the HTML file, click the icon to the right of the Linked HTML item and select the

command Remove Link.
· The icon to the right of the Open HTML With item enables applications to be added to the Open HTML

With list. All the browsers installed on the system, or any other application (such as a text editor), can
be added via the menu commands accessed via the Open HTML With icon. The associated
applications would typically be browser or editor applications.

· After an application has been added to the Open HTML With list (except when added with the Add
Installed Browsers command), its name in the Open HTML With list can be changed by selecting it,
pressing F2, and editing the name.

· The icons to the right of each application listed in the Open HTML With list each opens a menu
containing commands to: (i) open the application; (ii) open the application and load the linked HTML
file; (iii) remove the application from the list. Double-clicking an application name opens the linked
HTML file in that application.

· Applications added to or removed from the Open HTML With list are also added to or removed from the
HTML Info window.

· The Imported item displays a list of the CSS files imported by the active CSS document.

646 JSON, JSON Schema

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

13 JSON, JSON Schema

JSON (JavaScript Object Notation) is a lightweight data storage and interchange format that uses JavaScript
syntax, and, like XML, is a human-readable, text-only format. Since JSON text can be read and used by any
programming language, it has come to be used widely as a data exchange format, especially on the web.

As part of its IDE functionality, XMLSpy provides support for the editing and validation of JSON data documents
(instance documents) and for the creation of syntactically and semantically correct JSON Schema
documents.

XMLSpy also provides support for Avro and Avro Schema .

JSON5
JSON5 is an extension of JSON that adds some ECMAScript 5 extensions (see json5.org for more
information). JSON5 is a strict subset of JavaScript, adds no new data types to existing JSON types, and
works with all existing JSON content.

All XMLSpy functionality that is available for JSON instance documents is also available for JSON5 instance
documents. However, note the following major differences between JSON5 and JSON, and in the way XMLSpy
handles the two formats:

· JSON5 is not an official successor to JSON. It therefore uses its own file extension: json5.

· By default, XMLSpy recognizes files with the .json file extension as JSON instance documents, and

those with the .json5 file extension as JSON5 instance documents.

· JSON5 instance documents can be validated against JSON schemas. JSON instance documents,
which can be representations of Avro instances, can be validated against both JSON schemas and
Avro schemas. See the section Validating JSON Documents for more on this topic.

In this documentation, the term JSON instances refers to both JSON and JSON5 instance documents unless
otherwise indicated. Also see the section Differences between JSON5 and JSON .

JSON and JSON Schema in XMLSpy
Both document types—JSON instance and JSON schema—are written in JSON format, and must adhere to
JSON rules of well-formedness and validity. Both types of document (instance and schema) typically have the
.json file extension. JSON instances can be edited in Text View and Grid View , and JSON schema

documents can be edited in those two views as well as in JSON Schema View , which is a graphical
schema editor.

XMLSpy provides the following support for working with JSON instance and JSON schema documents:

· In Text View , syntax coloring and syntax checks; auto-completion in JSON schemas and in
instance documents if these have schema associations, folding margins; and structural markings. All
of these features ease and speed up the editing of valid JSON instance and JSON schema documents.
Text View provides validation of both instance and schema documents.

· In Grid View , a tabular grid structure that helps to better visualize document structure. You can edit
directly in Grid View . You can also switch between Text View and Grid View to suit your
editing needs. Grid View provides validation of both instance and schema documents.

· JSON instance document validation in Text View and Grid View . The validation is carried out
against a JSON schema that is assigned in the Info Window .

649 652

714

701

651

655 660

663

655

655

660

660 655 660

660

655 660

701

http://json5.org/
http://json5.org/

© 2018-2024 Altova GmbH

 647JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

· JSON Schema View displays JSON schemas in a graphical layout. This enables the use of drag-
and-drop functionality (in addition to text entry) for the quick creation of JSON schemas. Entry helpers
within the view provide editing input. Additionally, the schema is continuously checked for validity, and
errors are flagged.

JSON instances: opening existing instance documents and creating new instance documents

· In the Options | File types section, you can set the default view (Text View or Grid View) for
opening JSON/JSON5 instance documents. Existing JSON/JSON5 documents will be opened in the
default starting view you select. You can switch between Text View and Grid View at any time.

· To create a new JSON or JSON5 instance document, click File | New, and select, respectively, json:
JavaScript Object Notation or json5: JSON with ECMAScript 5 extensions. You will be
prompted to optionally choose a JSON or (for JSON, not JSON5) Avro schema file for the new
instance file. If you assign a schema, the assignment will be entered in the Info Window . The new
instance document will be opened in Text View or Grid View , depending on the settings in the
Options | File types tab.

JSON schemas: opening existing schemas and creating new schemas

· An existing JSON schema document opens in JSON Schema View . You can switch to Text
View or Grid View at any time.

· To create a new JSON schema document, click File | New, and select json: JSON Schema. The new
JSON schema document will be opened in JSON Schema View , with the $schema keyword at the

start of the document. You can switch to Text View or Grid View at any time.

All these views (Text , Grid , and JSON Schema) are described in the sub-sections of this section.

In this section
This section is organized into the following topics:

· JSON Data explains the basics of JSON documents
· JSON Schema describes what a JSON schema is and how it works
· JSON Lines and JSON Comments provides information about two additional JSON specifications

supported by XMLSpy
· JSON Documents in Text View shows you how to work with the JSON-relevant features of Text

View
· JSON Documents in Grid View describes how to edit JSON documents in Grid View
· JSON Schema View explains the JSON-schema-editing features of the view and how you can use it

when creating your JSON projects
· Validating JSON Data/Documents describes how to assign a JSON schema to a JSON document

and how to validate JSON documents
· Inserting JSON Fragments describes how to quickly insert JSON text fragments into your JSON

document from external sources
· JSON Transformations with XSLT/XQuery describes how JSON documents can be queried with

XPath/XQuery 3.1
· XQuery Expressions for JSON gives a broad introduction about using XQuery with JSON

documents
· Generating JSON Schema from a JSON Instance describes the functionality to generate a schema

from an instance

663

1516 655 660

655 660

714

701

655 660

1516

663

655 660

663

655 660

655 660 663

649

652

654

655

660

663

701

703

705

707

709

648 JSON, JSON Schema

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Generating a JSON Instance from a JSON Schema describes how to generate an instance from a
schema

· Converting between JSON and XML describes how to convert between JSON and XML in XMLSpy

712

713

© 2018-2024 Altova GmbH

JSON Data 649JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.1 JSON Data

This section contains a brief description of how JSON data is structured. JSON data is typically stored in a
JSON (instance) document but can also be stored as a JSON data fragment in a document of another type. A
JSON data fragment or document is a JSON data structure, which is broadly defined as set out below.

XMLSpy additionally supports JSON5, which is an extension of JSON that adds some minimal ECMScript 5
extensions. See json5.org for more information.

JSON objects and arrays
A JSON document (saved typically with the file extension .json) is built on the following core data structures:

Object
An object is delimited by curly braces, and is an unordered collection of zero or more key:value pairs. These

key:value pairs are the properties of the object. The key must always be a string and must therefore

always be enclosed in quotes. The key (also called the name of the property) is separated from its value by a
colon. A property value can be of any JSON datatype (see list below). A property is separated from the next
by a comma. The listing below is an example of an object with three properties (all of which have atomic-type
values):

 {

 "emailtype": "home",
 "emailaddress": "contact01.home@altova.com",
 "citycode": 22
 }

Array
An array is delimited by square brackets, and is a comma-separated ordered list of zero or more items.

These items can be of any JSON datatype (see list below).

Example of an array containing two objects

The array below consists of two objects (each enclosed in curly braces). The array itself is indicated with
square brackets.

[

 {

 "emailtype": "home",
 "emailaddress": "contact01.office@altova.com",
 "citycode": 22
 },

 {

 "emailtype": "office",
 "emailaddress": "contact01.office@altova.com",
 "citycode": 22
 }

]

650

650

http://json5.org/

650 JSON, JSON Schema JSON Data

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Example of arrays that are the values of an object's properties

The listing below is of an object with three key:value pairs. Each value is an array that contains a tuple
(sequence). (A tuple can be considered to be a one-dimensional array.) The three items in each tuple are
atomic types.

{

 "x": [1, 2, "abc"],

 "y": [3, 4, "def"],

 "z": [5, 6, "ghi"]

}

JSON data types
Object property values and array items can be of the following types:

· string (must be enclosed in quotes). A string can additionally be specified to have a format, such as
a date-time or email format

· number: A number with a fractional part; it includes integers
· integer: A number with no fractional part; a subset of the number type
· boolean (true/false, not enclosed in quotes)
· object: When used within another object, allows data to be nested
· array: Provides the ability to build more complex structures than allowed by objects
· null (null, not enclosed in quotes)

Example of JSON data
Here is an example of a JSON data fragment. Note how the document is structured into objects and arrays.
Also note the data type of key values; string values are in quotes, other types are colored green.

{
 "first": "Jason",
 "last": "Jones"
 "isManager": true,
 "age": 35,
 "address": {
 "street": "Jason Avenue",
 "city": "Jasonville",
 "state": "JS",
 "postcode": "JS12 ON34"
 },
 "phone": [
 {
 "type": "home",
 "number": "12 3456-7890"
 },
 {
 "type": "office",
 "number": "789 012-34567"
 }
],

http://json-schema.org/latest/json-schema-validation.html#anchor104

© 2018-2024 Altova GmbH

JSON Data 651JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

 "children": [],
 "partner": null
}

Some differences between JSON5 and JSON
JSON5 is a strict subset of JavaScript, adds no new JSON data types, and works with all existing JSON
content. Some notable differences are listed below:

· JSON5 supports comments. Comments are delimited like this: // comment // or /* comment */.

· In JSON5, the keys of key:value pairs do not need to be enclosed in quotes.

· In JSON5, strings can be written across multiple lines.
· JSON5 documents can be validated against JSON schemas but not against Avro schemas.

652 JSON, JSON Schema JSON Schema

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

13.2 JSON Schema

In the same way that an XML Schema specifies the structure and content of an XML document, a JSON
schema specifies how the JSON data in a JSON document is organized. It specifies what data fields are
expected and how the values are represented. The JSON Schema specification and more information about
JSON Schema is available here.

A JSON schema is itself a JSON object. Lexically, the entire schema is contained within curly braces (see
listing below), which are the delimiters of JSON objects. The schema is written in JSON syntax and will be
saved typically in a file with a .json extension. It is indicated as a JSON schema, by the $schema keyword,

which should be the first keyword of the top-level object. This keyword should have a value that is one of the
following:

· Versions to draft-07: "http://json-schema.org/draft-N/(hyper-)schema#", where N is the

number of the version (04, 06, or 07).

· Versions from draft-2019-09 onwards: "https://json-schema.org/draft/YYYY-MM/(hyper-)

schema", where YYYY and MM are, respectively, the year and month of the draft, for example, 2019-09.

Here is an example of how the $schema keyword is used.

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",

 ...
}

Note: Although the $schema keyword can have the value "http://json-schema.org/schema#"—which

specifies the latest version of the schema—it is best to use a URL that identifies the specific version.
For more information, see JSON Schema Version .

In XMLSpy, you can create JSON schemas graphically in JSON Schema View. How to do this is described in
the section JSON Schema View . Besides the schema editing features available in JSON Schema View, the
following schema-related features are available:

· Validation with the JSON Validator of XMLSpy: Assign a JSON schema to a JSON instance document,
and validate the instance document from within XMLSpy. See Validating JSON Documents for
information.

· Setting JSON validation options .
· Generating JSON Schema from a JSON Instance : If a JSON instance document already exists,

you can generate a JSON schema from it. You can subsequently edit the schema if you need to.
· Converting between JSON and XML : You can convert between documents of the two formats.

Terminology
Given below are definitions of common JSON schema terms used in the GUI and this documentation.

Term Definition

Schema The top-level schema object in a JSON schema document; the schema file.

Object A JSON type containing zero or more properties.

664

663

701

1526

709

713

http://json-schema.org/

© 2018-2024 Altova GmbH

JSON Schema 653JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

Property A key:value pair of an object. Its value can be any JSON datatype.

Keyword The key part of an object's key:value pair. It is always a string.

Sub-schema An object that is a child of an operator or a dependency.

Definition The complete description of any JSON type. Definitions can be global or local .

Array A comma-separated ordered list of zero or more items of any JSON datatype.

Atomic types The string, number, integer, boolean, and null JSON datatypes.

Type selectors The any and multiple types, which select any and multiple types , respectively

Operators Occurrence selectors that can be added as children of definitions. See the section
Operators .

JSON data types
Object property values and array items can be of the following types:

· string (must be enclosed in quotes). A string can additionally be specified to have a format, such as
a date-time or email format

· number: A number with a fractional part; it includes integers
· integer: A number with no fractional part; a subset of the number type
· boolean (true/false, not enclosed in quotes)
· object: When used within another object, allows data to be nested
· array: Provides the ability to build more complex structures than allowed by objects
· null (null, not enclosed in quotes)

649

649

670

688

694

http://json-schema.org/latest/json-schema-validation.html#anchor104

654 JSON, JSON Schema JSON Lines and JSON Comments

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

13.3 JSON Lines and JSON Comments

XMLSpy supports JSON Lines (JSONL) and JSON with Comments (JSONC) documents, meaning that
validation and intelligent editing of these documents is available to the same extent that it is for other types of
JSON documents. This section discusses key features of these types of JSON documents.

JSON Lines
JSON Lines (JSONL) is a format for storing structured data, where each record is separated from the next by a
newline; that is, each record is on its own line. As a result, each record can be processed one at a time, which
makes the format very useful when processing data such as log files.

Example JSON Lines document
["Team", "Played", "Won", "Drew", "Lost", "Points"]
["USA", 2, 1, 1, 0, 4]
["France", 3, 1, 1, 1, 4]
["Germany", 1, 0, 1, 0, 1]
["USA", 1, 0, 0, 1, 0]

For more examples, see http://jsonlines.org/examples/.

JSON Lines files are recognized as such in XMLSpy if the file has a .jsonl extension.

JSON with Comments
JSON documents other than JSON5 documents do not allow comments. The JSON with Comments format
(JSONC) has been introduced to allow comments in JSON documents. The following comments are used in
JSONC and supported in XMLSpy:

· Single-line comments: Prefixed by //. For example: // My comment

· Multi-line comments: Delimited by /* and */. For example: /* My comment */

JSONC files are recognized as such in XMLSpy if the file has a .jsonc extension.

Note: Comments are also allowed in JSON5 documents. Comments in other types of JSON files (besides
JSONC and JSON5) could cause errors during processing.

http://jsonlines.org/examples/

© 2018-2024 Altova GmbH

JSON Text View 655JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.4 JSON Text View

Altova website: JSON Editor

JSON schemas, Avro schemas , and JSON/JSON5 instance documents (including Avro data instances in
JSON format) can be edited using the intelligent editing features of Text View. These features include: folding
margins , structural marking , syntax coloring , syntax checking , saving Base64-encoded image
strings in their image formats , and auto-completion . XMLSpy also provides conversion between
JSON/JSON5 and XML in both directions, and enables you to generate a JSON schema from a
JSON/JSON5 instance .

Folding margins
Source folding is enabled on JSON keywords and definitions, and refers to the ability to expand and collapse
these nodes. Such nodes are indicated in the source folding margin by a +/- sign (see screenshot below). The

margin can be toggled on and off in the Text View Settings dialog . When a node is collapsed, this is visually
indicated by an ellipsis (see screenshot below). If the mouse cursor is placed over an ellipsis, the content of
the collapsed node is displayed in a popup (see screenshot). If the content is too large for a popup, this is
indicated by an ellipsis at the bottom of the popup.

The Toggle All Folds icon in the Text toolbar toggles all nodes to their expanded forms or collapses all
nodes to the top-level document element.
The following options are available when clicking on the node's +/- icon:

Click [-] Collapses the node.

Click [+] Expands the node so that descendant nodes are shown expanded or collapsed according to
how they were before the node was collapsed.

716

655 656 656 657

659 658

713

709

1420

https://www.altova.com/xmlspy-xml-editor/json_editor

656 JSON, JSON Schema JSON Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Shift+Click
[-]

Collapses all descendant nodes, but leaves the node that was clicked in its expanded form.

Ctrl+Click [+] Expand the clicked node as well as all its descendant nodes.

Structural marking
The pair of curly braces or square brackets that delimit a JSON object or array, respectively, (see screenshot
below) turns bold when the cursor is placed either before or after one of the braces or brackets. This indicates
where the definition of a particular element starts and ends.

Syntax coloring
 A JSON document (JSON or Avro instance/schema), as well as a JSON5 document, is each made up of
object strings, value strings, operators, numbers and keywords. In Text View, each category of items can be
displayed in a different color (see screenshot above) according to settings you make in the Options dialog
(screenshot below). You can set the colors of the various JSON components in the Text Fonts section of the
Options dialog (screenshot below). In the combo box at top left, select JSON, and then select the required
color (in the Styles pane) for each JSON item.

714

1513

© 2018-2024 Altova GmbH

JSON Text View 657JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

Note: JSON5 syntax—but not JSON syntax—allows for comments. Comments in JSON5 are delimited like
this: // comment // or /* comment */.

Syntax checking
The syntax of a JSON document (JSON or Avro instance/schema) can be checked by selecting the
command XML | Check Well-Formedness (F7). The results of the well-formed check are displayed in the
Messages window (screenshot below).

714

658 JSON, JSON Schema JSON Text View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The error message in the screenshot above points out an error in the document: An opening curly brace occurs
at a location where a colon is expected.

Auto-completion
Auto-completion is enabled when the JSON document (JSON instance/schema or Avro schema) being edited
is associated with a schema.

· If the document is a JSON schema, then auto-completion is based on the schema version indicated by
the $schema keyword. For more information, see also JSON Schema Version .

· If the document is a JSON/JSON5 instance, then a JSON schema must be assigned to the
instance in order for auto-completion to be enabled.

· If the document is an Avro data document in JSON format, then an Avro schema must be assigned to
the instance for auto-completion to work.

· If the document is an Avro schema , then it is automatically associated with the schema for Avro
Schema, and auto-completion is based on this schema.

Auto-completion provides you with the available entry options at the cursor location. It does this (i) via pop-ups
in the main window, and (ii) via the entry helpers (see screenshot below). The pop-ups and entry helpers each
display a list of entries that are valid at that cursor location. To move through the entries in the pop-up list, use
the arrow keys. If the schema contains a description of the entry (in the entry's description keyword in the
schema), then the description is displayed next to the highlighted pop-up entry. Select an entry from the pop-
up window or double-click an entry in the entry helper to insert it.

In the instance document shown in the screenshot above, the pop-up and JSON Properties entry helper are
shown when the cursor is located after the quotes that indicate the start of a property's name. The entry helper
displays all the properties allowed at that point; the properties that have already been entered are shown grayed
out and disabled. The pop-up displays only the properties that are allowed at that point.

There are two other entry helpers: JSON Values and JSON Entities (screenshot below). These show,
respectively, the allowed values of key:value pairs and entities for escaping characters in JSON strings. The
JSON Values entry helper in the screenshot below shows the values allowed for the type keyword while editing
a JSON schema. The last entry in the JSON Entities entry helper, \u00FF, is a placeholder that stands for a

Unicode character. Replace the part highlighted in blue with the code of the Unicode character you want.

652 664

701

701

716

http://avro.apache.org/docs/current/spec.html
http://avro.apache.org/docs/current/spec.html

© 2018-2024 Altova GmbH

JSON Text View 659JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

Other context-sensitive auto-completion entries or hints include the following, when these are specified in the
schema: enumerations, descriptions, required occurrences, and default values.

Save a Base64-encoded string as an image
To save a Base64-encoded string in its image format, right-click the encoding text and select the command
Save as Image. In the dialog that appears, select the location where you want to save the image and enter a
name for the image file. The extension of the image file (.png, .gif, .svg, etc) will be auto-detected from the
Base64 encoding and will appear in the Save dialog. Click Save when done.

This action can also be carried out via the Edit | Save as Image menu command.

660 JSON, JSON Schema JSON Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

13.5 JSON Grid View

JSON Grid View enables you to see the structure of the JSON document (JSON instance/schema or Avro
schema) and to edit the document more easily. Reading a JSON document in Text View can be difficult
because the hierarchy is not easily discernible visually, especially if arrays and objects are nested within other
arrays and objects at multiple levels. For example, compare the JSON text listed below (as it would appear in
Text View) and its representation in Grid View (as shown in the screenshot further below).

Note: Avro support is available in the Enterprise Edition only.

JSON code listing in Text View

{
 "web-app": {

 "servlet": [

 {
 "servlet-name": "altovaCDS",

 "servlet-class": "org.altova.cds.CDSServlet",

 "init-param": {

 "configGlossary:installationAt": "Philadelphia, PA",

 "configGlossary:adminEmail": "ksm@pobox.com",

 "configGlossary:poweredBy": "Altova",

 "configGlossary:poweredByIcon": "/images/altova.gif",

 "configGlossary:staticPath": "/content/static",

 "templateProcessorClass": "org.altova.WysiwygTemplate",

 "templateLoaderClass": "org.altova.FilesTemplateLoader",

 "templatePath": "templates",

 "templateOverridePath": "",

 "defaultListTemplate": "listTemplate.htm",

 "defaultFileTemplate": "articleTemplate.htm",

 "useJSP": false,

 "jspListTemplate": "listTemplate.jsp",

 "jspFileTemplate": "articleTemplate.jsp",

 "cachePackageTagsTrack": 200,

 "cachePackageTagsStore": 200,

 "cachePackageTagsRefresh": 60,

 "cacheTemplatesTrack": 100,

 "cacheTemplatesStore": 50,

 "cacheTemplatesRefresh": 15,

 "cachePagesTrack": 200,

 "cachePagesStore": 100,

 "cachePagesRefresh": 10,

 "cachePagesDirtyRead": 10,

 "searchEngineListTemplate": "forSearchEnginesList.htm",

 "searchEngineFileTemplate": "forSearchEngines.htm",

 "searchEngineRobotsDb": "WEB-INF/robots.db",

 "useDataStore": true,

 "dataStoreClass": "org.altova.SqlDataStore",

 "redirectionClass": "org.altova.SqlRedirection",

 "dataStoreName": "altova",

 "dataStoreDriver": "com.microsoft.jdbc.sqlserver.SQLServerDriver",

 "dataStoreUrl": "jdbc:microsoft:sqlserver://LOCALHOST:1433;DatabaseName=goon",

716

© 2018-2024 Altova GmbH

JSON Grid View 661JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

 "dataStoreUser": "sa",

 "dataStorePassword": "dataStoreTestQuery",

 "dataStoreTestQuery": "SET NOCOUNT ON;select test='test';",

 "dataStoreLogFile": "/usr/local/tomcat/logs/datastore.log",

 "dataStoreInitConns": 10,

 "dataStoreMaxConns": 100,

 "dataStoreConnUsageLimit": 100,

 "dataStoreLogLevel": "debug",

 "maxUrlLength": 500

 }
 }, {
 "servlet-name": "altovaEmail",

 "servlet-class": "org.altova.cds.EmailServlet",

 "init-param": {

 "mailHost": "mail1",

 "mailHostOverride": "mail2"

 }
 }, {
 "servlet-name": "altovaAdmin",

 "servlet-class": "org.altova.cds.AdminServlet"

 }, {
 "servlet-name": "fileServlet",

 "servlet-class": "org.altova.cds.FileServlet"

 }, {
 "servlet-name": "altovaTools",

 "servlet-class": "org.altova.cms.AltovaToolsServlet",

 "init-param": {

 "templatePath": "toolstemplates/",

 "log": 1,

 "logLocation": "/usr/local/tomcat/logs/AltovaTools.log",

 "logMaxSize": "",

 "dataLog": 1,

 "dataLogLocation": "/usr/local/tomcat/logs/dataLog.log",

 "dataLogMaxSize": "",

 "removePageCache": "/content/admin/remove?cache=pages&id=",

 "removeTemplateCache": "/content/admin/remove?cache=templates&id=",

 "fileTransferFolder": "/usr/local/tomcat/webapps/content/fileTransferFolder",

 "lookInContext": 1,

 "adminGroupID": 4,

 "betaServer": true

 }
 }
],
 "servlet-mapping": {

 "altovaCDS": "/",

 "altovaEmail": "/altovautil/aemail/*",

 "altovaAdmin": "/admin/*",

 "fileServlet": "/static/*",

 "altovaTools": "/tools/*"

 },
 "taglib": {

 "taglib-uri": "altova.tld",

662 JSON, JSON Schema JSON Grid View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 "taglib-location": "/WEB-INF/tlds/altova.tld"

 }
 }
}

While the document structure in Text View (listing above) is difficult to discern without a longer, more careful
reading, the structure in Grid View (screenshot below) is more readily seen at a glance.

Additionally, the structure can be easily modified by adding, deleting, or moving objects in the grid. Entire
blocks of text can be reorganized (for example, by sorting them or moving them). Content, too, can be edited
easily in Grid View, this being made even easier with the availability of in-cell commands in individual cells .

Furthermore, if a node is repeated (such as the objects in the servlet array shown in the screenshot above),

then instead of each object repeating in serial order, they can be displayed in a table format, where the keys of
key–value pairs in the objects are displayed as columns of the table and each object is displayed in a
numbered row (see the table in the screenshot above).

Grid View provides you with other powerful features for displaying your JSON document in graphical form (such
as a split view, filters, and charts), as well as editing features such as drag-and-drop and the ability to create
formulas that generate new data.

For a full description of Grid View features, see the Editing Views | Grid View section .

165

155

© 2018-2024 Altova GmbH

JSON Schema View 663JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.6 JSON Schema View

JSON Schema View can be used to view and edit JSON schema documents. The main parts of the JSON
Schema View window are:

· A main window that switches between a Definitions Overview Grid and a Design View
· Three entry helper windows (located by default on the right-hand side of the main window):

Overview, Details, and Constraints
· A Messages window (located by default below the main window)
· An Info window (located by default at bottom left of the application window)

The screenshot below shows the main window and the Overview entry helper.

The main window
The main window switches between a Definitions Overview Grid (shown in screenshot above) and a Design
View (screenshot below). Definitions Overview Grid shows the current document's main schema (listed as
"Document Schema"), plus any definitions that you add to the schema. (A definition is a description of a JSON
data structure. In the screenshot above, object_01 and array_01 are definitions, of an object and an array,
respectively.) Definitions are also listed in the Overview entry helper (see screenshot above).

While Definitions Overview Grid provides a high level view of the JSON schema, it does not show what is within
any definition listed in the overview. To view and edit a definition in Design View (screenshot below), click the
definition's icon (see screenshot above) or double-click the definition in the Overview entry helper (see
screenshot above).

666 672

667

701

666

672

664 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To switch back to Definitions Overview Grid from Design View, click the Switch to Definitions Grid icon at the
top left of Design View (see screenshot above). To configure Design View, click the menu command Schema
Design | Configure View .

The entry helpers
Both modes of Schema View (Definitions Overview Grid and Design View) have three entry helpers: Overview,
Details, and Constraints. These entry helpers provide mechanisms for: (i) displaying information about the
schema and its definitions, and (ii) entering information and values related to definitions. They are described in
detail in the section Entry Helpers: Overview, Details, Constraints .

13.6.1 JSON Schema Version

A JSON schema is written in JSON syntax and will be saved typically in a file with a .json extension. It is
indicated as a JSON schema by the $schema keyword, which should be the first keyword of the top-level object

and have a value that is the URI of the JSON schema version you want to use. Here are two examples showing
how to use the $schema keyword:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 ...
}

697

667

© 2018-2024 Altova GmbH

JSON Schema View 665JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

{
 "$schema": "http://json-schema.org/schema#",
 ...
}

In the first example above, the schema version is explicitly named. Instead of explicitly selecting a version, you
can use "http://json-schema.org/schema#", as in the second example above. This indicates that the
schema version to be used is the latest version (currently 2020-12 and 2019-09-hyper).

In JSON Schema View, you can change the version in the combo box in the bar at the top of the main window
(see screenshot below).

Features of new schema versions that are not defined in an older version
If you use a feature of a newer schema version and then switch to an older version that does not support this
feature, then the following happens:

· A message appears asking whether you wish to remove/convert the feature or keep the feature
· If kept, the new feature's corresponding component or detail is shown in an orange text color. For

example, if a value has been set for the const keyword (new in draft-06) and you switch the schema

version to draft-04, then the value of the const keyword is displayed in orange.

JSON Schema versions
For information about the JSON Schema specifications, especially about additional features with each version,
see the links below:

JSON Schema specification: http://json-schema.org/specification.html
Draft-06 release notes: http://json-schema.org/draft-06/json-schema-release-notes.html
Draft-07 release notes: http://json-schema.org/draft-07/json-schema-release-notes.html
Draft 2019-09 (formerly Draft-08): http://json-schema.org/specification-links.html#2019-09-formerly-known-as-
draft-8
Draft 2020-12: http://json-schema.org/specification-links.html#2020-12

Additionally, the following Hyper Schemas are available: draft-04-hyper, draft-06-hyper, draft-07-hyper,

2019-09-hyper.

http://json-schema.org/specification.html
http://json-schema.org/draft-06/json-schema-release-notes.html
http://json-schema.org/draft-07/json-schema-release-notes.html
http://json-schema.org/specification-links.html#2019-09-formerly-known-as-draft-8
http://json-schema.org/specification-links.html#2019-09-formerly-known-as-draft-8
http://json-schema.org/specification-links.html#2020-12

666 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Links to the core schemas and hyper schemas are available here: http://json-schema.org/specification-
links.html.

13.6.2 Adding Global Definitions

The Definitions Overview Grid in the main window (screenshot below) displays a list of the schema's
global definitions. These global definitions are: (i) the main Document Schema definition, (ii) definitions (or
$defs in later schemas) of global JSON types, such as objects, arrays, strings, etc, that are JSON Schema
types; (iii) definitions of external or custom-defined JSON types; currently only definitions that occur within a
container named resourceDefinitions are available; this is the container used by Microsoft's Azure

Resource Manager for JSON definitions. Add a new resourceDefinitions section to the schema document via
the Append Definitions Section or Insert Definitions Section icon in the grid's toolbar (see screenshot
below).

Defining a JSON type globally is useful if that type needs to be reused within the same schema or in
another schema. For example, you can define a JSON string type for US telephone numbers in one JSON
schema, and then reference this definition not only from within the same schema but also from other JSON
schemas.

Adding a definition, and related actions
The following actions are available for adding and editing definitions in the Definitions Overview Grid.

· To add a definition: Click the Append Named Schema Definition or Insert Named Schema
Definition icon at the top left of the Definitions Overview Grid (see screenshot above). A new empty
definition will be created in the grid at the location where you append or insert; it will have a default
name. The new definition will also be listed in the Overview entry helper as a Def (see screenshot
above).

· To change the type of a definition: Every new definition is created with a type of Any. You can change
its type in the Details entry helper (see screenshot below, where the type is 'String') or by editing the
definition in Design View .

663

653

672

http://json-schema.org/specification-links.html
http://json-schema.org/specification-links.html

© 2018-2024 Altova GmbH

JSON Schema View 667JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

· To rename a definition: Double-click its name and edit the name. Alternatively, edit the Name field in
the Details entry helper .

· To enter a description of the definition: Edit the Description field in the Details entry helper . The
description appears in the Definitions Overview Grid next to the name of the definition (see screenshot
below). You can also double-click in the Description field of Definitions Overview Grid to edit a
description.

· To reference a definition: See the description of the Overview entry helper and the section Global
and Local Definitions .

· To edit a definition: Click the definition's icon in the Definitions Overview Grid or double-click the
definition in the Overview entry helper . This opens the definition in Design View, where it can be
edited.

13.6.3 Entry Helpers: Overview, Details, Constraints

The JSON Schema View entry helpers are located by default on the right-hand side of the application window.
They are available in both modes of the main window : (i) Definitions Overview Grid, and (ii) Design View. You
can drag entry helper windows by their title bars to other locations on the screen, and you can double-click an
entry helper's title bar to alternatively dock and undock that entry helper. For more information about these
actions, see the section Entry Helpers .

Overview entry helper
The Overview entry helper (screenshot below) lists the current schema definition and all the global definitions of
the current schema. Double-clicking a definition, opens that definition in Design View , where it can be
edited. If you wish to use definitions from external schemas, first add the external schema, then reuse the
definition you want.

Adding the external schema
Add the external schema by clicking the Add New Schema icon in the Overview entry helper and then
browsing for the schema you wish to add. Once a schema has been added, its definitions are displayed in the
Overview entry helper. The screenshot below, for example, shows that the schema TelNumbers.json has been
added, and that this schema has one definition named USTelephoneNumbers. You can add as many external

668

668

667

670

667

663

118

672

668 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

schemas as you like.

Reusing an external definition
After an external schema has been added, its definitions become available for reuse in the definitions of the
importing schema. When one definition reuses another definition (by referencing it), it takes on the properties of
that definition. The referencing can be done in two ways:

· In Design View: By dragging a definition from the Overview entry helper onto the definition where it is
wanted

· In Definitions Overview Grid or Design View: Via the Reference field of the Details entry helper of the
definition where the reuse is wanted. This is explained below in the description of the Details entry
helper .

Note: The Refresh icon next to the External Schemas entry in the Overview window updates all added
external schemas. Note that, If no definition from an added external schema has been reused, then
that schema will be removed from the list when the list is refreshed.

Details entry helper
The properties of a definition can be entered in the Details and Constraints windows when the definition is
selected in either mode of the main window: Definitions Overview Grid or Design View . The screenshot
below shows the definition of USTelephoneNumbers in Design View , together with the Detail and Constraints
entry helpers. Notice that the information in the two entry helpers is also displayed in the definition's (blue) box
in Design View. The properties that can be set in these two entry helpers are listed below.

668

663

672

© 2018-2024 Altova GmbH

JSON Schema View 669JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

The following details can be entered in the Details entry helper:

· Name: The name of the definition.
· Reference: If you want a definition to reuse another definition, click the Additional Dialog button of

the Reference field (see screenshot above). This displays the Edit Reference dialog, which lists all
available definitions (from the current schema and external schemas). Select the definition you want to
reuse, select the Relative Path option if you want a relative path, and click OK. See Global and Local
Definitions for details.

· Type: Select the definition's datatype from the dropdown list of the combo box. Note that changing the
type will lead to the removal of keywords specific to the previous type. If you wish to go back to the
previous definitions, press Undo (Ctrl-Z). The types are explained in JSON Data and Type
Selectors (Any, Multiple, etc) .

· ID: This is an optional keyword that defines a URI for the schema. This URI can be used to reference
the schema and is used as the base URI for other URI references within the schema. The ID value
must be a string that is a URI. Note that the Altova JSON validator uses canonical de-referencing only.
See the JSON specification for more information.

· Anchor (new in draft-2019-09): This is an optional identifier keyword that provides a plain name
fragment (and not a URI as is the case with ID). The value of Anchor must be a string as described in
the respective drafts.

· Title, Description: The values of these two keywords are used for descriptive purposes that can be read
by the end-user.

· Comment (new in draft-07): Intended for notes to schema maintainers, as opposed to Description,
which is intended for end-users.

· Const (new in draft-06): A constant value, like a one-value enumeration.
· Default: The default value of the definition.
· Read-only, Write-only (new in draft-07): These indicate, respectively, read-only and write-only fields. An

example of a write-only field would be a password field.
· Deprecated (new in draft-2019-09): An indicator that the selected definition may be removed in the

future. Applications can handle such definitions in a special way.

Constraints entry helper
A definition's constraints depends on its type. The constraints of each type are described below. (See also
Atomic Types .)

670

650

688

686

http://json-schema.org/latest/json-schema-core.html#anchor27

670 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If a type does not appear in the list below, no constraint can be defined for it. Note, however, that enumerations
can be defined for all types:

· String: The length of the string, and the pattern of the string; the pattern is specified by means of a

regular expression. In the Format field, you can select one of the string formats defined in the
specification (see screenshot above, which shows the formats available in draft-04); additional formats
have been defined in later versions. Content Media Type and Content Encoding (both new in draft-07)

select the media type and encoding of non-JSON data encoded in a JSON string.
· Numeric: The range of allowed values

· Array: The number of items allowed in the array and whether items must be unique

· Object: The number of allowed properties

The Constraints entry helper for all types has an Enumerations tab. In it, you can specify a list of allowed items
of that definition's type. Additionally, an Examples tab is available (new in draft-06) for all types except
Forbidden. This is an array of examples with no validation effect; the value of default is usable as an example

without repeating it under this keyword.

13.6.4 Global and Local Definitions

JSON schema definitions can be created globally or locally.

· Global definitions are created in the Definitions Overview Grid of the main window by adding a
definition and then specifying its properties . A global definition can be referenced by other
definitions in the same schema or by definitions in other schemas. This enables the reuse of definitions
across your project. All the global definitions of the current schema are displayed in the schema's
Definitions Overview Grid . Global definitions from other schemas can be made available for reuse by
adding the external schema in the Overview entry helper.

· Local definitions are created within global definitions, that is, by adding descendant or sibling
definitions to a global definition.

Referencing a global definition
To reference a global definition from within another definition, do one of the following:

663

666

663

667

http://json-schema.org/latest/json-schema-validation.html#anchor104
http://json-schema.org/latest/json-schema-validation.html#anchor104
http://json-schema.org/draft-06/json-schema-hypermedia.html#rfc.section.5.3

© 2018-2024 Altova GmbH

JSON Schema View 671JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

· In Design View, drag the global definition from the Overview entry helper onto the definition where it
is to be used.

· In Design View , right-click the definition for which you want to reference a global definition and
select Edit Reference. (Alternatively, with the definition selected in Design View, go to its Details
entry helper and click the Additional Dialog button of the Reference field.) In the Edit Reference
dialog that appears (screenshot below), select the global reference you want to reference. If you add an
external schema, you can choose whether the reference should be entered as a filepath relative to your
JSON schema or as an absolute filepath.

Note: A definition can (i) reference a global definition and not contain any local definition or local constraint,
or (ii) both reference a global definition as well as contain local definitions/constraints (from draft-2019-
09 onwards). In the latter case, the reference is known as an extended reference. In the Edit
Reference dialog, you can create a reference to a global definition as an extended reference by
checking the dialog's Extended reference check box. A global definition which is created as an
extended reference is always displayed as the last item in the list of the referencing component's
definitions. If a value exists for the referencing component's description keyword, then this value is

displayed below the referencing component.

Note: If you change the name of a global definition after it has been referenced by another definition in the
same schema, then the name is also changed in the reference. References from other schemas,
however, will need to be edited manually to reflect the name change.

Converting local definitions to global definitions
To convert a local definition, right-click it in Design View and select Make Global. A global definition is
created and a reference to it will be created on the local definition. Since the name of the global definition is
generated automatically, you can edit it and the change will be passed to the reference of the local definition.

667

663

668

672

672 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Changing a ref to a global definition into a local definition
A reference to a global definition can exist on both local and global definitions. To remove the reference and
make its properties local, right-click the (local or global) definition in Design View and select Make Local.
The global definition's properties are created locally on the definition.

13.6.5 Design View

In Design View, you can specify the structure and allowed values of individual global definitions. The definitions
are specified via the following GUI components or mechanisms:

· the Details entry helper (also available in Definitions Overview Grid)
· the Constraints entry helper (also available in Definitions Overview Grid)
· the definition's context menu (accessed by right-clicking the definition's box in the main window)

The definitions that can be specified via the Details and Constraints entry helpers are described in the section
Entry Helpers: Overview, Details, Constraints . Some of theses properties can also be specified within the
definition's box in the main window. In this section,and the next three sections, we describe the mainly
graphical mechanism available in the main window.

Note: If you need to undo an inadvertent or unwanted change, press Ctrl+Z.

Context menu
The context menu of a definition (blue box in screenshot below) enables you to design the structure of the
definition and edit its properties.

The following commands are available:

· Add Child: What child can be added depends on the type of the definition (see Add Child: creating
structure below).

· Edit Reference: Enables the definition to reference a global definition and take on the properties of that
global definition. The Edit Reference dialog that the command opens is the same as that accessed via
the Details entry helper and is described in the section Entry Helpers: Overview, Details,
Constraints .

672

668

669

667

673

668

668

© 2018-2024 Altova GmbH

JSON Schema View 673JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

· Make Global: This command is enabled when the definition is a local definition . It makes the
currently selected definition a global definition and adds a reference to that global definition in the
current selection.

· Make Local: This command is enabled when the definition is a global definition . It converts the
currently selected definition to a local definition by creating a reference to the original global
definition.

· Go to Definition: If the selected definition is contained within a definition that references a global
definition, then this command is enabled. Clicking it takes you to the global definition.

· Content: The Content command displays a submenu containing commands to cut, copy and reset the
contents of the selected definition.

· Edit Description: Enables the definition's Description field to be edited.

Add Child: creating structure
The structure of a definition is created by adding multiple levels of descendants. These levels are created with
the Add Child command of the context menu. The children that can be added to a definition depends on its
type:

· Objects : take properties and operators
· Arrays : take array items and operators
· Atomic types (string, number, boolean, null) : take operators
· Any : takes properties, array items, and operators
· Multiple : varies according to what types are included; takes the union of allowed children for the

selected types
· Operators : enables logical operators to be used to determine the structure

The structures that can be created for each type are described in detail in the sections that are linked to from
the list above.

13.6.6 Objects and Properties

An object is enclosed in curly braces and maps a key to a value, like this: "MyKey": Value. The key must

always be a string and must therefore be enclosed in quotes. The value can be any JSON data type . Each
key:value pair is known as a property of the object (see screenshot below).

Here is an example of an instantiated object that has three properties:

{

670

670

670

670

673

684

686

688

688

694

650

674 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 "emailtype": "home",

 "emailaddress": "contact01.home@altova.com",

 "citycode": 22

}

The schema for the object would look something like this in Design View.

Notice the following:

· Each of the properties must be present in the instance. This is indicated by the solid borders of the
properties. If a property is optional, the border is a dashed line. You can set whether a property is
required or optional in the property's context menu or via the Details entry helper.

· The order in which properties must occur in the instance is not—and cannot be—defined in the
schema. This means that the order in which properties are defined in the schema is irrelevant.

· The blue-square-within-braces symbol signifies a property (as opposed to a pattern property or property
wildcard, both of which are indicated by other symbols; see below).

· The type of a property can be edited by double-clicking the type in the diagram and selecting an option
from the dropdown list that appears. Alternatively, the type can be selected in the Details entry helper.

· The constraint value of the emailaddress property is defined in the Constraints entry helper.

Properties, pattern properties, property wildcards, and property names schemas
An object can have properties, pattern properties, property wildcards, and property names schemas (new in
draft-07). These can be added to the object via the context menus: (i) of the object, (ii) of the yellow
properties box (right-click the Properties title of the box), and (iii) of individual properties. Properties have been
described above. We now look at pattern properties and property wildcards.

Pattern property
A pattern property (screenshot below) defines the property's name as a regular expression. In the screenshot
below, for example, the regular expression specifies that the property must: (i) have a name that begins with an
underscore, and (ii) have a boolean as its value. There is no requirement constraint for a pattern property. You
can add any number of pattern properties. Notice the icon for pattern properties.

674

664

© 2018-2024 Altova GmbH

JSON Schema View 675JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

Property wildcard
A property wildcard (screenshot below) specifies that any number of properties can occur in addition to the
other properties of the object's property set. The wildcard can however define a type for these occurrences. The
screenshot below left shows a property wildcard that defines properties with any name but having numeric
values. There can be only one property wildcard per object. If the wildcard is set to Any type, however, then you
can set constraints for each type in the Constraints entry helper. Notice the icon for property wildcards.

From draft-2019-09 onwards, property wildcards have a new keyword unevaluatedProperties, which is
processed only if the additionalProperties keyword is missing. The values of these two keywords are
produced by setting appropriate values for the Specified, Applies to, and Type entries in a wildcard's Details
entry helper (screenshot below).

The effect of these values on the keywords unevaluatedProperties and additionalProperties (and, vice
versa, the effect of the keywords on the editor's entry helper values) are given in the table below. The
screenshot above, for example, sets unevaluatedProperties=true.

addtionalProperties
unevaluatedProperti
es

Specified Applies to Type

-- -- <=> false All Unconstrained

true ignored <=> true All Unconstrained

false ignored <=> -- -- --

Schema ignored <=> true All Schema type

676 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

-- true <=> true Unevaluated Unconstrained

-- false <=> true Unevaluated Forbidden

-- Schema <=> true Unevaluated Schema type

Note the following points:

· If addtionalProperties and unevaluatedProperties are present, then unevaluatedProperties is
ignored.

· Specified=false only works with Scope=All and Type=Unconstrained.

Property names schema
A property names schema (screenshot below) constrains the names of that object's properties. (This feature
is new in draft-07 .) For example, in the screenshot below, we can see that the names of properties must be
strings. Additionally, we can specify further constraints for the property name via the Constraints entry helper:
for example, that the property's name fall within a certain character length range or that it have a certain
pattern.

Note: There are no minimum or maximum occurrence settings for a pattern property or property wildcard.
See the section about property validation to understand this better.

How properties are validated
When a property is encountered in the instance, it is validated as follows:

1. The property's name is checked in the schema against all the named properties of that object.
2. If no match is found, the name is checked against all pattern properties in the object's property set.
3. If still no match is found, then the wildcard is invoked if it exists.
4. If still no match is found for the name, a validity error is reported. If the name matches that of a property

or pattern property, or if a wildcard exists, then the value is checked against the value of the
corresponding property definition.

5. If the instance value matches the type and constraints of the corresponding property definition, then the
property is valid. Otherwise it is invalid.

Example
The screenshot below defines an object which:

664

676

© 2018-2024 Altova GmbH

JSON Schema View 677JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

· must have three properties named emailtype, emailaddress, and citycode
· can have one or more properties with a name that begins with an underscore and a value that is a

boolean (see the pattern property in the screenshot below)
· can have one or more additional properties with any name and any value

13.6.7 Unspecified Properties

In the code listing below, the required keyword specifies that four properties are required for this object.

However, of the four properties that are required, only three have been defined. The fourth property, city, is

undefined. The defined properties are said to be specified, while the undefined property is said to be
unspecified. See the screenshots below the listing.

Code listing: specified and unspecified properties

{
 "$schema": "http://json-schema.org/draft-04/schema#",

 "description": "JSON Schema generated by XMLSpy v2016 (http://www.altova.com)",

 "type": "object",

 "properties": {

 "emailtype": {

 "type": "string"

 },
 "emailaddress": {

678 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 "type": "string",

 "format": "email"

 },
 "citycode": {

 "type": "number"

 }
 },
 "required": [

 "emailtype",

 "emailaddress",

 "citycode",

 "city"

],
 "additionalProperties": false

}

© 2018-2024 Altova GmbH

JSON Schema View 679JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

In Design View, the unspecified property is flagged in red because it is required by the schema, but is not
defined. Although the JSON schema itself is valid, an instance document that is validated against it will not be
valid. This is because: (i) If the city property is not present, the document will be invalid because the city

property is required; (ii) If the city property is present, the document will be invalid because the city property

is undefined and there is no property wildcard to allow its presence (see Implicitly Specifying a Property
below) .

To create a definition for an unspecified property, do the following:

1. Select the unspecified property in Design View.
2. In the Details entry helper, check the Specified check box (see screenshot above). Alternatively, the

Specified flag can be modified via the context menu.

677

680 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. Modify the property's definition as required.

Implicitly specifying a property
A property can be implicitly specified by adding a suitable pattern property or property wildcard. The screenshot
below shows that a property wildcard has been added. An instance property named city will match this
wildcard. In the schema, therefore, the city property is said to be implicitly specified by the wildcard. An
instance file containing the city property will be valid against this schema.

Notice the respective icons in the implicitly specified property and in the property wildcard. Each icon is a link
to the other property. Double-clicking one icon selects the other property.

13.6.8 Objects and Dependencies

Within the definition of an object, you might want to specify that a certain property is to be present only if
another property is present. The first property is said to be dependent on the second property. Here is a
scenario containing a dependency. An object (named, say, member) has a property called credit_card, which
is defined as optional. The object's billing_address property can be made dependent on the credit_card
property: Only if the credit_card property is present will the billing_address property be present.

This kind of dependency can be specified in one of two ways:

· as a property dependency (the dependent structure is a property)
· as a schema dependency (the dependent structure is a schema)

© 2018-2024 Altova GmbH

JSON Schema View 681JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

Property dependencies
The screenshot below shows an object having a name property (required), a credit_card property (optional),
and a billing_address property (dependent). The billing_address property is dependent on the
credit_card property. The code of this JSON object definition is listed below the screenshot. How to create a
property dependency is described further below.

Code listing of a JSON object with a property dependency

{
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "credit_card": {
 "type": "number"
 },
 "billing_address": {
 "type": "string"
 }
 },
 "required": ["name"],
 "dependencies": {
 "credit_card": ["billing_address"]
 },
 "additionalProperties": false
}

To create a property dependency, do the following:

1. Right-click the property on which the dependency will be based. (In our example this is the
credit_card property.)

2. In the context menu that appears, select Add Dependency | Dependent Property. A new property is
added with an Occurrence value of Dependent.

3. Define the name and value of this property, and add any additional details or constraints you want.

682 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To specify a property as being dependent on another property, do the following:

1. Right-click the property you want to make dependent on another property. (In our example this is the
billing_address property.)

2. In the context menu that appears, select Dependent. Alternatively, in the Details entry helper, go to
the Occurrence entry, and select Dependent (see screenshot above).

3. In the Details entry helper, click the dropdown list icon of the Dependent On entry. The dropdown list
displays all the other properties of the object. Select the property on which you want the current
property to depend.

Note: An icon appears in the boxes of both properties involved in a dependency (see screenshot above).
Double-clicking the icon of one property takes you to the other property.

Note: A property can have multiple dependent properties.

Schema dependencies
The screenshot below shows an object that describes the same instance data structure as the object
discussed in the previous section. The definitions of the two objects, however, are different. While the previous
definition used a property dependency to define the billing_address property as being dependent on the
credit_card property, the current definition uses a schema dependency to define this dependency. The code
of this latter JSON object definition is listed below the screenshot. How to create a schema dependency is
described further below

© 2018-2024 Altova GmbH

JSON Schema View 683JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

Code listing of a JSON object with a schema dependency

{
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "credit_card": {
 "type": "integer"
 }
 },
 "required": ["name"],
 "dependencies": {
 "credit_card": {
 "properties": {
 "billing_address": {
 "type": "string"
 }
 },
 "required": ["billing_address"]
 }
 }
}

684 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To create a schema dependency, do the following:

1. Right-click the property on which the dependency will be based. (In our example this is the
credit_card property.)

2. In the context menu that appears, select Add Dependency | Schema Dependency. A new object
definition is created. It will have the same name as the property on which it is dependent (in our
example, credit_card), and it will have a child sub-schema.

3. Define the sub-schema the way you want it, adding any additional details or constraints you may want.

Note: An icon appears in the boxes of the property and object involved in a dependency (see screenshot
above). Double-clicking the icon in one box takes you to the other box.

Note: If you wish to set multiple dependencies, do this within the dependent sub-schema (see screenshot
above).

13.6.9 Arrays

An array is a list of zero or more ordered items; it is delimited by square brackets. Each item in the list is
assigned a type. The instance listing below is of an object with three properties. The value of each property is
an array (delimiters highlighted in yellow).

{

"x": [1, 2, "abc"],

"y": [3, 4, "def"],

"z": [5, 6, "ghi"]

}

All three arrays in the listing above have the same definition. Each contains three ordered items in the following
order: (i) a number item, a (ii) a number item, (iii) a string item. A schema description of this object is shown in
the screenshot below. Since the definition is the same for all three arrays, the definition has been created in a
global array named array_01. Each of the three arrays (x, y, and z) references the global array array_01.670

© 2018-2024 Altova GmbH

JSON Schema View 685JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

In the screenshot above, array x is selected (indicated by its blue highlight), and its details and constraints are

shown in the respective entry helpers (see screenshot above). Notice the constraint on the number of allowed
items. The number can be edited in the Constraints entry helper and is displayed in the diagram. The array
items can be defined in the definition of the array itself, which in this case is the global definition array_01
(screenshot below).

Note the following points:

· The unique constraint specifies that all items in the array must be unique.

686 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The numbering of items starts with 0.
· The following phrasing in the diagram, 3 <= items <= 3 and Items: 3..3 (see screenshot above), both

indicate the minimum and maximum allowed items. In this case, exactly three items must be present.

Adding array items, array item wildcards, and the contains keyword
Array items, array item wildcards, and an array's contains keyword are added via the context menu of a

definition or an array item.

· An array item wildcard enables a broader range of objects to be included in the array.
· The contains keyword specifies that the value of the contains keyword must be a valid JSON

schema and that at least one of the array's elements must be valid against the referenced schema
object. From draft 2019-09 onwards, the keywords minContains and maxContains have been

introduced. In the Details entry helper, these are shown as the Min and Max properties of the Contains
box (see screenshot below), and they define how many items may match the referenced schema
object.

13.6.10 Atomic Types

There are five JSON atomic (aka simple or primitive) types: (i) string, (ii) number, (iii) integer, (iv) boolean,
and (v) null. To specify that a definition is one of these atomic types, do one of the following:

· Double-click the Type value field in the definition's box, and select the type
· In the Details entry helper, select the type from the dropdown list in the Type field.

The constraints of each atomic type are described below.

String
For the string type, you can specify the following constraints: (i) length of the string, (ii) a regular expression
that describes the pattern of the string, (iii) a predefined format from the specification.

http://json-schema.org/latest/json-schema-validation.html#anchor104

© 2018-2024 Altova GmbH

JSON Schema View 687JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

Note: In the JSON Validation settings of XMLSpy, you can specify whether the format of strings in JSON
instance documents must be validated or not.

Numeric
The numeric type is a collective name for two types (number and integer; see screenshot below). The actual
type is set in the Mode field (the default of which is number). The difference between the two types is that the
number type allows decimals, whereas the integer type does not. If a value exists in the MultipleOf field, then
the instance value must be an integer multiple of the MultipleOf value.

Valid values for the number type defined in the screenshot above are: 5.94, 6.93, 7.92, and 8.91.

Boolean and Null
The boolean type takes either true or false as its values. The null type takes null as its value. Neither type
takes any constraint.

1526

688 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

13.6.11 Type Selectors (Any, Multiple, etc)

In the dropdown lists of the Type combo boxes of JSON Schema View, there are four "types" that are not
JSON types: any, multiple, unconstrained, and forbidden. These are actually type selectors.

· The any type selector selects any JSON type. This means that, in the instance, any JSON type will be

valid for that particular definition.
· The multiple type selector selects one or more JSON types. This means that if the instance type is

one of the JSON types selected in the schema, then the instance type will be valid for that particular
definition.

· The unconstrained type selector (new in draft-06) sets no constraint on the JSON type. This

means that, in the instance, any JSON type will be valid for a definition with that name.
· The forbidden type selector (new in draft-06) forbids any JSON type, effectively not allowing a

definition with that name to exist.

The any type selector
The any type selector can be selected everywhere that a type can be selected. When a definition is added to
the schema, any is the default type selection. It specifies that any of the JSON types is valid. This means that
the instance type could validly be an object, an array, or any of the atomic types (string, number, integer,
boolean, and null).

In the screenshot above, the sub-schema has a type of Any. So, all JSON types are valid for this definition. The
following is implied and is implemented accordingly in the UI:

· Since objects are allowed, a properties box is automatically created (see screenshot above). The
properties box is defined by default to allow any number of properties of any type (via a property
wildcard with a type of Any). You can modify the property definitions as you like.

· Since arrays are allowed, an items box is automatically created (see screenshot above). The array
items box is defined by default to allow any number of array items of any type (via an array item
wildcard with a type of Any). You can modify the item definitions as you like.

· Since string and numeric (number and integer) types are allowed, constraints for these atomic types
can be defined in the Constraints entry helper.

All of these types are therefore implicitly defined with the Any type selector. In order to change the type to a
specific type, select that type. There is an alternative way to specify objects and arrays as the type: Right-click

664

664

© 2018-2024 Altova GmbH

JSON Schema View 689JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

the object or array, and select Make Explicit. This makes that type the selected type and removes the other
types or makes defined object/array types inactive.

The multiple type selector
The multiple type selector can be selected everywhere that a type can be selected. It allows you to select
one or more JSON types by checking the types you want to allow (see screenshot below). You can then
specify constraints for the selected types in the Constraints entry helper.

In the screenshot above, the sub-schema allows types of string, null, and array. Constraints for these types
can be defined in the Constraints entry helper (see screenshot).

· String constraints are defined in the Constraints entry helper.
· The null type takes no further constraints.
· An array items box is automatically created. You can define the number and types of allowed array

items.

In an instance document, the selected types will be allowed at the location corresponding to that of the sub-
schema.

The unconstrained and forbidden type selectors
The unconstrained and forbidden type selectors can be selected everywhere that a type can be selected.
They enable you to specify, respectively, that an object of any type is allowed or that no object of that name is
allowed.

690 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the screenshot above, a definition has two properties. PropertyOne can have a value of any type, whereas

no property named PropertyTwo is allowed (see screenshot). In text form, this construct will look like the code

listing below.

"Definition": {
"properties": {

"PropertyOne": true,
"PropertyTwo": false

}
}

13.6.12 BSON (Binary JSON) for MongoDB

The MongoDB application data platform stores data as JSON structures, but in a binary representation of the
data. This representation is known as "Binary JSON" or BSON. The main benefits of using BSON for MongoDB
are:

· The binary format of BSON is faster to parse than the text of a JSON document.
· Since JSON has limited datatyping, BSON has been provided with more datatypes (in particular, more

numeric datatypes).

For more information about MongoDB and BSON, see this page at the MongoDB website.

Edit JSON schemas for BSON data
MongoDB provides the ability, during the addition of new DB data and the modification of DB data, for the DB
data to be validated against a JSON schema document. However, because of the additional BSON datatypes,
which are not part of the official JSON schema specifications but supplement them, JSON schemas for BSON
are edited in XMLSpy via an editing layer for BSON that is overlaid on the JSON schema editor. This editing

https://docs.mongodb.com/manual/reference/bson-types/
https://www.mongodb.com/json-and-bson

© 2018-2024 Altova GmbH

JSON Schema View 691JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

layer enables you to add and modify BSON-specific schema features—in addition to the standard JSON
features.

Consequently, you can edit a JSON schema document of any version with or without the BSON editing layer.
When the document is edited without the BSON editing layer, it is edited as a straightforward JSON schema
document. With BSON support, the JSON schema document can additionally define BSON-specific features.
To switch on BSON editing features in JSON Schema View for the active document, select the BSON Support
check box at the top right of the main window (circled in green in the screenshot below). Note that BSON
support (i) can be switched on regardless of the JSON schema version that has been selected, and (ii) applies
to the current document only; it can be switched on/off for each document separately.

BSON types
After the BSON editing layer has been switched on, BSON datatypes become available for JSON objects,
properties, and array items. Specifying that a component is of a BSON type consists of two steps:

1. Specify that the component is a BSON datatype (and not a JSON datatype) by selecting BSON as the
base JSON type. Do this either in the component's datatype-selector combo box (by double-clicking
the type value; screenshot below left) or the component's Details entry helper (screenshot below right).

692 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. After the component's base type has been selected to be BSON, the BSON types become available
for selection. Select the BSON type either in the component's datatype selection (left arrow in
screenshot below) or in the Details entry helper (tight arrow in screenshot below).

© 2018-2024 Altova GmbH

JSON Schema View 693JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

Disabling BSON support
If you assign a BSON type to a JSON schema component (as described above) and then uncheck the BSON
Support option for the document, a message box will appear. It informs you that there are BSON types in the
document and asks whether you want to remove/convert the BSON types or keep them. If you choose to
remove/convert, then those BSON types that can be converted to JSON types will be converted while the
others will be removed. If you choose to keep the BSON types, then they will be retained—but colored orange
in Schema View because BSON type support has been removed (see screenshot below).

694 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

13.6.13 Operators

There are four operators: (i) allOf, (ii) anyOf, (iii) oneOf, and (iv) not. Operators are used to specify conditions
of validity as explained below. You can add an operator to any definition. To access the operator sub-menu,
right-click the definition to which you wish to add an operator, and then select Add Child | Operator (see
screenshot below).

These operators specify conditions for successful validation, as follows:

Operator Icon Description

© 2018-2024 Altova GmbH

JSON Schema View 695JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

All Of Contains one or more sub-schemas (definitions), added as children of the operator. An
instance is valid if it is valid against all these sub-schemas.

Any Of Contains one or more sub-schemas (definitions), added as children of the operator. An
instance is valid if it is valid against at least one of these sub-schemas.

One Of Contains one or more sub-schemas (definitions), added as children of the operator. An
instance is valid if it is valid against exactly one of these sub-schemas.

Not Contains exactly one sub-schema (definition), added as a child of the operator. An
instance is valid if it is invalid against the given definition.

The screenshot below shows a One Of operator that contains three child sub-schemas (definitions). For the
instance to be valid, it must have one JSON data structure (at this point in the document structure) that
matches one of the three sub-schema definitions.

Operators can be useful for specifying inheritance and restriction. The screenshot below, for example, shows
how to use the All Of operator to define an array containing non-empty unique strings.

696 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

13.6.14 Conditionals

Conditionals are a new feature in draft-07 . They enable you to specify that validation restrictions are to be
different depending on certain aspects of the object, such as its type and/or additional type specific
restrictions.

Adding a conditional
 You can add a conditional to any definition via the definition's context menu (see screenshot below). To
access the conditional's sub-menu, right-click the definition to which you wish to add the conditional, and then
select Add Child | Conditional.

Setting up conditional validation
The conditional is added as a box with three elements: If-Then-Else (see screenshot below).

To set up conditional validation do the following:

664

© 2018-2024 Altova GmbH

JSON Schema View 697JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

1. Set up the condition in the If box by first selecting a type in the Details entry helper and then a type-
based constraint in the Constraints entry helper.

2. In the Then box, set up the validation requirements in the event that the condition (specified in the If
box) is fulfilled.

3. In the Else box, set up the validation requirements in the event that the condition (specified in the If
box) is not fulfilled.

13.6.15 Configuring Design View

When the main window is in Design View mode, you can access the Display Configuration dialog (screenshot
below) via the menu command Schema Design | Configure View. Here you can configure the appearance of
Design View.

You can configure the following aspects of Design View:

· Widths: Two sliders determine, respectively, the minimum and maximum widths of boxes in Design
View. Together they determine the allowed width of boxes.

· Parent/child distances: Sets the horizontal distance between each level in the hierarchy.
· Child/child distances: Sets the vertical distances between boxes.
· Width of descriptions: Sets the width of description lines. If text length exceeds this width, the text

wraps to the next line.
· Details display: The details of definitions can be switched to display or not in the definitions' boxes by

checking or unchecking this option. There is a corresponding toolbar icon.
· Placeholders display: Placeholders are items that have not yet been defined; they represent potential

items. This option sets whether the display of placeholders is switched on or not. There is a
corresponding toolbar icon. For example, the Add Property item in the screenshot below is a
placeholder.

698 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: The Configure View menu command is enabled only in the Design View mode , which shows the
detailed definition of an object. It is not available in Definitions Overview Grid .

13.6.16 Generating JSON Schema Documentation

If a JSON schema is the active document, you can generate documentation for it by clicking the Schema
Design | Generate Documentation command. You can output the documentation as an HTML, MS Word, or
RTF file and specify the components you want to include. Related JSON components are hyperlinked in the
generated documentation, allowing easy navigation.

Note: In order to generate documentation in MS Word format, you must have MS Word (version 2000 or later)
installed.

Steps to generate JSON schema documentation
To generate documentation for a JSON schema file, do the following:

1. Make the JSON schema the active document.
2. Switch to Schema View.
3. Select the menu command Schema Design | Generate Documentation. This opens the JSON

Schema Documentation dialog box (screenshot below).
4. Select the type of output you want to generate, HTML, MS Word, or RTF.
5. Select the specific components and details you want to include in the documentation, and set other

options (see JSON Schema Documentation Options below).

663

663

© 2018-2024 Altova GmbH

JSON Schema View 699JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

6. Click OK and enter the name of the JSON schema documentation file in the Save As dialog box that
appears.

JSON schema documentation options
You can select from among the following documentation options:

· The design template can be the built-in (fixed) XMLSpy design, or it can be a user-defined design that
is saved in an SPS file. For a description of how to use a user-defined design, see the section User-
Defined Design .

· The required format is specified in the Output Format pane: either HTML, Microsoft Word, or RTF. The
documentation can be generated either as a single file or be split into multiple files. When multiple files
are generated, each file corresponds to a component. What components are included in the output is
specified using the check boxes in the Include pane.

· The Embed Diagrams option is enabled for the MS Word and RTF output options. When this option is
checked, diagrams are embedded in the result file, either in PNG or EMF format. Otherwise diagrams

1310

700 JSON, JSON Schema JSON Schema View

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

are created as PNG or EMF files, which are displayed in the result file via object links. When the
output is HTML, all diagrams are created as document-external PNG files.

· In the Include pane, you select which items you want to include in the documentation. The Overview
option lists all components, organized by component type, at the top of the file. If Schema Definitions
is not selected, then all child components are disabled (that is, everything except External Schemas).

· The Details pane lists the details that may be included for each component. If Schema Definitions is
not selected, then all details are disabled. Select the details you wish to include in the documentation.

· The Show Result File option is enabled for all three output options. When this option is checked, the
result files are displayed in Browser View (HTML output), MS Word (MS Word output), and the default
application for .rtf files (RTF output).

© 2018-2024 Altova GmbH

Validate JSON Documents 701JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.7 Validate JSON Documents

XMLSpy contains a JSON validation engine that can be invoked to do the following:

· If a JSON schema is the active document: Validates the JSON schema against the appropriate JSON
Schema specification (for which no additional schema assignment is needed); the schema version is
indicated by the $schema keyword; the validation can be carried out in any of the three views

(Text , Grid , and JSON Schema).
· If a JSON instance is the active document: Validates the JSON instance against a JSON schema.

The schema is assigned to the JSON instance as described below. JSON instance validation can be
carried out in Text View and Grid View .

· If a JSON5 instance is the active document: Validates the JSON instance against a JSON schema.
The schema is assigned to the JSON5 instance as described below. JSON5 instance validation can be
carried out in Text View and Grid View .

Avro validation (Enterprise Edition only)
Avro data and Avro schema documents, as JSON documents, can be validated in Text View and Grid
View :

· If an Avro data instance in JSON format is the active document: Validates the Avro instance against
an Avro schema. The schema is assigned to the instance as described below.

· If an Avro schema is the active document: Validates the Avro schema against the Avro schema
specification (no schema assignment is needed); the validation can be carried out in Text View or
Grid View .

Assigning a JSON or Avro schema to a JSON instance
JSON instance documents can be validated against a JSON schema or Avro schema.

To set the JSON schema against which you want to validate a JSON or YAML document, do the following:

1. Make the JSON/YAML document the active document.
2. In the JSON tab of the Info window (screenshot below), click the arrow icon next to Validation against

schema, and, in the menu that appears, click Select JSON Schema.

Note that the JSON schema assignment is not written into the JSON or YAML document, but entered in the
Info window of XMLSpy. When you now validate the JSON or YAML document, the JSON schema file in the
Info window will be the file used for validation.

652

655 660 663

655 660

655 660

655

660

655

660

http://avro.apache.org/docs/current/spec.html
http://avro.apache.org/docs/current/spec.html

702 JSON, JSON Schema Validate JSON Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To remove the assignment, select the command Remove Schema from the same menu (see screenshot
above).

Note: If the JSON or YAML file is part of an XMLSpy project, then the JSON or Avro schema for validation
can also be assigned via the Project Properties dialog (use the Validate With option in this dialog).
If you then validate a project folder, all the JSON and YAML files in the project folder will be validated
against the JSON schema. If you wish to run JSON and YAML validation separately, then we
recommend that you put each document type in a separate project subfolder.

For information about generating a JSON schema from the JSON instance, see the section Generating JSON
Schema from a JSON Instance .

Validating instance and schema documents

Select the command XML | Validate XML (F8) or click the Validate (F8) icon in the toolbar to validate the
active JSON document (instance or schema) or Avro schema. If an instance document is being validated, a
schema document must be assigned to the instance (see above). Validation results are displayed in the
Messages window . Errors are also flagged in the line-numbering margin. If a smart fix is available for an
error, then a light bulb icon is shown on the line that generates the error. When you place the mouse over the
icon, a popup appears that lists available smart fixes. Select a fix to apply it immediately.
Note: The validation error indicators and smart fixes described above are refreshed only when the XML |

Validate (F8) command is executed; they are not updated in the background. So, after correcting an
error, you must run the Validate (F8) command again to make sure that the error has indeed been
fixed.

To go to the schema document from the instance document, double-click the schema in the Info window (see
screenshot above), or select the command DTD/Schema | Go to Schema. To go directly to the schema
definition of a JSON keyword or object, select the keyword or object in the instance document and select
DTD/Schema | Go to Definition.

You can also validate a project folder containing JSON files by using the Validate command.

Validate on modification
The Validate on Edit mode is toggled on by default. When toggled on, well-formed checks and validation
checks are carried out as you modify a document in JSON Grid View. For validation of a JSON document to be
carried out (additional to well-formed checks), a JSON Schema must be assigned to the JSON document.
Errors are shown by displaying erroneous text in red and flagging the location with a red exclamation mark.
See Validating JSON Documents for more information.

The Validate on Edit mode can be toggled on/off either (i) via the XML | Validate on Edit menu command,
(ii) the Validate on Edit toolbar button, or (iii) via the On Edit option of the Validation settings of the Options
dialog .

1261

709

119

1009

701

1275

1514

© 2018-2024 Altova GmbH

Insert JSON Fragments 703JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.8 Insert JSON Fragments

You can insert JSON fragments from other applications and web pages. These fragments can be inserted in
one of two ways:

· By using drag-and-drop to Text View or Grid View. If you drag-and-drop to Grid View, the intelligent
information available in drag overlays can help you decide where to drop the fragment.

· By using copy-and-paste to Text View or Grid View.

Example
The following example shows how a fragment can be added quickly and to the correct location in a JSON
document.

1. The fragment that is highlighted below (from the JSON tutorial at w3schools.com) is selected. It is an
array named cars.

2. The screenshot below shows the Grid View of a JSON document containing a similar cars array.

When the fragment from the web page is dragged to the already existing cars array, a drag overlay

appears containing the information that the dragged JSON fragment will be dropped below the existing
array as a new array named cars.

3. When the fragment is dropped, it is placed exactly where it is wanted (screenshot below).

183

183

704 JSON, JSON Schema Insert JSON Fragments

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

© 2018-2024 Altova GmbH

JSON Transformations with XSLT/XQuery 705JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.9 JSON Transformations with XSLT/XQuery

JSON maps, arrays, and objects can be targeted with XPath/XQuery 3.1 expressions. As a result, JSON
documents can be transformed with XSLT 3.0, XQuery 3.1, and XQuery Update 3.0 documents by using the
built-in engines of XMLSpy.

The following functionality is available:

· An active JSON document can be queried with XPath/XQuery 3.1 expressions from the
XPath/XQuery output window

· An active JSON document can be transformed with a user-selected XSLT or XQuery file
· An active XSLT or XQuery document can be executed on a user-selected JSON source file

These features are described below in more detail below. For information about constructing XQuery
expressions for JSON documents, see the section XQuery Expressions for JSON .

Note: You can try out JSON transformations by using the JSON, XSLT, and XQuery files in the JSON
Examples folder of the Examples project located in your application folder: C:\Documents and

Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Examples.spp.

Querying a JSON document via the XPath/XQuery Window
JSON documents can be queried by entering an XPath/XQuery 3.1 query expression in the XPath/XQuery
output window (see screenshot below). Select either the XPath 3.1 icon or XQuery 3.1 icon, and ensure
that the window is in JSON evaluation mode (explained below).

The information given below pertains to evaluations of JSON documents in JSON evaluation mode. (For an
overview of the XPath/XQuery window and detailed information about its usage, see the section Output Window:
XPath/XQuery .)

JSON evaluation mode
JSON evaluation mode is described through these points:

· The XPath/XQuery window will be in either XML evaluation mode or JSON evaluation mode. Which
mode is currently active is indicated by the active mode's button being highlighted. See the
XML/JSON evaluation mode buttons in the screenshot above. In the screenshot, the window is in JSON
evaluation mode.

· In the screenshot above, notice that the XML and JSON buttons are grayed out, indicating that they are
disabled. When the buttons are disabled, their status—whether activated or deactivated—cannot be
changed. Conversely, if the buttons are enabled (not grayed out), then the evaluation mode of the
window can be changed.

705

121

706

706

707

121

121

706 JSON, JSON Schema JSON Transformations with XSLT/XQuery

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The enabled/disabled state of the XML/JSON evaluation mode buttons depends on the evaluation
scope (the value of the Where field; see screenshot above). Evaluation-scope values are divided into
two groups for the determination of the enabled/disabled state: (i) Single file (Current file), and (ii)
Multiple files (Open files, Project, Folder).

· If, for the evaluation scope, a single file (Current file) is selected (as in the screenshot above), then the
window's mode (JSON or XML) is determined on the basis of the file's extension . Either the file is
JSON conformant , in which case JSON evaluation mode is activated; or the file is not JSON
conformant , and XML evaluation mode is switched on. Since the file type of the single file is known,
the appropriate evaluation mode is activated, and both buttons are disabled so that the mode cannot
be changed.

· If a multiple-files option (Open files, Project, Folder) is selected, then both evaluation mode buttons are
enabled, and the user can select what mode to activate (JSON or XML). The default evaluation mode
for a multiple-file scope is XML.

· In XML evaluation mode, XML conformant files will be processed and JSON files will be skipped.
· In JSON evaluation mode, JSON conformant files will be processed and XML files will be skipped.
· JSON expressions can also be queried in Debug Mode .

Transforming a JSON document with XSLT/XQuery
To transform an active JSON document with an XSLT 3.0, XQuery 3.1, or XQuery Update 3.0 document, do
the following:

· XSLT 3.0 transformation: Click XSL/XQuery | XSL Transformation, browse for the XSLT 3.0 file, and
click OK.

· XQuery 3.1 or XQuery Update 3.0 transformation: Click XSL/XQuery | XQuery/Update Execution,
browse for the XQuery 3.1 or XQuery Update 3.0 file, and click OK.

The transformed document/s will be generated, and can be viewed directly in XMLSpy.

Note: XSLT/XQuery Debugger can be started from a JSON document, but breakpoints and tracepoints
can be set in the XSLT or XQuery document only.

Providing a JSON source for an XSLT/XQuery document
To execute an active XSLT or XQuery document on a JSON source file, do the following:

· Active XSLT 3.0 document: Click XSL/XQuery | XSL Transformation, browse for the JSON file, and
click OK.

· Active XQuery 3.1 or XQuery Update 3.0 document: Click XSL/XQuery | XQuery/Update Execution,
browse for the JSON file, and click OK.

The transformed document/s will be generated, and can be viewed directly in XMLSpy.

Note: XSLT/XQuery Debugger can be started from an XSLT or XQuery document and a JSON document
can be assigned as input for the debugging session. However, breakpoints and tracepoints can be set
in the XSLT or XQuery document only.

1516

1516

1516

1516

1516

567

113

523

113

523

© 2018-2024 Altova GmbH

XQuery Expressions for JSON 707JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.10 XQuery Expressions for JSON

XQuery 3.1 expressions for JSON
Since JSON data structures commonly use objects and arrays, it is the XQuery 3.1 lookup operator ? that is

used to locate nodes inside JSON objects (which are essentially maps from an XQuery perspective) and JSON
arrays. This way of locating a node is different than how path expressions are written to locate nodes in XML
documents. In these, the slash operator / is used to connect steps in a path expression (for example:

items/*). In XQuery expressions for JSON, the slash operator is not used for locating nodes.

Examples of XQuery expressions for JSON

?items?*

Read this to mean: Lookup the child node items and then lookup all its children nodes. Note that items is

expected to be a child node of the context node.

?Artists?1?Albums?2?Name

Read this to mean: Lookup the child node Artists and then lookup its first child node. Inside that node, lookup

the child node Albums and then lookup its second child node. Now return the Name node of that second child

node.

?Tracks?*[contains(?Writer, 'Brian')]

Read this to mean: Lookup the child node Tracks and then lookup all its children. While looking up the

children, lookup each child's Writer node children, and select only those that contain the string 'Brian'.

Notice that there are three lookup operators in this expression. Each is used in a new step, where a nodeset
must be looked up.

?Artists?*[?Name="Queen"]?Albums?*?Name

Read this to mean: Inside the root object, lookup the child node Artists and then lookup all its children that

have Name node with a value of "Queen". Inside these nodes, lookup all the child Albums nodes, and then their

children. Inside these children, lookup (and return) the respective Name nodes. In the screenshot below, this

expression is shown in the XPath/XQuery Window together with the JSON Grid View representation of
the target JSON document.

558 660

http://docs.basex.org/wiki/XQuery_3.1

708 JSON, JSON Schema XQuery Expressions for JSON

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

© 2018-2024 Altova GmbH

Generate JSON Schema from JSON Instance 709JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.11 Generate JSON Schema from JSON Instance

XMLSpy can generate a JSON schema from a JSON instance document (including from JSON5 instances).
This feature is very useful since it quickly provides you with a schema based on an already existing JSON
instance, and saves you the trouble of manually creating a schema from scratch. You can then modify or
extend the generated schema according to your requirements.

Generating the JSON schema
You can generate a JSON schema from a JSON instance in one of these ways:

· DTD/Schema menu: Make the JSON instance document the active document. Select the menu
command DTD/Schema | Generate DTD/Schema.

· JSON Info window: Make the JSON instance document the active document. In the JSON tab of the
Info window (screenshot below), click the Arrow icon next to Validaton against schema and, in the
dropdown menu that appears, select Generate JSON Schema.

In both cases, the Generate JSON Schema dialog appears (screenshot below in next section). Do the
following:

1. Modify the settings as you want (see below for details) and click OK when done.
2. You will be prompted to provide a path and filename for the generated JSON schema. Enter these.
3. On clicking Save, the JSON schema will be generated and becomes the active document.

In the JSON instance document, the generated schema file will be assigned as the schema to use for validation
(see the Info window; screenshot above); any previous assignment will be overwritten. To change the
assignment, use the Select JSON Schema command of the JSON Info window's dropdown menu (screenshot
above). For more information about JSON instance validation, see Validating JSON Documents .

Settings for JSON schema generation
You can specify options for JSON schema generation in the Generate JSON Schema dialog (screenshot
below). See the previous section for information about how to access this dialog.

701

710 JSON, JSON Schema Generate JSON Schema from JSON Instance

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Detect array tuples
An array tuple is the sequence of items in an array. For example, the following array has a tuple with three
items: [1, 2, "abc"]. For the validation of arrays, the schema can specify whether the order and datatype

of array (tuple) items are to be considered or not. If the Detect Array Tuples option is checked (see screenshot
above), then the order and datatype of items will be detected. Based on what is detected, a corresponding
definition will be created in the schema. The options for this setting are as follows:

· Number of tuple items: A minimum and maximum number of tuple items can be specified. If a tuple in
the instance has an item-count within this range, then this array will detected and defined.

· Simple types only: Only tuples that have simple-type items (the atomic types string, number,
integer, boolean, and null) are to be considered for detection.

· Identically named arrays: Only arrays that are defined as values of properties that have the same name
are considered for detection. For example, in the following JSON data fragment, the arrays marked with
red-shaded brackets are all values of properties named a1 (shaded in blue): {"object1": [{ "a1":

 [1, 2, "abc"] }, { "a1": [3, 4, "def"] }, { "a1": [5, 6, "ghi"] }] }.

· Minimum number of arrays: A minimum number of arrays for enabling array detection can be specified.

Other settings

· Ignore order of object property names: If unselected, the order of an object's properties is checked and
recreated as closely as possible. Otherwise, the order is not checked.

· Try to match the string format: The schema can specify that string datatypes must have a particular
format. If this option is selected, then XMLSpy will try to detect the string format and add a format
definition for strings wherever possible.

· Make simple arrays local: A simple array is one in which all items are of the same simple datatype. If
selected, all simple arrays will be defined locally in the schema, instead of using global definitions that
are referenced locally.

http://json-schema.org/latest/json-schema-validation.html#anchor104

© 2018-2024 Altova GmbH

Generate JSON Schema from JSON Instance 711JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

· Make simple objects local: A simple object is one in which all property values are of the same simple
datatype. If selected, all simple objects will be defined locally in the schema, instead of using global
definitions that are referenced locally.

Note: After the JSON schema has been generated, you can make local definitions of individual objects and
arrays global, and vice versa. For more information, see the section Global and Local Definitions .670

712 JSON, JSON Schema Generate JSON Instance from JSON Schema

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

13.12 Generate JSON Instance from JSON Schema

You can generate a JSON instance document from a JSON schema. Make the JSON schema the active file in
Text View, and click the DTD/Schema | Generate Sample XML/JSON File . Note that this command
generates a JSON document, not a JSON5 document.

1296

© 2018-2024 Altova GmbH

Convert between JSON and XML 713JSON, JSON Schema

Altova XMLSpy 2024 Enterprise Edition

13.13 Convert between JSON and XML

The following conversion options are available:

· Convert XML Instance to JSON : When an XML instance document is the active document, you can
select whether to generate a JSON or JSON5 instance document. Use the command Convert |
Convert XML Instance to/from JSON/YAML .

· Convert JSON Instance to XML : When a JSON/JSON5 instance document is the active document,
an XML instance document is generated from the JSON instance by clicking Convert | Convert XML
Instance to/from JSON/YAML .

· Convert XML Schema to JSON Schema : When an XML Schema document is the active document,
a JSON schema document is generated from the XML Schema by clicking Convert | Convert XML
Schema to/from JSON Schema .

· Convert JSON Schema to XML Schema : When a JSON schema document is the active document,
an XML Schema document is generated from the JSON schema by clicking Convert | Convert XML
Schema to/from JSON Schema .

All these conversions are enabled in both Text View and Grid View. Click the links above to see descriptions of
the respective functionality.

1407

1407

1407

1407

1410

1410

1410

1410

714 Avro, Avro Schema

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

14 Avro, Avro Schema

Apache Avro™ is a system for serializing data in a compact binary format. An Avro data structure is defined in
an Avro schema, which is written in JSON format. In actual deployment scenarios, an Avro document is
typically serialized as a binary file which contains not only the Avro data structures but also the Avro schema
that is used to define these structures. The Avro binary thus carries both the data and the data structure's
definition (the Avro schema). Avro data can, however, also be serialized as JSON; in this case the Avro data (in
a JSON file) references an external Avro schema.

XMLSpy supports Apache Avro™ 1.8.1.

In XMLSpy, the following Avro support is available:

· You can edit Avro data (as .json JSON documents) in Text View and Grid View ; both views

provide intelligent editing features. The data document can be assigned an Avro schema and validated
against it.

· You can edit Avro schemas (as .avsc Avro Schema documents) in Text View and Grid View .

Avro schemas can be validated against the Avro schema specification, and the views provide intelligent
editing features.

· You can view Avro binary instances (.avro files) in Avro View , which displays Avro data blocks in a

tabular grid.

Altova's RaptorXML editions provide further Avro support:

· Avro data (JSON-serialized; .json file) validation (against an Avro schema)
· Avro data (binary-serialized; .avro file) validation
· Avro schema (typically .avsc file) validation (against Avro schema specification)
· Extraction of Avro schema from Avro binary

Opening existing Avro documents and creating new
In the Options | File types section (screenshot below), you can set the default view in which the different
types of Avro documents (JSON data format, Avro schema, Avro binary) are opened. You can switch between
available views at any time.

655 660

655 660

902

1516

http://www.apache.org/
http://avro.apache.org/docs/1.8.1/spec.html
http://avro.apache.org/docs/current/spec.html
http://www.altova.com/documentation.html
http://avro.apache.org/docs/current/spec.html

© 2018-2024 Altova GmbH

 715Avro, Avro Schema

Altova XMLSpy 2024 Enterprise Edition

Document type File extension Conformance Available views

Avro data in JSON format .json JSON conformant | JSON Text View, Grid View

Avro schema .avsc Avro conformant | Avro Schema Text View, Grid View

Avro data in binary file .avro Avro conformant | Avro Binary Avro View

Note the following points:

· Existing documents and new documents of a selected type will open in the default view you select in
the File types section.

· Avro binaries can be viewed only in Avro View , which is a read-only view. When a file type is defined
to be Avro-conformant, the only available view is Avro View .

· If you want XMLSpy to read files of a certain file extension as one of the Avro document types listed
above, then add this new file extension and assign it the relevant conformance.

· To create a new document, click File | New, and select the document type you want. Avro binaries,
being binaries, cannot of course be created in this way; they can only be read in Avro View .

720

720

720

716 Avro, Avro Schema Avro Schema

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

14.1 Avro Schema

An Avro schema specifies the structure of an Avro data block. It specifies what data fields are expected and
how the values are represented. Information about Avro schema and its specification is available here.

Note the following points about Avro schemas:

· An Avro schema is created in JSON format
· An Avro schema can be: a JSON string, a JSON object, or a JSON array
· An Avro schema can contain four attributes: name, namespace, type, and fields

· There are eight primitive data types: null, boolean, int, long, float, double, bytes, and string

· There are six complex types: records, enums, arrays, maps, unions, and fixed

· Primitive types have no attributes; each complex type has its own set of attributes

For details and more information about Avro schema, see the Avro schema specification.

Examples
Given below are simple examples of Avro schemas, each with corresponding Avro data snippets in JSON
format. Note that the schema defines a certain structure. In some cases, when the defined structure is
instantiated multiple times, the resulting output might not be valid JSON. For example, a schema might define
the structure of a JSON object. If the JSON object is instantiated multiple times, each object (separately) could
be valid against the Avro schema, but the entire document would not be valid JSON—because there is no
container object. If valid JSON is required, you might want to rewrite the Avro schema to validate an array of
JSON objects. Compare Examples 4 and 5 below to see this point illustrated.

01: Avro schema as JSON string

This schema is a single string, and it specifies that the data block must contain a value that is of the Avro
(int) primitive data type: "int"

Valid Avro: 2016

Invalid Avro: "2016"

02: Avro schema as JSON object

This schema specifies exactly the same thing as the previous schema, but it is a JSON object. The data
block must contain one item that is a value of the Avro (int) primitive data type:
{

 "type": "int"

}

Valid Avro: 2016
Invalid Avro: "2016"

03: Avro schema as JSON object: Array of integers

This schema is a JSON object that specifies an array of integers:
{

http://avro.apache.org/docs/current/index.html
http://avro.apache.org/docs/current/spec.html

© 2018-2024 Altova GmbH

Avro Schema 717Avro, Avro Schema

Altova XMLSpy 2024 Enterprise Edition

 "type": "array",

 "items": "int"

}

Valid Avro: [2016, 2017]
Valid Avro: [2016]
Valid Avro: [2016]
Invalid Avro: 2016, 2017

04: Avro schema as JSON object: Records

This schema is a JSON object that specifies a single record:
{

 "type": "record",
 "name": "ages",
 "fields" : [
 {"name": "name", "type": "string"},
 {"name": "age", "type": "int"}
]
}

Valid Avro: {"name":"John", "age":35}

05: Avro schema as JSON object: Multiple records

This schema is a JSON object that specifies an array of record items, each of which must be a JSON
object:
{
 "type": "array",
 "items": {
 "type": "record",
 "name": "ages",
 "fields" : [
 {"name": "name", "type": "string"},
 {"name": "age", "type": "int"}
]
 }
}

Valid Avro: [{"name":"Mary", "age":34}, {"name":"John", "age":35}]

Avro schema file types
If you wish to use XMLSpy's features for Avro-related editing and validating, then XMLSpy must be able to
recognize a file as an Avro schema. A file is recognized as an Avro schema if the file's extension is defined as
such in XMLSpy's Options dialog (Tools | Options | File types). XMLSpy's default settings define one file
extension —the .avsc extension—as being that of an Avro schema file. If you wish to create other file

extensions that specify Avro schema documents , add these file extensions as Avro schema extensions to
the list in the Options dialog .

1516

714

714

1516

718 Avro, Avro Schema Avro Schema

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Creating and editing Avro schemas
In XMLSpy, you can create a new file as an Avro schema by specifying an Avro schema file extension as its
file type. XMLSpy provides intelligent editing help as you type. This includes context-sensitive keyword
suggestions, automatic entry of bracket-, brace-, and quote-pairs, syntax coloring, and auto-completion of
keywords. Additionally, there are three entry helpers: JSON Properties, JSON Values, and JSON Entities. The
entries that are available in them are context-sensitive. Double-click an entry to insert it at the current cursor
location. You can then validate the file against the Avro schema specification with the Validate | Validate
XML (F8) menu command.

1194

http://avro.apache.org/docs/current/spec.html

© 2018-2024 Altova GmbH

Avro Data in JSON Format 719Avro, Avro Schema

Altova XMLSpy 2024 Enterprise Edition

14.2 Avro Data in JSON Format

Avro data can be serialized in binary format or JSON format. The following points explain XMLSpy support for
this Avro format.

· Avro data in JSON format is typically saved as a .json file. You can specify that XMLSpy should

recognize additional file extensions as JSON conformant .
· Avro JSON files can be opened in Text View and Grid View and edited in these views.
· An Avro schema file can be assigned to the Avro JSON file , and the data file can then be validated

against the Avro schema .
· Intelligent editing features for JSON documents are available in both Text View and Grid View .

Additionally, if an Avro schema is assigned to an Avro data document in JSON format, then auto-
completion of schema-defined keywords is available in the Avro instance.

714

655 660

701

701

655 660

655

720 Avro, Avro Schema Avro View: a Grid View of Avro Binaries

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

14.3 Avro View: a Grid View of Avro Binaries

Avro data can be serialized in binary format or JSON format. The binary format contains both the Avro data
structures and their schema, and is usually generated via automated data processing procedures. An Avro
binary can be opened in Avro View, which is a grid view that displays the Avro data structures in an easy-to-
read tabular format (see screenshot below). Avro View thus serves as a user-friendly Avro binary viewer.

Note the following points:

· The Avro binary must be recognizable as such to XMLSpy. This is done in the Options | File types
section by setting the file extension of the Avro binary to be Avro conformant . By default, the file
extension .avro has been set to be Avro conformant. You can add more file types as being Avro

binary conformant . These files will be opened in Avro View.
· Avro View consists of two panes: (i) a Blocks pane for navigating, and (ii) a Data pane, which displays

the data structure you select in the Blocks pane.
· The Blocks pane organizes the data blocks into groups of 1000. Each group can be

expanded/collapsed. Data blocks are displayed by their index number.
· To view a particular data block, locate it in the Blocks pane, and double-click it.
· The Blocks pane also contains an entry called Schema. If you click the button to the right of the entry,

the Avro schema will be extracted from the Avro binary and will be opened in a new Text View tab. You
can then save the Avro schema if you want to.

Text searches
To search for a text string, select the menu command Edit | Find (Ctrl+F). In the dialog that appears (see
screenshot below), enter the search term as a text string or regular expression. Select any applicable option/s
(described here) . Click Mark All.

1516

714

714

1224

© 2018-2024 Altova GmbH

Avro View: a Grid View of Avro Binaries 721Avro, Avro Schema

Altova XMLSpy 2024 Enterprise Edition

· The matches are highlighted in both the Blocks and Data panes: the currently selected match in dark
green, others in light green.

· In the Blocks pane, the number of matches in each block is displayed next to its entry.
· You can navigate through the matches by going to a block, selecting a field in the block, and then

using F3 (Edit | Find Next) and Shift+F3 (Find Previous) to navigate.
· Note that Avro View is a read-only view; you cannot edit data in the Avro binary.

722 YAML

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

15 YAML

YAML stands for YAML Ain't Markup Language. It is a popular data serialization language that is a superset of
JSON. XMLSpy provides a Text View of YAML documents as well as other features such as YAML document
validation against JSON schemas and conversion of YAML documents to and from the JSON format.

This section describes the various YAML features of XMLSpy and is organized into the following topics:

· Create and Validate YAML Documents
· YAML Text View
· Generate JSON Schema from YAML Document
· Generate YAML Document from JSON Schema
· Convert between YAML and JSON

723

725

726

729

730

© 2018-2024 Altova GmbH

Create and Validate YAML Documents 723YAML

Altova XMLSpy 2024 Enterprise Edition

15.1 Create and Validate YAML Documents

Create YAML documents
In XMLSpy, the .yaml and .yml file extensions have been defined as YAML file extensions. If you wish to add

other file extensions for your YAML documents, then do this in the File Types section of the Options dialog .
XMLSpy will treat documents with YAML file extensions as a YAML document and will enable XMLSpy's YAML
viewing and editing features for these documents.

When a new YAML file is created with File | New , you will be asked if you want to assign a JSON schema
to the YAML file.

· If you assign a JSON schema (see "Validate YAML documents" below), then the new file will be
created with a sample YAML document and displayed in a new window.

· If you choose not to assign a JSON schema, then an empty YAML document is created in a new
window. If you subsequently assign a JSON schema to the empty YAML document, then a sample
YAML document based on the JSON schema is generated in the empty YAML document.

Validate YAML documents
YAML documents can be validated against JSON Schemas.

Set the JSON Schema for validation
To set the JSON schema against which you want to validate a JSON or YAML document, do the following:

1. Make the JSON/YAML document the active document.
2. In the JSON tab of the Info window (screenshot below), click the arrow icon next to Validation against

schema, and, in the menu that appears, click Select JSON Schema.

Note that the JSON schema assignment is not written into the JSON or YAML document, but entered in the
Info window of XMLSpy. When you now validate the JSON or YAML document, the JSON schema file in the
Info window will be the file used for validation.

To remove the assignment, select the command Remove Schema from the same menu (see screenshot
above).

Note: If the JSON or YAML file is part of an XMLSpy project, then the JSON or Avro schema for validation
can also be assigned via the Project Properties dialog (use the Validate With option in this dialog).
If you then validate a project folder, all the JSON and YAML files in the project folder will be validated
against the JSON schema. If you wish to run JSON and YAML validation separately, then we

1516

1194

1261

724 YAML Create and Validate YAML Documents

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

recommend that you put each document type in a separate project subfolder.

For information about generating a JSON schema from a YAML document, see Generate JSON Schema from
YAML Document .

Validate the document
After setting the JSON schema for validation, validate the document by selecting the command Validate (F8,
XML | Validate) . If you want to be informed about the validity of your document as you type, toggle on the
Validate on Edit feature (XML | Validate on Edit). Validation results will be highlighted in the document
and details will be displayed in the Messages window . You can click an error in the Messages window to go
to that error in the document.

726

1269

1275 1275

119

© 2018-2024 Altova GmbH

YAML Text View 725YAML

Altova XMLSpy 2024 Enterprise Edition

15.2 YAML Text View

Text View provides a number of YAML editing features, from pretty-printing to document validation while editing.
These features are described below.

Note: YAML document structure in Text View is denoted with indentation, which should be set with spaces,
not tabs.

Pretty-printing, font colors, and display
Pretty-printing formats the YAML document with hierarchical indentation (see screenshot below). You can
define pretty-printing options in the Options dialog (Tools | Options | Pretty-printing). The document text is
marked in different colors according to their syntax. Font colors are set in the Options dialog (Tools | Options |
Pretty-printing).

Other useful features of the YAML Text View are (i) line numbers in the line number margin and (ii) text-folding
nodes in the folding margin. The text-folding nodes can be collapsed/expanded to better navigate and view the
document. Both margins (line numbers and text folding) can be set to be shown or hidden in the Text View
Settings dialog (View | Text View Settings); this dialog can also be accessed via the pretty printing
options .

Node locator expressions in YAML documents
To get the XPath/XQuery location expression of a node in the YAML document, click inside the node and then
select the command Edit | Copy XPath . The XPath/XQuery expression will be copied in JSON format to the
clipboard. Press Ctrl+V to paste the locator expression to any text entry field.

For example, the following expression locates the title of the first track of the second album of the first artist in
a YAML document:

?Artists?1?Albums?2?Tracks?1?Title

For more information about XPath/XQuery expressions in JSON format, see XQuery Expressions for JSON .

1521

1521

1420

1521

1219

707

726 YAML Generate JSON Schema from YAML Document

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

15.3 Generate JSON Schema from YAML Document

XMLSpy can generate a JSON schema from a YAML document. This feature is very useful because it quickly
provides you with a JSON schema based on an already existing YAML document, and saves you the trouble of
manually creating a schema from scratch. You can then modify or extend the generated schema according to
your requirements.

Generating the JSON schema
You can generate a JSON schema from a YAML document in one of these ways:

· DTD/Schema menu: Make the YAML document the active document. Select the menu command
DTD/Schema | Generate DTD/Schema.

· JSON Info window: Make the YAML document the active document. In the JSON tab of the Info window
(screenshot below), click the Arrow icon next to Validaton against schema and, in the dropdown menu
that appears, select Generate JSON Schema.

In both cases, the Generate JSON Schema dialog appears (screenshot below in next section). Do the
following:

1. Modify the settings as you want (see below for details) and click OK when done.
2. You will be prompted to provide a path and filename for the generated JSON schema. Enter these.
3. On clicking Save, the JSON schema will be generated and becomes the active document.

In the YAML instance document, the generated schema file will be assigned as the schema to use for
validation (see the Info window; screenshot above); any previous assignment will be overwritten. To change the
assignment, use the Select JSON Schema command of the JSON Info window's dropdown menu (screenshot
above). For more information about YAML document validation, see Validating YAML Documents .

Settings for JSON schema generation
You can specify options for JSON schema generation in the Generate JSON Schema dialog (screenshot
below). See the previous section for information about how to access this dialog.

723

© 2018-2024 Altova GmbH

Generate JSON Schema from YAML Document 727YAML

Altova XMLSpy 2024 Enterprise Edition

Detect array tuples
An array tuple is the sequence of items in an array. For example, the following array has a tuple with three
items: [1, 2, "abc"]. For the validation of arrays, the schema can specify whether the order and datatype

of array (tuple) items are to be considered or not. If the Detect Array Tuples option is checked (see screenshot
above), then the order and datatype of items will be detected. Based on what is detected, a corresponding
definition will be created in the schema. The options for this setting are as follows:

· Number of tuple items: A minimum and maximum number of tuple items can be specified. If a tuple in
the instance has an item-count within this range, then this array will detected and defined.

· Simple types only: Only tuples that have simple-type items (the atomic types string, number,
integer, boolean, and null) are to be considered for detection.

· Identically named arrays: Only arrays that are defined as values of properties that have the same name
are considered for detection. For example, in the following JSON data fragment, the arrays marked with
red-shaded brackets are all values of properties named a1 (shaded in blue): {"object1": [{ "a1":

 [1, 2, "abc"] }, { "a1": [3, 4, "def"] }, { "a1": [5, 6, "ghi"] }] }.

· Minimum number of arrays: A minimum number of arrays for enabling array detection can be specified.

Other settings

· Ignore order of object property names: If unselected, the order of an object's properties is checked and
recreated as closely as possible. Otherwise, the order is not checked.

· Try to match the string format: The schema can specify that string datatypes must have a particular
format. If this option is selected, then XMLSpy will try to detect the string format and add a format
definition for strings wherever possible.

· Make simple arrays local: A simple array is one in which all items are of the same simple datatype. If
selected, all simple arrays will be defined locally in the schema, instead of using global definitions that
are referenced locally.

http://json-schema.org/latest/json-schema-validation.html#anchor104

728 YAML Generate JSON Schema from YAML Document

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Make simple objects local: A simple object is one in which all property values are of the same simple
datatype. If selected, all simple objects will be defined locally in the schema, instead of using global
definitions that are referenced locally.

Note: After the JSON schema has been generated, you can make local definitions of individual objects and
arrays global, and vice versa. For more information, see the section Global and Local Definitions .670

© 2018-2024 Altova GmbH

Generate YAML Document from JSON Schema 729YAML

Altova XMLSpy 2024 Enterprise Edition

15.4 Generate YAML Document from JSON Schema

You can generate a YAML document from a JSON schema. Make the JSON schema the active file in Text
View, and click the DTD/Schema | Generate Sample XML/JSON File . Note that this command
generates a JSON document, not a JSON5 document.

1296

730 YAML Convert between YAML and JSON/XML

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

15.5 Convert between YAML and JSON/XML

You can convert a YAML document to a JSON instance and vice versa. Make the YAML file you want to
convert the active file and select the menu command Convert | Convert JSON to/from YAML . The active
document will be converted into a document of the opposite file format. The new file will be opened in a new
window, from where you can save it to file.

You can also convert a YAML document to an XML instance and vice versa. Make the YAML file you want to
convert the active file and select the menu command Convert | Convert XML Instance to/from
JSON/YAML . The active document will be converted into a document of the opposite file format. The new
file will be opened in a new window, from where you can save it to file.

Note: These commands are also available in the context menu of XMLSpy project folders and files. When
used on a project folder, the command allows you to batch convert all the JSON, XML, and YAML files
in the folder to the other format.

1413

1407

1009

© 2018-2024 Altova GmbH

 731WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

16 WSDL and SOAP

This section describes XMLSpy's WSDL and SOAP functionality.

Altova website: WSDL Editor

WSDL
A WSDL document is an XML document that describes a web service. XMLSpy supports WSDL 1.1 and
WSDL 2.0. You can create and edit both WSDL 1.1 and WSDL 2.0 documents in XMLSpy's WSDL View,
which automatically provides the correct editing environment for whichever WSDL version is being edited.

In XMLSpy's WSDL View a WSDL document can be constructed using graphical building blocks, thus greatly
simplifying their creation. WSDL View is described in the section, Editing Views . For a hands-on
description of creating a WSDL document, see the WSDL Tutorial in this documentation. You can also view
and edit WSDL documents in Text View and Grid View . In these two views, WSDL documents are
edited as straightforward XML documents .

XML signatures for WSDL files in WSDL View can be created as external files and can be "enveloped" in
the WSDL file. How to work with signatures is described in the section, XML Signatures .

SOAP
SOAP is an XML messaging specification, and it is used to transmit messages between applications. In
XMLSpy, not only can you create and edit a SOAP document in Text View and Grid View with
XMLSpy's intelligent editing features for XML documents , but you can generate a SOAP request file from a
WSDL file. How to generate a SOAP request from a WSDL file is described in the WSDL Tutorial . XMLSpy
is able to also send and receive SOAP requests (using commands in the SOAP menu). Additionally, you
can debug SOAP requests with XMLSpy's SOAP Debugger , which is described in a sub-section of this
section.

290 135

732

139 155

322

406

406

139 155

322

732

1436

745

https://www.altova.com/xmlspy-xml-editor/wsdl-editor

732 WSDL and SOAP WSDL Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

16.1 WSDL Tutorial

This tutorial is divided into two parts:

· In the first part, we show how a WSDL 1.1 document is created in the graphical WSDL View of
XMLSpy. In this part, you will: (i) create a rudimentary WSDL 1.1 document using the File | New
menu option; (ii) create a PortType; (iii) create a binding; (iv) create a service and a port; (v) validate the
document and save it.

· In the second part, we show how to connect to a web service, save the WSDL file locally, and send a
SOAP request to the web service

You can do all this in the graphical WSDL View and do not have to use the Text View. You can directly
manipulate the WSDL components using drag and drop, as well as enter values of properties in the Entry
Helpers of the WSDL View.

See also: More information about working with WSDL documents is available in the sections, WSDL View
and User Reference | WSDL Menu .

16.1.1 Creating a New Document

To create a new WSDL document, select the File | New command. In the Create New Document dialog that
pops up, select WSDL (WSDL Web Service Description v1.1) as the type of document you wish to create and
click OK. This creates a skeleton new document (screenshot below), which opens in the graphical WSDL View
(called WSDL View in this tutorial).

Assigning a target namespace
Switch to Text View. The start tag of the wsdl:definitions element will look something like this:

290

290

1423

© 2018-2024 Altova GmbH

WSDL Tutorial 733WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

Change the target namespace (targetNamespace) attribute to http://mywebservice.namespace or anything
else you like (since this tutorial focuses on showing how to create a WSDL document and does not provide an
actual service). You should then also change the namespace value of the tns attribute to
http:://mywebservice.namespace (or the namespace you selected for the target namespace).

Note: In the skeleton starter document, WSDL elements are in the target namespace while references to
WSDL elements are made using the tns prefix. For example: <wsdl:binding name="NewBinding"
type="tns:NewPortType">. In order for the tns prefix to match the target namespace, its namespace
value should be identical with the target namespace.

16.1.2 Creating a PortType

Creating a PortType involves the following:

· Naming the PortType
· Inserting an operation
· Adding input and output messages
· Adding parameters to messages

Naming the PortType
Rename NewPortType to MyPortType by double-clicking in the title bar of the NewPortType box in the design,
then editing the name and pressing Return. Notice that the name of the PortType also changes in the
Overview and Detail entry helper (screenshot below).

734 WSDL and SOAP WSDL Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Inserting an operation
In the case of MyPortType, an operation, NewOperation, is already present, so we will work with this. Start by
renaming NewOperation to, say, EchoString (double-click its name, edit, and press Return). (To insert
additional operations for a PortType, right-click the PortType box, select Append Operation, and then click
the required type of operation.)

Adding input and output messages
When an operation is appended to a PortType, you can select whether the operation should be one of five
types:

· Request response
· Solicit response
· One-way
· Notification
· Empty operation

For each type, input and output messages are added automatically according to the operation type. When
Empty operation is selected, right-clicking the operation allows you to select a message type to insert. A
message can be deleted by right-clicking and selecting Delete input/output/fault element. In the case of the
EchoString operation, rename the input and output messages to EchoStringRequest and
EchoStringResponse, respectively.

© 2018-2024 Altova GmbH

WSDL Tutorial 735WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

Adding parameters to messages
Each input or output message is created with a single default message part (or parameter) of type xs:string
(see screenshot below). To add another parameter, right-click either the message or one of its parameters and
select Add message part (parameter).

To edit a parameter do one of the following: (i) double-click the text to edit it; or (ii) right-click the parameter and
select Edit, or (iii) use the Detail entry helper (see screenshot above).

16.1.3 Creating a Binding

A binding is a concrete protocol and data format specification for a particular PortType. Creating a binding
therefore involves the following:

· Associating the binding with a PortType.
· Defining the binding's protocol and data format specification.

736 WSDL and SOAP WSDL Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Associating the binding with a port.

Associating a binding with a PortType
When a new binding is created (to create one, right-click anywhere in an empty area of the design and select
Insert Binding), it has no PortType associated with it (screenshot below). (If you have created a new WSDL
document, the binding created by default will be associated, by default, with the PortType that was created by
default, and the association will be shown by a line joining the two boxes.).

To associate a PortType with a binding, in the new Binding box click the Down arrow of the PortType entry (see
screenshot above). This pops up a list of PortTypes defined in the document. Select the PortType with which
you wish to associate the binding. When a PortType has been associated with the binding, the association is
indicated by a line joining the box of the selected PortType to the Binding box, like this:

Selecting the protocol and data format
The protocol of the binding is selected by clicking the down arrow in the title bar of the Binding box (that of the
soap/http entry), and selecting one of the four available protocols: SOAP, SOAP 1.2, HTTP-GET, and HTTP-
POST (screenshot below). When the SOAP 1.1 or 1.2 protocol is chosen, you can select document or rpc as
its data format (using the list options list popped up by the dropdown arrow to the right of the protocol
selection).

The soapAction for each operation in the binding can be defined in the design (see screenshot above) or in the
Detail entry helper when that operation is selected.

© 2018-2024 Altova GmbH

WSDL Tutorial 737WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

Associating the binding with a port
To associate the binding with a port, the port has to be first defined. How to create a port within a service and
associate a port with a binding is described in the section Creating a Service and Ports .

16.1.4 Creating a Service and Ports

To add a new service, right-click in an empty space of the design and select Insert Service from the context
menu. If you have created a new WSDL document, a service will already be present in the design. You can
rename the service by double-clicking in its name, editing the name, and pressing Return. Notice that the
name of the service also changes in the Overview entry helper (screenshot below).

In the Overview entry helper, double-click the NewPort entry, change it to MyPort., and press Return. Notice
that the name of the port also changes in the MyService box in the design (screenshot above). To add
additional ports, right-click either the service or the port, and, from the context menu, select Insert Port.

Entering the address of a port
The address of a port can be entered either: (i) directly in the design, as the value of the Location item (see
screenshot above), or (ii) in the Detail entry helper (by double-clicking in the Location field and entering the
address (screenshot below)).

737

738 WSDL and SOAP WSDL Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Associating a binding with a port
A port is the endpoint that combines a binding with a network address. Once a port's address has been
defined, all that needs to be done is associate a binding with the port. To associate a binding with a port, click
the down arrow of the Binding item of a port and select from the list of bindings defined in the document.

Note: If a binding is already associated with a port and you wish to associate another binding, you have to
remove the binding reference (using the port's right-click menu), and then insert the new binding
reference.

16.1.5 Validating the WSDL Document

After completing the WSDL document, it can be validated by selecting the XML | Validate XML (F8)
command. The results of the validation are displayed in the Messages window (screenshot below).

Detailed information about any error detected is displayed, enabling you to quickly locate the error and fix it.

16.1.6 Connecting to a Web Service and Opening Files

In this section, you will learn how:

· A web service can be accessed using XMLSpy

© 2018-2024 Altova GmbH

WSDL Tutorial 739WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

· A WSDL file on the web can be opened in XMLSpy
· An XML Schema associated with the WSDL document can be opened in XMLSpy

Accessing a web service
A web service is typically accessed via an HTML page. One such page is DebuggerClient.htm, which is in

the Examples folder as well as in the XMLSpy project Examples/Soap Debugger (open Examples.spp to

work with the project). To access the web service displayed on this page, do the following:

1. Activate the Project window if it is not visible (using the menu option Window | Project window).
2. Click the expand icon next to the SOAP Debugger folder, and double-click the file

DebuggerClient.htm. This opens the SOAP Debugger Example Client in the Main Window.

Opening a WSDL file in XMLSpy
To open a web-based WSDL file in XMLSpy, do the following:

1. Select the menu option File | Open and, in the Open dialog, click the Switch to URL button. Then
enter or copy the address http://www.nanonull.com/TimeService/TimeService.asmx?WSDL into

the File URL field of the dialog box.

2. Click Open to load the WSDL file. The WSDL file is displayed in Text View.
3. Select the menu option File | Save As, and save the file locally, naming it, say, timeservice.wsdl.

4. Click the WSDL View tab to display the file in the graphical WSDL editor.

Viewing the schema file associated with the active WSDL file
With the timeservice.wsdl file as the active document in WSDL View, select the menu option WSDL | Types

| Edit Schema(s) in Schema View. This opens the schema file that defines all the datatypes used in the

1009

740 WSDL and SOAP WSDL Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

timeservice.wsdl file. You can modify the schema and save changes. These changes will take effect as soon

as the WSDL file is re-parsed.

Note: It is recommended to access WSDL by using its file name (for example: timeservice.wsdl) rather

than by using the ?wsdl query method. This is because the query method might return a WSDL file

that lacks some features of the original WSDL file, or one which does not work correctly.

16.1.7 Sending a SOAP Request from the WSDL File

To send a SOAP request from the timeservice.wsdl file, do the following:

1. Make timeservice.wsdl the active file in the Main Window.

2. Select the menu option SOAP | Create New SOAP request.
3. Browse for the file timeservice.wsdl and confirm with OK.

4. If, among the various services defined in the document, there is more than one port that references a
SOAP 1.1 or 1.2 binding, then a popup appears (screenshot below) prompting you to select the
required service and port. After making the selection, click OK.

5. In the dialog box that then pops up (screenshot below), select a SOAP operation, for example,
getServerTime, and click OK.

This creates a SOAP request document containing the getServerTime operation. You can save it if
you like.

© 2018-2024 Altova GmbH

WSDL Tutorial 741WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

6. Make the request document the active document and select the menu option SOAP | Send request
to server. The SOAP response document appears in the Main Window, containing the element
getServerTimeResult, which displays the current server time of the Nanonull.com time service.

16.1.8 Creating WSDL Documentation

The WSDL | Generate Documentation option allows you to produce detailed documentation of the current
WSDL document. You can output the documentation as an HTML, MS Word, or RTF file and specify the
components you want to include. Related WSDL elements are hyperlinked in the generated documentation,
allowing easy navigation.

Note: In order to generate documentation in MS Word format, you must have MS Word (version 2000 or later)
installed.

To generate documentation for the WSDL file, do the following:

1. Make timeservice.wsdl the active document.
2. Switch to WSDL view.
3. Select the menu option WSDL | Generate Documentation.

This opens the WSDL Documentation dialog box (screenshot below).
4. Select the type of output you want to generate, HTML, MS Word, or RTF.
5. Select the specific WSDL components you want to include in the documentation, and set other

options (see WSDL Documentation Options below).

742 WSDL and SOAP WSDL Tutorial

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6. Click OK and enter the name of the WSDL documentation file in the Save as dialog box.

WSDL documentation options
You can select from among the following documentation options:

· The required format is specified in the Output Format pane: either HTML, Microsoft Word, or RTF. The
documentation can be generated either as a single file or be split into multiple files. When multiple files
are generated, each file corresponds to a component. What components are included in the output is
specified using the check boxes in the Include pane.

· The Embed Diagrams option is enabled for the MS Word and RTF output options. When this option is
checked, diagrams are embedded in the result file, either in PNG or EMF format. Otherwise diagrams
are created as PNG or EMF files, which are displayed in the result file via object links. When the
output is HTML, all diagrams are created as document-external PNG files.

· In the Include pane, you select which items you want to include in the documentation. The Overview
option lists all components, organized by component type, at the top of the file. If the Imported Files
option is checked, then components in imported files are included in the schema documentation.

· In the Schema pane, you can select whether schemas in the file are reported or not. If you choose to
have schemas reported, you can further choose: (i) whether the schema documentation should be

© 2018-2024 Altova GmbH

WSDL Tutorial 743WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

reported in a separate file or in the main documentation file, and (ii) whether the full schema should be
reported or only global elements, simple types, and complex types.

· The Details pane lists the details that may be included for each component. Select the details you
wish to include in the documentation.

· The Show Result File option is enabled for all three output options. When this option is checked, the
result files are displayed in Browser View (HTML output), MS Word (MS Word output), and the default
application for .rtf files (RTF output).

16.1.9 Converting to WSDL 2.0

In XMLSpy you can easily convert an existing WSDL 1.1 document to the WSDL 2.0 format. Try this with the
TimeService.wsdl example, as follows:

1. Make the file TimeService.wsdl the active file. (This file is in the WSDL Editor folder in the Examples
project of XMLSpy.)

2. Click the command WSDL | Convert to WSDL 2.0.
3. In the Save As dialog that appears, enter the name with which you wish to save the WSDL 2.0 file, for

example, TimeService20.wsdl..
4. The new file is generated, automatically validated, and displayed in WSDL View.

744 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

16.2 SOAP

In this section you will learn how to:

· Validate SOAP messages against WSDL. SOAP messages can be checked for validity not only
against the SOAP specification but as well as against any XML Schemas referenced in the
corresponding WSDL definition

· Send and receive SOAP requests using the SOAP Debugger
· Set breakpoints for sending and receiving SOAP requests
· Edit an incorrect SOAP request before sending it on to the web service

Altova website: SOAP Debugger

16.2.1 SOAP Validation

SOAP messages can be checked for validity not only against the SOAP specification, but also against any
XML Schema referenced in the corresponding WSDL definition.

Validating against SOAP rules only
To validate a SOAP message, open the SOAP message file (screenshot below) and press F8 (or the menu
command XML | Validate). Since no WSDL file has been linked to the SOAP message file, the SOAP
message is validated according to the rules for SOAP messages. The file is found to be valid if it is valid
according to these rules (see the Messages Window in the screenshot below).

Validating against SOAP rules and linked WSDL
To validate a SOAP message additionally according to the linked WSDL, the WSDL file must be linked to the
SOAP file. This is done in the SOAP tab of the Info Window (screenshot below). Click the button to the right of
the WSDL for Validation item and select the command Select WSDL for Validation. In the dialog that pops
up, browse for the WSDL file you want and click OK. The WSDL file will be entered in the Info Window and the
SOAP message file will be linked to it.

https://www.altova.com/xmlspy-xml-editor/soap-client-debugger

© 2018-2024 Altova GmbH

SOAP 745WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

On pressing F8 (or the menu command XML | Validate) the SOAP message will be validated not only against
the rules for SOAP messages but also against the rules in the linked WSDL file.

The file is found to be valid if it is valid according to both sets of rules (see screenshot above).

Note: The SOAP tab is visible in the Info window if the SOAP request was created using XMLSpy's SOAP-
request creation feature from a WSDL file (SOAP | Create new SOAP request). If the SOAP tab is
not visible in the Info window (because the SOAP request was not created with XMLSpy), then saving
the SOAP-request file will make the SOAP tab visible.

16.2.2 SOAP Debugger

The SOAP Debugger (screenshot below) can be used to view and analyze SOAP requests and responses. It
works as a proxy server between your client and the web service. You can do the following:

· Step through SOAP requests and responses
· Modify SOAP requests and responses
· Forward modified requests to the client or server
· Allow breakpoints for every request and response message, including conditional breakpoints via XPath

expressions

746 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The SOAP Debugger works as follows:

· SOAP Debugger options should be set before you start a SOAP Debugger session. These options
include the computer's IP Address, and layout and timeout options for the SOAP Debugger.

· To open the SOAP Debugger (start a session) , select the toggle command SOAP | SOAP
Debugger Session. At this point, you must (i) provide the location of the WSDL file that will be used
to provide the relevant SOAP information, and (ii) information about the source and target ports.

· In the SOAP Debugger Breakpoints window, set the required breakpoints .
· Now you can open the file that makes the SOAP request and run the SOAP Debugger .
· You can then analyse the results , and, if there are any errors, fix them.
· To close the SOAP Debugger, select the toggle command SOAP | SOAP Debugger Session.

In the sub-sections of this section, we describe how to use the SOAP Debugger.

The file DebuggerClient.htm, which is located in the C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples folder, is used as an example file. For this example file, the
browser window acts as the client application which sends and receives SOAP messages. The Nanonull Time
Service service is the web service server and is located at:
http://www.nanonull.com/TimeService/TimeService.asmx?WSDL.

747

748

753

754

755

© 2018-2024 Altova GmbH

SOAP 747WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

16.2.2.1 SOAP Communications Process

Once the proxy server (SOAP debugger) has been started, the SOAP communication process is as follows:

Proxy server listens continually to a socket/port for incoming client requests

· Client application sends a request to proxy server
· Client requests can be modified if/when breakpoints have been triggered
· Proxy server request data is forwarded to the web service server

The webservice server responds to the proxy request, and sends the response data back to the proxy server

· Server responses can be modified if/when breakpoints have been triggered
· Proxy server response data is forwarded to the client application
· Client application receives response data from proxy server

Port settings
The SOAP debugger uses the 8080 port to monitor clients' requests. The port can only be altered when a new
SOAP debugging session is started. If this port is disabled by personal firewalls, you will need to either disable
these programs or select a different port address.

16.2.2.2 SOAP Debugger Options

The SOAP Debugger Options dialog (screenshot below) enables you to specify the computer's IP address, and
other debugger options, which are listed below. Access the dialog with the SOAP | SOAP Debugger Options
menu command.

· Timeout: This value is the amount of time the SOAP Debugger stays in a breakpoint. The default is 5
seconds.

· Hide entry helpers; Hide project/info windows: These options are useful for providing more screen space
for the SOAP Debugger window.

· Computer Address: The address of the proxy server from which the debugger runs. The debugger on
the proxy server takes requests from machines on the network and sends them to the web service.
Since the debugger runs inside XMLSpy, the machine on which XMLSpy is installed also serves as the
proxy server. The IP address of the machine is automatically detected and entered in this field. Only if
the IP address cannot be detected automatically, do you need to enter the IP address (as an http

748 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

address) in this field. To find out your computer's IP address, open a command prompt window, enter
the command ipconfig /all, and press Enter.

16.2.2.3 Starting a Debugger Session

A SOAP Debugger session can be started when any file is active in XMLSpy; neither a SOAP file nor a SOAP-
request entry-point file need to be active when the SOAP Debugger is started. On starting a SOAP
Debugger session, you will be prompted for:

1. the location of the WSDL file that will be used to provide SOAP information, and
2. the connection settings.

These steps are described below.

WSDL file location
When a debugger session is started, you will be prompted for the URL of the WSDL file that will be used to
provide the SOAP information. Our example file , DebuggerClient.html, uses the following WSDL file url:

http://www.nanonull.com/TimeService/TimeService.asmx?WSDL

Start the SOAP Debugger by selecting the menu command SOAP | SOAP Debugger Session. This opens
the WSDL File Location dialog box (screenshot below).

Enter the URL of the WSDL file and click OK. The Source and Target Ports dialog (screenshot below) is
displayed.

Connection settings
The Connection Settings for Source and Target dialog (screenshot below) provides the settings listed below.

· Source Port: The port on a proxy server (which can be your computer) that will be used for
communication. The default is 8080. This setting can be changed every time the SOAP Debugger is
started.

· Target Port and Address: These settings are supplied by the WSDL file selected in the previous step;
they are entered automatically in the dialog. The default port is the standard HTTP port 80. You can set
a timeout for the connection or check the Infinite option for no timeout. To define HTTP security
settings, click the Edit button of the HTTP Security Settings pane, and enter the security settings. For
information about these settings, see the section SOAP Request Settings .

751

751

1439

© 2018-2024 Altova GmbH

SOAP 749WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

After you have checked these settings—and edited them if necessary—click OK to start the SOAP Debugger

session. The SOAP Debugger starts but the proxy server is inactive (indicated by the proxy server icon in
the SOAP Debugger toolbar being grayed out). To start the proxy server (the debugging), click the Go icon in
the XMLSpy toolbar, or select the menu command SOAP | Go. See the section, Debugging , for more
information about the actual debugging.

SOAP Debugger layout
The SOAP Debugger has three windows (see screenshot below):

· a SOAP Request window,
· a SOAP Response window, and
· a SOAP Debugger Breakpoint-Settings window.

By default, the Request and Response windows are opened in the top part of the XMLSpy interface with the
Breakpoint-Settings window spanned along the bottom. The screenshot below shows the default layout.

754

750 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The SOAP Debugger windows can be given more screen space by hiding the XMLSpy sidebar windows
(Project, Info, and Entry Helper windows). The settings for hiding/showing these windows are available in the
SOAP Debugger Options dialog (accessed via the SOAP | SOAP Debugger Options menu command).

About trusted certificates
Altova products use Internet Explorer (IE) to access and manage trusted certificates of secure Web servers.
Installing the certificate of a Web server in IE allows IE to access the Web server without issuing a warning or
aborting the process. The basic steps to install the certificate of a secure Web server is as listed below. The
steps could be more involved depending on the browser version being used.

1. In Internet Explorer 9 (or higher version), open the secure website.
2. Select File | Properties, and click the Certificates button.
3. Click Install Certificate and start the Import Certificate Wizard. (This Wizard can also be accessed

via Tools | Internet Options| Content | Certificates | Import.)
4. The certificate should be placed in the Trusted Root Certification Authorities store, for which you can

browse manually.
5. Finish the Wizard steps, close the Certificates and Properties dialogs respectively by clicking OK. You

might need to restart Internet Explorer.

747

© 2018-2024 Altova GmbH

SOAP 751WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

16.2.2.4 SOAP-Request Entry-Point

An HTML file in the Examples project (DebuggerClient.htm) contains a script that shows how the SOAP
Debugger can be used. This file enables the user to send a SOAP request to a Web service and then displays
the response from the Web service. You can open this file in XMLSpy as follows:

1. Select the menu command Project | Open Project.
2. Browse to the C:\Documents and Settings\<username>\My

Documents\Altova\XMLSpy2024\Examples folder and select the Examples.spp file.This loads the
Examples project in the Project window (screenshot below).

3. Click the + sign of the SOAP Debugger folder to see its contents. Double-click DebuggerClient.htm
to open the file in XMLSpy.

Note: Alternatively, you can open this file (DebuggerClient.htm) via the File | Open menu command. The

file is located in the C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples folder.

The sample file
The file DebuggerClient.htm will look something like this in the Browser View of XMLSpy. When one of the
radio buttons is selected, a SOAP request is sent to the Nanonull Time Web Service. The response from the
Web service is displayed in the colored box to the right of the radio buttons.

752 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Notice that the response to an Eastern Standard Time request is displayed (6:23) in a blue "clock box" in the
screenshot above. Now select the GMT radio button. Instead of the GMT value being displayed in the clock box
(the Web service response box), an error message is displayed and the clock box turns red (see screenshot
below).

© 2018-2024 Altova GmbH

SOAP 753WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

The SOAP Debugger can now be used to analyse SOAP messages to locate the error. The following three
sections discuss, respectively, (i) how to set breakpoints , (ii) how to run the SOAP Debugger with
DebuggerClient.htm, and (iii) how to analyse the SOAP Debugger output in order to locate errors .

16.2.2.5 Setting Breakpoints

Before you start debugging, you must set breakpoints in the SOAP Debugger. When debugging starts, the
SOAP Debugger will show the requests and responses at breakpoints it encounters.

The SOAP Debugger lists breakpoints (in its Function-Breakpoints and Conditional-Breakpoints panes)
according to information obtained from the WSDL file that was selected at the time the SOAP Debugger was
started . These breakpoints relate to SOAP requests that can be generated by the WSDL file. For each
SOAP request, a breakpoint on request and on response can be selected by checking the check boxes in the
respective columns (see screenshot below).

In our example, we use:

· DebuggerClient.htm as the SOAP-request entry-point , and
· the WSDL file http://www.nanonull.com/TimeService/TimeService.asmx?WSDL that was selected

when the SOAP Debugger was started .

753 754

755

748

751

748

754 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Web service requested by DebuggerClient.htm uses the method getTimeZoneTime to find the time in the
selected timezone. In the SOAP Debugger, SOAP requests that can be generated from the selected WSDL file
are listed as breakpoinrts. We set breakpoints at getTimeZoneTime for both On Request and On Response
(see screenshot below). This enables you to analyze both SOAP requests and Web service responses for
errors.

For more detailed information about setting breakpoints, see the section, More About Breakpoints .

16.2.2.6 Debugging

In our example, we use:

· DebuggerClient.htm as the SOAP-request entry-point , and
· the WSDL file http://www.nanonull.com/TimeService/TimeService.asmx?WSDL that was selected

when the SOAP Debugger was started .

After setting breakpoints , click the GO icon (or use the menu command SOAP | GO). Then click the
DebuggerClient.htm tab to switch to the SOAP entry-point file. Make sure that the GMT option is selected, and
click the Turn On Debugging Mode button (see screenshot below). This displays a Debug On message, and
sends the SOAP request to the SOAP Debugger. Debugger results are displayed in the SOAP Request and
SOAP Response windows, and are described in the next section, Analyzing Debugger Results for Errors .

757

751

748

753

755

© 2018-2024 Altova GmbH

SOAP 755WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

SOAP Debugger controls
The SOAP Debugger toolbar (screenshot below) contains icons to operate the SOAP Debugger.

These icons are, from left:

· Go: Starts debugging.
· Single Step: Steps through the Request-Response process, stopping at breakpoints.
· Break on Next Request: Stops at next SOAP Request.
· Break on Next Response: Stops at next response from the Web service.
· Stop the Proxy Server: Stops debugging. Note that this is not the same as ending the SOAP Debugger

session. To end/start the SOAP Debugger session, select the menu command SOAP | SOAP
Debugger Session.

16.2.2.7 Analyzing Results and Fixing Errors

SOAP Debugger results are displayed in two windows: SOAP Request and SOAP Response. Breakpoints are
set in the SOAP Debugger Breakpoints panes that are located, by default, at the bottom of the SOAP
Debugger window. According to the breakpoints that have been set, the SOAP Debugger will display results in
the appropriate results window: SOAP Request or SOAP Response.

In our example, we use:

756 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· DebuggerClient.htm as the SOAP-request entry-point , and
· the WSDL file http://www.nanonull.com/TimeService/TimeService.asmx?WSDL that was selected

when the SOAP Debugger was started .

Detecting the error and testing a fix
Debugging has been started as described in the previous section, Debugging . The SOAP request for the
GMT selection appears in the SOAP request window of the debugger, in Text View. let us examine this request
and edit any errors it might contain.

Looking at the timezone element, we notice that the value is GMD. This is incorrect, so we will change it to GMT.
Do this by double-clicking in the timezone element, and changing the element's contents to GMT.

To test the fix, click the GO icon in the SOAP Debugger toolbar (or use the menu command SOAP | GO) to
send the corrected request to the web service. After a few seconds, the web service response to the SOAP
request appears in the SOAP response window. Select View | Word Wrap to see the entire SOAP response
(screenshot below).

Now switch to the DebuggerClient.htm tab, and click the GO icon in the SOAP Debugger toolbar. The error
message disappears and the correct GMT time is displayed (screenshot below).

751

748

754

© 2018-2024 Altova GmbH

SOAP 757WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

You can close the SOAP Debugger session now by selecting the menu command SOAP | SOAP Debugger
Session.

Fixing the error
Now we know that an invalid value of GMD instead of GMT is being generated in the SOAP request. If we look in
the SOAP-request entry-point file and run a search for GMD (via the Find dialog, Ctrl+F or Edit | Find), we find
the typo in the code fragment shown in the screenshot below.

If this error is corrected and the GMT radio button is then selected, the Unkown Timezone error is not displayed
any more. The correct GMT time is displayed instead.

16.2.2.8 More About Breakpoints

The SOAP Debugger window is where you set and delete breakpoints. It is separated into two tabs (screenshot
below).

758 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Function-Breakpoints tab
The Function-Breakpoints tab allows you to set a breakpoint on Requests and/or Responses to SOAP
methods. The debugger highlights the function which triggered the breakpoint. Data packets to and from the
client are analyzed and matched to the corresponding functions from the WSDL file. If a breakpoint is set for a
specific method, then this is where the SOAP debugger stops. The toolbar buttons are enabled at this point.

The data is displayed in the SOAP Request or SOAP Response document window. The SOAP documents
displayed in the SOAP windows can be modified at this point. The data is sent the moment you click one of
the toolbar icons (except for the Stop Server icon).

Conditional-Breakpoints
The Conditional-Breakpoints tab (screenshot below) allows you to use XPath expressions to define breakpoints.
If a SOAP request causes an error, the SOAP response must contain a faultcode element. We therefore
would like to have a breakpoint triggered whenever a faultcode element appears.

To add a conditional breakpoint, do the following:

1. Click the Conditional Breakpoints tab, and then the Add button. The dialog shown below appears.

© 2018-2024 Altova GmbH

SOAP 759WSDL and SOAP

Altova XMLSpy 2024 Enterprise Edition

2. Enter the XPath expression (for example, .//faultcode) in the XPath field.
3. Select the required XPath version (1.0 or 2.0) and the Break when XPath nodes found radio button.
4. Click OK to confirm the settings. The SOAP debugger will stop whenever a .//faultcode element

appears in a SOAP request or response.

The various options in this dialog are described below:

· XPath expression field: Enter the specific XPath expression/node here. An XPath has to be entered
here to be able to use any of the specific radio button options.

· Version: The XPath version you wish to use for the XPath expression.
· Break instruction radio buttons: The debuggers stops when the selected option occurs. The available

options are: (i) Break when the targeted XPath node matches the value entered in this field; (ii) Break
when the specified XPath node exists in the SOAP request or response; and (iii) Break when the
specified XPath node does not exist in the SOAP request or response.

· Requests and Responses: Specifies whether the options in the dialog are to be applied in SOAP
responses and/or requests.

· Functions: Either all methods/functions are scanned for the condition you define (Any function radio
button) or you enter a a specific method/function to scan.

For the condition defined in the dialog displayed above, the following conditional breakpoint will be listed in the
Conditional-Breakpoints tab.

760 WSDL and SOAP SOAP

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Given below is a description of the columns in this tab:

· The Operation column contains the method/function being searched. If you selected the Any function
radio button then this field remains empty. If you selected a specific method/function, then this
method/function is displayed here.

· The XPath column contains the XPath expression you defined.
· The Value column contains the XPath value against which the returned nodes are checked for a match.

If you selected Break on value, the specific string you entered is displayed here. If you selected Break
when XPath nodes found, then <--Exist--> is displayed. If you selected Break when XPath nodes
missing, then <--Missing--> is displayed.

· The In Requests and In Responses check boxes indicate where the condition is checked. You can
change the settings by directly clicking the check box in the column.

To edit a conditional breakpoint, double-click its line in the tab or click the Change button (see screenshot
above). To delete a conditional breakpoint, select the line you want to delete and click Delete.

© 2018-2024 Altova GmbH

 761HTTP

Altova XMLSpy 2024 Enterprise Edition

17 HTTP

HTTP (Hypertext Transfer Protocol) is the protocol (or set of rules) that defines how files (text, images, audio,
video, and other multimedia files) are transmitted over the Internet. Every web server runs a program (known as
a daemon) that continuously waits for HTTP requests and handles each as it arrives. For example, when you
visit a website's home page, your browser sends an HTTP command to the website's web server that requests
the download of the home page; the server's HTTP daemon receives the request and sends the requested page.
One significant property of HTTP bears noting: that it is stateless, which means that each HTTP command is
carried out independently, without any reference to previous or following commands.

In XMLSpy, you can test HTTP commands in the HTTP output window (screenshot below). Here you can
create and send an HTTP request to a web server, and receive and check the response.

Parts of the HTTP output window
The HTTP output window has nine tabs (see screenshot below). You can store a separate request in each tab,
and switch between tabs. After creating a request in the window, you can send the request by clicking the
Send button. The response is displayed directly in the window.

The window consists of the following parts:
· At the top: (i) a combo box in which to select the HTTP method you want to use; (ii) an entry field for

the URL of the web server; (iii) buttons related to the execution of HTTP requests (Send, Import, and
Reset).

· A left-hand pane for creating the request .
· A right-hand pane for displaying information and logging information about the request.

How the HTTP output window works is described in the sub-sections of this section.

123

762

762 HTTP Sending the Request

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

17.1 Sending the Request

You can send an HTTP request in the HTTP output window (screenshot below). A request is defined in the left-
hand pane of the window. For each of the nine tabs of the window you can define a different request, with
each request consisting of: (i) the HTTP method of the request and the target URL (defined in the top part of
the dialog); (ii) the HTTP headers of the request (in the Headers tab); (iii) connection settings (in the Settings
tab); and (iv) in the case of the POST and PUT methods , the HTTP message body (in the Body tab; not
shown in the screenshot below). You can revert a request to the empty state by clicking Reset (located at the
top right of the window).

To send an HTTP request, do the following:

1. In the combo box at top left (see screenshot) select an HTTP method (GET, POST, PUT, DELETE, HEAD,

or OPTIONS).

2. Enter the URL of the target web page (for example, https://www.altova.com. You can also enter just

altova.com; the https:// part of the URL will be completed for you).

3. In the Headers tab, you can specify HTTP header values (see screenshot above). You can select or
enter an header, and then enter its value. (For a list of HTTP 1.1 headers, see here.) Use the Insert,
Append, and Delete icons in the tab's toolbar to add or delete headers. Instead of deleting a header,
you can deactivate a header by unchecking the Activate check box to the left of the header's name;
this will save you the trouble of having to re-enter a deleted header if you ever want to use it later. Also
see the section The Accept Header . (If you set a value for any header that would be added
automatically at send-time, then the value you enter will be used instead of the value that would have
have been automatically added.)

4. If you are sending a POST or PUT request, a Body tab will become available in addition to the Headers

and Settings tabs. How to create the body of a POST or PUT request is described in the section The

body of POST and PUT requests below.
5. You can specify timeouts and security settings in the Settings tab. For a description of this tab, see

Settings for the HTTP request below.
6. Click Send (located at the top right side of the window) to send the request.
7. If you wish to revert to the tab's empty state, click Reset. The following happens: (i) The method to use

is reset to the first method in the dropdown list of the combo box (which is GET); (ii) the current URL

entry is removed; (iii) All header, setting, and body definitions are removed.

763

763

771

763

765

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

© 2018-2024 Altova GmbH

Sending the Request 763HTTP

Altova XMLSpy 2024 Enterprise Edition

8. You can save an HTTP request as a .http_request file. The request can subsequently loaded from

this file.

Note: You can also (i) import a request from a WSDL or WADL file into the HTTP output window via the
window's Create HTTP Request button, or (ii) load an HTTP request directly from a
.http_request file.

Note: The request is sent in UTF-8 encoding. Any other encoding is converted to UTF-8, and the UTF-8 data
is sent.

HTTP methods
The following HTTP methods are supported:

GET

The GET method requests the resource located at the specified URL. You can also add a query to the URL; for

example: http://www.altova.com?name1=value1&name2=value2. The resource is returned in a message that

contains a header and a body.

HEAD

The HEAD method is identical to the GET request, but returns no message body, only a message header

containing meta information about the resource located at the specified URL.

POST

The POST method is used to update an existing resource located at the specified URL, or to create a new

resource at the specified URL. The data to be submitted to the resource is placed in the body of the HTTP
request; see The body of POST and PUT requests for information about how to do this.

PUT

The PUT method is used to create a new resource at the specified URL. The data to be submitted to the

resource is placed in the body of the HTTP request; see The body of POST and PUT requests for
information about how to do this.

DELETE

The DELETE method deletes the resource located at the specified URL.

OPTIONS

The OPTIONS method returns a list of the HTTP methods that the server supports.

The body of POST and PUT requests
For POST and PUT requests, an additional Body tab becomes available, in which the body of the POST or PUT

request can be specified (see screenshot below). The Body tab has two modes: Editor mode and File mode.
You can switch between these two modes via toolbar buttons at the top left of the Body tab (see screenshot).
In Editor mode (shown selected in the screenshot below), you can edit the HTTP request directly in the pane,
whereas in File mode you can select a file that contains the body of the HTTP request.

The Content Type field enables you to specify the Content-Type header of the request. The combo box options

of this field are different for each mode (Editor and File). You can select from the available combo box options
or enter a MIME type. Note that the value specified in this field overrides any Content-Type header that might

be specified in the Headers tab or Body tab.

767

763

763

764 HTTP Sending the Request

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Editor mode
The style of the editor depends on the selected content type:

· For the text/plain, text/xml, application/xml, and application/json content types: A text

editor that provides intelligent editing features such as syntax coloring for XML and JSON documents
and line-numbering. The screenshot above shows the editor for the text/xml content type. The body of
the request is entered in the editor. The content-type of the request is specified in the Content Type
field and cannot be overridden by entries elsewhere in the request.

· For the application/x-www-form-urlencoded content type: The editor is a grid view (screenshot

below) in which each new line represents a name–value pair in the body of the request.

File mode
In File mode (screenshot below), the body of the request will be the contents of the selected file. This file can
be either the file that is currently active in the Main Window (Current file option) or an external file that can be
browsed for.

© 2018-2024 Altova GmbH

Sending the Request 765HTTP

Altova XMLSpy 2024 Enterprise Edition

To switch to File mode, select the File icon near the top left of the Body tab (see screenshot above). To enable
the content type of the body to be determined automatically, select automatic in the Content Type field.

Automatic determination of the the content type is based on the file's extension. If you enter a content type, the
request will be sent with the content type you enter; in this case, you must ensure that the content type is the
correct one.

The headers and settings of the request can be specified in the same way as for other requests (that is, in the
Headers tab and Settings tab, respectively).

Settings for the HTTP request
In the Settings tab of the HTTP output window (screenshot below) you can define (i) connection settings, (ii)
proxy settings, and (iii) the security settings of a request. Note that you can define settings separately for each
of the window's nine tabs. The screenshot below shows the settings for an HTTPS URL.

Connection Settings
You can specify the amount of time in seconds that XMLSpy will try to make a connection with the web server.
If this amount of time is reached without a connection being made, then you will get I/O Error 28: Timeout

was reached. If you wish to not specify a timeout period, then check the Infinite check box.

766 HTTP Sending the Request

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Proxy Settings
Provides a summary of the current proxy settings and a button to open the Proxy Settings section of the
Options dialog .

Security Settings
Click Edit to edit the security settings of a request. The HTTP Security Settings dialog (screenshot below) will
be displayed. Here you can specify HTTPS security settings and set the HTTP authentication credentials for
the request being made via that tab. If the request's target web server does not use SSL, then only the HTTP
authentication credentials will be used. If the target web server uses SSL, then both the HTTPS security
settings as well as the HTTP authentication credentials will be used.

· HTTPS security settings: By default, the Check server certificate option will be checked, and you can
specify whether the host name in the request may be different than the host name in the certificate. If
you are targeting an Intranet URL (say, in your company network), then a client certificate (typically
located in your local certificate store) can be used to verify a certificate on the Intranet server.

· HTTP authentication: Some requests to a server might require user authentication. For such cases,
you can enter a user name and password here. Now, when authentication is required by the server, it
will be supplied automatically. Otherwise, you might be prompted for it after the connection to the
server is made. When the initial request to the server contains the authentication information, this
process is referred to as preemptive authentication. If this is required by the server, select the
Preemptive authentication option.

1559

© 2018-2024 Altova GmbH

Importing a Request to Send 767HTTP

Altova XMLSpy 2024 Enterprise Edition

17.2 Importing a Request to Send

In the HTTP output window , you can import a request from a WSDL 1.1, WSDL 2.0, or Web Application
Development Language (WADL) file, and then send it. This is done by using XMLSpy's WSDL/WADL Import
Wizard. The wizard opens a WSDL or WADL file, selects a request from one of the file's WSDL endpoints or
WADL resources, enables you to modify the editable parameters of the request, and then imports the request
into the HTTP output window . Do this as follows:

1. In the HTTP output window , click the Import button to start the WSDL/WADL Import Wizard.
2. In the files-selection dialog that appears, browse for the WSDL or WADL file that contains the request

you want to import, and click OK. This starts the Import WSDL/WADL Wizard (screenshot below).

3. In the left-hand pane (see screenshot above), select the relevant WSDL endpoint or WADL resource
(the one containing the request you want to import).

4. In the right-hand pane (see screenshot above), select the request (the WSDL operation or WADL
method) that you want to import. Note that, for import via WSDL: (i) HTTP import is provided only for
SOAP and HTTP extensibilities, and (ii) only supported bindings (SOAP and HTTP) are displayed in
this (the right-hand) pane.

5. Click OK. If the request contains one or more parameters, then the next screen of the wizard
(screenshot below) shows the parameters of the request you selected; otherwise, the request is
imported into the HTTP output window and the wizard closes; see point 7 below. Parameters are
parts of the request. In a search request, for example, one parameter might be the search term. The
wizard validates a parameter's value against its datatype, and indicates one of three states. A pink
background indicates an invalid value; a beige background indicates an incorrect value that will
nevertheless be entered in the request and sent; a white background indicates a valid value.

761

761

761

761

https://www.w3.org/Submission/wadl/
https://www.w3.org/Submission/wadl/

768 HTTP Importing a Request to Send

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6. In the HTTP Request Parameters screen (screenshot above), enter or edit parameter values as needed
(in the Values column). Note that you might not be allowed to edit some parameter values; the cells of
such values are disabled for editing. If you wish to not use a parameter, then deactivate it by
unchecking its Activate check box (in the first column). Note that some parameters are mandatory, so
the Activate check box will be locked and you will not be able to uncheck it. Notice that, as you edit
the parameter values, the request is being built in the Output URI field. The parameter grid also
contains one or more rows for headers (at the bottom of the grid). These headers come from the WADL
file, and their values can be edited in the grid if this is allowed according to the definitions in the WADL
file. A summary of the headers is listed in the Header field at the bottom of the window.

7. Click OK. The request is imported into the HTTP output window , and is shown there in the following
way: (i) In the method combo box, the request's HTTP method will be displayed; (ii) the URL will be
constructed on the basis of the request's parameters; (ii) the HTTP headers of the request will be
entered in the Headers tab. Note that, if the request is a POST or PUT request, the body of the request

will not be entered in the Body tab; it will need to be added manually.
8. Check the Settings tab to see if you need to modify the settings.
9. Click Send to send the request.

761

© 2018-2024 Altova GmbH

Receiving the Response 769HTTP

Altova XMLSpy 2024 Enterprise Edition

17.3 Receiving the Response

The response to an HTTP request is displayed in the right-hand pane of the HTTP output window (see
screenshot below).

To the right of the Body, Headers, and Log tabs are listed the following details about the response:

· The HTTP status code (explained below)
· The time from connection made to last response-chunk received
· The Content-Type of the response

The Response pane has three tabs: Body (screenshot below left), Headers (screenshot above), and Log
(screenshot below right).

771

770 HTTP Receiving the Response

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Body tab: The body of the response is displayed with syntax coloring if the document is HTML, XML,
or JSON, and with line-numbering. The tab has two buttons: (i) Save to File to save the body to a file,
and (ii) Create New Document to create a new document in XMLSpy and display the newly created
document in the Main Window of the GUI. A newly created document can be edited and saved in the
usual way. If a new document cannot be created from the body of the response (for example if the body
is an image), then the Create New Document button is disabled (see screenshot further below).

· Headers tab: Contains the headers of the response. The Content-Type header is also displayed at the

top of the pane.
· Log tab: Events and information relating to the request are displayed in the Log tab, which has line-

numbering. The log can be saved to file or created as a new document in the Main Window. A newly
created document can be edited and saved in the usual way.

© 2018-2024 Altova GmbH

Receiving the Response 771HTTP

Altova XMLSpy 2024 Enterprise Edition

HTTP status codes
Status codes are categorized as follows:

· 2XX codes are used for successful requests.
· 3XX codes are used for redirects.
· 4XX codes are used if there was a problem with the request.
· 5XX codes are used if there was a problem with the server.

Some commonly encountered codes:

· 200 OK: Sent in response to a successful request.
· 206 Partial Content: The server sends only a part of the resource because only a range of the resource

was requested.
· 301 Moved Permanently: The request should be redirected to the given URL.
· 401 Unauthorized: The resource requires authentication, and authentication has either failed or not

been provided.
· 403 Forbidden: Valid request, but the server is refusing action. This might be because the user does

not have the necessary credentials.
· 404 Not Found: The resource could not be found.
· 500 Internal Server Error: A generic error message; sent when no more specific message is available.

See: A complete list of HTTP status codes.

The Accept Header
The Accept header of the request specifies the content type to accept in the response. For example, see the
difference between the responses when Accept=image (first screenshot below) and when Accept=image/png

(second screenshot below). In the first case, since it is not specified what image format should be sent in the
response, an error status code and a JSON message containing more information is sent.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

772 HTTP Receiving the Response

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

© 2018-2024 Altova GmbH

 773XBRL

Altova XMLSpy 2024 Enterprise Edition

18 XBRL

XMLSpy's XBRL View is an XBRL taxonomy editor that provides a graphical overview of XBRL taxonomies
as well as intelligent taxonomy editing features. In this section, we describe the various features of XBRL View,
and how to create and edit taxonomies in XBRL View.

This section is organized as follows:

· Taxonomy Manager , which describes how to use the Taxonomy Manager tool to install, upgrade,
and manage taxonomies for use with XMLSpy.

· Basic Procedures , which describes how to create taxonomies that contain the most essential
components.

· Additional Procedures , which describes additional features, such as how to work with preferred
labels and duplicate facts.

· XBRL Formula Editor , which shows how to use XBRL View to work with XBRL formulas.
· XBRL Table Definitions Editor , which describes table structure , how to use the editor to define

XBRL tables, and how the Table Layout Preview works. This section also explains how to use table
parameters , including how table parameters are used with table sets.

· Find in XBRL , which describes the powerful XBRL-specific search capabilities of XMLSpy.
· OIM , which provides an overview of OIM features in XMLSpy.
· Notes about validating XBRL instances and taxonomies .

For more related information, see the sections: Editing Views | XBRL View and the description of
commands in the XBRL menu . For example, information about generating documentation for the taxonomy
(as seen in XBRL View) will be found in the section Menu Commands | XBRL Menu | Generate
Documentation .

XML signatures for XBRL files in XBRL View can be created as external signature files. How to work with
signatures is described in the section, XML Signatures .

Support in XMLSpy for US-GAAP and other taxonomies
XMLSpy supports the following taxonomies:

· US-GAAP 1.0, 2005, 2008, 2009, 2011 to 2023
· IFRS

The latest versions of US-GAAP are installed with XMLSpy. Additional taxonomies, including older US-
GAAP taxonomies, are available for installation via a taxonomy installer that you can download free of
charge from the Altova website.

XBRL certification
XMLSpy has been XBRL-certified by XBRL International. For more information about XBRL certification, see
XBRL Software Certification.

Altova website: XBRL Taxonomy Editor, XBRL Validator

302

774

790

813

817

841 844

869

865

882

888

889

302

1447

1455

406

406

http://www.altova.com/xbrl-taxonomies-installer.html
https://software.xbrl.org/
https://www.xbrl.org/the-standard/how/software-certification/
https://www.altova.com/xmlspy-xml-editor#XBRL
https://www.altova.com/xmlspy-xml-editor#XBRL

774 XBRL Taxonomy Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.1 Taxonomy Manager

XBRL Taxonomy Manager is an Altova tool that provides a centralized way to install and manage XBRL
taxonomies for use across all Altova's XBRL-enabled applications, including XMLSpy.

· On Windows, Taxonomy Manager has a graphical user interface (screenshot below) and is also
available at the command line. (Altova's desktop applications are available on Windows only; see list
below.)

· On Linux and macOS, Taxonomy Manager is available at the command line only. (Altova's server
applications are available on Windows, Linux, and macOS; see list below.)

© 2018-2024 Altova GmbH

Taxonomy Manager 775XBRL

Altova XMLSpy 2024 Enterprise Edition

Altova's XBRL-enabled applications

Desktop applications (Windows only) Server applications (Windows, Linux, macOS)

Altova XBRL Add-ins for Excel (EBA, ESEF,
Solvency II, WIP)

MapForce Server (Standard and Advanced Editions)

776 XBRL Taxonomy Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

MapForce Enterprise Edition RaptorXML+XBRL Server

StyleVision Enterprise Edition StyleVision Server

XMLSpy Enterprise Edition

Installation and de-installation of Taxonomy Manager
Taxonomy Manager is installed automatically when you first install a new version of Altova Mission Kit
Enterprise Edition or of any of Altova's XBRL-enabled applications (see table above).

Likewise, it is removed automatically when you uninstall the last Altova XBRL-enabled application from your
computer.

Taxonomy Manager features
Taxonomy Manager provides the following features:

· Shows XBRL taxonomies installed on your computer and checks whether new versions are available for
download.

· Downloads newer versions of XBRL taxonomies independently of the Altova product release cycle.
(Altova stores taxonomies online, and you can download them via Taxonomy Manager.)

· Install or uninstall any of the multiple versions of a given taxonomy (or all versions if necessary).
· An XBRL taxonomy may have dependencies on other taxonomies. When you install or uninstall a

particular taxonomy, Taxonomy Manager informs you about dependent taxonomies and will
automatically install or remove them as well.

· Taxonomy Manager uses the XML catalog mechanism to map schema references to local files. In the
case of large XBRL taxonomies, processing will therefore be faster than if the taxonomies were at a
remote location.

· All major taxonomies are available via Taxonomy Manager and are regularly updated for the latest
versions. This provides you with a convenient single resource for managing all your taxonomies and
making them readily available to all of Altova's XBRL-enabled applications.

· Changes made in Taxonomy Manager take effect for all Altova products installed on that machine.

Custom XBRL Taxonomies
If you need to work with custom XBRL taxonomies that are not included with Taxonomy Manager, you can add
these taxonomies to the set of custom packages that XMLSpy can reference. Do this as follows:

· In Altova desktop applications: Select the Tools | Options menu command, and go to the XBRL |
Taxonomy Packages section. Browse for the ZIP package of your custom XBRL taxonomy. For more
information, see the description of this command in your desktop product documentation.

· In Altova server applications: When running commands from the command line that support custom
taxonomies, provide the --taxonomy-package or --taxonomy-package-config-file option. For

example: In RaptorXML+XBRL Server, these options are supported by XBRL validation commands such
as valxbrl or valxbrltaxonomy; in MapForce, they are supported by run command.

How it works
Altova stores all XBRL taxonomies used in Altova products online. This repository is updated when new
versions of the taxonomies are released. Taxonomy Manager displays information about the latest available

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html

© 2018-2024 Altova GmbH

Taxonomy Manager 777XBRL

Altova XMLSpy 2024 Enterprise Edition

taxonomies when invoked in both its GUI form as well as on the CLI. You can then install, upgrade or uninstall
taxonomies via Taxonomy Manager.

Taxonomy Manager also installs taxonomies in one other way. At the Altova website
(https://www.altova.com/taxonomy-manager) you can select a taxonomy and its dependent taxonomies that
you want to install. The website will prepare a file of type .altova_taxonomies for download that contains

information about your taxonomy selection. When you double-click this file or pass it to Taxonomy Manager via
the CLI as an argument of the install command, Taxonomy Manager will install the taxonomies you

selected.
Local cache: track ing your taxonomies
All information about installed taxonomies is tracked in a centralized cache directory on your computer, located
here:

Windows C:\ProgramData\Altova\pkgs\.cache

Linux /var/opt/Altova/pkgs\.cache

macOS /var/Altova/pkgs

This cache directory is updated regularly with the latest status of taxonomies at Altova's online storage. These
updates are carried out at the following times:

· Every time you start Taxonomy Manager.
· When you start XMLSpy for the first time on a given calendar day.
· If XMLSpy is open for more than 24 hours, the cache is updated every 24 hours.
· You can also update the cache by running the update command at the command line interface.

The cache therefore enables Taxonomy Manager to continuously track your installed taxonomies against the
taxonomies available online at the Altova website.

Do not modify the cache manually!
The local cache directory is maintained automatically based on the taxonomies you install and uninstall. It
should not be altered or deleted manually. If you ever need to reset Taxonomy Manager to its original
"pristine" state, then, on the command line interface (CLI): (i) run the reset command, and (ii) run the
initialize command. (Alternatively, run the reset command with the --i option.)

HTTP proxy
You can use an HTTP proxy for Taxonomy Manager connections. The proxy settings will be taken from the
system's proxy settings and/or XMLSpy's local-network proxy settings (defined in the Options dialog (Tools |
Options | Network Proxy)).

18.1.1 Run Taxonomy Manager

Graphical User Interface
You can access the GUI of Taxonomy Manager in any of the following ways:

785

788

787

785

https://www.altova.com/taxonomy-manager

778 XBRL Taxonomy Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· During the installation of XMLSpy: Towards the end of the installation procedure, select the check box
Invoke Altova Taxonomy Manager to access the XBRL Taxonomy Manager GUI straight away. This will
enable you to install taxonomies during the installation process of your Altova application.

· After the installation of XMLSpy: After your application has been installed, you can access the
Taxonomy Manager GUI at any time, via the menu command Tools | XBRL Taxonomy Manager.

· Via the .altova_taxonomies file downloaded from the Altova's XBRL Taxonomy Download Center:

Double-click the downloaded file to run the Taxonomy Manager GUI, which will be set up to install the
taxonomies you selected (at the website) for installation.

After the Taxonomy Manager GUI (screenshot below) has been opened, already installed taxonomies will be
shown selected. If you want to install an additional taxonomy, select it. If you want to uninstall an already
installed taxonomy, deselect it. After you have made your selections and/or deselections, you are ready to
apply your changes. The taxonomies that will be installed or uninstalled will be highlighted and a message
about the upcoming changes will be posted to the Messages pane at the bottom of the Taxonomy Manager
window (see screenshot).

https://www.altova.com/taxonomy-manager

© 2018-2024 Altova GmbH

Taxonomy Manager 779XBRL

Altova XMLSpy 2024 Enterprise Edition

Command line interface
You can run Taxonomy Manager from a command line interface by sending commands to its executable file,
taxonomymanager.exe.

780 XBRL Taxonomy Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The taxonomymanager.exe file is located in the following folder:

· On Windows: C:\ProgramData\Altova\SharedBetweenVersions
· On Linux or macOS (server applications only): %INSTALLDIR%/bin, where %INSTALLDIR% is the

program's installation directory.

You can then use any of the commands listed in the CLI command reference section.

To display help for the commands, run the following:

· On Windows: taxonomymanager.exe --help
· On Linux or macOS (server applications only): sudo ./taxonomymanager --help

18.1.2 Status Categories

Taxonomy Manager categorizes the taxonomies under its management as follows:

· Installed taxonomies. These are shown in the GUI with their check boxes selected (in the screenshot
below the checked versions of the DNB and EBA taxonomies are installed taxonomies). If all the
versions of a taxonomy are selected, then the selection mark is a tick. If at least one version is
unselected, then the selection mark is a solid colored square. You can deselect an installed taxonomy
to uninstall it.

· Uninstalled available taxonomies. These are shown in the GUI with their check boxes unselected. You
can select the taxonomies you want to install.

· Upgradeable taxonomies are those which have been revised by their issuers since they were installed.

They are indicated in the GUI by a icon (see screenshot above). You can patch an installed
taxonomy with an available revision.

© 2018-2024 Altova GmbH

Taxonomy Manager 781XBRL

Altova XMLSpy 2024 Enterprise Edition

Points to note

· In the screenshot above, both DNB taxonomies and some of the EBA taxonomies are checked. Those
with the blue background are already installed. Those with the yellow background are uninstalled and
have been selected for installation. Note that (i) the EBA 2.10 Phase 2 taxonomy is not installed and
has not been selected for installation, (ii) the EBA 3.1 Phase 2 taxonomy has been installed, but it has
been patched by its issuer since it was installed and the patch has not yet been installed.

· When running Taxonomy Manager from the command line, the list command is used with
different options to list different categories of taxonomies:

taxonomymanager.exe list Lists all installed and available taxonomies; upgradeables are also
indicated

taxonomymanager.exe list

-i
Lists installed taxonomies only; upgradeables are also indicated

taxonomymanager.exe list

-u
Lists upgradeable taxonomies

Note: On Linux and macOS, use sudo ./taxonomymanager list

18.1.3 Patch or Install a Taxonomy

Patch an installed taxonomy
Occasionally, XBRL taxonomies may receive patches (upgrades or revisions) from their issuers. When
Taxonomy Manager detects that patches are available, these are indicated in the taxonomy listings of
Taxonomy Manager and you can install the patches quickly.

In the GUI

Patches are indicated by the icon. (Also see the previous topic about status categories .) If patches are
available, the Patch Selection button will be enabled. Click it to select and prepare all patches for installation.

In the GUI, the icon of each taxonomy that will be patched changes from to , and the Messages pane at
the bottom of the dialog lists the patches that will be applied. When you are ready to install the selected
patches, click Apply. All patches will be applied together. Note that if you deselect a taxonomy marked for
patching, you will actually be uninstalling that taxonomy.

On the CLI
To apply a patch at the command line interface:

1. Run the list -u command. This lists any taxonomies where patch upgrades are available.
2. Run the upgrade command to install all the patches.

Install an available taxonomy
You can install taxonomies using either the Taxonomy Manager GUI or by sending Taxonomy Manager the
install instructions via the command line.

Note: If the current taxonomy references other taxonomies, the referenced taxonomies are also installed.

786

780

786

789

782 XBRL Taxonomy Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the GUI
To install taxonomies using the Taxonomy Manager GUI, select the taxonomies you want to install and click
Apply.

You can also select the taxonomies you want to install at the Altova website and generate a downloadable
.altova_taxonomies file. When you double-click this file, it will open Taxonomy Manager with the taxonomies

you wanted pre-selected. All you will now have to do is click Apply.

On the CLI
To install taxonomies via the command line, run the install command:

taxonomymanager.exe install [options] Taxonomy+

where Taxonomy is the taxonomy (or taxonomies) you want to install or a .altova_taxonomies file. A

taxonomy is referenced by an identifier of format <name>-<version>. (The identifiers of taxonomies are

displayed when you run the list command.) You can enter as many taxonomies as you like. For

details, see the description of the install command.

Note: On Linux or macOS, use the sudo ./taxonomymanager command.

Installing a required taxonomy
When you run an XBRL-related command in XMLSpy and XMLSpy discovers that a taxonomy it needs for
executing the command is not present or is incomplete, Taxonomy Manager will display information about the
missing taxonomy. You can then directly install any missing taxonomy via Taxonomy Manager.

In the Taxonomy Manager GUI, you can view all previously installed taxonomies at any time by running
Taxonomy Manager from Tools | Taxonomy Manager.

18.1.4 Uninstall a Taxonomy, Reset

Uninstall a taxonomy
You can uninstall taxonomies using either the Taxonomy Manager GUI or by sending Taxonomy Manager the
uninstall instructions via the command line.

Note: If the taxonomy you want to uninstall references other taxonomies, then the referenced taxonomies are
also uninstalled.

In the GUI
To uninstall taxonomies in the Taxonomy Manager GUI, clear their check boxes and click Apply. The selected
taxonomies and their referenced taxonomies will be uninstalled.

To uninstall all taxonomies, click Deselect All and click Apply.

785

786

785

https://www.altova.com/taxonomy-manager

© 2018-2024 Altova GmbH

Taxonomy Manager 783XBRL

Altova XMLSpy 2024 Enterprise Edition

On the CLI
To uninstall taxonomies via the command line, run the uninstall command:

taxonomymanager.exe uninstall [options] Taxonomy+

where each Taxonomy argument is a taxonomy you want to uninstall or a .altova_taxonomies file. A

taxonomy is specified by an identifier that has a format of <name>-<version>. (The identifiers of

taxonomies are displayed when you run the list command.) You can enter as many taxonomies as

you like. For details, see the description of the uninstall command.

Note: On Linux or macOS, use the sudo ./taxonomymanager command.

Reset Taxonomy Manager
You can reset Taxonomy Manager.

· In the GUI, click Reset Selection. This resets the the GUI to show what taxonomies are currently
installed. Any selections or de-selections that the user has made in the current session will be
canceled.

· On the CLI, run the reset command. This removes all installed taxonomies and the cache
directory.

After running this command, make sure to run the initialize command in order to recreate the cache
directory. Alternatively, run the reset command with the -i option.

Note that reset -i restores the original installation of the product, so it is recommended that you run the
update command after performing a reset. Alternatively, run the reset command with the -i and -u
options.

18.1.5 Command Line Interface (CLI)

To call Taxonomy Manager at the command line, you need to know the path of the executable. By default, the
Taxonomy Manager executable is installed here:

C:\ProgramData\Altova\SharedBetweenVersions\TaxonomyManager.exe

Note: On Linux and macOS systems, once you have changed the directory to that containing the
executable, you can call the executable with sudo ./taxonomymanager. The prefix ./ indicates that

the executable is in the current directory. The prefix sudo indicates that the command must be run with

root privileges.

Command line syntax
The general syntax for using the command line is as follows:

<exec> -h | --help | --version | <command> [options] [arguments]

In the listing above, the vertical bar | separates a set of mutually exclusive items. The square brackets []

indicate optional items. Essentially, you can type the executable path followed by either --h, --help, or --

786

787

787

785

787

787

788 787

784 XBRL Taxonomy Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

version options, or by a command. Each command may have options and arguments. The list of commands
is described in the following sections.

18.1.5.1 help

This command provides contextual help about commands pertaining to Taxonomy Manager executable.

Syntax
<exec> help [command]

Where [command] is an optional argument which specifies any valid command name.

Note the following:

· You can invoke help for a command by typing the command followed by -h or --help, for example:

<exec> list -h

· If you type -h or --help directly after the executable and before a command, you will get general help

(not help for the command), for example: <exec> -h list

Example
The following command displays help about the list command:

taxonomymanager help list

18.1.5.2 info

This command displays detailed information for each of the taxonomies supplied as a Taxonomy argument. This
information for each submitted taxonomy includes the title, version, description, publisher, and any dependent
taxonomies, as well as whether the taxonomy has been installed or not.

Syntax
<exec> info [options] Taxonomy+

· The Taxonomy argument is the name of a taxonomy or a part of a taxonomy's name. (To display a

taxonomy's package ID and detailed information about its installation status, you should use the
list command.)

· Use <exec> info -h to display help for the command.

Example
The following command displays information about the eba-2.10 and us-gaap-2020.0 taxonomies:

taxonomymanager info eba-2.1.0 us-gaap-2020.0

786

© 2018-2024 Altova GmbH

Taxonomy Manager 785XBRL

Altova XMLSpy 2024 Enterprise Edition

18.1.5.3 initialize

This command initializes the Taxonomy Manager environment. It creates a cache directory where information
about all taxonomies is stored. Initialization is performed automatically the first time an XBRL-enabled Altova
application is installed. You would not need to run this command under normal circumstances, but you would
typically need to run it after executing the reset command.

Syntax
<exec> initialize | init [options]

Options
The initialize command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command initializes Taxonomy Manager:

taxonomymanager initialize

18.1.5.4 install

This command installs one or more taxonomies.

Syntax
<exec> install [options] Taxonomy+

To install multiple taxonomies, add the Taxonomy argument multiple times.

The Taxonomy argument is one of the following:

· A taxonomy identifier (having a format of <name>-<version>, for example: eba-2.10). To find out the

taxonomy identifiers of the taxonomies you want, run the list command. You can also use an
abbreviated identifier if it is unique, for example eba. If you use an abbreviated identifier, then the latest

version of that taxonomy will be installed.
· The path to a .altova_taxonomies file downloaded from the Altova website. For information about

these files, see Introduction to TaxonomyManager: How It Works .

Options
The install command takes the following options:

786

774

786 XBRL Taxonomy Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command installs the latest eba (European Banking Authority) and us-gaap (US Generally

Accepted Accounting Principles) taxonomies:

taxonomymanager install eba us-gaap

18.1.5.5 list

This command lists taxonomies under the management of Taxonomy Manager. The list displays one of the
following

· All available taxonomies
· Taxonomies containing in their name the string submitted as a Taxonomy argument

· Only installed taxonomies
· Only taxonomies that can be upgraded

Syntax
<exec> list | ls [options] Taxonomy?

If no Taxonomy argument is submitted, then all available taxonomies are listed. Otherwise, taxonomies are

listed as specified by the submitted options (see example below). Note that you can submit the Taxonomy

argument multiple times.

Options
The list command takes the following options:

--installed, --i List only installed taxonomies. The default is false.

--upgradeable, --u List only taxonomies where upgrades (patches) are available. The default is
false.

--help, --h Display help for the command.

Examples

· To list all available taxonomies, run: taxonomymanager list

· To list installed taxonomies only, run: taxonomymanager list -i

· To list taxonomies that contain either "eba" or "us-gaap" in their name, run: taxonomymanager list

eba us-gaap

© 2018-2024 Altova GmbH

Taxonomy Manager 787XBRL

Altova XMLSpy 2024 Enterprise Edition

18.1.5.6 reset

This command removes all installed taxonomies and the cache directory. You will be completely resetting your
taxonomy environment. After running this command, be sure to run the initialize command to recreate
the cache directory. Alternatively, run the reset command with the -i option. Since reset -i restores the
original installation of the product, we recommend that you run the update command after performing a
reset and initialization. Alternatively, run the reset command with both the -i and -u options.

Syntax
<exec> reset [options]

Options
The reset command takes the following options:

--init, --i Initialize Taxonomy Manager after reset. The default is false.

--update, --u Updates the list of available taxonomies in the cache. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Examples

· To reset Taxonomy Manager, run: taxonomymanager reset

· To reset Taxonomy Manager and initialize it, run: taxonomymanager reset -i

· To reset Taxonomy Manager, initialize it,and update its taxonomy list, run: taxonomymanager reset -

i -u

18.1.5.7 uninstall

This command uninstalls one or more taxonomies. By default, any taxonomies referenced by the current one
are uninstalled as well. To uninstall just the current taxonomy and keep the referenced taxonomies, set the
option --k.

Syntax
<exec> uninstall [options] Taxonomy+

To uninstall multiple taxonomies, add the Taxonomy argument multiple times.

The Taxonomy argument is one of the following:

785

788

788 XBRL Taxonomy Manager

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· A taxonomy identifier (having a format of <name>-<version>, for example: eba-2.10). To find out the

taxonomy identifiers of the taxonomies that are installed, run the list -i command. You can also

use an abbreviated taxonomy name if it is unique, for example eba. If you use an abbreviated name,

then all taxonomies that contain the abbreviation in its name will be uninstalled.
· The path to a .altova_taxonomies file downloaded from the Altova website. For information about

these files, see Introduction to TaxonomyManager: How It Works .

Options
The uninstall command takes the following options:

--keep-references, --k Set this option to keep referenced taxonomies. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command uninstalls the eba-2.10 and us-gaap-2020.0 taxonomies and their dependencies:

taxonomymanager uninstall eba-2.10 us-gaap-2020.0

The following command uninstalls the eba-2.10 taxonomy but not the taxonomies it references:
taxonomymanager uninstall --k eba-2.10

18.1.5.8 update

This command queries the list of taxonomies available from the online storage and updates the local cache
directory. You should not need to run this command unless you have performed a reset and
initialize .

Syntax
<exec> update [options]

Options
The update command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command updates the local cache with the list of latest taxonomies:

786

774

787

785

© 2018-2024 Altova GmbH

Taxonomy Manager 789XBRL

Altova XMLSpy 2024 Enterprise Edition

taxonomymanager update

18.1.5.9 upgrade

This command upgrades all installed taxonomies that can be upgraded to the latest available patched version.
You can identify upgradeable taxonomies by running the list -u command.

Note: The upgrade command removes a deprecated taxonomy if no newer version is available.

Syntax
<exec> upgrade [options]

Options
The upgrade command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

786

790 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.2 Basic Procedures

The Basic Procedures section describes how to create taxonomies that contain the most essential
components. It is structured as follows:

· It starts with a brief look at the distinction between new and existing taxonomies and the
significance of this distinction. This is followed by an explanation of the files that constitute an XBRL
taxonomy and how these are displayed in XBRL View.

· Starting with the section Creating a New Taxonomy , we describe the steps to build a taxonomy in
XBRL View. At the end of each section is a set of instructions to help you put into practice, or test, the
information given in that section, and it builds upon the taxonomy created till that point using
instructions in previous sections.

18.2.1 Taxonomies: New and Existing

In XMLSpy's XBRL View you can edit existing taxonomies and create new taxonomies.

· Existing taxonomies: There are two types of existing taxonomies: (i) standard taxonomies that should
not be edited; and (ii) non-standard taxonomies which may be edited; these might have been created
by you or another party.

· New taxonomies: New taxonomies can be created in XMLSpy. These are of two types: (i) taxonomies
that are created from scratch; and (ii) taxonomies that extend a standard taxonomy.

Both kinds of taxonomies can be viewed and edited in XBRL View. In some cases, such as when a standard
taxonomy is imported into a taxonomy you are creating (in order to extend the imported taxonomy), you will not
be allowed to edit the imported taxonomy. Elements from imported taxonomies that are not allowed to be
edited are displayed in gray.

Taxonomy packages
An XBRL Taxonomy Package is a zipped archive that contains an offline copy of a taxonomy. The taxonomy
package contains a catalog XML file that remaps URIs to the offline taxonomy's file locations, and so makes
the taxonomy available offline to applications. The rules that specify how taxonomy packages are to be
structured and built are laid out in the Taxonomy Packages Recommendation of XBRL.org.

If you download a taxonomy package, you can register it with XMLSpy so that XMLSpy can use the package's
offline resources (such as schemas) when validating. Registration of the package is done via the Tools |
Options | Taxonomy Packages pane; the procedure is described there .

Steps for creating a new taxonomy
A new taxonomy typically will build on an existing one. In the new taxonomy, new elements will be added, and
relationships between these new elements and between new elements and imported elements will be created.
The general requirements of a new taxonomy and how you would go about creating one are outlined below:

1. The new taxonomy must be created in its own namespace in order to distinguish it from other
taxonomies. If the new taxonomy is to extend an existing one, the existing taxonomy must be
imported into the new taxonomy.

2. New concepts (elements) are defined in the new taxonomy.

790

791

793

1552 1552

https://www.xbrl.org/Specification/taxonomy-package/REC-2016-04-19/taxonomy-package-REC-2016-04-19.html

© 2018-2024 Altova GmbH

Basic Procedures 791XBRL

Altova XMLSpy 2024 Enterprise Edition

3. Relationship files (or linkbases) are created to contain the definition, presentation, calculation, label,
and reference relationships of the new taxonomy.

4. Relationships for the new taxonomy must be built from scratch.

In the description above, we have used the term taxonomy to denote the entire taxonomy, which comprises
several files: the concept definitions files and the relationship files. (See the section Taxonomy Document
Files for a description of the various files that comprise a taxonomy.)

Using XBRL View
In the sections that follow, we describe how to use the features of XBRL View to create and edit taxonomies.
Starting with the section, Creating a New Taxonomy , we also provide instructions, at the end of each
section, for creating your own taxonomy. The instructions in each successive section build on the work of
previous sections. By the time you reach the section Creating Relationships: Part 1 , you will have become
familiar with XBRL View and be able to use it confidently.

The taxonomy you will be creating leads, with additional work, to the taxonomy supplied with XMLSpy
(Nanonull.xsd) and which is located in the folder C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\XBRLExamples\Nanonull. (Note that the main taxonomy file
always has the extension .xsd. The file extension .xbrl is used for XBRL instance files and not for taxonomy
files.)

18.2.2 Taxonomy Files Overview

A well-designed XBRL taxonomy stores taxonomy concepts in a separate file from the taxonomy relationships.
We call this file the main taxonomy file or the concept definitions file. Furthermore, since there are different
kinds of relationships, relationships will be stored in separate files for each kind. The table below lists the
different kinds of files that normally constitute a taxonomy document.

XBRL File Description File Type

Concepts Each concept is defined in an XML Schema
element element.

XML Schema file (.xsd)
Concept definitions file

Definition
Relationships

A definitionLink element contains all locators
and definition arcs for concept relationships.

XML file (.xml)

Calculation
Relationships

A calculationLink element contains all the
locators and calculation arcs.

XML file (.xml)

Presentation
Relationships

A presentationLink element contains all the
locators and presentation arcs.

XML file (.xml)

Labels A labelLink element contains all the locators,
label arcs, and labels.

XML file (.xml)

References A referenceLink element contains all the
locators, reference arcs, and reference resources.

XML file (.xml)

791

793

807

792 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The locations of the relationship files are specified in the concept definitions file (the .xsd file) inside
a /schema/annotation/appinfo element, such as the following listing:

<xsd:annotation>

 <xsd:appinfo>

<link:linkbaseRef xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"

 xlink:href="NanonullLabels.xml" xlink:type="simple"

 xlink:role="http://www.xbrl.org/2003/role/labelLinkbaseRef" />

<link:linkbaseRef xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"

 xlink:href="NanonullDefinitions.xml" xlink:type="simple"

 xlink:role="http://www.xbrl.org/2003/role/definitionLinkbaseRef" />

<link:linkbaseRef xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"

 xlink:href="NanonullPresentations.xml" xlink:type="simple"

 xlink:role="http://www.xbrl.org/2003/role/presentationLinkbaseRef" />

<link:linkbaseRef xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"

 xlink:href="NanonullCalculations.xml" xlink:type="simple"

 xlink:role="http://www.xbrl.org/2003/role/calculationLinkbaseRef" />

<link:linkbaseRef xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"

 xlink:href="NanonullReferences.xml" xlink:type="simple"

 xlink:role="http://www.xbrl.org/2003/role/referenceLinkbaseRef" />

 </xsd:appinfo>

</xsd:annotation>

When the concept definitions file (the .xsd file) is open in XBRL View, the various taxonomy files are displayed
in a tree structure in the Overview entry helper (as in the screenshot below).

In the screenshot above, notice the icons to the left of the file names. XML Schema (.xsd) files are indicated
with an XSD icon. The relationship files have a colored file icon with a character corresponding to the initial

character of the relationship kind. For example, a icon indicates a Definition relationships file, a icon

309

© 2018-2024 Altova GmbH

Basic Procedures 793XBRL

Altova XMLSpy 2024 Enterprise Edition

indicates a Presentation relationships file, and so on. Double-clicking any of these files opens it in XMLSpy,
where it can be edited in Grid View (screenshot below) or Text View.

18.2.3 Create a New Taxonomy

A new taxonomy would typically be created to extend one or more standard taxonomies. If a new taxonomy
builds upon a standard taxonomy or an already existing taxonomy, it must import the existing taxonomy.
Alternatively, a new taxonomy can be built from scratch. In XMLSpy's XBRL View, you can easily import US-
GAAP and IFRS taxonomies into your taxonomy. The imported taxonomy can then be modified using the
graphical interface of XBRL View.

The first step in creating a new taxonomy is to create its concept definitions file, which is an XML Schema
(.xsd) file. Besides containing concept definitions, this file defines and declares the namespace of the new
taxonomy, locates taxonomies to be imported, locates the relationships files of the taxonomy, and declares the
namespace of imported taxonomies and other namespaces used.

Creating the concept definitions file
To create a new XBRL taxonomy, select the menu command File | New. This pops up the Create a New
Document dialog (screenshot below).

794 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Select xsd: XBRL Taxonomy Schema and then click OK. A new taxonomy will be created.

It is best to save the taxonomy in its own dedicated folder since there will be other taxonomy components that
will be convenient to store in a common folder.

Overview of taxonomy-creation steps
The broad steps for building a taxonomy are given below.

1. Select the base taxonomy for your taxonomy via the menu command XBRL | Import/Reference . If
you want to build your taxonomy from scratch, skip this step.

2. Give the taxonomy a target namespace via the XBRL | Set Target Namespace menu command.
3. The namespaces of the imported base taxonomy will be automatically declared in your taxonomy. You

can conveniently add any other namespaces that you want, as described in the topic Setting Up the
Taxonomy Files .

4. You can then extend the base taxonomy with your own elements and relationships .

Example file: Step 1
Create a new taxonomy document and save it with any name to a suitable location. This taxonomy file is the
main taxonomy file, or concept definitions file. It is an XML Schema file and must have a .xsd file extension.
We will refer to the file we are creating as Nanonull.xsd. This is the same name as that of the supplied
example in C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\XBRLExamples\Nanonull.

In the next step, we will import a base taxonomy into our taxonomy.

795

798

800

802 806

© 2018-2024 Altova GmbH

Basic Procedures 795XBRL

Altova XMLSpy 2024 Enterprise Edition

18.2.4 Import a Base Taxonomy

If a new taxonomy is to build upon an existing taxonomy, then this taxonomy must be imported into the new
taxonomy.

To import a taxonomy, do the following:

1. Right-click in the Overview entry helper in XBRL View and select Import/Reference. Alternatively,
select the menu command XBRL | Import/Reference .

2. In the Import Standard Taxonomy dialog that pops up (screenshot below), select a taxonomy to import
or a linkbase to reference. (The name of the dialog will change according to the option you select.)

There are three import/reference options: (i) a standard taxonomy (US-GAAP or IFRS); (ii) any other
taxonomy (or reference schema); and (iii) a linkbase. If you are importing a non-standard taxonomy,
select the Reference Schema radio button, click the Browse button of the Schema Location text box,
and browse for the taxonomy you want.

3. When you are done, click Finish. The selected taxonomy will be imported and its elements and
relationships will be displayed in XBRL View.

4. If you selected a US-GAAP taxonomy, then a new screen appears, in which you can (i) select the
entry points you wish to include in the taxonomy, and (ii) specify whether the US-GAAP Core Schema
should be imported (check box at the bottom of the dialog).

1453

796 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If you selected IFRS as the base for your taxonomy, you can select an IFRS-specific entry-point.

© 2018-2024 Altova GmbH

Basic Procedures 797XBRL

Altova XMLSpy 2024 Enterprise Edition

5. Click Finish, the selected entry-point schemas are imported and referenced by your taxonomy. The
taxonomy opens in XBRL View and is ready to be edited.

Note the following points:

· The Overview entry helper also lists taxonomies that the imported taxonomy itself imports, as well as
linkbases that the imported taxonomy uses.

· In the Global Elements entry helper, concepts defined in the imported taxonomy are listed.
· In the Design window and Details entry helper, imported concepts are indicated with a gray font color.
· You can delete an imported taxonomy by right-clicking it in the Overview entry helper and selecting

Remove.

Note: If you find that a large taxonomy such as US-GAAP slows down your editing, use the filter in the main
window to limit the display to elements created in the new, extending taxonomy. This will speed up
editing considerably.

Import mechanism
The effect of adding a standard import as described above is to add an xs:import element to the new
taxonomy file. The xs:import element specifies the namespace and location of the imported taxonomy (listing
below).

<xs:import namespace="http://fasb.org/us-gaap/2013-01-31"
 schemaLocation="http://xbrl.fasb.org/us-gaap/2013/elts/us-gaap-2013-01-31.xsd"/>

In the listing above, the schemaLocation attribute specifies that the taxonomy is to be loaded via the Internet.
But this URI maps, via XMLSpy's catalog mechanism , to a local copy of the US-GAAP taxonomy (that is
delivered with your XMLSpy package).

302

451

798 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To locate a locally saved taxonomy, a local address can be used directly to locate the taxonomy. Alternatively,
a web address can be used which is mapped to a local address via a catalog file . Accessing taxonomies
from local locations will greatly speed up your work.

Example file: Step 2
Following the steps above, import the US-GAAP 2013 taxonomy as the base taxonomy. In the Overview entry
helper, take a close look at all the imported taxonomies and referenced linkbases. Switch to Text View and
look for the xs:import elements. In the Main Window of XBRL View, notice that imported concepts are
indicated with a gray font color. Also notice that the Overview entry helper lists the linkbases and the imported
schemas of the US-GAAP taxonomy.

In the next step, we will set the target namespace of the taxonomy and see how to edit the namespaces of
the taxonomy.

18.2.5 Namespaces

The target namespace
The target namespace of a taxonomy is defined in the xs:targetNamespace attribute of the taxonomy's
xs:schema element (see listing below). (The xs:schema element is the document element of the concept
definitions file.)

<xs:schema targetNamespace="http://www.altova.com/XBRL/Taxonomies">
...

</xs:schema>

In addition to defining the target namespace (specifying it, that is), the target namespace must also be
declared on the xs:schema element so that it is in scope for the entire length of the document. The listing
below declares the namespace that is the target namespace.

<xs:schema targetNamespace="http://www.altova.com/XBRL/Taxonomies"
xmlns:ns1="http://www.altova.com/XBRL/Taxonomies" >
...

</xs:schema>

In the listing above, the namespace is declared on the xs:schema element and is given a prefix of ns1.

Setting the target namespace
When a new taxonomy is created using the New Taxonomy Wizard, a default target namespace and prefix are
automatically created for the taxonomy. The default target namespace is based on data you entered in the
New Taxonomy Wizard. The prefix of the default target namespace will be of the form nX, where X is an integer.
The declaration of the default target namespace and prefix can then be edited by accessing the Set Target
Namespace dialog (via the XBRL | Set Target Namespace command) and editing it there (screenshot below).
These edits will modify not only the definition of the target namespace (the value of the targetNamespace
attribute) but also the declaration of the target namespace.

451

798

© 2018-2024 Altova GmbH

Basic Procedures 799XBRL

Altova XMLSpy 2024 Enterprise Edition

To modify only the declaration of the target namespace (but not its definition) or the declaration of any
namespace, edit the prefix and value of the namespace in the Namespace Prefixes dialog (XBRL |
Namespace Prefixes command).

Taxonomy namespaces
Taxonomy namespaces can be managed in the Namespaces Prefixes dialog (screenshot below), which is
accessed in XBRL View via the menu command XBRL | Namespace Prefixes. In the dialog, you can declare
namespaces and associate prefixes and background colors for each namespace. Edits made in this dialog
modify the declarations of namespaces in the taxonomy.

The Namespace Prefixes dialog lists all the namespaces in the taxonomy.

800 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· To add or delete a namespace, use the Add or Delete buttons, respectively. After adding a
namespace, edit the default prefix and default URI by double-clicking in the respective field and
entering the changes.

· A color can be assigned to a namespace via the color palette for that namespace. If a color has been
assigned to a namespace, all components in that namespace will be displayed with this color as its
background in the Main Window and entry helpers of XBRL View. Note that a color setting for a given
namespace applies for that namespace across all taxonomy documents opened in XBRL View.

When you have finished editing in the Namespaces dialog, click OK to make your editing changes take effect.

Example file: Step 3
Open the Set Target Namespace dialog via the XBRL | Set Target Namespace command. Double-click in the
fields to edit. We have used the namespace http://www.altova.com/nanonull and assigned it a prefix of
nanonull (see screenshot above). On clicking OK in the dialog, the target namespace will be assigned and
the target namespace will be declared with the prefix you have assigned. In our case the target namespace and
prefix are, respectively, http://www.altova.com/nanonull and nanonull.

In the next step , we will take a closer look at linkbase files and the referencing mechanism.

18.2.6 Taxonomy Files

The Overview entry helper displays in a tree structure the files that constitute the taxonomy (screenshot below).
At the root of the tree is the main taxonomy file (the concept definitions file); this is the currently active file. The
files on the next level are of two types: (i) linkbase files that specify the various relationships in the taxonomy;
these are indicated by colored icons ; and (ii) imported schemas (the .xsd files).

800

309

© 2018-2024 Altova GmbH

Basic Procedures 801XBRL

Altova XMLSpy 2024 Enterprise Edition

In the section, Importing a Taxonomy , you have seen how a taxonomy can be imported via the Overview
entry helper. The imported taxonomy is listed among the imported schemas in the Overview entry helper.

In this section, we show how the Overview entry helper can be used to manage linkbase files. The four
operations for managing linkbases are all accessed via the Overview entry helper's context menu. They are:

· Adding new linkbases and saving them with the taxonomy .
· Setting the linkbase kind . In cases where the linkbase type (calculation, definition, presentation,

label, or reference) is not known to XMLSpy, the linkbase type can be explicitly specified.
· Setting a linkbase as the default linkbase for a particular type of relationship linkbase. If there is

more than one linkbase for a particular type of relationship, say, label relationships, then new labels
that you create in the Taxonomy Editor will be created in the default label linkbase.

· Deleting linkbases .

Note: The main types of relationships are: (i) definition, (ii) calculation, (iii) presentation, (iv) label, and (v)
reference. Separate linkbase files can be created for each of these relationship types.

Adding a new linkbase
To add a new linkbase, do the following:

1. Right-click in the Overview entry helper and select Add New Linkbase | <relationship type>. A new
linkbase file of the selected relationship type is created in the Overview entry helper with a default
name. Note that the new linkbase is created as the default linkbase of its relationship type (indicated
by the filename being in boldface).

2. Right-click the default name, select Rename, and edit the name.
3. A newly created linkbase file is physically saved at a particular location only when the main taxonomy

file is saved the next time. See below for details.

Saving linkbase files
If a linkbase file has not been saved, this is indicated by an asterisk after the name of the linkbase file. When
you save the main taxonomy file, the following will happen:

1. The Confirm Linkbase Paths dialog appears. This dialog contains the names and locations (paths) of
all the linkbases in the taxonomy, including the newly created linkbase files. Any unsaved linkbase file
will have a default path to the folder in which the main taxonomy file will be, or has been, saved. You
can edit the path of individual linkbase files if you wish to save a linkbase file to another location. You
can also edit the name of the file.

2. Click OK when done. The linkbase files will be saved to the specified locations.

Setting linkbase kind
The linkbase kind of a file (also referred to as a file's linkbase type) can be set by using this command. Right-
click the file for which the linkbase kind is to be changed, and, from the context menu, select the command
Set Linkbase Kind | <relationship type>. The All option enables you to specify that the linkbase file can
contain more than one kind of relationship.

Setting a default linkbase
A default linkbase file can be set for each relationship type. When a relationship of that type is defined in the
Taxonomy Editor, the relationship is saved to the default linkbase file of that relationship type. To set a linkbase

795

801 801

801

801

802

802 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

file as the default linkbase, right-click it and select Set Default Linkbase. The names of default linkbases are
displayed in bold.

Deleting a linkbase
A linkbase can be removed from the taxonomy by right-clicking it and selecting Remove.

Example file: Step 4
Add the linkbases by following the procedure described above. The linkbase files are:

· Calculation linkbase: nanonull_cal.xml
· Definition linkbase: nanonull_def.xml
· Label linkbase: nanonull_lab.xml
· Presentation linkbase: nanonull_pre.xml

If you do not want to add the linkbase files, you can work with the Nanonull.xsd taxonomy (located in C:
\Documents and Settings\<username>\My

Documents\Altova\XMLSpy2024\Examples\XBRLExamples\Nanonull), which already has linkbase files.

In order to test some of the commands introduced in this section, do the following: Create a linkbase file by
using the Add New Linkbase command and by creating any linkbase kind you like. Rename it as described
above. Notice that the newly created linkbase becomes the default linkbase of its relationship type (indicated
by its name being displayed in bold). Select it and set it to be some other relationship type (using the Set
Linkbase Kind command). Notice that the file is not the default linkbase of its new relationship type. Now
delete the linkbase (using the Remove command). Since one of the original linkbase files is now no longer a
default linkbase, set a file of that relationship type as the default linkbase of its relationship type.

In the next step, we will add new elements to the main taxonomy file (or concept definitions file).

18.2.7 Add Elements to a Taxonomy

To add an element (concept) to the taxonomy, click the Add New Element icon in the Main Window
(screenshot below).

The new element with a substitution group of xbrli:item and with a default name is added to the list of
elements in the display (screenshot below).

802

© 2018-2024 Altova GmbH

Basic Procedures 803XBRL

Altova XMLSpy 2024 Enterprise Edition

For a description of the element box, see Main Window: Elements Tab . You can now edit the properties of
the element in the main window in the following ways.

· The name of the element can be changed by double-clicking the default name and entering the correct
name. Note that you must also enter the correct namespace prefix for the name.

· The substitution group of the element can be changed by expanding the element box—click the arrow
icon to do this—and then selecting the required substitution group from this field's dropdown list
(screenshot below).

· To change the Balance, Period, Abstract, or Nillable property, click the corresponding icon to the left of
the element name and select one of the options from the box that pops up.

· To add a label linkrole for the element, right-click anywhere in the element box and select the Add
Label Linkrole command. A row for the label linkrole is added; in this row you can enter the label
linkrole or select an option from the combo box. Note that if no label linkbase file is associated with the
taxonomy, one will be created now and will be displayed in the Overview entry helper .

· A label can be added for a label linkrole by right-clicking the label linkrole and selecting the Add Label
command. To enter the details of the label, either double-click in the field to be edited and enter the
new value, or select the new value from the respective combo boxes. The changes you make to labels
will be saved to the label linkbase when the main taxonomy file is saved.

· References are added to the reference linkbase in the same way that labels are added to the label
linkbase. First, a reference linkrole is added for the element, then a reference is added for a specific
reference linkrole.

Element properties can also be edited in the Details entry helper. See Entry Helpers in XBRL View for a
description of how to do this.

Example file: Step 5
In this section, we will extend the US-GAAP taxonomy by creating new elements.

The first element we will create is the item nanonull:OnboardAndOther, which represents revenues from the
sale of items on board Nanonull's cruise ships. This specific revenue head is not available in the US-GAAP
taxonomy, which is why it must now be created as an extension of US-GAAP. As a new element created
specially for the Nanonull taxonomy, it must be created in the Nanonull namespace
(http://www.altova.com/nanonull), which has been declared with a prefix of nanonull. Creating the
element with this prefix will put this element in the Nanonull namespace.

302

291

798

309

309

804 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To create the element, do the following:

1. Click the Add New Element icon in the Main Window (screenshot below).

A new element with a substitution group of xbrli:item and with a default name is added to the list of
elements in the display (screenshot below).

2. Double-click the element name and enter the name nanonull:OnboardAndOther (screenshot below).
This creates the element OnboardAndOther in the Nanonull namespace.

3. Expand the element box and, since the element will contain a monetary amount, change the Type
attribute to xbrli:monetaryItemType (screenshot below).

4. Now click to the left of the clock icon and, from the popup that appears, select credit (screenshot
below).

This sets the value of the xbrli:balance attribute to credit.
5. Click on the clock, A, and 0 icons, and set the values of the xbrli:duration, xs:abstract, and

xs:nillable attributes to duration, NOT Abstract, Nillable, respectively. (In the .xsd file, the actual
attribute values will be: credit, duration, false, and true, respectively.)

© 2018-2024 Altova GmbH

Basic Procedures 805XBRL

Altova XMLSpy 2024 Enterprise Edition

6. Right-click the element box and, from the menu that pops up, select Add Label Linkrole. This
creates a label linkrole row at the bottom of the element box (screenshot below).

7. Select the XBRL link URI.
8. Right-click the label linkrole row and from the menu that pops up select Add Label. This creates a

label row within the label linkrole.
9. Double-click in the language field of the newly created label row (screenshot below) and enter en-us; in

the next field which is the linkrole field, select the documentation role from the dropdown list; in the
label field, enter the text that should appear in documentation. Then create another label row for the
label linkrole by repeating Step 9. When the display of an element has been expanded (by clicking
the arrowhead to its left), the display of the label role can be switched on/off by clicking the
plus/minus symbol to the right of the label (Show/Hide Labels).

The element nanonull:OnboardAndOther has now been successfully created.

Notice that OnboardAndOther had an xbrli:balance value of credit. This is because it is a revenue item:
money is coming in. Since the items being sold on board will have costs attached to them, i.e. cost the
company to procure, we will also create a debit-side element called nanonull:CostOfOnboardAndOther.
Create this element the same way as nanonull:OnboardAndOther was created, with one difference, however:
set the value of xbrli:balance to debit instead of credit.

Another cost to be included is for commissions to agents. This should be taken care of with a debit element
called nanonull:CruiseCommissionsTransportationAndOther. Create this element exactly as you did
nanonull:CostOfOnboardAndOther.

Finally, we add three abstract elements, Asia, Europe, and US, so that concepts can be grouped by region.
Since the elements are used only for grouping purposes and will not themselves have values, they are known
as abstract elements. What type such an element has is therefore immaterial. It is best to give an abstract
element a type that matches its semantics. For example, we have given the abstract elements Asia, Europe,
and US, a type of stringItemType. Create the nanonull:Asia, nanonull:Europe, and nanonull:USA
elements just as you created the previous elements. The only difference this time will be that the value of the
Abstract attribute must be set to Abstract (actual attribute value in the XSD file will be true) and there will be
no xbrli:balance attribute.

Note: If an xbrli:balance attribute is present on an abstract element, this abstract element must be of type
monetaryItemType, otherwise the taxonomy will be invalid. It is best to omit the optional
xbrli:balance attribute from all abstract elements.

806 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the next step we will specify linkroles for the new taxonomy. These linkroles will be needed when we
create new relationships.

18.2.8 Relationships and Linkroles

When a set of relationships is created these relationships are created within a containing element. For
example, when definition relationships are created, the elements defining the definition relationships (the
locators and definition arcs) are all created within a definitionLink element, which looks something like this:

<link:definitionLink xlink:type="extended"
xlink:role="http://www.nanonull.com/taxonomy/role/SegmentRevenueAndOperatingIncome">

The value of the xlink:role attribute in the definition link (as in the definition link listed above) must be the
value of the roleURI attribute of one of the linkroles set to be used on definition relationships (see listing
below). A linkrole (as in the listing below) is contained in the appinfo element of the taxonomy.

<xs:appinfo>
 <link:roleType id="SegmentRevenueAndOperatingIncome"
 roleURI="http://www.nanonull.com/taxonomy/role/SegmentRevenueAndOperatingIncome">

 <link:definition>006091 - Disclosure - Segment Revenue and Operating
Income</link:definition>
 <link:usedOn>link:calculationLink</link:usedOn>
 <link:usedOn>link:definitionLink</link:usedOn>
 <link:usedOn>link:presentationLink</link:usedOn>
 </link:roleType>
</xs:appinfo>

A linkrole can be used in the containing elements of other relationship kinds besides in definitionLink
elements (for example, in calculationLink and presentationLink elements). In the listing above, notice that
there are usedOn elements that specify in which kind of relationships this linkrole may be used.

To create linkroles in a concept definitions file (main taxonomy file), in XBRL View, click the menu command
XBRL | Linkroles. This pops up the Link Roles dialog (screenshot below).

806

© 2018-2024 Altova GmbH

Basic Procedures 807XBRL

Altova XMLSpy 2024 Enterprise Edition

In the Taxonomies tab, select the taxonomy file from the dropdown list in the File combo box and click Add to
add a linkrole. Then specify the linkrole's URI and ID (refer to listing above). Now specify for which kinds of
relationships this linkrole should be available; do this by checking the check boxes of the required relationship
kinds (see screenshot above).

Example file: Step 6
Create two linkroles via the Link Roles dialog (XBRL | Linkroles) as described above and shown in the
screenshot above:

1. id="SegmentRevenueAndOperatingIncome"

URI="http://www.nanonull.com/taxonomy/role/SegmentRevenueAndOperatingIncome" (to be
used on definition, calculation, and presentation relationships)

2. id="FinancialStatements"

URI="http://www.nanonull.com/taxonomy/role/FinancialStatements" (to be used on calculation
and presentation relationships)

In the next step we will create relationships for the new taxonomy.

18.2.9 Creating Relationships: Part 1

Relationships are created in their respective tabs: Definitions, Presentation, Calculation. The way all three
kinds of relationships are created is similar, with the biggest difference being that definition relationships have
arcroles, while presentation relationships and calculation relationships do not have arcroles. In this section we
describe how to create relationships using definition relationships. In the next section we explain how
presentation and calculation relationships are different, as well as other features relating to relationships.

While reading the description below, we recommend that you open a finished taxonomy in XBRL View. You can
find the Nanonull taxonomy (nanonull.xsd) in the folder C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\XBRLExamples\Nanonull.

Adding the linkrole
Click the required relationships tab in the Main Window (Definitions, Presentation, Calculation). Then right-click
in the Main Window and select the Add Extended Link Role command. This adds a line containing the URI of
a default linkrole (screenshot below). Click the dropdown arrow at the right-hand side of this line to display a list
of available linkroles and select the required linkrole.

807

810

808 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If the required linkrole is not available, this is because it has not been defined either in the taxonomy or for the
current relationship kind. See Relationships and Linkroles for details about linkroles and how to create
them.

Any number of linkroles can be added.

Inserting element references and arcs within a linkrole
The first element to create within a linkrole is one from which a relationship will be created to another element
(see screenshot below). This will usually be an abstract element that groups other elements under it (for
example, an element for a balance sheet). This element will have no entry in the arcrole column because it is at
the from end of an arc. Arcroles are listed on the elements at the to end of an arc.

In the screenshot above the highlighted element is the inserted element reference. It has three arcs, one to a
hypercube element and two to item elements. These three elements are at the to end of their respective arcs
and the from-to relationship is defined by the corresponding arcoles, which are displayed in the Arcrole column.

To insert an arc on an element reference or element, right-click the from element and select Insert Arc from the
context menu that pops up. This causes the Insert Arc dialog (screenshot below) to appear. Select the element
to be created at the to end of the arc. To filter the view in this dialog, switch on the filter and specify a condition
for the filter (see Entry Helpers in XBRL View for a description of how to do this).

806

311

© 2018-2024 Altova GmbH

Basic Procedures 809XBRL

Altova XMLSpy 2024 Enterprise Edition

The element will be inserted with a default arcrole. You can change the arcrole by selecting an alternative from
the dropdown list of the arcrole (screenshot below).

Note: Elements, with arcs, can also be added by dragging them from the Global Elements entry helper.

Example file: Step 7
Create definition relationships as shown in the screenshots below using the method described above.

The screenshot above shows the elements to add with arcs. The screenshot below shows the arcroles of the
newly added elements.

You can compare the taxonomy you have created with that supplied with your XMLSpy package. The supplied
taxonomy (nanonull.xsd) is in the folder C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\XBRLExamples\Nanonull.

810 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.2.10 Creating Relationships: Part 2

The previous section, Creating Relationships: Part 1 , explained how to create relationships using definition
relationships to demonstrate the mechanism. Presentation relationships (screenshot below) and calculation
relationships are created in a similar way. The only difference is that there is no Arcrole column in presentation
and calculation relationships.

The following points should be noted:

· Presentation and calculation relationships can be considered to be a simple arc between two elements
in the manner of parent-child relationships. The arc icons signify this relationship. So inserting an arc
on an element is equivalent to creating a child element in the graphical representation. Using arcs,
therefore, a hierarchy can be built up.

· Elements can also be dragged from the Global Elements entry helper into the tree. These elements are
always dropped at the to position of an arc. An arrow appears when the element is in position to be
dropped.

· Calculation arcs have weight attributes that indicate how the value of the to element in the arc should
be summed (see screenshot below). For example, a weight value of +1.0 indicates that 100% of the
element's value should be added towards the value of the from (or summation) element. A value of -1.0
indicates that 100% of the value of should be subtracted from the value of the summation element.
Double-clicking the weight attribute value enables you to enter an optional value.

807

© 2018-2024 Altova GmbH

Basic Procedures 811XBRL

Altova XMLSpy 2024 Enterprise Edition

The weight attribute can also be modified in the Details entry helper (see below).

Prohibiting the use of an arc
All arcs, whether definition, presentation, or calculation, have a use attribute that can take a value of optional
or prohibited. When the value prohibited is used, the arc is negated.

Color and context menu
When elements have been created in the current taxonomy and can be edited, they are displayed in black.
Otherwise (when they are from imported taxonomies, which must not be edited) elements are displayed in
gray.

The following entries appear in context menus in the main window of the relationships tabs.

· Insert element reference: Available on extended linkroles. Adds an element under the linkrole that will
always be at the from end of arcs.

· Delete element reference: Available on element references immediately under a linkrole.
· Insert arc: Available on elements. Inserts an arc and pops up a dialog in which the element to be at the

to end of the arc can be selected.
· Set target role: Sets a target role on the selected element.
· Add label linkrole: Adds a label linkrole to the selected element.
· Add reference linkrole: Adds a reference linkrole to the selected element.
· Override arc: Replaces the (impicit) optional value of the use attribute of the arc with the prohibited

value, thus negating the arc.
· Remove arc: Removes the selected arc.
· Show in global elements: Highlights the selected element in the Global Elements entry helper.

812 XBRL Basic Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Details entry helper
When an element in a relationship is selected, arc attributes can be edited in the Details entry helper
(screenshot below).

Attributes which cannot be edited in the graphical display in the main window—such as order and priority—
can be edited in the Details entry helper.

© 2018-2024 Altova GmbH

Additional Procedures 813XBRL

Altova XMLSpy 2024 Enterprise Edition

18.3 Additional Procedures

The Additional Procedures section provides a round-up of miscellaneous useful features:

· Preferred Labels
· Typed Domains
· Duplicate Detection and De-Duplication
· Inline XBRL

18.3.1 Preferred Labels

Multiple labels can be assigned to a concept or generic resource (formulas, tables, etc). In a relationship arc,
the desired label of the target/child node is selected via that label's label role. The mechanism used is as
follows:

· If a preferred label is defined on the relationship arc, then this preferred label is used
· If no preferred label has been defined for a relationship, then the default label is used

The Generic Preferred Label 1.0 Recommendation add-on specification enable the gpl:preferredLabel

attribute to be defined on any arc in definitions, and in calculation, formula, and table linkbases. The value of
the attribute is the label role that should be used to select the label of the target node. As a result, preferred
labels are supported not only for presentation relationships (enabled by previous specifications), but for other
relationships (such as calculation relationships) as well.

Preferred labels
Preferred labels are defined by selecting the relationship in the main tab, and then, in the Details entry helper,
selecting the desired label role as the value of the Preferred Label property (see screenshot below). In the
screenshot below, notice that the second calculation relationship has two labels defined for it. In the Details
entry helper, the preferred label has been set to urn:mylabel. So this is the label that is used as the label of
the relationship. (In XMLSpy, you can specify, in the XBRL View Settings , that the label (instead of names)
is displayed in the display of concepts and/or resources.)

Note: In Table linkbases, the Preferred Label property will not be displayed for relationship nodes, aspect
nodes, and merged rule nodes since it is not possible to specify labels for these nodes.

813

814

815

816

1458

http://www.xbrl.org/Specification/genericPreferredLabel/REC-2013-05-08/genericPreferredLabel-REC-2013-05-08.html

814 XBRL Additional Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Default labels
If the Preferred Label property of a concept or resource is not defined, then the default label is used. Default
labels of concepts and resources are specified in the the XBRL View Settings dialog.

Label settings in XBRL View Settings
The XBRL View Settings dialog (screenshot below) is accessed via the menu command XBRL | View
Settings.

There are two settings in this dialog that are relevant to labels:

· You can specify that concepts and/or resources are displayed with their labels instead of their names.
· You can set defaults for concept labels and generic labels (which are used for resources).

18.3.2 Typed Domains

A typed domain is the element declaration that is referenced by a typed dimension. In the screenshot of the
Details entry helper below, for example, you can see that the typed dimension duriv:dPhone references the

typed domain duriv:phone.

1458

© 2018-2024 Altova GmbH

Additional Procedures 815XBRL

Altova XMLSpy 2024 Enterprise Edition

To see information about the referenced typed domain, click the Typed Domain tab (see screenshot below).
You can use the context menu commands of items in this tab to open the selected item in Schema View or
copy its location to the clipboard.

Note: The Typed Domain tab appears only when a typed dimension is selected that references a typed
domain.

18.3.3 Duplicate Detection and De-Duplication

The following support for the handling of duplicate facts in XBRL instance documents is available:

· In XBRL instance documents, a list of duplicate facts can be detected and listed in the Messages
window. Run the menu command XBRL | Detect Duplicates or XBRL | Detect Duplicates on Server
(high performance). See the description of the commands for more information.1465

816 XBRL Additional Procedures

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· When validating an XBRL instance document, you can specify that duplicate facts that affect
calculations be ignored for the validation. The setting to enable this is available as an XBRL validation
option .

· When formulas are executed, tables generated, or Inline XBRL transformed, duplicates that exist can
be ignored. This requirement can be specified in the XBRL Processing Options dialog .

Duplicates are determined on the basis of the rules set out in the Handling Duplicate Facts in XBRL and Inline
XBRL 1.0 specification.

18.3.4 Inline XBRL

Inline XBRL documents are HTML documents that contain XBRL data (which is marked up with XBRL tags).
You can validate the active Inline XBRL document (with the command XML | Validate) as well as process it
(with XBRL | Transform Inline XBRL). When you process the documents, you extract the XBRL data from the
HTML document.

Multiple Inline XBRL documents
You can also validate/process multiple Inline XBRL documents. Do this as follows:

1. Open the main Inline XBRL document so that it is the active document. The HTML tab appears in the
Info Window (see screenshot below).

2. In the HTML tab, click the menu button of Inline XBRL Document Set, then click Add Document (see
screenshot) and browse for the Inline XBRL files you want to add.

3. Run the validation or processing command.

1550

1468

118

http://www.xbrl.org/WGN/xbrl-duplicates/WGN-2018-04-19/xbrl-duplicates-WGN-2018-04-19.html
http://www.xbrl.org/WGN/xbrl-duplicates/WGN-2018-04-19/xbrl-duplicates-WGN-2018-04-19.html

© 2018-2024 Altova GmbH

XBRL Formula Editor 817XBRL

Altova XMLSpy 2024 Enterprise Edition

18.4 XBRL Formula Editor

The XBRL Formula, Variable and Filter specifications provide a syntax for expressing rules that can be used to
derive new fact values from the data in XBRL business reports. The generic label and reference specifications
support labeling of all manner of different XBRL constructs. In the context of XBRL formula, this labeling and
referencing can be used to associate human documentation with formulae, their variables and the filters that
define which facts in an XBRL business report get selected by a variable for usage in the evaluation of a
formula. The validation and the three assertion specifications define a syntax for expressing rules about the
expected content of business reports, in terms of variables, sets of variables and formulae. An introduction to
the syntax and semantics of XBRL formula can be found at Working Draft of XBRL Formula Overview 1.0

The XBRL Formula Editor of XMLSpy is implemented as part of the application's XBRL Taxonomy Editor. It is
available in the Formula tab of XBRL View (see screenshot below).

The Formula tab is used together with the Overview entry helper and Details entry helper to create and edit
formulas. The Overview entry helper is used to set the default linkbase for XBRL formulas (the file in which the
formulas will be saved by default), while the Details entry helper can be used to edit the properties and content
of formula components (although such editing can be carried out directly in the Formula tab).

18.4.1 Formula Linkbases and Link Roles

While standard XBRL linkbases (Definitions, Presentations, Calculations) define relationships between
concepts via locators and standard arcs in standard extended links, a formula linkbase defines formula
components (formulae, variables, filters, assertions, etc) and their relationships. These definitions are specified
via resources and generic arcs in generic extended links.

http://xbrl.org/WGN/XBRL-formula-overview/PWD-2011-12-21/XBRL-formula-overview-WGN-PWD-2011-12-21.html

818 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Adding a formula linkbase
In the Overview entry helper (screenshot below), right-click the taxonomy file or an existing linkbase and select
Add New Linkbase | Formula. The added linkbase will become the default formula linkbase file. The default
formula linkbase file is the file into which new formula definitions will be saved when the taxonomy file is saved.
If you wish to make another formula linkbase file the default formula linkbase, right-click it and select Set
Default Linkbase | Formula (see screenshot below).

Note that default linkbases are displayed in bold and that linkbases that have been modified but not yet saved
are marked with an asterisk.

The formula linkbase is displayed in the Formula tab.

Note: If a formula component is added to the taxonomy at a time when no formula linkbase exists, a
formula linkbase is created automatically.

Link Roles
As is the case with standard extended links (for Definitions, Presentations, Calculations), generic links must
define an extended link role value, which partitions relationships of the same type into disjoint networks. All
generic extended links with the same link role are combined under one link role node in the diagram in the
Formula tab, even if they reside in different linkbase files.

Generic link roles can be created in the diagram via the context menu of the background area (screenshot
below). Note, however, that this context menu will be displayed only if the View Option combo box of the
Formula tab has been switched to Show All Extended Link Roles.

819

© 2018-2024 Altova GmbH

XBRL Formula Editor 819XBRL

Altova XMLSpy 2024 Enterprise Edition

This menu is also available via the toolbar icon, Add Extended Link / Manage Linkroles. Since relationship
networks are not that important for a formula linkbase, the default view of the Formula tab is Hide Extended
Link Roles, which hides the link roles and, instead, shows the formula components without their link roles.

If there is no default formula linkbase file at the time the extended link role is created, a default formula linkbase
file will be created automatically. And if there is no link role in the default linkbase file at the time a link role is
created, then a link role will be created automatically in the default linkbase file.

18.4.2 Formula Components

New formula components are created via the context menu of a link role node (screenshot below); or, with the

view set to Hide Extended Link Roles, via the toolbar icon, Add New Formula Component.

The mechanisms involved in the addition of the various components are described in the sub-sections of this
section. After a formula component has been added, it is displayed in the diagram in the Formula tab (see
screenshot below).

820 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For reasons of clarity, formula components are divided into sections with relationships to other components
(the arcs) being displayed within a tree structure (see screenshot above).

The properties of components and of relationships (arcs) are shown in the diagram as icons to the left of the
component or arc respectively (see screenshot below).

For example, in the screenshot above, the Fact Variable component has three properties, BindAsSequence
(indicated by an S icon), Nils (N icon), and Matches (M icon). These are all boolean properties. The first
(BindAsSequence) has a value of true, which is indicated in the diagram by having no line through the icon.
The other two properties have a value of false (indicated by a line through each). The arc (below the variable)
has two properties, the first one is boolean false, the second boolean true.

In the Details entry helper of the Fact Variable (screenshot below), the variable's properties are listed under the
General section. The values of boolean properties are indicated by a check for true and no check for false.

© 2018-2024 Altova GmbH

XBRL Formula Editor 821XBRL

Altova XMLSpy 2024 Enterprise Edition

To see the properties of an arc in the Details entry helper select the to (destination) component in the diagram;
the arc's properties will be listed in the Arc section.

Context menus in the Formula Editor
The context menus of formula components vary according to the type of component. The menu items are
organized into sections, as follows:

· Content modification (for formulas, some filters, custom functions): for example, Append/Insert Aspect
Rule

· Relation modifications (for sub-items only): Override/Remove Arc
· Add Labels/References
· Creation of new child components (including relationships): for example, Add New Filter
· Deletion of component (including of relationships)
· Find Next/Previous Occurrence (of component)

Note: Content items that can be created or removed via the context menu are displayed in the Details entry
helper in additional sections, such as Concept Aspect Rule.

18.4.2.1 Assertions and Assertion Sets

There are three types of assertions:

· Value Assertions

822 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Existence Assertions
· Consistency Assertions

Value assertions
Value assertions are the most used formula linkbase feature, providing a way to check input XBRL instance
facts against an XPath expression. It provides the properties Aspect Model and Implicit Filtering as icons. The
value of the property test is an XPath expression.

Existence assertions
An existence assertion is useful for checks of static existence, such as to assure that document descriptive
facts such as form type, company identification, and filing identification are present. It provides the properties
Aspect Model and Implicit Filtering as icons. The value of the property test is an XPath expression.

Consistency assertions
A consistency assertion specifies how to determine whether an output fact, produced by the associated
formula, is consistent with all aspect matched facts in the input XBRL instance. It provides the Boolean
property strict as an icon. The values of the properties Absolute Acceptance Radius and Proportional
Acceptance Radius are XPath expressions.

Assertion satisfied/unsatisfied messages
These sub-components of assertions enable the association of messages with assertion evaluations: satisfied
messages with successful evaluations, unsatisfied messages with unsuccessful messages. These messages
can be added via the context menu of individual assertions.

Assertion-unsatisfied-severity relationships
An assertion is either satisfied or unsatisfied. However, since assertions have rules that are of a different
importance level, unsatisfied assertions are classified according to the severity of that particular assertion non-
satisfaction. There are three standard severity levels: ERROR, WARNING, and OK. The default severity is ERROR. It
is invoked when an assertion is not associated with a defined severity.

The assertion-unsatisfied-severity relationship is between an assertion and one of the defined severity
resources. It is expressed by an XLink arc with: (i) an arcrole value of http://xbrl.org/arcrole/PR/2015-
11-180/assertion-unsatisfied-severity, (ii) an assertion as its start resource; and (iii) a severity
resource as its end resource.

In the Taxonomy Editor, the severity relationship can be specified by clicking the Severity icon of the
Assertion component in the diagram (see screenshot below), and then selecting the severity level from the
popup that appears. Alternatively, the severity level can be selected in the Detail entry helper of the Assertion
(see screenshot).

© 2018-2024 Altova GmbH

XBRL Formula Editor 823XBRL

Altova XMLSpy 2024 Enterprise Edition

Assertion Sets
An assertion set contains one or more assertions. The context menu of an assertion set allows the addition of
individual assertions to the assertion set.

18.4.2.2 Formulas

A formula expresses a set of rules for constructing an output XBRL fact by transforming the values to which the
variables in the formula's variable set have evaluated. The values of the variables are obtained from an input
XBRL instance and its supporting DTS or from the application processing the formula.

The value rule is an XPath expression that yields the value to be assigned to the fact. It can be a simple
expression, such as a constant, or it can contain terms which refer to variables and parameters of the variable
set, chained values from other variable sets, and/or computed values from custom and built-in functions.

In XBRL, non-fraction numeric facts are reported with information about their accuracy in the form of a
precision/decimals attribute. Therefore formulae may contain accuracy rules governing the determination of the
accuracy to be asserted for an output fact.

Along with rules for determining output fact values and their precision, formulae specify or imply aspect rules
that determine values for all of the output aspects required to interpret output values. Rules for determining the
output concept, the output context, and the output units of measurement (for numeric facts) are all different
types of aspect rules.

An aspect may be obtained (in part or full) from a bound variable of the evaluation by specifying a source. The
source may be specified on a rule or may be inherited from a source on the formula (or tuple) element. When
there are multiple sources, the nearest one to an aspect rule prevails.

When a formula is inserted, it has no accuracy or aspect rule (screenshot below).

824 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Accuracy and aspect rules are defined within the formula’s content and are added (or removed) via the context
menu. The screenshot below shows a formula with all possible accuracy and aspect rules.

In the Details entry helper, accuracy and aspect rules are displayed in additional sections.

Accuracy rule
Kind: precision or decimals
Value: XPath expression

Aspect rules
Aspect rules are grouped by kind.

Concept rules
Kind: qname, expr, or source
Value: Concept’s QName, XPath expression, or source variable (or the uncovered QName)

© 2018-2024 Altova GmbH

XBRL Formula Editor 825XBRL

Altova XMLSpy 2024 Enterprise Edition

Entity identifier rules
Source: source variable (or the uncovered QName)
Scheme/value: XPath expressions

Period rules
Kind: instant, duration, forever or source
Value: Value’s XPath expression, start/end/source, no value or source variable (or the uncovered QName)

Explicit dimension rules
Dimension: QName of the dimension, affected by the explicit dimension rule.
Kind: qname, exp, omit or source
Value: Member’s QName, Member’s XPath expression, no value or source variable (or the uncovered QName)

Typed dimension rules
Dimension: QName of the dimension, affected by the typed dimension rule.
Kind: xpath, value, omit or source
Value: XPath expression, XML element, no value or source variable (or the uncovered QName)

Open context component rules
OCC rules are grouped by kind, that is, by segment OCC rules and scenario OCC rules.
Source: Source variable defined in the first OCC rule.
For each OCC rule:
Kind: empty, fragments, or xpath
Value: No value, XML elements, or XPath expression

Unit rules
The Boolean flag Augment specifies whether the source aspect value has to be used or not.
For each unit multiplication/division rule:
Kind: *measure, /measure or *source, /source
Value: Measure’s XPath expression or source variable (or the uncovered QName)

18.4.2.3 Parameters

A parameter can be referenced in XPath expressions. It provides a Required flag. If set, the parameter is
mandatory, that is, its value must be supplied by the processing application. If the parameter is not mandatory
and no value is supplied by the processing application, then the supplied value may be computed using the
XPath expression given in the property Select. The optional property As specifies the datatype required by the
parameter.

826 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.4.2.4 Variables

Variables declare a way of binding input data, usually fact items, to a name that can be referenced by variable
name, such as from within an assertion or formula expression. Variables that bind to input fact items are fact
variables and use filters to declare what they can bind to in the input. General variables are used for
intermediate expression results and other kinds of processing.

General variable
A general variable provides the Boolean property Bind As Sequence as an icon. The value of the property
Select is an XPath expression.

Fact variable
A fact variable provides the Boolean properties Bind As Sequence, Nils, and Matches as icons. The value of the
property Fallback Value is an XPath expression.

18.4.2.5 Filters

A filter defines selection criteria for facts in the input XBRL instance, that is, the XBRL instance that variables
are evaluated against. Filters express criteria that can be applied to input facts. Some filters may have XML
content displayed in sub-lines.

Aspect cover
These filters do not perform any "filtering", and thus have no implied XPath expression. They are processed or
applied after other filters (such as concept and dimension) and override the cover state of aspects resulting from
the application of the other filters.

One or more aspect items
Kind: aspect, dim-qname/excl-dim-qname or dim-exp/excl-dim-exp
Value: aspect kind (enum), dimension’s QName or XPath expression
Items are displayed in entry helper Details in additional sections.

Boolean filters
Boolean filters are related to sub-filters.
The and-filter matches facts based upon criteria expressed by each one of its sub-filters.

© 2018-2024 Altova GmbH

XBRL Formula Editor 827XBRL

Altova XMLSpy 2024 Enterprise Edition

The or-filter matches facts based upon criteria expressed by any one of its sub-filters.

Concept name
The concept name filter matches facts based upon the names of their concepts.

One or more concepts:
Kind: qname or exp
Value: concept’s QName or XPath expression
Concepts are displayed in entry helper Details in additional sections.

Concept data type
The concept data-type filter can be used to match facts based upon its XML Schema data type.

Boolean flag: “strict” specifies whether the fact’s data-type must be un-derived or not.
Kind: qname or exp
Value: data-type’s QName or XPath expression

Concept substitution group
The concept substitution-group filter can be used to match facts based on its XML Schema substitution group.

Boolean flag: “strict” specifies whether the fact’s concept must specify the element in its @substitutionGroup
attribute directly or not.
Kind: qname or exp
Value: substitution-group’s QName or XPath expression

Concept period type
The concept period-type filter can be used to match facts based on whether they report values for duration-type
or instant-type concepts, as determined by the @xbrli:periodType attribute.

Concept balance
The concept balance filter can be used to match facts based on whether they have an @xbrli:balance attribute
and whether it has a value of debit or credit.

828 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Concept custom attribute
The concept custom-attribute filter can be used to match facts based on the existence or value of a custom
attribute in each concept's declaration.

Kind: qname or exp
Value: attribute’s QName or XPath expression
Concept relation
The concept relation filter matches facts based upon the effective relationships of their concepts to the source
concept, in a specified linkrole URI network of effective relationships, of a specified arcrole URI, on a specified
axis, inclusive of specified generations, and meeting an optional test expression.

Source: Kind = variable, qname or exp
Linkrole: Kind = uri or exp
Linkname: Kind = none, qname or exp
Arcrole: Kind = uri or exp
Arcname: Kind = none, qname or exp

Explicit dimension
An explicit dimension domain is defined in the context of a given DTS as the set of all domain members in the
union of all domains of valid members of the filter dimension. The explicit dimension filter can be used to match
facts with any one of the domain members in an explicit dimension domain as the value for that explicit
dimension.

Dimension kind: qname or exp
One or more members:
Kind: variable, qname or exp
Members are displayed in entry helper Details in additional sections.

© 2018-2024 Altova GmbH

XBRL Formula Editor 829XBRL

Altova XMLSpy 2024 Enterprise Edition

Typed Dimension
The typed dimension filter can be used to match facts based upon the value for a typed dimension.

Dimension kind: qname or exp

Entity identifier filter
The entity identifier filter can be used to match facts based upon characteristics of the entity identification
scheme and/or the entity identification value.

Specific entity scheme
The specific entity-scheme filter can be used to match facts based upon whether they report values for the
scheme identified by the filter.

Regular expression entity scheme
The regular-expression entity-scheme filter can be used to match facts based upon regular patterns in the text
of the entity scheme.

Specific entity identifier
The specific entity-identifier filter can be used to match facts based upon whether they report values using the
entity identifier value given by the filter.

Regular expression entity identifier
The regular-expression entity-identifier filter can be used to match facts based upon regular patterns in the text
of the entity identifier value.

General
The general filter does not cover any aspect.

Match concept
The concept matching filter can be used to select facts that report values for the same concept.

830 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Match location
The location matching filter can be used to select facts that have the same parent element.

Match unit
The unit matching filter can be used to select facts that have the same unit.

Match entity identifier
The entity-identifier matching filter can be used to select facts with the same entity identifier.

Match period
The period matching filter can be used to select facts that have the same period.

Match dimension
The dimension matching filter can be used to select facts that have the same value for a specified XBRL
Dimension.

Match complete segment
The complete-segment matching filter can be used to select facts that have the same segment, where the
content of the segment is not interpreted based on the XBRL Dimensions Specification.

Match non-XDT segment
The non-XDT segment matching filter can be used to select facts that have the same segment, after excluding
any XBRL Dimensions Specification content from the comparison.

Match complete scenario
The complete-scenario matching filter can be used to select facts that have the same scenario, where the
content of the scenario is not interpreted based on the XBRL Dimensions Specification.

Match non-XDT scenario
The non-XDT scenario matching filter can be used to select facts that have the same scenario, after excluding
any XBRL Dimensions Specification content from the comparison.

Period
The period filter can be used to match facts based upon a broad range of criteria relating to the period over
which or at which they have been measured.

© 2018-2024 Altova GmbH

XBRL Formula Editor 831XBRL

Altova XMLSpy 2024 Enterprise Edition

Period start
The period-start filter can be used to match facts based upon the start of the duration over which they have
been measured.

Period end
The period-end filter can be used to match facts based upon the end of the duration over which they have been
measured.

Period instant
The period-instant filter can be used to match facts based upon the instant at which they have been measured.

Period forever
The forever filter can be used to match facts that are reported with a forever period.

Period instant duration
The instant-duration filter can be used to match facts that are reported at an instant where that instant matches
the start or end of the duration for which another fact has been reported.

Relative
The relative filter can be used to select facts for which the aspects that are covered by the relative filter, have
values that match the corresponding aspects of another fact. The fact that is being matched to by the relative
filter must be the evaluation result of another fact variable in the variable set being evaluated.

Segment
The segment filter can be used to match facts that have non-XDT content satisfying specified constraints. Non-
XDT content refers to segment content that is not based upon the explicit or typed dimensions defined in the
XBRL Dimensions Specification.

832 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Scenario
The scenario filter can be used to match facts that have non-XDT content satisfying specified constraints. Non-
XDT content refers to scenario content that is not based upon the explicit or typed dimensions defined in the
XBRL Dimensions Specification.

Tuple parent
The parent filter can be used to select facts that have a specified parent element.

Kind: qname or exp

Tuple ancestor
The ancestor filter can be used to select facts that have a specified ancestor element.

Kind: qname or exp

Tuple sibling
The sibling filter can be used to select facts that are siblings of another fact.

Tuple location
The location filter can be used to select facts that have a specified location relative to the location of another
fact.

Unit single measure
The single-measure unit filter can be used to match facts that are reported with a unit that is specified by a
single measure.

© 2018-2024 Altova GmbH

XBRL Formula Editor 833XBRL

Altova XMLSpy 2024 Enterprise Edition

Kind: qname or exp

Unit general measures
The general unit filter can be used to select facts based on criteria that involve a number of unit measures.

Value nil
The nil filter can be used to match facts that are reported as nil.

Value Precision
The precision filter can be used to match facts based on their having a minimum actual or inferred precision,
noting that precision can be inferred from the value of the @decimal attribute. Note that the precision filter will
not select facts if the filter implies an infinite minimum required precision. The filter will also not select non-
numeric facts or facts that are reported with a nil value.

18.4.2.6 Preconditions

Preconditions provide a way of determining if a set of bound variables can activate a formula value and output
fact or an assertion value test or existence count.

18.4.2.7 Functions

A custom function is an XPath function that is not defined in the XPath and XQuery Functions specification and
that is also not defined in the XBRL Functions registry. Custom functions may be used within XPath
expressions.

Function Signature
The function signature is as in the screenshot below.

834 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The child elements, if any, of a custom function signature specify the data types of the custom function's input
parameters. The ordering of the custom function's input parameters matches the document order of the child
elements of the custom function signature.

Inputs are displayed in the Details entry helper in additional sections.

Function Implementation
The function implementation is as in the screenshot below.

A custom function implementation (CFI) contains a sequence of child elements that serve to define names for
the function inputs, to express the XPath expressions that comprise the custom function implementation, and
to define the custom function output.

A Function-Implementation relationship is a relationship between a custom function signature and a custom
function implementation. Since a function implementation has to be the target of a function-implementation
relationship, it is always displayed under the corresponding function signature. If the relationship is missing (or
the signature is defined under a different linkrole), the implementation is shown directly under the Functions
section.

Inputs and steps are displayed in the Details entry helper in additional sections.

18.4.2.8 Equality Definitions

An equality definition is a definition of equality between any two values in a typed-dimension domain definition.
A typed-dimension domain definition is the element in an XML Schema that defines the content model for a
typed dimension and that is identified as such by an @xbrldt:typedDomainRef attribute on the XML Schema
element declaring a typed dimension. An equality-definition relationship, which is the relationship between a
typed-dimension domain definition and an equality definition, is displayed as reverse relation between the
equality definition and the corresponding typed dimension.

© 2018-2024 Altova GmbH

XBRL Formula Editor 835XBRL

Altova XMLSpy 2024 Enterprise Edition

An equality-definition relationship can be established by dragging a typed dimension from the Global Elements
entry helper onto an equality definition component. Note that neither the equality definition nor the typed
dimension may be involved in an existing equality-definition relationship yet.

18.4.3 Editing Component Properties and Content

The properties of formula components can be edited directly in the diagram or in the Details entry helper.

In the diagram, when a component is collapsed, either its name (if it has one), or the value of the appropriate
default property is displayed in gray next to the component’s description text. Double-clicking the component
expands it. Double-clicking a property puts the property in editing mode. If a property or content contains an
XPath expression, the Edit XPath expression pops up.

When editing XML content, such as the content of Value within a formula's Typed Dimension Aspect Rule or
the content of Fragments within a formula's OCC Aspect Rule, the Edit XML dialog (screenshot below) pops
up. (Right-click a formula to add an aspect rule.)

836 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

After entering XML text and clicking OK, the XML text will be entered as content in the property. If the XML text
is not well-formed, a message to this effect pops up and the text will not be allowed.

18.4.4 Formula Component Relationships

A relationship between two formula components can be created by linking one formula component to another
via drag-and-drop. The relationships are shown with arcs in the diagram (see screenshot below).

The following display and editing possibilities exist:

· The order of a component’s children depends on the values of the arc-property Order, which can be
modified by by moving children via drag-and-drop (see screenshot above).

· A child component can be dragged onto or under a different parent component in order to copy or move
the relation (and its properties).

· When creating a new component via the context menu of an existing (parent) component, the
relationship (arc) is also generated automatically.

· The commands Override Arc and Remove Arc in a child component’s context menu serve to,
respectively, override and remove the relationship between the component and its parent.

· As with concept relations, multiple arcs of overridden relations are displayed in sub-lines (see
screenshot above).

Note: The arcrole of formula component relationships cannot be modified.

© 2018-2024 Altova GmbH

XBRL Formula Editor 837XBRL

Altova XMLSpy 2024 Enterprise Edition

Variable-set relationships
A variable-set relationship is a relationship between (i) a variable-set resource (a value assertion, existence
assertion, or formula) and (ii) a variable (fact variable or general variable) or a parameter. The Name of a variable
or parameter is displayed in front of the arc icon (screenshot below).

Variable-filter relationships
A variable-filter relationship is a relationship between a fact variable and a filter. If the Boolean flag Complement
(a C icon in the diagram) is set, the relationship is a complemented variable-filter relationship. If the Boolean flag
Cover (a V icon in the diagram) is set, the relationship is a covering variable-filter relationship (shown in the
screenshot below). In this case the filter covers aspects of the facts being filtered.

Variable-set-filter relationships
A variable-set-filter relationship (see screenshot below) is a relationship between a variable-set resource and a
filter. A filter participating in a variable-set-filter relationship is, by definition, associated with each of the fact
variables in the variable set defined by the resource that it is related to. The Boolean flag Complement specifies
whether variables use the filter complement. All filters that are associated with fact variables by variable-set-
filter relationships, by definition, do not cover any aspects.

Building formulas visually in Table Layout Preview
XBRL Taxonomy developers can also take advantage of XBRL Table Preview for a point-and-click approach to
building XBRL Formulas. This functionality is explained in the section, Building Formulas in Table Layout
Preview .

18.4.5 Formula Parameters

XBRL parameters can be used in XPath expressions in formulas and in table definitions. Parameters that will
be used as formula parameters (residing in the formula linkbase) are created in the Formula tab, while table
parameters (residing in the table linkbase) are created in the Table tab. Both formula parameters and table

871

838 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

parameters can be local or global. Local parameters are essentially global parameters that are linked to the
respective component (formula or table) at the time of its creation. Local parameters are created by right-
clicking the component (formula or table) and selecting Add New Parameter, while global parameters are
created by right-clicking in a blank area of the respective tab and selecting Add New Parameter. This adds a
new parameter named parameter in the diagram (the screenshot below shows a global parameter). To change
the parameter name, double-click the name and edit it.

Every parameter has a Required flag. If set, the parameter is mandatory, that is, its value must be supplied by
the processing application. If the parameter is not mandatory and no value is supplied by the processing
application, then the supplied value may be computed using the XPath expression given in the property Select.
Double-click in the Select field to enter an XPath expression. This value will be the default value of the
parameter. The optional property As specifies the datatype required by the parameter. Choose a datatype from
the dropdown list of the combo box.

In the case of parameters that will be used as table parameters, you can edit the parameter's datatype and
provide a parameter value that overrides the default value. To do this, click XBRL | Parameter Values. Then, in
the dialog that appears (screenshot below), enter a parameter value. This value will override the default value.
Since parameters that are used as table parameters can take multiple values, you can add additional
parameter values for a parameter by clicking the + icon in the Value column.

© 2018-2024 Altova GmbH

XBRL Formula Editor 839XBRL

Altova XMLSpy 2024 Enterprise Edition

The values of global parameters as assigned in this dialog are evaluated for table parameters only. Values of
parameters used in formulas are not editable in this dialog.

18.4.6 Finding Formula Components

Formula components can be found using their IDs and by navigating through the occurrences of the component
in the document.

Find formula component by id
In taxonomies with large formula linkbases containing several components of the same kind, it might be helpful
to search for a component by its ID. The menu command XBRL | Find Formula Component By Id enables a
search by ID.

840 XBRL XBRL Formula Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

On clicking the command a dialog pops asking for the ID to find.

Find component occurrences
Most formula components are displayed within the formula linkbase diagram multiple times: (i) the definition,
which is located directly under the appropriate section node, and (ii) all references to the component (via
relationships). The commands Find Next Occurrence and Find Previous Occurrence in the component's
context menu (screenshot below) navigate to all places where that formula component is referenced.

These commands can also be accessed via their toolbar icons (screenshot below).

When the component’s definition is reached, a message to that effect is displayed.

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 841XBRL

Altova XMLSpy 2024 Enterprise Edition

18.5 XBRL Table Definitions Editor

The XBRL specifications provide for a table linkbase that supplements the presentation linkbase. Tables provide
an alternative way to define views of concepts defined in XBRL taxonomies. Rather than showing concepts as a
hierarchy—as the presentation linkbase does—it enables tables to be defined with multiple axes. The
components of axes need not be limited to individual items, but can be defined in terms of a combination of
dimensions, time period references, units, entities, or any other property that can be used to identify the
financial facts represented by taxonomies. An introduction to the syntax and semantics of XBRL table
linkbases can be found at XBRL Table Linkbase Overview 1.0 and at Table Linkbase 1.0 Recommendation of 18
March 2014.

XMLSpy follows the Table Linkbase 1.0 Recommendation of 18 March 2014, and uses the namespace
http://xbrl.org/2014/table.

While the standard XBRL linkbases (presentation, calculation, definition) define relations between concepts via
locators and standard arcs in standard extended links, a table linkbase contains components (tables,
breakdowns, definition nodes, etc) and their relations via resources and generic arcs in generic extended links.
The table linkbase specification defines a sequence of three models and processes for transforming each
model into the next. The three models are: the definition model, the structural model and the layout (or
rendering) model. The definition model is a model of the semantic content of the table linkbase. Tables are
defined by their axes, and axis definitions are in turn composed of trees of definition nodes.

The XBRL Table Definitions Editor of XMLSpy is implemented as part of the application's XBRL Taxonomy
Editor. It is available in the Table tab of XBRL View (see screenshot below).

http://www.xbrl.org/wgn/table-linkbase-overview/wgn-2014-03-18/table-linkbase-overview-wgn-2014-03-18.html
http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html
http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html
http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html

842 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Table tab is used together with the Overview entry helper and Details entry helper to create and edit table
definitions. The Overview entry helper is used to set the default linkbase for XBRL tables (the file in which the
table definitions will be saved by default), while the Details entry helper can be used to edit the properties and
content of table components. The Table tab itself also enables the direct editing of table definitions.

XBRL Table Layout Preview
In order to preview the layout of a table definition, XBRL Taxonomy Editor provides an XBRL Table Layout
Preview pane in Table tab of XBRL View (see screenshot below). When a table or table component is selected
in the diagram, a preview of the table is shown in the Table Layout Preview pane below the diagram (see
screenshot below). Alternatively, you can select a table from the dropdown list of the preview pane's combo
box. This is a list of tables in the table linkbase.

For more information about the preview feature, see the following sections:

· Table Structure
· Table Parameters
· Table Layout Preview

18.5.1 Table Linkbases and Link Roles

While standard XBRL linkbases (Definitions, Presentations, Calculations) define relationships between
concepts via locators and standard arcs in standard extended links, a table linkbase defines table components
(tables, breakdowns, definition nodes, etc) and their relationships. These definitions are specified via resources
and generic arcs in generic extended links.

844

865

869

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 843XBRL

Altova XMLSpy 2024 Enterprise Edition

Adding a table linkbase
In the Overview entry helper (screenshot below), right-click the taxonomy file or an existing linkbase and select
Add New Linkbase | Table. The added linkbase will become the default table linkbase file. The default table
linkbase file is the file into which new table definitions will be saved when the taxonomy file is saved. If you wish
to make another table linkbase file the default table linkbase, right-click it and select Set Default Linkbase |
Table (see screenshot below).

Note that default linkbases are displayed in bold and that linkbases that have been modified but not yet saved
are marked with an asterisk.

The table linkbase is displayed in the Table tab.

Note: If a table component is added to the taxonomy at a time when no table linkbase exists, a table
linkbase is created automatically.

Link Roles
As is the case with standard extended links (for Definitions, Presentations, Calculations), generic links must
define an extended link role value, which partitions relationships of the same type into disjoint networks. All
generic extended links with the same link role are combined under one link role node in the diagram in the
Table tab, even if they reside in different linkbase files.

Generic link roles can be created in the diagram via the context menu of the background area (screenshot
below). Note, however, that this context menu will be displayed only if the View Option combo box of the Table
tab has been switched to Show All Extended Link Roles.

858

844 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

This menu is also available via the toolbar icon, Add Extended Link / Manage Linkroles. Since relationship
networks are not that important for a table linkbase, the default view of the Table tab is Hide Extended Link
Roles, which hides the link roles and, instead, shows the table components without their link roles.
If there is no default table linkbase file at the time the extended link role is created, a default table linkbase file
will be created automatically. And if there is no link role in the default linkbase file at the time a link role is
created, then a link role will be created automatically in the default linkbase file.

18.5.2 Table Structure

The structure of a table in the table definition is defined by the table's axes (X,Y,Z) , each of which corresponds
to one or more breakdown components (see screenshot below).

· The X and Y axes correspond, respectively, to the columns and rows of the generated table. They are
described in the section, X and Y Axes .

· If a Z axis is defined, it is presented as a separate table. See the section, Z Axis .
· Each breakdown component can contain multiple table definition nodes (see screenshot below). There

are different types of definition nodes:

— rule nodes (RN icon in the screenshot below)
— concept relationship nodes (CN)
— dimension relationship nodes (DN), and
— aspect nodes (AN).

See the section Definition Nodes for a description of the structural properties of these definition
nodes.

Projections for multiple breakdowns
Multiple independent breakdowns may be associated with a single table axis. The mechanism for resolving how
multiple breakdowns combine into a single “effective” breakdown is called projection. The relative priority of
multiple breakdowns for a single axis is determined by the @order attribute of each breakdown. The
breakdowns are visualized as trees. For each leaf of the first breakdown, the entire second breakdown is
attached, and so on, recursively.

845

856

847

http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html#sec-layout-projection

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 845XBRL

Altova XMLSpy 2024 Enterprise Edition

In the screenshot below, for example, there are two breakdowns for the X axis: dimension D is ordered at a

higher priority than dimension E. So, for each leaf of dimension D (d1 and d2) the entire tree of dimension E

is attached. Since the X axis generates columns, these breakdowns create a projection for the column
structure of the table. See the table layout preview in the screenshot below.

18.5.2.1 X and Y Axes

The X and Y axes determine, respectively, the columns and rows of a table. For each axis, one or more
hierarchical breakdowns are defined (see screenshot below). The breakdown/s corresponding to a single axis
are resolved into a single “effective” breakdown. If there is only one breakdown for an axis, then this breakdown
will be the effective breakdown. If there are multiple breakdowns defined for an axis, the resolution method is as
described further below in Projections for multiple breakdowns .846

846 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note the following axes-related properties and editing features:

· In table definitions, the X axis corresponds to columns of the generated table, while the Y axis
corresponds to the table rows (in the screenshot above, see the table layout preview).

· Each axis can have one or more breakdowns (see Projections for multiple breakdowns below).
· Each cell in the generated table has an orange-yellow background color. In the table definition, a cell

corresponds to a definition node in a breakdown of the axis.
· When a cell is selected its corresponding definition node is also selected, and vice versa. The

background color of cells of selected components is purple.
· When a component is selected, its properties are displayed in the Details entry helper and can be

edited there (see screenshot above).
· Data cells have no background color. They are always empty because the taxonomy itself does not

contain any facts.
· Cell constraints are calculated from the axes (using tag selectors if present) and displayed in the

Constraints tab of the Details entry helper. See the screenshot in the section, Z Axis .

Projections for multiple breakdowns
Multiple independent breakdowns may be associated with a single table axis. The mechanism for resolving how
multiple breakdowns combine into a single “effective” breakdown is called projection. The relative priority of
multiple breakdowns for a single axis is determined by the @order attribute of each breakdown. The
breakdowns are visualized as trees. For each leaf of the first breakdown, the entire second breakdown is
attached, and so on, recursively.

In the screenshot below, for example, there are two breakdowns for the X axis: dimension D is ordered at a

846

856

http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html#sec-cell-constraints
http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html#sec-layout-projection

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 847XBRL

Altova XMLSpy 2024 Enterprise Edition

higher priority than dimension E. So, for each leaf of dimension D (d1 and d2) the entire tree of dimension E

is attached. Since the X axis generates columns, these breakdowns create a projection for the column
structure of the table. See the table layout preview in the screenshot below.

18.5.2.2 Definition Nodes

Each breakdown component can contain multiple table definition nodes (see screenshot below).

There are different types of definition nodes:

848 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Rule nodes (RN icon in the screenshot above)

· Concept relationship nodes (CN)

· Dimension relationship nodes (DN)

· Aspect nodes (AN)

18.5.2.2.1 Rule Nodes

A rule node defines aspect rules for one or more aspects: concept, period, unit, entity identifier, dimension, or
open content aspect. The component in the definition tree corresponds with exactly one cell in the layout if the
rule node is abstract or has no children. Otherwise, the layout contains an additional roll-up cell whose
placement is determined by the effective value of the rule node's property parentChildOrder:

The header of the layout cell is calculated from the rule node as follows:

· If the node is associated with a user-defined label, this label's text is displayed.
· If there is no label, but the node defines a single aspect constraint (concept, dimension, unit, entity-

identifier, or period), its value is shown (for example, the concept's qualified name).
· Otherwise, the static text Rule node is used.

848

852

852

856

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 849XBRL

Altova XMLSpy 2024 Enterprise Edition

Details entry helper
The definition node's properties are shown in the Details tab of the Details entry helper (screenshot below left).
The Constraints tab (screenshot below right) provides a read-only view of the aspect constraint set/s that are
calculated from the rule node's aspect rules.

850 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 851XBRL

Altova XMLSpy 2024 Enterprise Edition

Merged rule nodes
A merged rule node indicates additional properties which apply to all of its children, that is, it contributes all of
its constraints to every constraint set produced by its children (see screenshot below).

852 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.5.2.2.2 Relationship Nodes

A concept or dimension relationship node resolves into a tree of structural nodes, defined by networks of
concepts or explicit dimension members in the DTS. Therefore the component in the definition tree corresponds
with a block of cells in the layout.

The screenshot at left shows a table definition containing a concept relationship node. The screenshot at right
shows the corresponding network of concepts, in this case defined in the presentation linkbase.

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 853XBRL

Altova XMLSpy 2024 Enterprise Edition

854 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 855XBRL

Altova XMLSpy 2024 Enterprise Edition

856 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

A relationship node has exactly one aspect constraint: concept or explicit dimension. Therefore the header of
each layout cell is the concept's label (if it exists) or its qualified name. The Details tab of the Details entry
helper shows the properties of the relationship node, whereas the Constraints tab provides the aspect
constraint (set) that is defined by the cell focused in the layout.

18.5.2.2.3 Aspect Nodes

An aspect node is an open definition node which directly specifies a single participating aspect. During the
layout process an aspect node expands to a cell for each distinct value of its participating aspect that is
present among the facts of an XBRL instance file. Since the aspect value constraint is not fully determined by
the node’s definition and the DTS, the layout preview shows a place holder (see screenshot below).

18.5.2.3 Z Axis

If a table definition contains a Z axis, this axis will be interpreted as a multiple two-dimensional table. In the
Table Layout Preview, the Z axis is displayed as a separate table above the XY table (see screenshot below).

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 857XBRL

Altova XMLSpy 2024 Enterprise Edition

If a table definition contains a Z axis, then at all times in the table preview, the focus will always be on two data
cells (see screenshot above). Coordinates for all three axes are specified in this way: the X and Y coordinates
in the XY table, and the Z coordinate in the Z table. You can see this in the screenshot above.

The axis-related properties and editing features are the same as for the X and Y axes . Cell constraints are
calculated from the axes (using tag selectors if present) and displayed in the Constraints tab of the Details
entry helper (see screenshot above).

Projections for multiple breakdowns
Multiple independent breakdowns may be associated with a single table axis. The mechanism for resolving how
multiple breakdowns combine into a single “effective” breakdown is called projection. The relative priority of
multiple breakdowns for a single axis is determined by the @order attribute of each breakdown. The

845

http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html#sec-cell-constraints
http://www.xbrl.org/specification/table-linkbase/REC-2014-03-18/table-linkbase-REC-2014-03-18.html#sec-layout-projection

858 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

breakdowns are visualized as trees. For each leaf of the first breakdown, the entire second breakdown is
attached, and so on, recursively.

In the screenshot below, for example, there are two breakdowns for the X axis: dimension D is ordered at a

higher priority than dimension E. So, for each leaf of dimension D (d1 and d2) the entire tree of dimension E

is attached. Since the X axis generates columns, these breakdowns create a projection for the column
structure of the table. See the table layout preview in the screenshot below.

18.5.3 Table Components

New table components are created via the context menu of a link role node (screenshot below); or, with the

view set to Hide Extended Link Roles, via the toolbar icon, Add New Table Component.

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 859XBRL

Altova XMLSpy 2024 Enterprise Edition

The mechanisms involved in the addition of the various components are described in the sub-sections of this
section. After a table component has been added, it is displayed in the diagram in the Table tab (see
screenshot below).

For reasons of clarity, table components are divided into sections with relationships to other components (the
arcs) being displayed within a tree structure (see screenshot above). The properties of components and of
relationships (arcs) are shown in the diagram as icons to the left of the component or arc respectively (see
screenshot above).

860 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Details entry helper of the Rule Node highlighted in the screenshot above is shown below. The node's
properties are listed under the General section. The values of boolean properties are indicated by a check for
true and no check for false. Additional sections list other details related of the node.

To see the properties of an arc in the Details entry helper select the to (destination) component in the diagram;
the arc's properties will be listed in the Arc section.

Context menus in the Table Editor
The context menus of table components vary according to the type of component. The menu items are
organized into sections, as follows:

· Relation modification (for sub-items only): Override/Remove Arc
· Content modification (rule node, relationship nodes): for example, Append/Insert Aspect Rule
· Add Labels/References
· Creation of new child components (including relationships): for example, Add New Breakdown
· Deletion of component (including of relationships)
· Find Next/Previous Occurrence (of component)

Note: Content items that can be created or removed via the context menu are displayed in the Details entry
helper in additional sections, such as Rule Set.

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 861XBRL

Altova XMLSpy 2024 Enterprise Edition

18.5.3.1 Table

A table provides the property parent-child-order (parent-first/children-first). It defines the default placement
of roll-up nodes contributed by all closed definition nodes in the table for which it is not overridden.

18.5.3.2 Breakdown

A breakdown provides the property parent-child-order (parent-first/children-first). It defines the default
placement of roll-up nodes contributed by all closed definition nodes in the breakdown and overrides the value
inherited from the table.

18.5.3.3 Definition Node: Rule

A rule node is a closed definition node that defines constraints via aspect rules (see formula component). A rule
node defines zero or more rule sets, that is, sets of aspect rules. Each rule set may specify a tag. At most,
one of these rule sets may omit the tag. This untagged rule set is always displayed before all tagged rule sets.
An empty untagged rule set is not displayed if at least one tagged rule set is present. A rule node provides two
Boolean properties, abstract and merge, as icons. The screenshot below shows a rule node without aspect
rules.

18.5.3.4 Definition Node: Concept Relationship

A concept relationship node discovers concepts by performing a tree walk of an XBRL 2.1 network. The tree
walk is uniquely identified by the network and one or more relationship sources. A concept relationship node
has to identify a single network. In most cases, the combination of link role and arc role is sufficient to
unambiguously identify the network, but it may be necessary to specify additional information such as the arc
name or the name of the extended link.

862 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Arcrole: Kind = uri | exp
Arcname: Kind = none | qname | exp
Linkrole: Kind = none | uri | exp
Linkname: Kind = none | qname | exp
Source: Kind = qname | exp
Axis: Kind = none | value | exp
Generations: Kind = none | value | exp

Concept relationship nodes cannot have sub-trees.

18.5.3.5 Definition Node: Dimension Relationship

A dimension relationship node describes a tree of explicit dimension members in terms of a tree walk of a
dimensional relationship set (DRS). This tree walk is uniquely identified by one or more relationship sources.

Linkrole: Kind = none | uri | exp
Source: Kind = qname | exp
Axis: Kind = none | value | exp
Generations: Kind = none | value | exp

Dimension relationship nodes cannot have sub-trees.

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 863XBRL

Altova XMLSpy 2024 Enterprise Edition

18.5.3.6 Definition Node: Aspect

An aspect node specifies exactly one aspect.

Dimensional aspect specifications provide an additional Boolean property include unreported value as an
icon.

18.5.4 Editing Component Properties and Content

The properties of table components can be edited directly in the diagram or in the Details entry helper.

In the diagram, when a component is collapsed, either its name (if it has one), or the value of the appropriate
default property is displayed in gray next to the component’s description text. Double-clicking the component
expands it. Double-clicking a property puts the property in editing mode. If a property or content contains an
XPath expression, the Edit XPath expression pops up.

864 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.5.5 Table Component Relationships

A relationship between table components can be created by linking one table component to another via drag-
and-drop. The order of a parent component’s children depends on the values of the arc-property order. This
order can be modified by moving children via drag-and-drop. A child component can also be dragged onto or
under a different parent component in order to copy or move the relation (including its properties).

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 865XBRL

Altova XMLSpy 2024 Enterprise Edition

When creating a new component via the context menu of an existing (parent) component, the relationship (that
is, the arc) is generated automatically. The commands Override Arc and Remove Arc in a child component’s
context menu serve to override or remove the relationship between the component and its parent. Multiple arcs
of overridden relations are displayed in sub-lines. The arcrole of table component relations cannot be modified.

18.5.6 Table Parameters

Table parameters can be used to define the axes of a table. For example, in the screenshot below, the X-axis
of the selected table is defined by the parameter $dimMember; the Y-axis is defined by the parameter
$conceptName. The definitions of the two parameters themselves are shown in the (global) Parameters list
below the table definitions. The Table Layout Preview in the lower pane shows the table that will be generated.
The axes are created as the row and column of the table.

866 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Table parameters allow multiple related tables to be produced from a single table definition, forming a table set.

· If a single parameter evaluates to a sequence of values, then the table set contains one table for each
item in the result sequence.

· If the table definition has multiple parameters, then the table set corresponds to an ordered Cartesian
product of the sequences obtained by evaluating the parameters. An ordered Cartesian product is
shown by the following examples:
 A × B = {1,2} × {3,4} = {(1,3), (1,4), (2,3), (2,4)}
 B × A = {3,4} × {1,2} = {(3,1), (3,2), (4,1), (4,2)}

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 867XBRL

Altova XMLSpy 2024 Enterprise Edition

Table definition with two table parameters (conceptName and dimMember), each of which evaluates to a
sequence of two QNames (see the XPath expressions of the Select property).

Notice the following points:

· The parameters are local parameters, created for this specific table by right-clicking the table
component and selecting µ. They are not global parameters as in the first screenshot above.

· The ordered Cartesian product of the two sequences of two QNames produces four tables:
dimMember × conceptName = {d1,d2} × {m1,m2} = {(d1,m1), (d1,m2), (d2,m1), (d2,m2)}

· When a table definition describing a table set is selected in the diagram, the navigation icons in
Table Layout Preview become enabled and you can cycle through a preview of the tables in the table
set. The currently previewed table is indicated by its index in the ordered table set in the toolbar. In
the screenshot above, the current table is 2 of 4. The currently previewed table's parameter values
also are displayed in a popup (see screenshot).

· The Refresh toolbar icon of the Table Layout Preview is enabled when the preview is out of sync with
the current definitions, for example, after a new concept has been added.

· The Parameter Values toolbar button of the Table Layout Preview opens the XBRL Parameter Values
dialog, in which the values and datatypes of all table parameters (global and local) can be edited.

868 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Defining XBRL parameters
XBRL parameters can be used in XPath expressions in formulas and in table definitions. Parameters that will
be used as formula parameters (residing in the formula linkbase) are created in the Formula tab, while table
parameters (residing in the table linkbase) are created in the Table tab. Both formula parameters and table
parameters can be local or global. Local parameters are essentially global parameters that are linked to the
respective component (formula or table) at the time of its creation. Local parameters are created by right-
clicking the component (formula or table) and selecting Add New Parameter, while global parameters are
created by right-clicking in a blank area of the respective tab and selecting Add New Parameter. This adds a
new parameter named parameter in the diagram (the screenshot below shows a global parameter). To change
the parameter name, double-click the name and edit it.

Every parameter has a Required flag. If set, the parameter is mandatory, that is, its value must be supplied by
the processing application. If the parameter is not mandatory and no value is supplied by the processing
application, then the supplied value may be computed using the XPath expression given in the property Select.
Double-click in the Select field to enter an XPath expression. This value will be the default value of the
parameter. The optional property As specifies the datatype required by the parameter. Choose a datatype from
the dropdown list of the combo box.

In the case of parameters that will be used as table parameters, you can edit the parameter's datatype and
provide a parameter value that overrides the default value. To do this, click XBRL | Parameter Values. Then, in
the dialog that appears (screenshot below), enter a parameter value. This value will override the default value.
Since parameters that are used as table parameters can take multiple values, you can add additional
parameter values for a parameter by clicking the + icon in the Value column.

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 869XBRL

Altova XMLSpy 2024 Enterprise Edition

The values of global parameters as assigned in this dialog are evaluated for table parameters only. Values of
parameters used in formulas are not editable in this dialog.

18.5.7 Table Layout Preview

The XBRL Table Layout Preview pane is located in the Table tab below the table definitions tree (see
screenshot below). A combo box in the Table Layout Preview pane lists all the tables in the table linkbase of
the active taxonomy. To preview the layout of a table, select that table in the preview pane's combo box (see
screenshot below). Note that the preview shows only the layout. Table cells are not populated. This is because
there is no data in the XBRL taxonomy.

870 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Table Layout Preview enables you to do the following:

· Visualize table layouts, with previews updating automatically when table definitions are modified
· Go directly to a component's definition by clicking a table cell, and vice versa (go to the table cell/s by

clicking a component in the table definition tree)
· Access the XBRL Table Parameters dialog (via the Parameter Values toolbar icon) to manage table

parameters

Editing
Modifications to table definitions and the taxonomy are handled as follows:

· Table modifications: If the structure of a table definition is modified (in the diagram in the Table tab or
via the Details entry helper), the table's layout preview is updated immediately. Changes of parameter
definitions or parameter values will also trigger this update.

· DTS modifications: Table Layout Preview uses Altova's XPath engine to evaluate XPath expressions in
definition nodes. The XPath model is created when loading a taxonomy schema into XBRL View, and it
is updated during validation. If the underlying DTS is modified (for example, by editing a concept or
linkbase), the table preview will no longer be in sync with the modified DTS. The Table out of sync icon
in the preview’s toolbar indicates this state and its tool tip will provide a hint: The preview needs to be
refreshed manually via the Refresh button. The Refresh command invokes a re-discovery of the DTS,
and is therefore equivalent to a complete validation of the taxonomy.

 Table out of sync with DTS

Refresh table

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 871XBRL

Altova XMLSpy 2024 Enterprise Edition

Error handling
Errors related to Table Layout Preview are handled as follows:

· Invalid expressions in table definition nodes: If a table definition node contains an XPath expression
that cannot be resolved, the header of the corresponding layout cell will be displayed in red. In this
case, the invalid aspect constraint is highlighted in the Constraints tab of the Details entry helper.

· Unresolvable relationship nodes: If a relationship node cannot be resolved due to invalid properties
or an invalid DTS, the layout shows a placeholder cell with highlighted error text.

· Merged rule nodes without child nodes: If a merged rule node does not have any child node, the
layout shows a placeholder cell with highlighted error text.

· Invalid DTS: If the taxonomy is invalid when loading a taxonomy schema into the XBRL taxonomy
editor or after validation, the XPath model is not available. The Table Layout Preview will be in an error
state, which is indicated by the Table out of sync with DTS toolbar icon. In spite of this, the layout can
still be created to some extent. XPath expressions, however, cannot be evaluated. The tool tip of the
toolbar icon will advise the user how to solve this issue (that is, by fixing the validation error and re-
validating the taxonomy).

18.5.7.1 Building Formulas in Table Layout Preview

Table Layout Preview is also displayed in the Formula tab (see screenshot below) in order to support the
creation of fact variables under variable sets (that is, under formulas or value/existence assertions). In this case
the cells within the table axes cannot be selected because the corresponding table definition nodes are not
visible in the formula linkbase. Data cells, on the other hand, show a Add a fact variable icon, which is
enabled as soon as a variable set is selected in the formula tree (see screenshot below).

 Add a fact variable to the selected formula or assertion

To add a fact variable to a variable set, select that variable set in the Formula tab. (A variable set is a formula or
value/existence assertion. In the screenshot below, the selected variable set is a value assertion.) In the cells
of the Table Layout Preview, the Add a fact variable icon will be enabled. Click the icon to add the variable to
the variable set. During execution a new fact variable containing an appropriate filter for each aspect constraint
defined by the data cell is created under the selected variable set (that is, formula or assertion).

848

848

872 XBRL XBRL Table Definitions Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If the selected formula or assertion has a variable containing filters which match the aspect constraints of a
data cell in the preview, then the variable name is displayed by the data cell. This should particularly be the
case after having created a new fact variable via the Add a fact variable icon (see screenshot above).

18.5.8 Finding Table Components

Table components can be found (i) by using their IDs, and (ii) by navigating through the occurrences of the
component in the document.

Find table component by id
In taxonomies with large formula or table linkbases containing several components of the same kind (e.g.
assertions, filters, tables), it might be helpful to search for a component by its ID. The menu command XBRL |
 Find Component By Id enables a search by ID.

© 2018-2024 Altova GmbH

XBRL Table Definitions Editor 873XBRL

Altova XMLSpy 2024 Enterprise Edition

On clicking the command a dialog pops asking for the ID to find.

Find component occurrences
Most table components are displayed within the table linkbase diagram multiple times: (i) the definition, which
is located directly under the appropriate section node, and (ii) all references to the component (via
relationships). The commands Find Next Occurrence and Find Previous Occurrence in the component's
context menu (screenshot below) navigate to all places where that table component is referenced.

These commands can also be accessed via their toolbar icons (screenshot below).

When the component’s definition is reached, a message to that effect is displayed.

874 XBRL XULE

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.6 XULE

XULE (from XBRL Rule) is a language for querying XBRL reports and taxonomies. The main purpose of the
language is to provide an ability to query and check reports before they are filed, so as to ensure data quality.
XULE enables you to check reports in two broad ways:

· Provide output from data in the reports: by querying data in the report and computing results from data
in the report. The output can be assessed for quality.

· Create assertions: Data in the report can be tested against these assertions, and suitable action can
be taken subsequently based on the results

Internet links
· XULE homepage (contains a brief overview of XULE)
· XULE Language Syntax Documentation

XMLSpy features
XMLSpy provides the following XULE features:

· A built-in XULE processor that processes XULE documents and expressions against an XBRL
instance document

· Creation of XULE-conformant documents
· Validation of XULE documents for correct syntax against the XULE specification
· Syntax coloring in XULE documents
· Auto-completion of XULE language constructs when editing XULE documents
· A special XULE Window to interactively query XBRL instance documents
· Processing of an XBRL instance against a single XULE document or a set of XULE documents stored

in a zip archive; the processing can be executed by the XMLSpy engine or the RaptorXML(+XBRL)
Server engine

· Integration in XMLSpy projects of the execution of XULE documents and document sets

The sub-sections of this section describe these features in detail.

Altova's RaptorXML+XBRL Server
Altova's RaptorXML+XBRL Server provides customizable and fast XULE processing, which enables you to
process XULE documents from the command line, with scripts and via a number of server and engine APIs,
including a powerful Python API. For more information, see:

· The RaptorXML+XBRL page at the Altova website
· DQC Certification of Altova RaptorXML+XBRL
· RaptorXML+XBRL product documentation
· RaptorXML Python API documentation

18.6.1 XULE Documents

XMLSpy provides a number of features that support the creation, validation, and execution of XULE documents.
This section describes these features.

1016

1009

https://xbrl.us/xule/
https://xbrl.us/wp-content/uploads/2019/09/xule-sept2019.pdf
https://www.altova.com/raptorxml
https://xbrl.us/tools-and-services/raptorxml-xbrl-server/
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/
https://www.altova.com/manual/en/raptorapi/pyapiv2/2.8.4/html/index.html

© 2018-2024 Altova GmbH

XULE 875XBRL

Altova XMLSpy 2024 Enterprise Edition

XULE conformant files (.xule files)
The .xule file type is predefined in XMLSpy as being XULE conformant. This means that when a .xule file is

opened in XMLSpy, XULE editing help in the form of syntax coloring and auto-completion will be available. In
the File Types section of the Options dialog , you can specify other file extensions to also be XULE
conformant.

XULE document sets
Multiple XULE documents can be packaged in a zip archive (typically .zip). This zip archive is a XULE

document set (or XULE ruleset). You can then execute the entire XULE document set on an XBRL instance, by
specifying the zip file as the XULE file to execute ,

A zip archive can have any structure. XULE files at all levels of the archive will be used during XULE execution;
non-XULE files will be filtered out.

Syntax coloring
XULE Documents can be edited in the Text View of XMLSpy. The screenshot below shows the default syntax
coloring of a sample XULE document. You can customize the syntax coloring in the Fonts and Colors | Text
View section of the Options dialog.

Auto-completion
As you enter rules in the XULE document, you will receive two types of auto-completion help:

· related to XULE language syntax
· related to the structure of a selected XBRL taxonomy

1516

880

1535

876 XBRL XULE

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You can select the taxonomy you want to use in the Info Window (see screenshot below). In the XULE tab,
click the icon to the right of the Taxonomy item, and, in the menu that appears, click Select Taxonomy. Then
browse for the taxonomy and select it. Only one taxonomy can be added at a time. If you add a new taxonomy,
it will replace the previous taxonomy. Alternatively, you can remove a taxonomy (see screenshot below) before
adding a new one.

Note: You must add to the XULE document the namespace declarations of all the taxonomy components
that you need (see XULE document screenshot above). The namespace prefixes do not need to match
that of the taxonomy, but it is best to keep the same namespace prefixes to avoid confusion. If you do
not add namespace declarations, then auto-completion of taxonomy components will not work.

Validate XULE
A XULE document can be validated for correct syntax against the XULE language specification by using the
XML | Validate (F8) command.

Integration in XMLSpy projects
You can integrate XULE documents in an XMLSpy project in the following way:

1. Add the XULE document to a suitable folder in an XMLSpy project .
2. In the project properties of that folder , enter the XBRL instance file on which you want to run the

XULE file.

1009

1261

© 2018-2024 Altova GmbH

XULE 877XBRL

Altova XMLSpy 2024 Enterprise Edition

3. Right-click the XULE document in the project, and select the command XBRL | Execute XULE. The
XULE document will be executed on the XBRL instance that was specified for the folder, and the
results will be displayed in the Messages window or a new document (see XULE execution
options).

18.6.2 XULE Window

The XULE Window (screenshot below) is an Output Window . It enables you to interactively query the active
XBRL instance document, and see the results of your query.

The XULE Window is located by default below the Main Window at the bottom of the XMLSpy GUI . It has
nine tabs, each of which is divided into two panes: (i) a XULE expression pane, where you enter the XULE
expression (or XULE rule) that you want to execute on the active document; and (ii) a Results pane, which
displays the result of the execution.

To interactively execute a XULE expression on the active XBRL instance document, do the following:

1. Make the XBRL instance document that you want to query the active document in the Main Window.
2. Enter the XULE expression in the XULE expression pane (left pane). Editing features of the expression

pane include syntax-coloring and auto-completion.
3. Click Run in the window's toolbar to execute the expression
4. The results of the execution are displayed in the Results pane (right pane). You can click a link in the

results to go to the respective node in the XBRL instance document.

Note: Syntax coloring for XULE can be customized in the Options dialog (in the Fonts and Colors | Text
View section). For information about auto-completion, see the description of the Update Entry
Helpers toolbar command below.

Toolbar: commands and options
The toolbar of the XULE Window provides commands and useful options for creating and executing XULE
expressions. They are described below.

Run
Click Run to execute the XULE expression.

Update entry helpers
The XULE expression pane provides two types of auto-completion as you type: (i) that related to XULE syntax,
and (ii) that related to the structure of the active XBRL instance document. However, in order to be aware of the

119

1555

128

113

1513

1535

878 XBRL XULE

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

structure of the XBRL instance, the XULE Window must read the XBRL taxonomy that is referenced by the
XBRL instance. Click Update Entry Helpers in order to silently load the taxonomy that is associated with the
XBRL instance. After the taxonomy has been loaded, auto-completion related to document structure will be
available, and this toolbar button (which is no longer needed for this XBRL instance document) will be disabled.
Note that the taxonomy is also read every time you click Run.

Clear
Click Clear to clear the expression.

Single query
Single Query mode is a feature that is specific to the XMLSpy's XULE Window. It enables you: (i) to enter an
expression without the output keyword and as a single query, and (ii) to generate the result as a single output.

Valid XULE syntax requires the output keyword, but if you want to interactively and quickly query the XBRL

document, it is advantageous to be able to type a single query without the output keyword.

The two screenshots below show how to use single queries and multiple queries.

Single Query mode enabled: no 'output' keyword required.

Single Query mode disabled: multiple queries with the 'output' keyword, produces multiple outputs.

Instance namespace bindings
If the Instance Namespace Bindings option is selected, then you do not need to declare namespaces in the
XULE query; namespace prefixes will be bound to the namespace URIs declared for them in the XBRL
instance. For example, in the screenshots above, the us-gaap namespace prefix is bound to the namespace

defined for it in the instance document. On the other hand, if the Instance Namespace Bindings option is
deselected, then you must declare namespaces in the XULE query (with the namespaces keyword, as shown in

the screenshot below).

© 2018-2024 Altova GmbH

XULE 879XBRL

Altova XMLSpy 2024 Enterprise Edition

This option is useful because it saves you having to fill the XULE query with namespace declarations.

Ignore duplicates
A duplicate fact occurs—most commonly in Inline XBRL—when the same fact is noted more than once in the
HTML code. The Ignore Duplicates option specifies that the duplicated fact is output only once.

Text
The Text option toggles the output in the Results pane between text and tree outputs. For example, the
screenshots below show the outputs in tree form (left) and text form (right). The query is: list(for $i in

range(100) $i).

The Results pane
Results can be shown with their labels, QNames, or IDs. Select the option you want in the toolbar of the
Results pane, either before or after executing the query. The screenshot below shows the results with labels
(left) and QNames (right).

880 XBRL XULE

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The toolbar of the Results pane contains icons that provide navigation, search, and copy functionality. These
icons, starting from the left, are described in the table below. The corresponding commands are also available
in the context menu of result list items.

Icon What it does

Next, Previous Selects, respectively, the next and previous item in the result list

Copy selected message Copies the selected result item to the clipboard.

Copy selected message
including children

Copies the selected result item to the clipboard, as well as children items. Each
item is copied as a separate line

Copy all messages Copies all result items to the clipboard.

Copy value of selected
line to the clipboard

Copies only the value of the selected result item to the clipboard.

Find Opens a Find dialog to search for any string in the results

Find previous Finds the previous occurrence of the term that was last entered in the Find dialog

Find next Finds the next occurrence of the term that was last entered in the Find dialog

Clear Clears the result list

18.6.3 XULE Execution

To run a XULE document on an XBRL instance document, select the menu command XBRL | Execute
XULE . The command can be used in the following cases:

· When a XULE document is the active document, selecting the command prompts you to select the
XBRL instance on which the XULE document is to be executed.

· When an XBRL instance document is the active document, selecting the command prompts you to
select the XULE document or XULE document set to use.

874

1466

© 2018-2024 Altova GmbH

XULE 881XBRL

Altova XMLSpy 2024 Enterprise Edition

· If (i) the XULE document (.xule file)—or XULE document set (zip archive)—and the XBRL instance

document are both part of an XMLSpy project , and (ii) the XBRL instance file has been set as the
target XBRL file in the properties of the XMLSpy project , then right-click the project's XULE file in
the XMLSpy project window and select Execute XULE. The XULE document/s will be executed on the
XBRL that is the project's target for XULE execution.

Additionally, you can set up XMLSpy to run RaptorXML(+XBRL) Server commands, among which are XULE
processing commands, from the XMLSpy interface.

XULE execution options
The following XULE execution options are available:

· Output can be sent either: (i) to the Messages window, or (ii) to a new document that is displayed in a
new XMLSpy window and stored temporarily in memory; this document can be saved to file with the
File | Save As command.

· Duplicate facts refer to multiple references to the same fact. (A duplicate fact occurs most commonly
in Inline XBRL when the same fact is noted more than once due to the HTML code.) You can choose to
report duplicate facts once only.

You can select the settings you want in the XBRL XULE tab of the Options dialog (Tools | Options | XBRL |
XULE).

874

1009

1261

1016

1205

1555

882 XBRL Find in XBRL

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.7 Find in XBRL

In XBRL View, XBRL taxonomies can be searched using XMLSpy's Find in XBRL feature, which is enabled
when an XBRL taxonomy is active in XBRL View. The Find in XBRL feature is accessed in one of the following
ways:

· Via the Edit | Find menu command when an XBRL taxonomy is active in XBRL View.
· Via the Find button in the Find in XBRL window.
· By pressing Ctrl+F.

Selecting any of these access methods pops up the Find dialog (screenshot below).

Usage is as follows:

· Enter the search term in the Find what text field of the Find dialog (screenshot above) and check
the required options

· Specify the XBRL component types to be searched in the Types pane
· Execute the command using the Find Next or Find All button
· Use the Find in XBRL window to view the search results and navigate to a component quickly.

18.7.1 Search Term

A search term can be specified to be case-sensitive or to match a whole word by checking the respective
options in the Options pane (see screenshot below). If you wish to search using a regular expression, check
the Regular Expression option in the Options pane before clicking the Find Next or Find All button. See below
for more details about using regular expressions.

882

882

885

887

© 2018-2024 Altova GmbH

Find in XBRL 883XBRL

Altova XMLSpy 2024 Enterprise Edition

Note: A whole word is considered to be delimited by any character that is not alphanumeric or the
underscore character. So the search term asset will return the text xbrl:asset, since the colon
character (:) is considered to be a word delimiter.

In the Types pane, specify the components to be searched.

Regular expressions
You can use regular expressions to further refine your search criteria. A pop-up list is available to help you build
regular expressions. To access this list, click the > button to the right of the input field for the search term.

884 XBRL Find in XBRL

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Clicking on the required expression description inserts the corresponding expression syntax character in the
input field. Given below is a list of regular expression syntax characters.

. Matches any character. This is a placeholder for a single character.

\(Marks the start of a region for tagging a match.

\) Marks the end of a tagged region.

\< Matches the start of a word.

\> Matches the end of a word.

\x Allows you to use a character x, that would otherwise have a special meaning.
For example, \[would be interpreted as [and not as the start of a character
set.

[...] Indicates a set of characters, for example, [abc] means any of the characters
a, b or c. You can also use ranges, for example [a-z] for any lower case
character.

[^...] The complement of the characters in the set. For example, [^A-Za-z] means
any character except an alphabetic character.

^ Matches the start of a line (unless used inside a set, see above).

$ Matches the end of a line. Example: A+$ to find one or more A's at end of line.

* Matches 0 or more times. For example, Sa*m matches Sm, Sam, Saam, Saaam
and so on.

+ Matches 1 or more times.
For example, Sa+m matches Sam, Saam, Saaam and so on.

© 2018-2024 Altova GmbH

Find in XBRL 885XBRL

Altova XMLSpy 2024 Enterprise Edition

18.7.2 Command Execution

After the search term has been entered, and the search options and filter for component types have been set,
there are two command execution options: Find Next and Find All. These commands are executed via
buttons in the Find dialog (see screenshot below).

Find Next
The Find Next command displays, in the Find in XBRL window (screenshot below), the next instance of the
search term. The search for the next instance will start at the next cell from the current cursor position in the
active document. The Find Next process can be continued till all instances in the document are displayed.

886 XBRL Find in XBRL

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Find All
The Find All command displays all instances of the search term, together with a summary of the search, in
the Find in XBRL window (screenshot below).

© 2018-2024 Altova GmbH

Find in XBRL 887XBRL

Altova XMLSpy 2024 Enterprise Edition

The result provides: (i) a summary of the XBRL component types that were searched; (ii) a list of the found
instances of the search term, ordered according to linkbase; and (iii) statistics about the search, including the
matches found and the time taken for the search. Each linkbase group can be expanded or collapsed to view
the matches in that group. Clicking a match highlights the corresponding element in the XBRL document in the
Main Window.

For information about the features of the Find in XBRL window, see the section Results and Information .

18.7.3 Results and Information

Each time a Find or Find Next command is executed the results of the command execution are displayed in
the Find In XBRL window (screenshot below). The term that was searched for is displayed in green; (in the
screenshot below, it can be seen that Inventory was the search term).

Features of the Find In XBRL window
Results are displayed in nine separate tabs (numbered 1 to 9). So you can keep the results of one search in
one tab, do a new search, and compare results. Clicking on a result in the Find In XBRL window pops up and
highlights the relevant component in the Main Window of XBRL View. In this way, using the Find in XBRL
window you can search and navigate quickly to the desired component.

The following Find In XBRL toolbar commands are available:

· The Next and Previous icons select, respectively, the next and previous find results to the currently
selected result.

· The Copy Messages commands copy, respectively, the selected message, the selected message
and its children messages, and all messages, to the clipboard.

· The Find commands find text strings in the Find In XBRL window.
· The Clear command deletes all messages in the currently active tab.

887

888 XBRL OIM

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

18.8 OIM

The Open Information Model (OIM) 1.0 specification provides a syntax-independent model for XBRL data,
allowing reliable transformation of XBRL data into other representations (OIM-XML, OIM-JSON, and OIM-CSV).
XMLSpy provides the following OIM-related features:

· Convert XBRL data documents to OIM xBRL-JSON and OIM xBRL-CSV (via the Convert menu).
· Convert from any one of the following three formats to any of the other two formats: OIM xBRL-XML,

OIM xBRL-JSON, and OIM xBRL-CSV (via the Convert menu).
· Validate any of the OIM-format documents, which will be recognized as XBRL documents and

validated accordingly.

1384 1384

1384

1384

889

https://specifications.xbrl.org/work-product-index-open-information-model-open-information-model.html

© 2018-2024 Altova GmbH

Validating XBRL Instances and Taxonomies 889XBRL

Altova XMLSpy 2024 Enterprise Edition

18.9 Validating XBRL Instances and Taxonomies

To validate an XBRL instance or XBRL taxonomy, make the XBRL document the active document, and select
one of the validation methods listed below:

· XML | Validate XML (F8) . Validation is done with the built-in engine of XMLSpy.
· XML | Validate XML on Server (Ctrl+F8) . Validation is carried out by a remote RaptorXML+XBRL

Server (which you can set up via the command Tools | Manage Raptor Servers)

The XBRL Validation tab of the Options dialog (Tools | Options) provides relevant validation options.

1269

1273

1491

1550

890 Office Open XML, ZIP, EPUB

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

19 Office Open XML, ZIP, EPUB

Office Open XML (OOXML), ZIP files, and EPUB files are similar in that all are packages containing other files.
XMLSpy's Archive View provides an interface that enables you to view the internal structure of these packages,
modify these structures, and access the files in the package for editing in XMLSpy. In the case of EPUB files,
Archive View also enables you to directly view the EPUB book in the Browser View of XMLSpy.

Office Open XML (OOXML)
OOXML is a file format for describing documents, spreadsheets, and presentations. It was originally developed
by Microsoft for the company's Office suite of products but is now an open ECMA specification.

Structure of an OOXML file
Each OOXML document is a package of multiple files that follows the Open Packaging Convention. A package
consists of XML and other data files (such as image files) plus a relationships file that specifies the
relationships among the various files in the package.

The internal structure and internal folder and file names of an OOXML file vary according to the document type.
However, there is a common basic structure: an XML file called [Content_Types].xml at the root of the
directory structure, and three directories: _rels, docProps, and a directory specific to the document type (in
the case of .docx documents, for example, this folder would be called word; xl in .xlsx documents, and ppt
in .pptx documents).

OOXML File
|-- File: [Content_Types].xml
|-- Folder: _rels
|-- Folder: docProps
|-- Folder: word/xl/ppt

· The _rels folder contains a rels.xml file, which specifies the relationships between the various files in
the package.

· The docProps folder contains app.xml and core.xml, which describe key document properties.
· The word, xl, and ppt folders contain XML files that hold the content of the document. For example, in

the word folder, the file document.xml contains the core content of the document.

OOXML in XMLSpy's Archive View
In XMLSpy's Archive View (screenshot below), you can view and edit the contents of an OOXML file.

© 2018-2024 Altova GmbH

 891Office Open XML, ZIP, EPUB

Altova XMLSpy 2024 Enterprise Edition

Folder View on the left-hand side shows the folders in the package, whereas the Main Window shows the files
in the folder selected in Folder View. In Archive View, files and folders can be added to and deleted from the
archive. Also, files can be opened quickly for editing in XMLSpy by double-clicking the file in Archive View.

Intelligent editing of OOXML's internal files
The XML documents within OOXML packages are based on standard schemas. XMLSpy provides intelligent
editing support for OOXML documents, in the form of entry helpers, auto-completion, and validation.

ZIP files
ZIP files archive multiple files in a lossless data compression package. These files can be of various types. In
XMLSpy's Archive View, ZIP files can be created, the internal structure modified, and files in the archive edited.
These operations are described in the ZIP Files sub-section of this section.

EPUB files
An EPUB file is a zipped group of files used for the distribution of digital publications (EPUB books). In Archive
View , you can open EPUB files, create and edit EPUB files, preview the digital EPUB book, edit component
files of the EPUB archive directly in XMLSpy, validate the EPUB file, and save the component files back to the
EPUB archive. See the section, EPUB Files , for details.

896

318

898

892 Office Open XML, ZIP, EPUB Working with OOXML Files

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

19.1 Working with OOXML Files

This section describes how to work with OOXML documents in Archive View. The following procedures are
discussed:

· Creating, opening, and saving OOXML files
· Editing the structure of an OOXML file
· Opening, editing, and saving internal OOXML documents
· Intelligent editing of internal OOXML documents
· Addressing documents in OOXML files
· Comparing OOXML archives

Creating, opening, and saving OOXML files
OOXML files are created via the Create New Document dialog (File | New command), in which you select the
required file type (.docx, .pptx, or .xlsx). You are prompted for a file name and a location at which to save
the file. The new file is created at the specified location and then opened in Archive View (screenshot below).
Notice that the basic internal structure of the OOXML document has been created.

An existing OOXML file is opened in Archive View via the Open dialog (File | Open) of XMLSpy. OOXML files
are saved with the File | Save (Ctrl+S) command. This command saves the structure and relationships of the
OOXML file.

Editing the structure of an OOXML file
The contents of an OOXML file can be modified by adding and deleting folders and documents to it using
Archive View functionality. After these structural changes have been made, the OOXML file must be saved
(File | Save) for the modifications to take effect. You should note the following points:

· When a new folder or document is added using the command buttons in Archive View , it should be
named immediately on its being created. It is not possible to rename a folder or document in Archive
View.

· After a new document has been added to an archive folder, it is saved to the archive by saving it in its
own window or by saving the OOXML file.

892

892

893

893

893

892

318

318

© 2018-2024 Altova GmbH

Working with OOXML Files 893Office Open XML, ZIP, EPUB

Altova XMLSpy 2024 Enterprise Edition

Opening, editing, saving internal OOXML documents
An internal OOXML document—that is, a document within an OOXML file package—is opened from Archive
View by double-clicking it, or by selecting it in the Main Window and clicking the Open document command
button. The document opens in a separate XMLSpy window. After editing it, simply save the document to save
it back to the OOXML archive; there is no need to save the OOXML file itself.

Intelligent editing of internal OOXML documents
XMLSpy provides intelligent editing features for internal Office Open XML documents—that is, for documents
within an OOXML file package. These features include entry helpers, auto-completion, and validation.

Addressing documents in OOXML files
Documents in OOXML files can be addressed using normal file paths plus the pipe character. For example, the
file path:

C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Examples\Office20XX\ExcelDemo.xlsx|zip\xl\tables\table1.xml

locates the file table1.xml, which is in the xl\tables folder of the OOXML file ExcelDemo.xlsx located in the
Examples\Office20XX folder of the XMLSpy examples folder.

Comparing OOXML archives
When an OOXML file is open in Archive View, you can compare it with another archive by using the command
Tools | Compare Directories .

318

1483

894 Office Open XML, ZIP, EPUB OOXML Example Files

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

19.2 OOXML Example Files

In the Examples\Office folder of your XMLSpy application folder are the following example files:

· OOXML files: (i) a Word Open XML file (.docx), (ii) an Excel Open XML file (.xlsx), and (iii) a
PowerPoint Open XML file (.pptx)

· XSLT files: (i) docx2html.xslt (to convert the sample .docx file to HTML), (ii) xslx2html.xslt (to
convert the sample .xslx file to HTML), and (iii) pptx2html.xslt (to convert the sample .pptx file to
HTML)

· An XQuery file: ExcelDemo.xq (to retrieve data from the .xslx file)

The XSLT and XQuery files are intended to demonstrate how XSLT and XQ can be used to access and
transform data in OOXML files. To run the XSLT and XQuery documents, you can use any of the following
options:

· Open the OOXML file in Archive View. In Folder View, select Archive and then click the menu
command XSL/XQuery | XSL Transformation (for an XSLT transformation) or XSL/XQuery | XQuery
Execution (for an XQuery execution). Browse for the XSLT or XQuery file and click OK.

· In the Project Window of XMLSpy, right-click the .xlsx, .pptx or .docx file in the Office folder of the
Examples project (screenshot below), and select the transformation command. Browse for the
transformation file and click OK.

© 2018-2024 Altova GmbH

OOXML Example Files 895Office Open XML, ZIP, EPUB

Altova XMLSpy 2024 Enterprise Edition

· Open the XSLT or XQuery file in XMLSpy and click the menu command XSL/XQuery | XSL
Transformation and XSL/XQuery | XQuery Execution, respectively. When prompted for the XML file
to transform, browse for the .docx, .xlsx , or .pptx file (according to whether the XSLT/XQ document
is intended for MS Word, MS Excel, or MS PowerPoint).

896 Office Open XML, ZIP, EPUB ZIP Files

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

19.3 ZIP Files

In Archive View , you can create WinZip files, modify the internal structure of ZIP files (WinZip, WinRAR,
etc), and edit files in the ZIP package directly in XMLSpy and save the files back to the ZIP archive.

Creating and saving a WinZip file
A WinZip file is created via the Create New Document dialog (File | New command), in which you select the
file type .zip. An empty WinZip archive is created in a new window in XMLSpy (screenshot below). You must
now save the ZIP file to the desired location with the File | Save (Ctrl+S) command. Add folders and files as
described below, and then save the ZIP file to save your additions and changes.

An existing ZIP file is opened in Archive View via the Open dialog (File | Open) of XMLSpy.

Note: Creating a new ZIP file is different than creating a new OOXML file in that you are not prompted for a
location to save the file before the archive is opened in Archive View. For the ZIP file to be saved from
the empty archive that is opened in Archive View, you must explicitly use the File | Save (Ctrl+S)
command.

Adding folders and files and modifying the archive structure
You can add folders (click the New Folder button), existing files (Add Document), and new files (Add New
Document) to the selected Archive folder. Note that when you add a new folder or new document, you must
immediately enter a name for the folder or file; it is not possible to rename folders or documents in Archive
View.

Addressing documents in ZIP files
Documents in ZIP files can be addressed using normal file paths plus the pipe character. For example, the file
path:

C:\Documents and Settings\<username>\My Documents\Altova\XMLSpy2024\Examples\Test.zip|
zip\TestFolder\MyFile.xml

locates the file MyFile.xml, which is in the TestFolder folder of the ZIP file Test.zip located in the Examples
folder of the XMLSpy examples folder.

318

© 2018-2024 Altova GmbH

ZIP Files 897Office Open XML, ZIP, EPUB

Altova XMLSpy 2024 Enterprise Edition

Comparing ZIP archives
When a ZIP file is open in Archive View, you can compare it with another archive by using the command Tools
| Compare Directories .1483

898 Office Open XML, ZIP, EPUB EPUB Files

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

19.4 EPUB Files

An EPUB file is a zipped group of files conforming to the EPUB standard of the International Digital Publishing
Forum (IDPF). This standard is the distribution and interchange standard for digital web publications. In Archive
View , you can open EPUB files, view the EPUB file's digital publication in a preview tab, edit component
files of the EPUB archive directly in XMLSpy, validate the EPUB file, and save the component files back to the
EPUB archive.

Note: (i) XMLSpy supports EPUB 2.0.1. (ii) A sample EPUB file is available in the Examples project and in
the (My) Documents/Altova/XMLSpy2024/Examples folder.

Terminology
In the descriptions below, terms are used as follows:

· EPUB file is used to indicate the EPUB file having the file extension .epub. This is the ZIP file that
contains the whole archive and is the file that will be opened in Archive View

· An archive file is any one of the files contained in the EPUB archive
· EPUB book is the term used to indicate the digital publication generated by the zipped EPUB file

In this section
The description below of EPUB functionality in XMLSpy is structured into the following parts:

· Opening EPUB files in Archive View
· Creating a new EPUB file
· Previewing an EPUB book
· Modifying the contents and structure of an EPUB archive
· Info and Settings
· Editing archive files directly in XMLSpy
· Entry helpers for archive files
· Validating EPUB file

Opening EPUB files in Archive View
Select the menu command File | Open, navigate to the EPUB file, and click Open. The EPUB file opens in
Archive View (screenshot below). Alternatively, you can right-click the EPUB file in Windows Explorer and
select the context menu command to open the file with XMLSpy. If you have set XMLSpy to be the default
editor of EPUB files , then double-clicking the EPUB file will open the file in Archive View.

318

898

899

900

900

900

901

901

901

1516

http://idpf.org/epub
http://idpf.org/
http://idpf.org/
http://idpf.org/epub/201

© 2018-2024 Altova GmbH

EPUB Files 899Office Open XML, ZIP, EPUB

Altova XMLSpy 2024 Enterprise Edition

Folder View on the left-hand side shows the folders in the archive, whereas the Main Window shows the files in
the folder selected in Folder View. The EPUB archive will have the following structure and the following key
components.

 Archive
 |-- Mimetype file
 |
 |-- META-INF folder
 | |-- container.xml
 |

 |-- DOCUMENT folder (In the screenshot above, OEBPS is the Document folder.)
 |-- Contains HTML, CSS, image files, plus OPF and NCX files

Creating a new EPUB file
To create a new EPUB file, select the menu command File | New. In the Create New Document dialog that
pops up, select the file type .epub. In the Save As dialog that now pops up, give a name for your EPUB
document and click Save. A skeleton EPUB archive containing all the folders and files of a valid EPUB archive
(see archive structure above) will be created in a new window in Archive View. Add the folders and files you

900 Office Open XML, ZIP, EPUB EPUB Files

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

wish to add to the archive, as described below, and then save the EPUB file. To edit an archive file directly in
XMLSpy, double-click the file in Archive View. The file will open in a new XMLSpy window. Edit it and then save
it with the File | Save (Ctrl+S) command.

Previewing an EPUB book
To preview an EPUB book, make the EPUB file active in Archive View, then click the Preview button in the
toolbar of Archive View. The EPUB book will open in a separate (Internet Explorer) browser window in XMLSpy.
If any of the files that will be used for the preview—whether a content file or a structure-related file—has been
modified but not yet saved, you will be prompted to save the file. If you do not save the modifications, the
preview will use the previously saved data and might not be up-to-date. You can specify that all modified files be
saved automatically before previewing by toggling on this setting (via the Settings button in the the toolbar of
Archive View).

Note the following:

· If the Preview button in Archive View is clicked while a Preview window of that EPUB publication is
still open, then the EPUB publication will be reloaded in the open Preview window.

· Refreshing the Preview window itself (using the Refresh (F5) command of Internet Explorer) will not
update the Preview window. The EPUB publication in the Preview window must be updated using the
Preview button (of Archive View) of the corresponding EPUB file (see previous point).

· To close the preview, close the Preview window.

Note: Not all EPUB markup is supported in Internet Explorer, so previews could be distorted. Additionally, if
the digital publication document is XML—and not HTML—the preview might not work. Newer versions
of Internet Explorer provide improved handling of EPUB markup, so if you experience problems, try
updating to the latest version of Internet Explorer.

Modifying the contents and structure of an EPUB archive
You can add folders (click the New Folder button), new files (Add New Document), and existing files (Add
Document) to the selected archive folder. Note that when you add a new folder or new document, you must
immediately enter a name for the folder or file; it is not possible to rename folders in Archive View. You can
delete a file or folder by selecting it and clicking the Delete from Archive button.

After you have modified the archive you must save the EPUB file (File | Save) for the changes to be saved.

Info and Settings
Clicking the Info button displays, at the bottom of Archive View, a summary of key archive information
(screenshot below). Clicking the Info button again removes the summary. The summary reports the number of
files in the archive (including the Mimetype file and container.xml), the size of the compressed EPUB file,
and the cumulative size of the unzipped files.

© 2018-2024 Altova GmbH

EPUB Files 901Office Open XML, ZIP, EPUB

Altova XMLSpy 2024 Enterprise Edition

The Settings button contains drops down two automatic file-saving options that can be toggled on and off: to
automatically save the EPUB file (i) before validation, and (ii) before previewing the EPUB file in (via the
Preview button) in XMLSpy.

Editing archive files directly in XMLSpy
To edit an archive file directly in XMLSpy, double-click the file in Archive View. Alternatively, select the file in
Archive View and click the Open Document button in the toolbar of Archive View.The file will open in a new
XMLSpy window. Edit it and then save it with the File | Save (Ctrl+S) command.

Entry helpers for archive files
Entry helpers for standards-based archive files are available when these archive files are opened in XMLSpy.
These archive files are:

· The OPF file, traditionally named content.opf, contains the EPUB book's metadata. It is based on
the Open Packaging Format (OPF) specification.

· The NCX file (Navigation Control file for XML), traditionally named toc.ncx, contains the publication's
table of contents. It is based on the NCX part of the OPF specification.

· The folder named META-INF must contain the file container.xml, which points to the file defining the
contents of the book (the OPF file). The file container.xml specifies how the archive files should be
organized according to rules in the Open Container Format (OCF) specification.

Validating an EPUB file
To validate an EPUB file, select the command XML | Validate XML (F8). The validation results are displayed
in the Messages window (screenshot below). If any of the archive files—whether a content file or a structure-
related file—has been modified but not yet saved, you will be prompted to save the file. You must save the
modified files in order to validate the EPUB file. You can specify that all modified files be saved automatically
before validation by toggling on this setting (via the Settings button in the the toolbar of Archive View).

Error messages display: (i) the file in which the error was found, and, if applicable, the number of the line in
which the error occurs; (ii) a description of the error. In the screenshot above, the highlighted error occurs in line
21 of the file content.opf. Clicking on the error line in the Messages window opens the relevant file and
highlights the error.

Note: The EPUB validation engine is a Java utility, so Java must be installed on your machine for the
validation engine to run.

http://idpf.org/epub/20/spec/OPF_2.0.1_draft.htm
http://idpf.org/epub/20/spec/OPF_2.0.1_draft.htm#Section2.4.1
http://idpf.org/epub/201

902 Databases

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

20 Databases

XMLSpy enables you to connect to a variety of databases (DBs) and then perform operations such as querying
the DB, importing the DB structure as an XML Schema, generating an XML data file from the DB, and exporting
data to a DB. Each DB-related feature is available in XMLSpy as a menu command, and is described in the
User Reference section of this documentation under the respective command. A complete list of these
commands is given below, with links to the respective descriptions.

In this section, we do the following:

· Describe how to connect to a database , which is an operation that is required for executing any of
XMLSpy's DB-related commands; and

· List DBs that have been successfully tested for use with XMLSpy.

Note: If you are using the 64-bit version of XMLSpy, ensure that you have access to the 64-bit database
drivers needed for the specific database you are connecting to.

XMLSpy's DB-related features
XMLSpy's DB-related features are executed with commands in the DB and Convert menus.

· Query Database : In the DB menu. Loads the structure of the DB in a separate Database Query
window and enables queries to the DB. Results are displayed in the Database Query window.

· IBM DB2 : In the DB menu. IBM DB2 is an XML DB, and XMLSpy enables management of the XML
Schemas of the XML DB as well as editing and validation of the XML DB.

· SQL Server : In the DB menu. XMLSpy enables management of the XML Schemas of the DB as
well as editing and validation features.

· Oracle XML DB : In the DB menu. Provides a range of functionality for Oracle XML DBs, including
XML Schema management, database querying, and generation of XML files based on DB schemas.

· Import Database Data : In the Convert menu. Imports DB data into an XML file.
· Create XML Schema from DB Structure : In the Convert menu. Generates an XML Schema that is

based on the structure of the DB.
· DB Import Based on XML Schema : In the Convert menu. With an XML Schema document active

in XMLSpy, a DB connection is made and the data of a selected DB table can be imported. The
resulting XML document will have a structure based on the XML Schema that was active when the DB
connection was made.

· Create DB Structure from XML Schema : In the Convert menu. DB tables with no data are created
based on the structure of an existing XML Schema.

· Export to Database : In the Convert menu. Data from an XML document can be exported to a DB.
Existing DB tables can be updated with the XML data, or new tables can be created that contain the
XML data.

Datatype conversions
When converting data between XML documents and DBs, datatypes must necessarily be converted to types
appropriate for the respective formats. The way XMLSpy converts datatypes is given in the appendices
Datatypes in DB-Generated XML Schemas and Datatypes in DBs Generated from XML Schemas .

1193

904

990

1355 1384

1355

1371

1376

1379

1387

1392

1397

1398

1404

2186 2192

© 2018-2024 Altova GmbH

 903Databases

Altova XMLSpy 2024 Enterprise Edition

Altova DatabaseSpy
Altova's DatabaseSpy is a multi-database query and DB design tool that offers additional DB functionality to
that available in XMLSpy. For more details about Altova DatabaseSpy, visit the Altova website.

http://www.altova.com

904 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

20.1 Connecting to a Data Source

In the most simple case, a database can be a local file such as a Microsoft Access or SQLite database file. In
a more advanced scenario, a database may reside on a remote or network database server which does not
necessarily use the same operating system as the application that connects to it and consumes data. For
example, while XMLSpy runs on a Windows operating system, the database from which you want to access
data (for example, MySQL) might run on a Linux machine.

To interact with various database types, both remote and local, XMLSpy relies on the data connection
interfaces and database drivers that are already available on your operating system or released periodically by
the major database vendors. In the constantly evolving landscape of database technologies, this approach
caters for better cross-platform flexibility and interoperability.

The following diagram illustrates, in a simplified way, data connectivity options available between XMLSpy
(illustrated as a generic client application) and a data store (which may be a database server or database file).

* Direct native connections are supported for SQLite, MySQL, MariaDB, PostgreSQL databases. To connect to
such databases, no additional drivers are required to be installed on your system.

As shown in the diagram above, XMLSpy can access any of the major database types through the following
data access technologies:

· ADO (Microsoft® ActiveX® Data Objects), which, in its turn, uses an underlying OLE DB (Object
Linking and Embedding, Database) provider

· ADO.NET (A set of libraries available in the Microsoft .NET Framework that enable interaction with
data)

© 2018-2024 Altova GmbH

Connecting to a Data Source 905Databases

Altova XMLSpy 2024 Enterprise Edition

· JDBC (Java Database Connectivity)
· ODBC (Open Database Connectivity)

Note: Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes .

About data access technologies
The data connection interface you should choose largely depends on your existing software infrastructure. You
will typically choose the data access technology and the database driver which integrates tighter with the
database system to which you want to connect. For example, to connect to a Microsoft Access 2013
database, you would build an ADO connection string that uses a native provider such as the Microsoft Office
Access Database Engine OLE DB Provider. To connect to Oracle, on the other hand, you may want to
download and install the latest JDBC, ODBC, or ADO.NET interfaces from the Oracle website.

While drivers for Windows products (such as Microsoft Access or SQL Server) may already be available on
your Windows operating system, they may not be available for other database types. Major database vendors
routinely release publicly available database client software and drivers which provide cross-platform access to
the respective database through any combination of ADO, ADO.NET, ODBC, or JDBC. In addition to this,
several third party drivers may be available for any of the above technologies. In most cases, there is more than
one way to connect to the required database from your operating system, and, consequently, from XMLSpy.
The available features, performance parameters, and the known issues will typically vary based on the data
access technology or drivers used.

20.1.1 Start Database Connection Wizard

XMLSpy provides a Database Copnnection Wizard that guides you through the steps required to set up a
connection to a data source. Before you go through the wizard steps, be aware that for some database types it
is necessary to install and separately configure several database prerequisites, such as a database driver or
database client software. These are normally provided by the respective database vendors, and include
documentation tailored to your specific Windows version. For a list of database drivers grouped by database
type, see Database Drivers Overview .

To start the Database Connection Wizard (see screenshot below), do the following:

· On the DB menu, click Query Database.

The Database Connection Wizard (screenshot below) is started. On the left hand side of the window, you can
select the most suitable from the following ways to connect to your database:

· Connection Wizard, which prompts you to choose your database type and then guides you through the
steps for connecting to a database of that type

· Select an existing connection
· Select a data access technology: ADO, ADO.NET, ODBC, or JDBC
· Use an Altova global resource in which database connection is stored
· A native PostgreSQL connection

In the Connection Wizard pane (see screenshot below) databases can be sorted alphabetically by the name of
the database type or by recent usage. Select the option you want in the Sort By combo box. After you have
selected the database type to which you want to connect, click Next.

922

907

906 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The wizard will take you through the next steps according to the database type, connection technology (ADO,
ADO.NET, ODBC, JDBC), and driver that will be used. For examples applicable to each database type, see
Database Connection Examples .

Alternatively to using Connection Wizard, you can use one of the following database access technologies:

· Setting up an ADO Connection
· Setting up an ADO.NET Connection
· Setting up an ODBC Connection
· Setting up a JDBC Connection

935

910

916

923

926

© 2018-2024 Altova GmbH

Connecting to a Data Source 907Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.2 Database Drivers Overview

The following table lists common database drivers you can use to connect to a particular database through a
particular data access technology. Note that this list does not aim to be either exhaustive or prescriptive; you
can use other native or third party alternatives in addition to the drivers shown below.

Even though a number of database drivers might be already available on your Windows operating system, you
may still need to download an alternative driver. For some databases, the latest driver supplied by the database
vendor is likely to perform better than the driver that shipped with the operating system.

Database vendors may provide drivers either as separate downloadable packages, or bundled with database
client software. In the latter case, the database client software normally includes any required database drivers,
or provides you with an option during installation to select the drivers and components you wish to install.
Database client software typically consists of administration and configuration utilities used to simplify
database administration and connectivity, as well as documentation on how to install and configure the
database client and any of its components.

Configuring the database client correctly is crucial for establishing a successful connection to the database.
Before installing and using the database client software, it is strongly recommended to read carefully the
installation and configuration instructions of the database client; these may vary for each database version and
for each Windows version.

To understand the capabilities and limitations of each data access technology with respect to each database
type, refer to the documentation of that particular database product and also test the connection against your
specific environment. To avoid common connectivity issues, note the following:

· Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes .
· When installing a database driver, it is recommended that it has the same platform as the Altova

application (32-bit or 64-bit). For example, if you are using a 32-bit Altova application on a 64-bit
operating system, install the 32-bit driver, and set up your database connection using the 32-bit driver,
see also Viewing the Available ODBC Drivers .

· When setting up an ODBC data source, it is recommended to create the data source name (DSN) as
System DSN instead of User DSN. For more information, see Setting up an ODBC Connection .

· When setting up a JDBC data source, ensure that JRE (Java Runtime Environment) or Java
Development Kit (JDK) is installed and that the CLASSPATH environment variable of the operating
system is configured. For more information, see Setting up a JDBC Connection .

· For the installation instructions and support details of any drivers or database client software that you
install from a database vendor, check the documentation provided with the installation package.

Database Interface Drivers

Firebird ADO.NET Firebird ADO.NET Data Provider (https://www.firebirdsql.org/en/additional-
downloads/)

JDBC Firebird JDBC driver (https://www.firebirdsql.org/en/jdbc-driver/)

ODBC Firebird ODBC driver (https://www.firebirdsql.org/en/odbc-driver/)

IBM DB2 ADO IBM OLE DB Provider for DB2

ADO.NET IBM Data Server Provider for .NET

922

925

923

926

https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/jdbc-driver/
https://www.firebirdsql.org/en/odbc-driver/

908 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Database Interface Drivers

JDBC IBM Data Server Driver for JDBC and SQLJ

ODBC IBM DB2 ODBC Driver

IBM DB2 for i ADO · IBM DB2 for i5/OS IBMDA400 OLE DB Provider
· IBM DB2 for i5/OS IBMDARLA OLE DB Provider
· IBM DB2 for i5/OS IBMDASQL OLE DB Provider

ADO.NET .NET Framework Data Provider for IBM i

JDBC IBM Toolbox for Java JDBC Driver

ODBC iSeries Access ODBC Driver

IBM Informix ADO IBM Informix OLE DB Provider

JDBC IBM Informix JDBC Driver

ODBC IBM Informix ODBC Driver

Microsoft
Access

ADO · Microsoft Jet OLE DB Provider
· Microsoft Access Database Engine OLE DB Provider

ADO.NET .NET Framework Data Provider for OLE DB

ODBC · Microsoft Access Driver

MariaDB ADO.NET In the absence of a dedicated .NET connector for MariaDB, use
Connector/NET for MySQL
(https://dev.mysql.com/downloads/connector/net/).

JDBC MariaDB Connector/J (https://downloads.mariadb.org/)

ODBC MariaDB Connector/ODBC (https://downloads.mariadb.org/)

Native
connection

Available. No drivers are required.

Microsoft SQL
Server

ADO · Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL)
· Microsoft OLE DB Provider for SQL Server (SQLOLEDB)
· SQL Server Native Client (SQLNCLI)

ADO.NET · .NET Framework Data Provider for SQL Server
· .NET Framework Data Provider for OLE DB

JDBC · Microsoft JDBC Driver for SQL Server (https://docs.microsoft.com/en-
us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server)

ODBC · ODBC Driver for Microsoft SQL Server (https://docs.microsoft.com/en-
us/SQL/connect/odbc/download-odbc-driver-for-sql-server)

MySQL ADO.NET · Connector/NET (https://dev.mysql.com/downloads/connector/net/)

JDBC Connector/J (https://dev.mysql.com/downloads/connector/j/)

https://dev.mysql.com/downloads/connector/net/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/j/

© 2018-2024 Altova GmbH

Connecting to a Data Source 909Databases

Altova XMLSpy 2024 Enterprise Edition

Database Interface Drivers

ODBC Connector/ODBC (https://dev.mysql.com/downloads/connector/odbc/)

Native
connection

Available for MySQL 5.7 and later. No drivers are required.

Oracle ADO · Oracle Provider for OLE DB
· Microsoft OLE DB Provider for Oracle

ADO.NET Oracle Data Provider for .NET
(http://www.oracle.com/technetwork/topics/dotnet/index-085163.html)

JDBC · JDBC Thin Driver
· JDBC Oracle Call Interface (OCI) Driver
These drivers are typically installed during the installation of your Oracle
database client. Connect through the OCI Driver (not the Thin Driver) if you
are using the Oracle XML DB component.

ODBC · Microsoft ODBC for Oracle
· Oracle ODBC Driver (typically installed during the installation of your

Oracle database client)

PostgreSQL JDBC PostgreSQL JDBC Driver (https://jdbc.postgresql.org/download.html)

ODBC psqlODBC (https://odbc.postgresql.org/)

Native
connection

Available. No drivers are required.

Progress
OpenEdge

JDBC JDBC Connector (https://www.progress.com/jdbc/openedge)

ODBC ODBC Connector (https://www.progress.com/odbc/openedge)

SQLite Native
connection

Available. No drivers are required.

Sybase ADO Sybase ASE OLE DB Provider

JDBC jConnect™ for JDBC

ODBC Sybase ASE ODBC Driver

Teradata ADO.NET .NET Data Provider for Teradata
(https://downloads.teradata.com/download/connectivity/net-data-provider-for-
teradata)

JDBC Teradata JDBC Driver
(https://downloads.teradata.com/download/connectivity/jdbc-driver)

ODBC Teradata ODBC Driver for Windows
(https://downloads.teradata.com/download/connectivity/odbc-driver/windows)

https://dev.mysql.com/downloads/connector/odbc/
http://www.oracle.com/technetwork/topics/dotnet/index-085163.html
https://jdbc.postgresql.org/download.html
https://odbc.postgresql.org/
https://www.progress.com/jdbc/openedge
https://www.progress.com/odbc/openedge
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/jdbc-driver
https://downloads.teradata.com/download/connectivity/odbc-driver/windows

910 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

20.1.3 ADO Connection

Microsoft ActiveX Data Objects (ADO) is a data access technology that enables you to connect to a variety of
data sources through OLE DB. OLE DB is an alternative interface to ODBC or JDBC; it provides uniform
access to data in a COM (Component Object Model) environment. ADO is a precursor of the newer
ADO.NET and is still one of the possible ways to connect to Microsoft native databases such as Microsoft
Access or SQL Server, although you can also use it for other data sources.

Importantly, you can choose between multiple ADO providers, and some of them must be downloaded and
installed on your workstation before you can use them. For example, for connecting to SQL Server, the
following ADO providers are available:

· Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL)
· Microsoft OLE DB Provider for SQL Server (SQLOLEDB)
· SQL Server Native Client (SQLNCLI)

From the providers listed above, the recommended one is MSOLEDBSQL; you can download it from
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15.
Note that it must match the platform of XMLSpy (32-bit or 64-bit). The SQLOLEDB and SQLNCLI providers are
considered deprecated and thus are not recommended.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is known to have issues with parameter
binding of complex queries like Common Table Expressions (CTE) and nested SELECT statements.

To set up an ADO connection:

1. Start the database connection wizard .
2. Click ADO Connections.

916

905

https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

© 2018-2024 Altova GmbH

Connecting to a Data Source 911Databases

Altova XMLSpy 2024 Enterprise Edition

3. Click Build.

4. Select the data provider through which you want to connect. The table below lists a few common
scenarios.

912 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To connect to this database... Use this provider...

Microsoft Access · Microsoft Office Access Database Engine OLE DB
Provider (recommended)

· Microsoft Jet OLE DB Provider

If the Microsoft Office Access Database Engine OLE DB
Provider is not available in the list, make sure that you have
installed either Microsoft Access or the Microsoft Access
Database Engine Redistributable (https://www.microsoft.com/en-
us/download/details.aspx?id=54920) on your computer.

SQL Server · Microsoft OLE DB Driver for SQL Server
(MSOLEDBSQL) - this is the recommended OLE DB
provider. In order for this provider to appear in the list, it
must be downloaded from https://docs.microsoft.com/en-
us/sql/connect/oledb/download-oledb-driver-for-sql-
server?view=sql-server-ver15 and installed.

· Microsoft OLE DB Provider for SQL Server
(OLEDBSQL)

· SQL Server Native Client (SQLNCLI)

Other database Select the provider applicable to your database.

If an OLE DB provider to your database is not available, install the
required driver from the database vendor (see Database Drivers
Overview). Alternatively, set up an ADO.NET, ODBC, or JDBC
connection.

If the operating system has an ODBC driver to the required
database, you could also use the Microsoft OLE DB Provider
for ODBC Drivers, or preferably opt for an ODBC connection .

5. Having selected the provider of choice, click Next and complete the wizard.

The subsequent wizard steps are specific to the provider you chose. For SQL Server, you will need to provide or
select the host name of the database server, the authentication method, the database name, as well as the
database username and password. For an example, see Connecting to Microsoft SQL Server (ADO) . For
Microsoft Access, you will be asked to browse for or provide the path to the database file. For an example, see
Connecting to Microsoft Access (ADO) .

The complete list of initialization properties (connection parameters) is available in the All tab of the connection
dialog box—these properties vary depending on the chosen provider and may need to be set explicitly in order
for the connection to be possible. The following sections provide guidance on configuring the basic initialization
properties for Microsoft Access and SQL Server databases:

· Setting up the SQL Server Data Link Properties
· Setting up the Microsoft Access Data Link Properties

907

923

958

955

914

915

https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

© 2018-2024 Altova GmbH

Connecting to a Data Source 913Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.3.1 Connecting to an Existing Microsoft Access Database

This approach is suitable when you want to connect to a Microsoft Access database which is not password-
protected. If the database is password-protected, set up the database password as shown in Connecting to
Microsoft Access (ADO) .

To connect to an existing Microsoft Access database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select Microsoft Access (ADO), and then click Next.

3. Select Use an existing MS Access database.
4. Browse for the database file, or enter the path to it (either relative or absolute).
5. Click Connect.

20.1.3.2 Creating a New Microsoft Access Database

As an alternative to connecting to an existing database file, you can create a new Microsoft Access database
file (.accdb, .mdb) and connect to it, even if Microsoft Access is not installed on the computer. The database
file created by XMLSpy is empty. To create the required database structure, use Microsoft Access or a tool
such as DatabaseSpy (https://www.altova.com/databasespy).

To create a new Microsoft Access database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select Microsoft Access (ADO), and then click Next.

3. Select Create a new MS Access database, and then enter the path (either relative or absolute) of the
database file to be created (for example, c:\users\public\products.mdb). Alternatively, click Browse
to select a folder, type the name of the database file in the "File name" text box (for example,
products.mdb), and click Save.

Notes

955

905

905

https://www.altova.com/databasespy

914 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Make sure that you have write permissions to the folder where you want to create the
database file.

· The database file name must have the .mdb or .accdb extension.

4. Click Connect.

20.1.3.3 Setting up the SQL Server Data Link Properties

When you connect to a Microsoft SQL Server database through ADO , you may need to set the following
connection properties in the All tab of the Data Link Properties dialog box.

Data Link Properties dialog box

Property Notes

Integrated Security If you selected the SQL Server Native Client data provider on the
Provider tab, set this property to a space character.

Persist Security Info Set this property to True.

910

© 2018-2024 Altova GmbH

Connecting to a Data Source 915Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.3.4 Setting up the Microsoft Access Data Link Properties

When you connect to a Microsoft Access database through ADO , you may need to set the following
connection properties in the All tab of the Data Link Properties dialog box.

Data Link Properties dialog box

Property Notes

Data Source This property stores the path to the Microsoft Access database file. To
avoid database connectivity issues, it is recommended to use the UNC
(Universal Naming Convention) path format, for example:

\\anyserver\share$\filepath

Jet OLEDB:System Database This property stores the path to the workgroup information file. You
may need to explicitly set the value of this property before you can
connect to a Microsoft Access database.

If you cannot connect due to a "workgroup information file" error, locate
the workgroup information file (System.MDW) applicable to your user
profile, and set the property value to the path of the System.MDW file.

910

916 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Property Notes

Jet OLEDB:Database Password If the database is password-protected, set the value of this property to
the database password.

20.1.4 ADO.NET Connection

ADO.NET is a set of Microsoft .NET Framework libraries designed to interact with data, including data from
databases. To connect to a database from XMLSpy through ADO.NET, Microsoft .NET Framework 4 or later is
required. As shown below, you connect to a database through ADO.NET by selecting a .NET provider and
supplying a connection string.

A .NET data provider is a collection of classes that enables connecting to a particular type of data source (for
example, a SQL Server, or an Oracle database), executing commands against it, and fetching data from it. In
other words, with ADO.NET, an application such as XMLSpy interacts with a database through a data provider.
Each data provider is optimized to work with the specific type of data source that it is designed for. There are
two types of .NET providers:

1. Supplied by default with Microsoft .NET Framework.
2. Supplied by major database vendors, as an extension to the .NET Framework. Such ADO.NET

providers must be installed separately and can typically be downloaded from the website of the
respective database vendor.

Note: Certain ADO.NET providers are not supported or have limited support. See ADO.NET Support
Notes .

922

© 2018-2024 Altova GmbH

Connecting to a Data Source 917Databases

Altova XMLSpy 2024 Enterprise Edition

To set up an ADO.NET connection:

1. Start the database connection wizard .
2. Click ADO.NET Connections.
3. Select a .NET data provider from the list.

The list of providers available by default with the .NET Framework appears in the "Provider" list.
Vendor-specific .NET data providers are available in the list only if they are already installed on
your system. To become available, vendor-specific .NET providers must be installed into the GAC
(Global Assembly Cache), by running the .msi or .exe file supplied by the database vendor.

4. Enter a database connection string. A connection string defines the database connection information,
as semicolon-delimited key/value pairs of connection parameters. For example, a connection string
such as Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User

ID=dbuser;Password=dbpass connects to the SQL Server database ProductsDB on server

DBSQLSERV, with the user name dbuser and password dbpass. You can create a connection string by
typing the key/value pairs directly into the "Connection String" dialog box. Another option is to create it
with Visual Studio (see Creating a Connection String in Visual Studio).

The syntax of the connection string depends on the provider selected from the "Provider" list. For
examples, see Sample ADO.NET Connection Strings .

905

918

921

918 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Click Connect.

20.1.4.1 Creating a Connection String in Visual Studio

In order to connect to a data source using ADO.NET, a valid database connection string is required. The
following instructions show you how to create a connection string from Visual Studio.

To create a connection string in Visual Studio:

1. On the Tools menu, click Connect to Database.
2. Select a data source from the list (in this example, Microsoft SQL Server). The Data Provider is filled

automatically based on your choice.

© 2018-2024 Altova GmbH

Connecting to a Data Source 919Databases

Altova XMLSpy 2024 Enterprise Edition

3. Click Continue.

920 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. Enter the server host name and the user name and password to the database. In this example, we are
connecting to the database ProductsDB on server DBSQLSERV, using SQL Server authentication.

5. Click OK.

If the database connection is successful, it appears in the Server Explorer window. You can display the Server
Explorer window using the menu command View | Server Explorer. To obtain the database connection string,
right-click the connection in the Server Explorer window, and select Properties. The connection string is now
displayed in the Properties window of Visual Studio. Note that, before pasting the string into the "Connection
String" box of XMLSpy, you will need to replace the asterisk (*) characters with the actual password.

© 2018-2024 Altova GmbH

Connecting to a Data Source 921Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.4.2 Sample ADO.NET Connection Strings

To set up an ADO.NET connection, you need to select an ADO.NET provider from the database connection
dialog box and enter a connection string (see also Setting up an ADO.NET Connection). Sample ADO.NET
connection strings for various databases are listed below under the .NET provider where they apply.

.NET Data Provider for Teradata
This provider can be downloaded from Teradata website
(https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata). A sample connection
string looks as follows:

Data Source=ServerAddress;User Id=user;Password=password;

.NET Framework Data Provider for IBM i
This provider is installed as part of IBM i Access Client Solutions - Windows Application Package. A sample
connection string looks as follows:

DataSource=ServerAddress;UserID=user;Password=password;DataCompression=True;

For more information, see the ".NET Provider Technical Reference" help file included in the installation package
above.

.NET Framework Data Provider for MySQL
This provider can be downloaded from MySQL website (https://dev.mysql.com/downloads/connector/net/). A
sample connection string looks as follows:

Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

See also: https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-
string.html

.NET Framework Data Provider for SQL Server
A sample connection string looks as follows:

Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User ID=dbuser;Password=dbpass

See also: https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

IBM DB2 Data Provider 10.1.2 for .NET Framework 4.0

Database=PRODUCTS;UID=user;Password=password;Server=localhost:50000;

916

https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

922 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: This provider is typically installed with the IBM DB2 Data Server Client package. If the provider is
missing from the list of ADO.NET providers after installing IBM DB2 Data Server Client package, refer
to the following technical note: https://www-01.ibm.com/support/docview.wss?uid=swg21429586.

See also:
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/d
oc/DB2ConnectionClassConnectionStringProperty.html

Oracle Data Provider for .NET (ODP.NET)
The installation package which includes the ODP.NET provider can be downloaded from the Oracle website
(see http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html). A sample connection string
looks as follows:

Data Source=DSORCL;User Id=user;Password=password;

Where DSORCL is the name of the data source which points to an Oracle service name defined in the
tnsnames.ora file, as described in Connecting to Oracle (ODBC) .

To connect without configuring a service name in the tnsnames.ora file, use a string such as:

Data Source=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=host)(PORT=port)))

(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID)));User

Id=user;Password=password;

See also: https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

20.1.4.3 ADO.NET Support Notes

The following table lists known ADO.NET database drivers that are currently not supported or have limited
support in XMLSpy.

Database Driver Support notes

All databases .Net Framework Data Provider
for ODBC

Limited support. Known issues exist with
Microsoft Access connections. It is
recommended to use ODBC direct
connections instead.

.Net Framework Data Provider
for OleDb

Limited support. Known issues exist with
Microsoft Access connections. It is
recommended to use ADO direct connections
instead.

Firebird Firebird ADO.NET Data Provider Limited support. It is recommended to use
ODBC or JDBC instead.

Informix IBM Informix Data Provider for Not supported. Use DB2 Data Server

970

https://www-01.ibm.com/support/docview.wss?uid=swg21429586
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html
https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

© 2018-2024 Altova GmbH

Connecting to a Data Source 923Databases

Altova XMLSpy 2024 Enterprise Edition

Database Driver Support notes

.NET Framework 4.0 Provider instead.

IBM DB2 for i (iSeries) .Net Framework Data Provider
for i5/OS

Not supported. Use .Net Framework Data
Provider for IBM i instead, installed as part
of the IBM i Access Client Solutions -
Windows Application Package.

Oracle .Net Framework Data Provider
for Oracle

Limited support. Although this driver is
provided with the .NET Framework, its usage
is discouraged by Microsoft, because it is
deprecated.

PostgreSQL - No ADO.NET drivers for this vendor are
supported. Use a native connection instead.

Sybase - No ADO.NET drivers for this vendor are
supported.

20.1.5 ODBC Connection

ODBC (Open Database Connectivity) is a widely used data access technology that enables you to connect to
a database from XMLSpy. It can be used either as primary means to connect to a database, or as an
alternative to native, OLE DB, or JDBC-driven connections.

To connect to a database through ODBC, first you need to create an ODBC data source name (DSN) on the
operating system. This step is not required if the DSN has already been created, perhaps by another user of
the operating system. The DSN represents a uniform way to describe the database connection to any ODBC-
aware client application on the operating system, including XMLSpy. DSNs can be of the following types:

· System DSN
· User DSN
· File DSN

A System data source is accessible by all users with privileges on the operating system. A User data source is
available to the user who created it. Finally, if you create a File DSN, the data source will be created as a file
with the .dsn extension which you can share with other users, provided that they have installed the drivers used
by the data source.

Any DSNs already available on your machine are listed by the database connection dialog box when you click
ODBC connections on the ODBC connections dialog box.

924 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

ODBC Connections dialog box

If a DSN to the required database is not available, the XMLSpy database connection wizard will assist you to
create it; however, you can also create it directly on your Windows operating system. In either case, before you
proceed, ensure that the ODBC driver applicable for your database is in the list of ODBC drivers available to the
operating system (see Viewing the Available ODBC Drivers).

To connect by using a new DSN:

1. Start the database connection wizard .
2. On the database connection dialog box, click ODBC Connections.
3. Select a data source type (User DSN, System DSN, File DSN).

To create a System DSN, you need administrative rights on the operating system, and XMLSpy
must be run as administrator.

4. Click Add .
5. Select a driver, and then click User DSN or System DSN (depending on the type of the DSN you want

to create). If the driver applicable to your database is not listed, download it from the database vendor
and install it (see Database Drivers Overview).

6. On the dialog box that pops up, fill in any driver specific connection information to complete the setup.

For the connection to be successful, you will need to provide the host name (or IP address) of the database
server, as well as the database username and password. There may be other optional connection parameters—
these parameters vary between database providers. For detailed information about the parameters specific to

925

905

907

© 2018-2024 Altova GmbH

Connecting to a Data Source 925Databases

Altova XMLSpy 2024 Enterprise Edition

each connection method, consult the documentation of the driver provider. Once created, the DSN becomes
available in the list of data source names. This enables you to reuse the database connection details any time
you want to connect to the database. Note that User DSNs are added to the list of User DSNs whereas
System DSNs are added to the list of System DSNs.

To connect by using an existing DSN:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Choose the type of the existing data source (User DSN, System DSN, File DSN).
4. Click the existing DSN record, and then click Connect.

To build a connection string based on an existing .dsn file:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select Build a connection string, and then click Build.
4. If you want to build the connection string using a File DSN, click the File Data Source tab. Otherwise,

click the Machine Data Source tab. (System DSNs and User DSNs are known as "Machine" data
sources.)

5. Select the required .dsn file, and then click OK.

To connect by using a prepared connection string:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select Build a connection string.
4. Paste the connection string into the provided box, and then click Connect.

20.1.5.1 Available ODBC Drivers

You can view the ODBC drivers available on your operating system in the ODBC Data Source Administrator.
You can access the ODBC Data Source Administrator (Odbcad32.exe) from the Windows Control Panel,
under Administrative Tools. On 64-bit operating systems, there are two versions of this executable:

· The 32-bit version of the Odbcad32.exe file is located in the C:\Windows\SysWoW64 directory
(assuming that C: is your system drive).

· The 64-bit version of the Odbcad32.exe file is located in the C:\Windows\System32 directory.

Any installed 32-bit database drivers are visible in the 32-bit version of ODBC Data Source Administrator, while
64-bit drivers—in the 64-bit version. Therefore, ensure that you check the database drivers from the relevant
version of ODBC Data Source Administrator.

905

905

905

926 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

ODBC Data Source Administrator

If the driver to your target database does not exist in the list, or if you want to add an alternative driver, you will
need to download it from the database vendor (see Database Drivers Overview). Once the ODBC driver is
available on your system, you are ready to create ODBC connections with it (see Setting up an ODBC
Connection).

20.1.6 JDBC Connection

JDBC (Java Database Connectivity) is a database access interface which is part of the Java software platform
from Oracle. JDBC connections are generally more resource-intensive than ODBC connections but may provide
features not available through ODBC.

Prerequisites
· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either

Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC drivers from the database vendor must be installed. These may be JDBC drivers installed as

part of a database client installation, or JDBC libraries (.jar files) downloaded separately, if available
and supported by the database, see also Database Connection Examples .

907

923

935

© 2018-2024 Altova GmbH

Connecting to a Data Source 927Databases

Altova XMLSpy 2024 Enterprise Edition

· The CLASSPATH environment variable must include the path to the JDBC driver (one or several .jar files)
on your Windows operating system. When you install some database clients, the installer may
configure this variable automatically. See also Configuring the CLASSPATH .

Connecting to SQL Server via JDBC with Windows credentials
If you connect to SQL Server through JDBC with Windows credentials (integrated security), note the following:

· The sqljdbc_auth.dll file included in the JDBC driver package must be copied to a directory that is on
the system PATH environment variable. There are two such files, one for the x86 and one for x64
platform. Make sure that you add to the PATH the one that corresponds to your JDK platform.

· The JDBC connection string must include the property integratedSecurity=true.

For further information, refer to Microsoft JDBC driver for SQL Server documentation,
https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url.

Setting up a JDBC connection
1. Start the database connection wizard .
2. Click JDBC Connections.
3. Optionally, enter a semicolon-separated list of .jar file paths in the "Classpaths" text box. The .jar

libraries entered here will be loaded into the environment in addition to those already defined in the
CLASSPATH environment variable. When you finish editing the "Classpaths" text box, any JDBC drivers
found in the source .jar libraries are automatically added to the "Driver" list (see the next step).

929

905

https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url

928 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. Next to "Driver", select a JDBC driver from the list, or enter a Java class name. Note that this list
contains any JDBC drivers configured through the CLASSPATH environment variable (see Configuring the
CLASSPATH), as well as those found in the "Classpaths" text box.

The JDBC driver paths defined in the CLASSPATH variable, as well as any .jar file paths entered
directly in the database connection dialog box are all supplied to the Java Virtual Machine (JVM).
The JVM then decides which drivers to use in order to establish a connection. It is recommended
to keep track of Java classes loaded into the JVM so as not to create potential JDBC driver
conflicts and avoid unexpected results when connecting to the database.

5. Enter the username and password to the database in the corresponding boxes.
6. In the Database URL text box, enter the JDBC connection URL (string) in the format specific to your

database type. The following table describes the syntax of JDBC connection URLs (strings) for
common database types.

Database JDBC Connection URL

Firebird jdbc:firebirdsql://<host>[:<port>]/<database path or

alias>

IBM DB2 jdbc:db2://hostName:port/databaseName

IBM DB2 for i jdbc:as400://[host]

IBM Informix jdbc:informix-
sqli://hostName:port/databaseName:INFORMIXSERVER=myserver

MariaDB jdbc:mariadb://hostName:port/databaseName

Microsoft SQL Server jdbc:sqlserver://hostName:port;databaseName=name

MySQL jdbc:mysql://hostName:port/databaseName

Oracle jdbc:oracle:thin:@hostName:port:SID

jdbc:oracle:thin:@//hostName:port/service

Oracle XML DB jdbc:oracle:oci:@//hostName:port:service

PostgreSQL jdbc:postgresql://hostName:port/databaseName

Progress OpenEdge jdbc:datadirect:openedge://host:port;databaseName=db_name

Sybase jdbc:sybase:Tds:hostName:port/databaseName

Teradata jdbc:teradata://databaseServerName

Note: Syntax variations to the formats listed above are also possible (for example, the database URL may
exclude the port or may include the username and password to the database). Check the
documentation of the database vendor for further details.

7. Click Connect.

929

© 2018-2024 Altova GmbH

Connecting to a Data Source 929Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.6.1 Configuring the CLASSPATH

The CLASSPATH environment variable is used by the Java Runtime Environment (JRE) or the Java Development
Kit (JDK) to locate Java classes and other resource files on your operating system. When you connect to a
database through JDBC, this variable must be configured to include the path to the JDBC driver on your
operating system, and, in some cases, the path to additional library files specific to the database type you are
using.

The following table lists sample file paths that must be typically included in the CLASSPATH variable.
Importantly, you may need to adjust this information based on the location of the JDBC driver on your system,
the JDBC driver name, as well as the JRE/JDK version present on your operating system. To avoid connectivity
problems, check the installation instructions and any pre-installation or post-installation configuration steps
applicable to the JDBC driver installed on your operating system.

Database Sample CLASSPATH entries

Firebird C:\Program Files\Firebird\Jaybird-2.2.8-JDK_1.8\jaybird-full-
2.2.8.jar

IBM DB2 C:\Program Files (x86)\IBM\SQLLIB\java\db2jcc.jar;C:\Program
Files (x86)\IBM\SQLLIB\java\db2jcc_license_cu.jar;

IBM DB2 for i C:\jt400\jt400.jar;

IBM Informix C:\Informix_JDBC_Driver\lib\ifxjdbc.jar;

Microsoft SQL Server C:\Program Files\Microsoft JDBC Driver 4.0 for SQL
Server\sqljdbc_4.0\enu\sqljdbc.jar

MariaDB <installation directory>\mariadb-java-client-2.2.0.jar

MySQL <installation directory>\mysql-connector-java-version-bin.jar;

Oracle ORACLE_HOME\jdbc\lib\ojdbc6.jar;

Oracle (with XML DB) ORACLE_HOME\jdbc\lib\ojdbc6.jar;ORACLE_HOME\LIB\xmlparserv2.jar;

ORACLE_HOME\RDBMS\jlib\xdb.jar;

PostgreSQL <installation directory>\postgresql.jar

Progress OpenEdge %DLC%\java\openedge.jar;%DLC%\java\pool.jar;

Note: Assuming the Progress OpenEdge SDK is installed on the machine, %
DLC% is the directory where OpenEdge is installed.

Sybase C:\sybase\jConnect-7_0\classes\jconn4.jar

Teradata <installation directory>\tdgssconfig.jar;<installation

directory>\terajdbc4.jar

930 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Changing the CLASSPATH variable may affect the behavior of Java applications on your machine. To
understand possible implications before you proceed, refer to the Java documentation.

· Environment variables can be user or system. To change system environment variables, you need
administrative rights on the operating system.

· After you change the environment variable, restart any running programs for settings to take effect.
Alternatively, log off or restart your operating system.

To configure the CLASSPATH on Windows 7:

1. Open the Start menu and right-click Computer.
2. Click Properties.
3. Click Advanced system settings.
4. In the Advanced tab, click Environment Variables,
5. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If

the CLASSPATH variable does not exist, click New to create it.
6. Edit the variable value to include the path on your operating system where the JDBC driver is located.

To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable,
use the semi-colon separator (;).

To configure the CLASSPATH on Windows 10:

1. Press the Windows key and start typing "environment variables".
2. Click the suggestion Edit the system environment variables.
3. Click Environment Variables.
4. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If

the CLASSPATH variable does not exist, click New to create it.
5. Edit the variable value to include the path on your operating system where the JDBC driver is located.

To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable,
use the semi-colon separator (;).

20.1.7 SQLite Connection

SQLite is a file-based, self-contained database type, which makes it ideal in scenarios where portability and
ease of configuration is important. Since SQLite databases are natively supported by XMLSpy, you do not need
to install any drivers to connect to them.

SQLite database support notes
· On Linux, statement execution timeout for SQLite databases is not supported.
· Full text search tables are not supported.
· SQLite allows values of different data types in each row of a given table. All processed values must be

compatible with the declared column type; therefore, unexpected values can be retrieved and run-time
errors may occur if your SQLite database has row values which are not the same as the declared
column type.

Important

https://www.sqlite.org/index.html

© 2018-2024 Altova GmbH

Connecting to a Data Source 931Databases

Altova XMLSpy 2024 Enterprise Edition

It is recommended to create tables with the STRICT keyword to ensure more predictable behavior of your
data. Otherwise, the data may not be read or written correctly when values of different types are mixed in one
column. To find out more about STRICT tables, see the SQLite documentation.

20.1.7.1 Connect to an Existing SQLite Database

You can connect to an existing SQLite database either using the connection wizard, or directly from Windows
Explorer, by using the Open With... command.

Using the Connection Wizard
To connect to an existing SQLite database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select SQLite, and then click Next.

3. Select Use an existing SQLite database, and then browse for the SQLite database file, or enter the
path (either relative or absolute) to the database. The Connect button becomes enabled once you
enter the path to a SQLite database file.

4. Optionally, select the Disable Foreign Keys check box, see Foreign Key Constraints .
5. Click Connect.

From Windows Explorer
You can also open a SQLite database directly from Windows Explorer, as follows:

1. Right-click an existing database file in Windows Explorer and select Open With from the context
menu.

2. Choose DatabaseSpy from the list of suggestions. If this suggestion is not available, select Choose
another app, and browse for the DatabaseSpy executable from the installation directory.

3. If the Database Connection Wizard appears, click Close to disregard it.

905

933

https://www.sqlite.org/stricttables.html

932 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You can also drag and drop the database file into DatabaseSpy if the latter is already open.

Notes:

· You can optionally configure DatabaseSpy from Tools | Options so as not to show the Database
Connection Wizard whenever the application starts. To do this, clear the check box Show create a
database connection dialog in the General group of settings.

· If DatabaseSpy is open and a data source to the same database file already exists, it will be reused. In
other words, a duplicate data source to the same database will not be created. This is applicable both
when opening a database file with Open With and when using drag and drop.

20.1.7.2 Create a New SQLite Database

You can create a new SQLite database file and connect to it, as an alternative to connecting to an existing
database file. The database file created by XMLSpy is empty; use queries or scripts to create the required
database structure and populate it with data.

To create a new SQLite database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select SQLite, and then click Next.

3. Select Create a new SQLite database, and then enter the path (either relative or absolute) of the
database file to be created (for example, c:\users\public\products.sqlite). Alternatively, click Browse
to select a folder, type the name of the database file in the "File name" text box (for example,
products.sqlite), and click Save.

Make sure that you have write permissions to the folder where you want to create the database
file.

905

© 2018-2024 Altova GmbH

Connecting to a Data Source 933Databases

Altova XMLSpy 2024 Enterprise Edition

4. Optionally, select the Disable Foreign Keys check box, see Foreign Key Constraints .
5. Click Connect.

20.1.7.3 Foreign Key Constraints

When you connect to an existing SQLite database from XMLSpy, or when you create a new one, foreign key
constraints are enabled by default. Foreign key constraints help preserve the integrity of data in your database.
For example, when foreign keys are enabled, it is not possible to delete a record from a table if it has
dependencies in another table.

In certain cases, you may want to temporarily override this behavior and disable foreign keys, perhaps, in order
to update or insert multiple rows of data without getting data validation errors. To explicitly disable foreign keys
before connecting to the SQLite database, select the Disable Foreign Keys option available on the database
connection wizard.

"Connect to SQLite" wizard page

When foreign keys are disabled, you will be able to perform operations against data that would otherwise not be
possible due to validation checks. At the same time, however, there is also the risk of introducing incorrect
data into the database, or creating "orphaned" rows. (An example of an "orphaned" row would be an address in
the "addresses" table not linked to any person in the "person" table, because the person was deleted but its
associated address was not.)

20.1.8 Native Connection

Native connections are direct connections to the DB that do not need drivers to be installed.

You can set up native connections for the following DBs:

· MariaDB

933

934 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· MySQL
· SQLite
· PostgreSQL

If you prefer to establish a connection by means of a driver, see the following topics:

· Setting up a JDBC Connection
· SQLite Connection
· Connecting to PostgreSQL (ODBC)

Connection setup
To set up a native connection, follow the steps below. You will need the following information: host name, port,
database name, username, and password.

1. Start the database connection wizard .
2. Select the DB you want to connect to (MariaDB, MySQL, PostgreSQL, or SQLite).
3. In the dialog that appears, enter the host (for example, localhost), optionally the port (typically 5432),

SSL Mode in the case of MySQL, the database name, username, and password in the corresponding
boxes.

4. Click Connect.

SQLite conections
For detailed information about SQLite connections, see the topic SQLite Connection .

Notes for PostrgreSQL
If the PostgreSQL database server is on a different machine, note the following:

· The PostgreSQL database server must be configured to accept connections from clients. Specifically,
the pg_hba.conf file must be configured to allow non-local connections. Secondly, the
postgresql.conf file must be configured to listen on specified IP address(es) and port. For more
information, check the PostgreSQL documentation (https://www.postgresql.org/docs/9.5/static/client-
authentication-problems.html).

· The server machine must be configured to accept connections on the designated port (typically, 5432)
through the firewall. For example, on a database server running on Windows, a rule may need to be
created to allow connections on port 5432 through the firewall, from Control Panel > Windows
Firewall > Advanced Settings > Inbound Rules.

20.1.9 Global Resources

After you have created a database as a global resource, its connection details are stored and can be used
across all Altova products installed on your machine.

Create a database as a global resource
To create a database as a global resource, do the following

1. On the Tools menu of XMLSpy, click Global Resources.

926

930

974

905

930

https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html
https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html

© 2018-2024 Altova GmbH

Connecting to a Data Source 935Databases

Altova XMLSpy 2024 Enterprise Edition

2. Click Add, and then click Database.
3. Type in a name for the global resource in the Resource Alias field.
4. Click Choose Database. The Connection Wizard appears.
5. Use the Connection Wizard to add a database connection as described above.

Use a global-resource database
To use a database that has been created as a global resource (see above), do the following:

1. Start the Connection Wizard as described above.
2. Select Global Resources. All the databases that have been created as global resources will be listed

by their names in the Global Resources pane (see screenshot below).

3. Select the global resource that you want. Tip: Move the mouse cursor over a global resource in the list
to see information about the database.

20.1.10 Database Connection Examples

This section includes examples for connecting to a database from XMLSpy through ADO, ODBC, or JDBC. The
ADO.NET connection examples are listed separately, see Sample ADO.NET Connection Strings . For
instructions about establishing a native connection to PostgreSQL and SQLite, see Setting up a PostgreSQL
Connection and Setting up a SQLite Connection , respectively.

Note the following:

· The instructions may differ if your Windows configuration, network environment and the database client
or server software are not the same as the ones described in each example.

· For most database types, it is possible to connect using more than one data access technology
(ADO, ADO.NET, ODBC, JDBC) or driver. The performance of the database connection, as well as its
features and limitations will depend on the selected driver, database client software (if applicable), and
any additional connectivity parameters that you may have configured outside XMLSpy.

905

921

933 930

936 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

20.1.10.1 Firebird (JDBC)

This example illustrates how to connect to a Firebird database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK.
· The Firebird JDBC driver must be available on your operating system (it takes the form of a .jar file

which provides connectivity to the database). The driver can be downloaded from the Firebird website
(https://www.firebirdsql.org/). This example uses Jaybird 2.2.8.

· You have the following database connection details: host, database path or alias, username, and
password.

To connect to Firebird through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\jdbc\firebird\jaybird-full-2.2.8.jar. Note that you
can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select org.firebirdsql.jdbc.FBDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

905

929

https://www.firebirdsql.org/

© 2018-2024 Altova GmbH

Connecting to a Data Source 937Databases

Altova XMLSpy 2024 Enterprise Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:firebirdsql://<host>[:<port>]/<database path or alias>

7. Click Connect.

20.1.10.2 Firebird (ODBC)

This example illustrates how to connect to a Firebird 2.5.4 database running on a Linux server.

Prerequisites:

· The Firebird database server is configured to accept TCP/IP connections from clients.
· The Firebird ODBC driver must be installed on your operating system. This example uses the Firebird

ODBC driver version 2.0.3.154 downloaded from the Firebird website (https://www.firebirdsql.org/).
· The Firebird client must be installed on your operating system. Note that there is no standalone

installer available for the Firebird 2.5.4 client; the client is part of the Firebird server installation
package. You can download the Firebird server installation package from the Firebird website
(https://www.firebirdsql.org/), look for "Windows executable installer for full Superclassic/Classic or
Superserver". To install only the client files, choose "Minimum client install - no server, no tools"
when going through the wizard steps.

https://www.firebirdsql.org/
https://www.firebirdsql.org/

938 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Important:

· The platform of both the Firebird ODBC driver and client (32-bit or 64-bit) must correspond
to that of XMLSpy.

· The version of the Firebird client must correspond to the version of Firebird server to which
you are connecting.

· You have the following database connection details: server host name or IP address, database path (or
alias) on the server, user name, and password.

To connect to Firebird via ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.

3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add .

4. Select the Firebird driver, and then click User DSN (or System DSN, depending on what you selected
in the previous step). If the Firebird driver is not available in the list, make sure that it is installed on
your operating system (see also Viewing the Available ODBC Drivers).

905

925

© 2018-2024 Altova GmbH

Connecting to a Data Source 939Databases

Altova XMLSpy 2024 Enterprise Edition

5. Enter the database connection details as follows:

Data Source Name (DSN) Enter a descriptive name for the data source you are creating.

Database Enter the server host name or IP address, followed by a colon,
followed by the database alias (or path). In this example, the host
name is firebirdserv, and the database alias is products, as
follows:

firebirdserv:products

Using a database alias assumes that, on the server side, the
database administrator has configured the alias products to point to
the actual Firebird (.fdb) database file on the server (see the Firebird
documentation for more details).

You can also use the server IP address instead of the host name,
and a path instead of an alias; therefore, any of the following sample
connection strings are valid:

firebirdserver:/var/Firebird/databases/butterflies.fdb
127.0.0.1:D:\Misc\Lenders.fdb

940 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If the database is on the local Windows machine, click Browse and
select the Firebird (.fdb) database file directly.

Client Enter the path to the fbclient.dll file. By default, this is the bin
subdirectory of the Firebird installation directory.

Database Account Enter the database user name supplied by the database
administrator (in this example, PROD_ADMIN).

Password Enter the database password supplied by the database
administrator.

6. Click OK.

20.1.10.3 IBM DB2 (JDBC)

This example illustrates how to connect to an IBM DB2 database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK. This example
uses Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of XMLSpy.

· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on
your operating system. This example uses the JDBC driver available after installing the IBM Data
Server Client version 10.1 (64-bit). For the JDBC drivers to be installed, choose a Typical installation,
or select this option explicitly on the installation wizard.

© 2018-2024 Altova GmbH

Connecting to a Data Source 941Databases

Altova XMLSpy 2024 Enterprise Edition

If you did not change the default installation path, the required .jar files will be in the C:\Program
Files\IBM\SQLLIB\java directory after installation.

· You need the following database connection details: host, port, database name, username, and
password.

To connect to IBM DB2 through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. This

examples refers to C:\Program Files\IBM\SQLLIB\java\db2jcc.jar. You may need to refer to the
db2jcc4.jar driver, depending on the database server version. For driver compatibility, refer to IBM
documentation (http://www-01.ibm.com/support/docview.wss?uid=swg21363866). Note that you can
leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ibm.db2.jcc.DB2Driver. This entry becomes available only if a valid
.jar file path was found either in the "Classpaths" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

905

929

http://www-01.ibm.com/support/docview.wss?uid=swg21363866

942 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace the connection

details with the ones applicable to your database server.

jdbc:db2://hostName:port/databaseName

7. Click Connect.

20.1.10.4 IBM DB2 (ODBC)

This example illustrates how to connect to an IBM DB2 database through ODBC.

Prerequisites:

· IBM Data Server Client must be installed and configured on your operating system (this example uses
IBM Data Server Client 9.7). For installation instructions, check the documentation supplied with your
IBM DB2 software. After installing the IBM Data Server Client, check if the ODBC drivers are available
on your machine (see Viewing the Available ODBC Drivers).

· Create a database alias. There are several ways to do this:
o From IBM DB2 Configuration Assistant

o From IBM DB2 Command Line Processor

o From the ODBC data source wizard (for this case, the instructions are shown below)

· You have the following database connection details: host, database, port, username, and password.

To connect to IBM DB2:

1. Start the database connection wizard and select IBM DB2 (ODBC/JDBC).
2. Click Next.

925

905

© 2018-2024 Altova GmbH

Connecting to a Data Source 943Databases

Altova XMLSpy 2024 Enterprise Edition

3. Select ODBC, and click Next. If prompted to edit the list of known drivers for the database, select the
database drivers applicable to IBM DB2 (see Prerequisites), and click Next.942

944 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. Select the IBM DB2 driver from the list, and then click Connect. (To edit the list of available drivers,
click Edit Drivers, and then check or uncheck the IBM DB2 drivers you wish to add or remove,
respectively.)

© 2018-2024 Altova GmbH

Connecting to a Data Source 945Databases

Altova XMLSpy 2024 Enterprise Edition

5. Enter a data source name (in this example, DB2DSN), and then click Add.

6. On the Data Source tab, enter the user name and password to the database.

946 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

7. On the TCP/IP tab, enter the database name, a name for the alias, the host name and the port
number, and then click OK.

© 2018-2024 Altova GmbH

Connecting to a Data Source 947Databases

Altova XMLSpy 2024 Enterprise Edition

8. Enter again the username and password, and then click OK.

948 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

20.1.10.5 IBM DB2 for i (JDBC)

This example illustrates how to connect to an IBM DB2 for i database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK. This example
uses Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of XMLSpy.

· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on
your operating system. This example uses the open source Toolbox for Java/JTOpen version 9.8
(http://jt400.sourceforge.net/). After you download the package and unpack to a local directory, the
required .jar files will be available in the lib subdirectory.

· You need the following database connection details: host, username, and password.

To connect to IBM DB2 for i through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. In this

example, the required .jar file is at the following path: C:\jdbc\jtopen_9_8\jt400.jar. Note that you can
leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ibm.as400.access.AS400JDBCDriver. This entry becomes available
only if a valid .jar file path was found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace host with the

host name or IP address of your database server.

jdbc:as400://host

905

929

http://jt400.sourceforge.net/

© 2018-2024 Altova GmbH

Connecting to a Data Source 949Databases

Altova XMLSpy 2024 Enterprise Edition

7. Click Connect.

20.1.10.6 IBM DB2 for i (ODBC)

This example illustrates how to connect to an IBM DB2 for i database through ODBC.

Prerequisites:

· IBM System i Access for Windows must be installed on your operating system (this example uses
IBM System i Access for Windows V6R1M0). For installation instructions, check the documentation
supplied with your IBM DB2 for i software. After installation, check if the ODBC driver is available on
your machine (see Viewing the Available ODBC Drivers).

· You have the following database connection details: the I.P. address of the database server, database
user name, and password.

· Run System i Navigator and follow the wizard to create a new connection. When prompted to specify a
system, enter the I.P. address of the database server. After creating the connection, it is
recommended to verify it (click on the connection, and select File > Diagnostics > Verify
Connection). If you get connectivity errors, contact the database server administrator.

To connect to IBM DB2 for i:

1. Start the database connection wizard .
2. Click ODBC connections.

925

905

950 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent
instructions will be similar).

4. Click Add .
5. Select the iSeries Access ODBC Driver from the list, and click User DSN (or System DSN, if

applicable).

6. Enter a data source name and select the connection from the System combo box. In this example, the
data source name is iSeriesDSN and the System is 192.0.2.0.

7. Click Connection Options, select Use the User ID specified below and enter the name of the
database user (in this example, DBUSER).

© 2018-2024 Altova GmbH

Connecting to a Data Source 951Databases

Altova XMLSpy 2024 Enterprise Edition

8. Click OK. The new data source becomes available in the list of DSNs.
9. Click Connect.
10. Enter the user name and password to the database when prompted, and then click OK.

20.1.10.7 IBM Informix (JDBC)

This example illustrates how to connect to an IBM Informix database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on

your operating system. In this example, IBM Informix JDBC driver version 3.70 is used. For the driver's
installation instructions, see the documentation accompanying the driver or the "IBM Informix JDBC
Driver Programmer's Guide").

· You have the following database connection details: host, name of the Informix server, database, port,
username, and password.

952 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To connect to IBM Informix through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\Informix_JDBC_Driver\lib\ifxjdbc.jar. Note that
you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the
CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH
).

4. In the "Driver" box, select com.informix.jdbc.IfxDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpaths" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:informix-sqli://hostName:port/databaseName:INFORMIXSERVER=myserver;

7. Click Connect.

905

929

© 2018-2024 Altova GmbH

Connecting to a Data Source 953Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.10.8 MariaDB (ODBC)

This example illustrates how to connect to a MariaDB database server through ODBC.

Prerequisites:

· The MariaDB Connector/ODBC (https://downloads.mariadb.org/connector-odbc/) must be installed.
· You have the following database connection details: host, database, port, username, and password.

To connect to MariaDB through ODBC:

1. Start the database connection wizard .
2. Select MariaDB (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and choose MariaDB ODBC 3.0
Driver. If no such driver is available in the list, click Edit Drivers, and select any available MariaDB
drivers (the list contains all ODBC drivers installed on your operating system).

4. Click Connect.

905

https://downloads.mariadb.org/connector-odbc/

954 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Enter name and, optionally, a description that will help you identify this ODBC data source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and
then click Test DSN. Upon successful connection, a message box appears:

© 2018-2024 Altova GmbH

Connecting to a Data Source 955Databases

Altova XMLSpy 2024 Enterprise Edition

7. Click Next and complete the wizard. Other parameters may be required, depending on the case (for
example, SSL certificates if you are connecting to MariaDB through a secure connection).

Note: If the database server is remote, it must be configured by the server administrator to accept remote
connections from your machine's IP address.

20.1.10.9 Microsoft Access (ADO)

A simple way to connect to a Microsoft Access database is to follow the wizard and browse for the database
file, as shown in Connecting to an Existing Microsoft Access Database . An alternative approach is to set up
an ADO connection explicitly, as shown in this topic. This approach is useful if your database is password-
protected.

It is also possible to connect to Microsoft Access through an ODBC connection, but it has limitations, so it is
best to avoid it.

To connect to a password-protected Microsoft Access database:

1. Start the database connection wizard .
2. Click ADO Connections.
3. Click Build.

913

905

956 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. Select the Microsoft Office 15.0 Access Database Engine OLE DB Provider, and then click Next.

© 2018-2024 Altova GmbH

Connecting to a Data Source 957Databases

Altova XMLSpy 2024 Enterprise Edition

5. In the Data Source box, enter the path to the Microsoft Access file in UNC format, for example, \
\myserver\\mynetworkshare\Reports\Revenue.accdb, where myserver is the name of the server
and mynetworkshare is the name of the network share.

6. On the All tab, double click the Jet OLEDB:Database Password property and enter the database
password as property value.

Note: If you are still unable to connect, locate the workgroup information file (System.MDW) applicable to
your user profile, and set the value of the Jet OLEDB: System database property to the path of the
System.MDW file.

20.1.10.10 Microsoft Azure SQL (ODBC)

In order to connect properly to an Azure SQL database, you must install the latest SQL Server Native Client.

https://learn.microsoft.com/en-us/sql/relational-databases/native-client/applications/installing-sql-server-native-client?view=sql-server-ver16&redirectedfrom=MSDN

958 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For information about connecting to an Azure SQL database in the cloud, see this Altova blog entry.

20.1.10.11 Microsoft SQL Server (ADO)

This example illustrates how to connect to a SQL Server database through ADO. These instructions are
applicable when you use the recommended Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL),
which is available for download at https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-
sql-server?view=sql-server-ver15.

Before following these instructions, make sure that you have downloaded and installed the provider above
on your workstation. The ADO provider must match the platform of XMLSpy (32-bit or 64-bit).

If you would like to use other ADO providers such as SQL Server Native Client (SQLNCLI) or Microsoft OLE
DB Provider for SQL Server (SQLOLEDB), the instructions are similar, but these providers are deprecated
and thus not recommended. Also, for the connection to be successful with a deprecated provider, you may
need to set additional connection properties as described in Setting up the SQL Server Data Link Properties
.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is known to have issues with parameter
binding of complex queries like Common Table Expressions (CTE) and nested SELECT statements.

To connect to SQL Server:

1. Start the database connection wizard .
2. Select Microsoft SQL Server (ADO), and then click Next. The list of available ADO providers is

displayed. In this example, the Microsoft OLE DB Driver for SQL Server is used. If it's not in the list,
make sure that it is installed on your computer, as mentioned above.

3. Click Next. The Data Link Properties dialog box appears.

914

905

https://www.altova.com/blog/connecting-databasespy-to-a-sql-azure-database-in-the-cloud/
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

© 2018-2024 Altova GmbH

Connecting to a Data Source 959Databases

Altova XMLSpy 2024 Enterprise Edition

4. Select or enter the name of the database server, for example, SQLSERV01. If you are connecting to a
named SQL Server instance, the server name looks like SQLSERV01\SOMEINSTANCE.

5. If the database server was configured to allow connections from users authenticated on the Windows
domain, select Windows Authentication. Otherwise, select SQL Server Authentication, clear the
Blank password check box, and enter the database credentials in the relevant boxes.

6. Select the Allow saving password check box and the database to which you are connecting (in this
example, "Nanonull").

960 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

7. To test the connection at this time, click Test Connection. This is an optional, recommended step.
8. Click OK.

20.1.10.12 Microsoft SQL Server (ODBC)

This example illustrates how to connect to a SQL Server database through ODBC.

Prerequisites:

· Download and install the Microsoft ODBC Driver for SQL Server from the Microsoft website, see
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server. This example
uses Microsoft ODBC Driver 17 for SQL Server to connect to a SQL Server 2016 database. You
might want to download a different ODBC driver version, depending on the version of SQL Server where
you want to connect. For information about ODBC driver versions supported by your SQL Server
database, refer to the driver's system requirements.

https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server

© 2018-2024 Altova GmbH

Connecting to a Data Source 961Databases

Altova XMLSpy 2024 Enterprise Edition

To connect to SQL Server using ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.

3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add .
4. Select the driver from the list. Note that the driver appears in the list only after it has been installed.

5. Click User DSN (or System DSN if you are creating a System DSN).

Creating a System DSN requires that XMLSpy be run as an administrator. Therefore, in order to
create a System DSN, cancel the wizard, make sure that you run XMLSpy as an administrator,
and perform the steps above again.

6. Enter a name and, optionally, a description to identify this connection, and then select from the list the
SQL Server to which you are connecting (SQLSERV01 in this example).

905

962 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

7. If the database server was configured to allow connections from users authenticated on the Windows
domain, select With Integrated Windows authentication. Otherwise, select one of the other
options, as applicable. This example uses With SQL Server authentication... , which requires that
the user name and password be entered in the relevant boxes.

© 2018-2024 Altova GmbH

Connecting to a Data Source 963Databases

Altova XMLSpy 2024 Enterprise Edition

8. Optionally, select the Change the default database to check box and enter the name of the
database to which you are connecting (in this example, Sandbox).

964 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

9. Click Next and, optionally, configure additional parameters for this connection.

© 2018-2024 Altova GmbH

Connecting to a Data Source 965Databases

Altova XMLSpy 2024 Enterprise Edition

10. Click Finish. A confirmation dialog box listing the connection details opens.

966 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

11. Click OK. The data source now appears in the list of User or System data sources, as configured, for
example:

20.1.10.13 MySQL (ODBC)

This example illustrates how to connect to a MySQL database server from a Windows machine through the
ODBC driver. The MySQL ODBC driver is not available on Windows, so it must be downloaded and installed
separately. This example uses MySQL Connector/ODBC 8.0.

© 2018-2024 Altova GmbH

Connecting to a Data Source 967Databases

Altova XMLSpy 2024 Enterprise Edition

Prerequisites:

· MySQL ODBC driver must be installed on your operating system. Check the MySQL documentation
for the driver version recommended for your database server version (see
https://dev.mysql.com/downloads/connector/odbc/).

· You have the following database connection details: host, database, port, username, and password.

If you installed MySQL Connector/ODBC for 64-bit platform, make sure to install XMLSpy for 64-bit
platform as well.

To connect to MySQL via ODBC:

1. Start the database connection wizard .
2. Select MySQL (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and select a MySQL driver. If no
MySQL driver is available in the list, click Edit Drivers, and select any available MySQL drivers (the
list contains all ODBC drivers installed on your operating system).

If you installed XMLSpy 64-bit, then the 64-bit ODBC drivers are shown in the list. Otherwise, the
32-bit ODBC drivers are shown. See also Viewing the Available ODBC Drivers .

4. Click Connect.

905

925

https://dev.mysql.com/downloads/connector/odbc/

968 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. In the Data Source Name box, enter a descriptive name that will help you identify this ODBC data
source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and
then click OK.

Note: If the database server is remote, it must be configured by the server administrator to accept remote
connections from your machine's IP address. Also, if you click Details>>, there are several additional
parameters available for configuration. Check the driver's documentation before changing their default
values.

20.1.10.14 Oracle (JDBC)

This example shows you how to connect to an Oracle database server from a client machine, using the JDBC
interface. The connection is created as a pure Java connection, using the Oracle Instant Client Package
(Basic) available from the Oracle website. The advantage of this connection type is that it requires only the Java
environment and the .jar libraries supplied by the Oracle Instant Client Package, saving you the effort to install
and configure a more complex database client.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you

© 2018-2024 Altova GmbH

Connecting to a Data Source 969Databases

Altova XMLSpy 2024 Enterprise Edition

may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK.
· The Oracle Instant Client Package (Basic) must be available on your operating system. The

package can be downloaded from the official Oracle website. This example uses Oracle Instant Client
Package version 12.1.0.2.0, for Windows 32-bit and, consequently, Oracle JDK 32-bit.

· You have the following database connection details: host, port, service name, username, and
password.

To connect to Oracle through the Instant Client Package:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\jdbc\instantclient_12_1\ojdbc7.jar. Note that you
can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select either oracle.jdbc.OracleDriver or oracle.jdbc.driver.OracleDriver. Note
that these entries are available if a valid .jar file path is found either in the "Classpaths" text box, or in
the operating system's CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.

6. Enter the connection string to the database server in the Database URL text box, by replacing the
highlighted values with the ones applicable to your database server.

905

929

970 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

jdbc:oracle:thin:@//host:port:service

7. Click Connect.

20.1.10.15 Oracle (ODBC)

This example illustrates a common scenario where you connect from XMLSpy to an Oracle database server on
a network machine, through an Oracle database client installed on the local operating system.

The example includes instructions for setting up an ODBC data source (DSN) using the database connection
wizard in XMLSpy. If you have already created a DSN, or if you prefer to create it directly from the ODBC Data
Source administrator in Windows, you can do so, and then select it when prompted by the wizard. For more
information about ODBC data sources, see Setting up an ODBC Connection .

Prerequisites:

· The Oracle database client (which includes the ODBC Oracle driver) must be installed and configured
on your operating system. For instructions on how to install and configure an Oracle database client,
refer to the documentation supplied with your Oracle software.

· The tnsnames.ora file located in Oracle home directory contains an entry that describes the database
connection parameters, in a format similar to this:

ORCL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = server01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SID = orcl)
 (SERVER = DEDICATED)
)
)

The path to the tnsnames.ora file depends on the location where Oracle home directory was installed.
For Oracle database client 11.2.0, the default Oracle home directory path could be as follows:

C:\app\username\product\11.2.0\client_1\network\admin\tnsnames.ora

You can add new entries to the tnsnames.ora file either by pasting the connection details and saving
the file, or by running the Oracle Net Configuration Assistant wizard (if available). If you want these
values to appear in dropdown lists during the configuration process, then you may need to add the path
to the admin folder as a TNS_ADMIN environment variable.

To connect to Oracle using ODBC:

1. Start the database connection wizard .
2. Select Oracle (ODBC / JDBC), and then click Next.

923

905

© 2018-2024 Altova GmbH

Connecting to a Data Source 971Databases

Altova XMLSpy 2024 Enterprise Edition

3. Select ODBC.

4. Click Edit Drivers.

972 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Select the Oracle drivers you wish to use (in this example, Oracle in OraClient11g_home1). The list
displays the Oracle drivers available on your system after installation of Oracle client.

6. Click Back.
7. Select Create a new data source name (DSN) with the driver, and then select the Oracle driver

chosen in step 4.

© 2018-2024 Altova GmbH

Connecting to a Data Source 973Databases

Altova XMLSpy 2024 Enterprise Edition

Avoid using the Microsoft-supplied driver called Microsoft ODBC for Oracle driver. Microsoft
recommends using the ODBC driver provided by Oracle (see http://msdn.microsoft.com/en-
us/library/ms714756%28v=vs.85%29.aspx)

8. Click Connect.

http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx

974 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

9. In the Data Source Name text box, enter a name to identify the data source (in this example, Oracle
DSN 1).

10. In the TNS Service Name box, enter the connection name as it is defined in the tnsnames.ora file (see
prerequisites). In this example, the connection name is ORCL. Note: If you wish to have the
dropdown list of the combo box populated with the values of the tnsnames.ora file, then you may need
to add the path to the admin folder as a TNS_ADMIN environment variable.

11. Click OK.

12. Enter the username and password to the database, and then click OK.

20.1.10.16 PostgreSQL (ODBC)

This example illustrates how to connect to a PostgreSQL database server from a Windows machine through
the ODBC driver. The PostgreSQL ODBC driver is not available on Windows, so it must be downloaded and

970

© 2018-2024 Altova GmbH

Connecting to a Data Source 975Databases

Altova XMLSpy 2024 Enterprise Edition

installed separately. This example uses the psqlODBC driver (version 11.0) downloaded from the official website
(see also Database Drivers Overview).

Note: You can also connect to a PostgreSQL database server directly (without the ODBC driver), see Setting
up a PostgreSQL Connection .

Prerequisites:

· psqlODBC driver must be installed on your operating system.
· You have the following database connection details: server, port, database, user name, and password.

To set up a connection to PostgreSQL using ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select the User DSN option.

4. Click Create a new DSN and select the driver from the drop-down list. If no PostgreSQL driver is
available in the list, make sure that the PostgreSQL ODBC driver is installed on your operating system,
as mentioned in the prerequisites above.

5. Click User DSN.

907

933

905

976 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6. Fill in the database connection credentials (these must be supplied by the database owner), and then
click Save.

The connection is now available in the list of ODBC connections. To connect to the database, you can either
double-click the connection or select it, and then click Connect.

© 2018-2024 Altova GmbH

Connecting to a Data Source 977Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.10.17 Progress OpenEdge (JDBC)

This example illustrates how to connect to a Progress OpenEdge 11.6 database server through JDBC.

Prerequisites

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK.
· The operating system's PATH environment variable must include the path to the bin directory of the

JRE or JDK installation directory, for example C:\Program Files (x86)\Java\jre1.8.0_51\bin.
· The Progress OpenEdge JDBC driver must be available on your operating system. In this example,

JDBC connectivity is provided by the openedge.jar and pool.jar driver component files available in C:
\Progress\OpenEdge\java as part of the OpenEdge SDK installation.

· You have the following database connection details: host, port, database name, username, and
password.

Connecting to OpenEdge through JDBC

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file paths are: C:\Progress\OpenEdge\java\openedge.jar;C:

\Progress\OpenEdge\java\pool.jar;. Note that you can leave the "Classpaths" text box empty if

you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system
(see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ddtek.jdbc.openedge.OpenEdgeDriver. Note that this entry is
available if a valid .jar file path is found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

905

929

978 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:datadirect:openedge://host:port;databaseName=db_name

7. Click Connect.

20.1.10.18 Progress OpenEdge (ODBC)

This example illustrates how to connect to a Progress OpenEdge database server through the Progress
OpenEdge 11.6 ODBC driver.

Prerequisites:

· The ODBC Connector for Progress OpenEdge driver must be installed on your operating system. The
Progress OpenEdge ODBC driver can be downloaded from the vendor's website (see also Database
Drivers Overview). Make sure to download the 32-bit driver when running the 32-bit version of
XMLSpy, and the 64-bit driver when running the 64-bit version. After installation, check if the ODBC
driver is available on your machine (see also Viewing the Available ODBC Drivers).

907

925

© 2018-2024 Altova GmbH

Connecting to a Data Source 979Databases

Altova XMLSpy 2024 Enterprise Edition

· You have the following database connection details: host name, port number, database name, user ID,
and password.

Connecting to Progress OpenEdge through ODBC

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent

instructions will be similar).

4. Click Add .
5. Select the Progress OpenEdge Driver from the list, and click User DSN (or System DSN, if

applicable).

905

980 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6. Fill in the database connection credentials (Database, Server, Port, User Name, Password), and then
click OK. To verify connectivity before saving the entered data, click Test Connect.

7. Click OK. The new data source now appears in the list of ODBC data sources.

© 2018-2024 Altova GmbH

Connecting to a Data Source 981Databases

Altova XMLSpy 2024 Enterprise Edition

8. Click Connect.

20.1.10.19 Sybase (JDBC)

This example illustrates how to connect to a Sybase database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK.
· Sybase jConnect component must be installed on your operating system (in this example, jConnect

7.0 is used, installed as part of the Sybase Adaptive Server Enterprise PC Client installation). For the
installation instructions of the database client, refer to Sybase documentation.

· You have the following database connection details: host, port, database name, username, and
password.

982 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To connect to Sybase through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file path is: C:\sybase\jConnect-7_0\classes\jconn4.jar. Note that you can leave the
"Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment
variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.sybase.jdbc4.jdbc.SybDriver. Note that this entry is available if a
valid .jar file path is found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:sybase:Tds:hostName:port/databaseName

7. Click Connect.

905

929

© 2018-2024 Altova GmbH

Connecting to a Data Source 983Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.10.20 Teradata (JDBC)

This example illustrates how to connect to a Teradata database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. XMLSpy will determine the path to the
Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of XMLSpy (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC driver (one or more .jar files that provide connectivity to the database) must be available on

your operating system. In this example, Teradata JDBC Driver 16.20.00.02 is used. For more
information, see https://downloads.teradata.com/download/connectivity/jdbc-driver.

· You have the following database connection details: host, database, port, username, and password.

To connect to Teradata through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the .jar files
are located at the following path: C:\jdbc\teradata\. Note that you can leave the "Classpaths" text box
empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating
system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.teradata.jdbc.TeraDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

905

929

https://downloads.teradata.com/download/connectivity/jdbc-driver

984 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted value with the one applicable to your database server.

jdbc:teradata://databaseServerName

7. Click Connect.

© 2018-2024 Altova GmbH

Connecting to a Data Source 985Databases

Altova XMLSpy 2024 Enterprise Edition

20.1.10.21 Teradata (ODBC)

This example illustrates how to connect to a Teradata database server through ODBC.

Prerequisites:

· The Teradata ODBC driver must be installed (see
https://downloads.teradata.com/download/connectivity/odbc-driver/windows. This example uses
Teradata ODBC Driver for Windows version 16.20.00.

· You have the following database connection details: host, username, and password.

To connect to Teradata through ODBC:

1. Press the Windows key, start typing "ODBC", and select Set up ODBC data sources (32-bit) from
the list of suggestions. If you have a 64-bit ODBC driver, select Set up ODBC data sources (64-bit)
and use 64-bit XMLSpy in the subsequent steps.

2. Click the System DSN tab, and then click Add.

https://downloads.teradata.com/download/connectivity/odbc-driver/windows

986 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. Select Teradata Database ODBC Driver and click Finish.

© 2018-2024 Altova GmbH

Connecting to a Data Source 987Databases

Altova XMLSpy 2024 Enterprise Edition

4. Enter name and, optionally, a description that will help you identify this ODBC data source in future.
Also, enter the database connection credentials (Database server, User, Password), and, optionally,
select a database.

5. Click OK. The data source now appears in the list.

988 Databases Connecting to a Data Source

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6. Run XMLSpy and start the database connection wizard .
7. Click ODBC Connections.

905

© 2018-2024 Altova GmbH

Connecting to a Data Source 989Databases

Altova XMLSpy 2024 Enterprise Edition

8. Click System DSN, select the data source created previously, and then click Connect.

Note: If you get the following error: "The driver returned invalid (or failed to return) SQL_DRIVER_ODBC_VER:

03.80", make sure that the path to the ODBC client (for example, C:\Program
Files\Teradata\Client\16.10\bin, if you installed it to this location) exists in your system's PATH

environment variable. If this path is missing, add it manually.

990 Databases Supported Databases

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

20.2 Supported Databases

The table below lists all the supported databases. If your Altova application is a 64-bit version, ensure that you
have access to the 64-bit database drivers needed for the specific database you are connecting to.

Database Notes

Firebird 2.x, 3.x, 4.x

IBM DB2 8.x, 9.x, 10.x, 11.x

IBM Db2 for i 6.x, 7.4, 7.5 Logical files are supported and shown as views.

IBM Informix 11.70 and later

MariaDB 10 and later MariaDB supports native connections. No separate drivers are
required.

Microsoft Access 2003 and later At the time of writing (early September 2019), there is no
Microsoft Access Runtime available for Access 2019. You can
connect to an Access 2019 database from Altova products only
if Microsoft Access 2016 Runtime is installed and only if the
database does not use the "Large Number" data type.

Microsoft Azure SQL Database SQL Server 2016 codebase

Microsoft SQL Server 2005 and later
Microsoft SQL Server on Linux

MySQL 5 and later MySQL 5.7 and later supports native connections. No separate
drivers are required.

Oracle 9i and later

PostgreSQL 8 and later PostgreSQL connections are supported both as native
connections and driver-based connections through interfaces
(drivers) such as ODBC or JDBC. Native connections do not
require any drivers.

Progress OpenEdge 11.6

SQLite 3.x SQLite connections are supported as native, direct connections
to the SQLite database file. No separate drivers are required.

In Authentic view, data coming from a SQLite database is not
editable. When you attempt to save SQLite data from the
Authentic view, a message box will inform you of this known
limitation.

Sybase ASE 15, 16

Teradata 16

© 2018-2024 Altova GmbH

 991Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

21 Altova Global Resources

Altova Global Resources is a collection of aliases for file, folder, and database resources. Each alias can have
multiple configurations, and each configuration maps to a single resource (see screenshot below). Therefore,
when a global resource is used as an input, the global resource can be switched among its configurations. This
is done easily via controls in the GUI that let you select the active configuration. For example, if an XSLT
stylesheet for transforming an XML document is assigned via a global resource (an alias), then we can set up
multiple configurations for the global resource, each of which points to a different XSLT file. After setting up the
global resource in this way, switching the configuration would switch the XSLT file used for the transformation.

A global resource can not only be used to switch resources within an Altova application, but also to generate
and use resources from other Altova applications. So, files can be generated on-the-fly in one Altova application
for use in another Altova application. All of this tremendously eases and speeds up development and testing.
For example, an XSLT stylesheet in XMLSpy can be used to transform an XML file generated on-the-fly by an
Altova MapForce mapping.

Using Altova Global Resources involves two processes:

· Defining Global Resources : Resources are defined and the definitions are stored in an XML file.
These resources can be shared across multiple Altova applications.

· Using Global Resources : Within XMLSpy, files can be located via a global resource instead of via a
file path. The advantage is that the resource can be switched by changing the active configuration in
XMLSpy.

Global resources in other Altova products
Currently, global resources can be defined and used in the following individual Altova products: XMLSpy,
StyleVision, MapForce, Authentic Desktop, MobileTogether Designer, and DatabaseSpy.

992

1003

992 Altova Global Resources Defining Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

21.1 Defining Global Resources

Altova Global Resources are defined in the Manage Global Resources dialog, which can be accessed in two
ways:

· Click the menu command Tools | Global Resources.
· Click the Manage Global Resources icon in the Global Resources toolbar (screenshot below).

The Global Resources Definitions file
Information about global resources is stored in an XML file called the Global Resources Definitions file. This file
is created when the first global resource is defined in the Manage Global Resources dialog (screenshot below)
and saved.

When you open the Manage Global Resources dialog for the first time, the default location and name of the
Global Resources Definitions file is specified in the Definitions File text box (see screenshot above):

C:\Users\<username>\My Documents\Altova\GlobalResources.xml

This file is set as the default Global Resources Definitions file for all Altova applications. So a global resource
can be saved from any Altova application to this file and will be immediately available to all other Altova
applications as a global resource. To define and save a global resource to the Global Resources Definitions file,
add the global resource in the Manage Global Resources dialog and click OK to save.

To select an already existing Global Resources Definitions file to be the active definitions file of a particular
Altova application, browse for it via the Browse button of the Definitions File text box (see screenshot above).

© 2018-2024 Altova GmbH

Defining Global Resources 993Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

Note: You can name the Global Resources Definitions file anything you like and save it to any location
accessible to your Altova applications. All you need to do in each application, is specify this file as the
Global Resources Definitions file for that application (in the Definitions File text box). The resources
become global across Altova products when you use a single definitions file across all Altova
products.

Note: You can also create multiple Global Resources Definitions files. However, only one of these can be
active at any time in a given Altova application, and only the definitions contained in this file will be
available to the application. The availability of resources can therefore be restricted or made to overlap
across products as required.

Managing global resources: adding, editing, deleting, saving
In the Manage Global Resources dialog (screenshot above), you can add a global resource to the selected
Global Resources Definitions file, or edit or delete a selected global resource. The Global Resources Definitions
file organizes the global resources you add into groups: of files, folders, and databases (see screenshot
above).

To add a global resource, click the Add button and define the global resource in the appropriate Global
Resource dialog that pops up (see the descriptions of files , folders , and databases in the sub-
sections of this section). After you define a global resource and save it (by clicking OK in the Manage Global
Resources dialog), the global resource is added to the library of global definitions in the selected Global
Resources Definitions file. The global resource will be identified by an alias.

To edit a global resource, select it and click Edit. This pops up the relevant Global Resource dialog, in which
you can make the necessary changes (see the descriptions of files , folders , and databases in the
sub-sections of this section).

To delete a global resource, select it and click Delete.

After you finish adding, editing, or deleting, make sure to click OK in the Manage Global Resources dialog to
save your modifications to the Global Resources Definitions file.

Relating global resources to alias names via configurations
Defining a global resource involves mapping an alias name to a resource (file, folder, or database). A single
alias name can be mapped to multiple resources. Each mapping is called a configuration. A single alias name
can therefore be associated with several resources via different configurations (screenshot below).

994 999 992

994 999 1001

994 Altova Global Resources Defining Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In an Altova application, you can then assign aliases instead of files. For each alias you can switch between
the resources mapped to that alias simply by changing the application's active Global Resource configuration
(active configuration). For example, in Altova's XMLSpy application, if you wish to run an XSLT transformation
on the XML document MyXML.xml, you can assign the alias MyXSLT to it as the global resource to be used for
XSLT transformations. In XMLSpy you can then change the active configuration to use different XSLT files. If
Configuration-1 maps First.xslt to MyXSLT and Configuration-1 is selected as the active configuration,
then First.xslt will be used for the transformation. In this way multiple configurations can be used to access
multiple resources via a single alias. This mechanism can be useful when testing and comparing resources.
Furthermore, since global resources can be used across Altova products, resources can be tested and
compared across multiple Altova products as well.

21.1.1 Files

The Global Resource dialog for Files (screenshot below) is accessed via the Add | File command in the
Manage Global Resources dialog . In this dialog, you can define configurations of the alias that is named in
the Resource Alias text box. After specifying the properties of the configurations as explained below, save the
alias definition by clicking OK.

After saving an alias definition, you can add another alias by repeating the steps given above (starting with the
Add | File command in the Manage Global Resources dialog).

Global Resource dialog
An alias is defined in the Global Resource dialog (screenshot below).

992

992

© 2018-2024 Altova GmbH

Defining Global Resources 995Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

Global Resource dialog icons

Add Configuration: Pops up the Add Configuration dialog in which you enter the name of the
configuration to be added.

Add Configuration as Copy: Pops up the Add Configuration dialog in which you can enter the name of
the configuration to be created as a copy of the selected configuration.

Delete: Deletes the selected configuration.

Open: Browse for the file to be created as the global resource.

Defining the alias
Define the alias (its name and configurations) as follows:

1. Give the alias a name: Enter the alias name in the Resource Alias text box.

996 Altova Global Resources Defining Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Add configurations: The Configurations pane will have, by default, a configuration named Default (see
screenshot above), which cannot be deleted or renamed. You can add as many additional
configurations as you like by: (i) clicking the Add Configuration or Add Configuration as Copy
icons, and (ii) giving the configuration a name in the dialog that pops up. Each added configuration will
be shown in the Configurations list. In the screenshot above, two additional configurations, named Long
and Short, have been added to the Configurations list. The Add Configuration as Copy command
enables you to copy the selected configuration and then modify it.

3. Select a resource type for each configuration: Select a configuration from the Configurations list, and,
in the Settings for Configuration pane, specify a resource for the configuration: (i) File, (ii) Output of an
Altova MapForce transformation, or (iii) Output of an Altova StyleVision transformation. Select the
appropriate radio button. If a MapForce or StyleVision transformation option is selected, then a
transformation is carried out by MapForce or StyleVision using, respectively, the .mfd or .sps file and
the respective input file. The result of the transformation will be the resource.

4. Select a file for the resource type: If the resource is a directly selected file, browse for the file in the
Resource File Selection text box. If the resource is the result of a transformation, in the File Selection
text box, browse for the .mfd file (for MapForce transformations) or the .sps file (for StyleVision
transformations). Where multiple inputs or outputs for the transformation are possible, a selection of
the options will be presented. For example, the output options of a StyleVision transformation are
displayed according to what edition of StyleVision is installed (the screenshot below shows the outputs
for Enterprise Edition).

Select the radio button of the desired option (in the screenshot above, 'HTML output' is selected). If the
resource is the result of a transformation, then the output can be saved as a file or itself as a global

resource. Click the icon and select, respectively, Global Resource (for saving the output as a global
resource) or Browse (for saving the output as a file). If neither of these two saving options is selected,
the transformation result will be loaded as a temporary file when the global resource is invoked.

5. Define multiple configurations if required: You can add more configurations and specify a resource for
each. Do this by repeating Steps 3 and 4 above for each configuration. You can add a new
configuration to the alias definition at any time.

6. Save the alias definition: Click OK to save the alias and all its configurations as a global resource. The
global resource will be listed under Files in the Manage Global Resources dialog .

Result of MapForce transformation
Altova MapForce maps one or more (existing) input document schemas to one or more (new) output document
schemas. This mapping, which is created by a MapForce user, is known as a MapForce Design (MFD). XML
files, text files, databases, etc, that correspond to the input schema/s can be used as data sources. MapForce
generates output data files that correspond to the output document schema. This output document is the
Result of MapForce Transformation file that will become a global resource.

If you wish to set a MapForce-generated data file as a global resource, the following must be specified in the
Global Resource dialog (see screenshot below):

992

© 2018-2024 Altova GmbH

Defining Global Resources 997Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

· A .mfd (MapForce Design) file. You must specify this file in the Resource will point to generated

output of text box (see screenshot above).
· One or more input data files. After the MFD file has been specified, it is analyzed and, based on the

input schema information in it, default data file/s are entered in the Inputs pane (see screenshot
above). You can modify the default file selection for each input schema by specifying another file.

· An output file. If the MFD document has multiple output schemas, all these are listed in the Outputs
pane (see screenshot above) and you must select one of them. If the output file location of an
individual output schema is specified in the MFD document, then this file location is entered for that
output schema in the Outputs pane. From the screenshot above we can see that the MFD document
specifies that the Customers output schema has a default XML data file (CustomersOut.xml), while
the Text file output schema does not have a file association in the MFD file. You can use the default
file location in the Outputs pane or specify one yourself. The result of the MapForce transformation will
be saved to the file location of the selected output schema. This is the file that will be used as the
global resource

Note: The advantage of this option (Result of MapForce transformation) is that the transformation is carried
out at the time the global resource is invoked. This means that the global resource will contain the
most up-to-date data (from the input file/s).

Note: Since MapForce is used to run the transformation, you must have Altova MapForce installed for this
functionality to work.

998 Altova Global Resources Defining Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Result of StyleVision transformation
Altova StyleVision is used to create StyleVision Power Stylesheet (SPS) files. These SPS files generate XSLT
stylesheets that are used to transform XML documents into output documents in various formats (HTML, PDF,
RTF, Word 2007+, etc). If you select the option Result of StyleVision Transformation, the output document
created by StyleVision will be the global resource associated with the selected configuration.

For the StyleVision Transformation option in the Global Resource dialog (see screenshot below), the following
files must be specified.

· A .sps (SPS) file. You must specify this file in the Resource will point to generated output of text box

(see screenshot above).
· Input file/s. The input file might already be specified in the SPS file. If it is, it will appear automatically

in the Inputs pane once the SPS file is selected. You can change this entry. If there is no entry, you
must add one.

· Output file/s. Select the output format in the Outputs pane, and specify an output file location for that
format.

Note: The advantage of this option (Result of StyleVision transformation) is that the transformation is carried
out when the global resource is invoked. This means that the global resource will contain the most up-
to-date data (from the input file/s).

© 2018-2024 Altova GmbH

Defining Global Resources 999Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

Note: Since StyleVision is used to run the transformation, you must have Altova StyleVision installed for this
functionality to work.

21.1.2 Folders

In the Global Resource dialog for Folders (screenshot below), add a folder resource as described below.

Global Resource dialog icons

Add Configuration: Pops up the Add Configuration dialog in which you enter the name of the
configuration to be added.

Add Configuration as Copy: Pops up the Add Configuration dialog in which you can enter the name of
the configuration to be created as a copy of the selected configuration.

Delete: Deletes the selected configuration.

Open: Browse for the folder to be created as the global resource.

Defining the alias
Define the alias (its name and configurations) as follows:

1. Give the alias a name: Enter the alias name in the Resource Alias text box.

1000 Altova Global Resources Defining Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Add configurations: The Configurations pane will have a configuration named Default (see screenshot
above). This Default configuration cannot be deleted nor have its name changed. You can enter as
many additional configurations for the selected alias as you like. Add a configuration by clicking the
Add Configuration or Add Configuration as Copy icons. In the dialog which pops up, enter the
configuration name. Click OK. The new configuration will be listed in the Configurations pane. Repeat
for as many configurations as you want.

3. Select a folder as the resource of a configuration: Select one of the configurations in the Configurations
pane and browse for the folder you wish to create as a global resource. If security credentials are
required to access a folder, then specify these in the Username and Password fields.

4. Define multiple configurations if required: Specify a folder resource for each configuration you have
created (that is, repeat Step 3 above for the various configurations you have created). You can add a
new configuration to the alias definition at any time.

5. Save the alias definition: Click OK in the Global Resource dialog to save the alias and all its
configurations as a global resource. The global resource will be listed under Folders in the Manage
Global Resources dialog .992

© 2018-2024 Altova GmbH

Defining Global Resources 1001Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

21.1.3 Databases

In the Global Resource dialog for Databases (screenshot below), you can add a database resource as follows:

Global Resource dialog icons

Add Configuration: Pops up the Add Configuration dialog in which you enter the name of the
configuration to be added.

Add Configuration as Copy: Pops up the Add Configuration dialog in which you can enter the name of
the configuration to be created as a copy of the selected configuration.

Delete: Deletes the selected configuration.

1002 Altova Global Resources Defining Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Defining the alias
Define the alias (its name and configurations) as follows:

1. Give the alias a name: Enter the alias name in the Resource Alias text box.
2. Add configurations: The Configurations pane will have a configuration named Default (see screenshot

above). This Default configuration cannot be deleted nor have its name changed. You can enter as
many additional configurations for the selected alias as you like. Add a configuration by clicking the
Add Configuration or Add Configuration as Copy icons. In the dialog which pops up, enter the
configuration name. Click OK. The new configuration will be listed in the Configurations pane. Repeat
for as many configurations as you want.

3. Start selection of a database as the resource of a configuration: Select one of the configurations in the
Configurations pane and click the Choose Database icon. This pops up the Create Global Resources
Connection dialog.

4. Connect to the database: Select whether you wish to create a connection to the database using the
Connection Wizard, an existing connection, an ADO Connection, an ODBC Connection, or JDBC
Connection. Complete the definition of the connection method as described in the section Connecting
to a Database . If a connection has already been made to a database from XMLSpy, you can click
the Existing Connections icon and select the DB from the list of connections that is displayed.

5. Select the root object: If you connect to a database server where a root object can be selected, you
will be prompted, in the Choose Root Object dialog (screenshot below), to select a root object on the
server. Select the root object and click Set Root Object. The root object you select will be the root
object that is loaded when this configuration is used.

If you choose not to select a root object (by clicking the Skip button), then you can select the root
object at the time the global resource is loaded.

6. Define multiple configurations if required: Specify a database resource for any other configuration you
have created (that is, repeat Steps 3 to 5 above for the various configurations you have created). You
can add a new configuration to the alias definition at any time.

7. Save the alias definition: Click OK in the Global Resource dialog to save the alias and all its
configurations as a global resource. The global resource will be listed under databases in the Manage
Global Resources dialog.

905

© 2018-2024 Altova GmbH

Using Global Resources 1003Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

21.2 Using Global Resources

There are several types of global resources (file-type, folder-type , and database-type). Some scenarios in
which you can use global resources in XMLSpy are listed here: Files and Folders and Databases .

Selections that determine which resource is used
There are two application-wide selections that determine what global resources can be used and which global
resources are actually used at any given time:

· The active Global Resources XML File is selected in the Global Resource dialog . The global-
resource definitions that are present in the active Global Resources XML File are available to all files
that are open in the application. Only the definitions in the active Global Resources XML File are
available. The active Global Resources XML File can be changed at any time, and the global-resource
definitions in the new active file will immediately replace those of the previously active file. The active
Global Resources XML File therefore determines: (i) what global resources can be assigned, and (ii)
what global resources are available for look-up (for example, if a global resource in one Global
Resource XML File is assigned but there is no global resource of that name in the currently active
Global Resources XML File, then the assigned global resource (alias) cannot be looked up).

· The active configuration is selected via the menu item Tools | Active Configuration or via the
Global Resources toolbar. Clicking this command (or drop-down list in the toolbar) pops up a list of
configurations across all aliases. Selecting a configuration makes that configuration active application-
wide. This means that wherever a global resource (or alias) is used, the resource corresponding to the
active configuration of each used alias will be loaded. The active configuration is applied to all used
aliases. If an alias does not have a configuration with the name of the active configuration, then the
default configuration of that alias will be used. The active configuration is not relevant when assigning
resources; it is significant only when the resources are actually used.

21.2.1 Assigning Files and Folders

File-type and folder-type global resources are assigned differently. In any one of the usage scenarios below,
clicking the Global Resources button displays the Open Global Resource dialog (screenshot below).

1003 1006

992

1490

1004 Altova Global Resources Using Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Manage Global Resources: Displays the Manage Global Resources dialog.

Selecting a file-type global resource assigns the file. Selecting a folder-type global resource causes an Open
dialog to open, in which you can browse for the required file. The path to the selected file is entered relative to
the folder resource. So if a folder-type global resource were to have two configurations, each pointing to different
folders, files having the same name but in different folders could be targeted via the two configurations. This
could be useful for testing purposes.

You can switch to the file dialog or the URL dialog by clicking the respective button at the bottom of the dialog.
The Manage Global Resources icon in the top right-hand corner pops up the Manage Global Resources
dialog.

Usage scenarios
File-type and folder-type global resources can be used in the following scenarios:

· Opening global resources
· Saving as global resource
· Assigning files for XSLT transformations
· XSLT transformation
· XQuery executions
· Assigning an SPS

992

992

1005

1005

1006

1006

1006

1006

© 2018-2024 Altova GmbH

Using Global Resources 1005Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

Opening global resources
A global resource can be opened in XMLSpy with the File | Open (Switch to Global Resource) command
and can be edited. In the case of a file-type global resource, the file is opened directly. In the case of a folder-
type global resource, an Open dialog pops up with the associated folder selected. You can then browse for the
required file in descendant folders. One advantage of addressing files for editing via global resources is that
related files can be saved under different configurations of a single global resource and accessed merely by
changing configurations. Any editing changes would have to be saved before changing the configuration.

Saving as global resource
A newly created file can be saved as a global resource. Also, an already existing file can be opened and then
saved as a global resource. When you click the File | Save or File | Save As commands, the Save dialog
appears. Click the Global Resource button to access the available global resources (screenshot below),
which are the aliases defined in the current Global Resources XML File.

Select an alias and then click Save. If the alias is a file alias , the file will be saved directly. If the alias is a
folder alias , a dialog will appear that prompts for the name of the file under which the file is to be saved. In
either case the file will be saved to the location that was defined for the currently active configuration .

Note: Each configuration points to a specific file location, which is specified in the definition of that
configuration. If the file you are saving as a global resource does not have the same filetype extension
as the file at the current file location of the configuration, then there might be editing and validation
errors when this global resource is opened in XMLSpy. This is because XMLSpy will open the file
assuming the filetype specified in the definition of the configuration.

1199

994

999

1007

1006 Altova Global Resources Using Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Assigning files for XSLT transformations
XSLT files can be assigned to XML documents and XML files to XSLT documents via global resources.. When
the commands for assigning XSLT files (XSL/XQuery | Assign XSL and XSL/XQuery | Assign XSL:FO
) and XML files (XSL/XQuery | Assign Sample XML) are clicked the assignment dialog pops up. Clicking
the Browse button pops up the Open dialog, in which you can switch to the Open Global Resource dialog and
select the required global resource. A major advantage of using a global resource to specify files for XSLT
transformations is that the XSLT file (or XML file) can be changed for a transformation merely by changing the
active configuration in XMLSpy; no new file assignments have to be made each time a transformation is
required with a different file. When an XSLT transformation is started, it will use the file/s associated with the
active configuration.

XSLT transformations and XQuery executions
Clicking the command XSL/XQuery | XSL Transformation or XSL/XQuery | XSL:FO Transformation
or XSL/XQuery | XQuery Update Execution pops up a dialog in which you can browse for the required
XSLT, XQuery, or XML file. Click the Browse button and then the Global Resource button to pop up the Open
Global Resource dialog (screenshot at top of section). The file that is associated with the currently active
configuration of the selected global resource is used for the transformation.

Assigning an SPS
When assigning a StyleVision stylesheet to an XML file (Authentic | Assign StyleVision Stylesheet), you
can select a global resource to locate the stylesheet. Click the Browse button and then the Switch to
Global Resource button to pop up the Open Global Resource dialog (screenshot at top of section). With a
global resource selected as the assignment, the Authentic View of the XML document can be changed merely
by changing the active configuration in XMLSpy.

21.2.2 Assigning Databases

When a command is executed that imports data or a data structure (as an XML Schema) from a DB into
XMLSpy (for example, with the Convert | Import Database Data command), you can select the option to use
a global resource (screenshot below). Other commands where a database-type global resource can be used
are database-related commands in the menu.

1335 1336

1336

1327 1328

1332

1003

1003

© 2018-2024 Altova GmbH

Using Global Resources 1007Altova Global Resources

Altova XMLSpy 2024 Enterprise Edition

In the Connection dialog (screenshot above), all the database-type global resources that have been defined in
the currently active Global Resources XML File are displayed. Select the required global resource and click
Connect. If the selected global resource has more than one configuration, then the database resource for the
currently active configuration is used (check Tools | Active Configuration or the Global Resources toolbar),
and the connection is made. You must now select the data structures and data to be used as described in
Creating an XML Schema from a DB and Importing DB data .

21.2.3 Changing the Active Configuration

One configuration of a global resource can be active at any time. This configuration is called the active
configuration, and it is active application-wide. This means that the active configuration is active for all global
resources aliases in all currently open files and data source connections. If an alias does not have a
configuration with the name of the active configuration, then the default configuration of that alias will be used.
As an example of how to change configurations, consider the case in which a file has been assigned via a
global resource with multiple configurations. Each configuration maps to a different file. So, which file is
selected depends on which configuration is selected as the application's active configuration.

Switching the active configuration can be done in the following ways:

992

1398 1387

1008 Altova Global Resources Using Global Resources

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Via the menu command Tools | Active Configuration. Select the configuration from the command's
submenu.

· In the combo box of the Global Resources toolbar (screenshot below), select the required
configuration.

In this way, by changing the active configuration, you can change source files that are assigned via a global
resource.

© 2018-2024 Altova GmbH

 1009Projects

Altova XMLSpy 2024 Enterprise Edition

22 Projects

A project is a collection of files that are related to each other in some way you determine. For example, in the
screenshot below, a project named Examples collects the files for various examples in separate example
folders, each of which can be organized further into sub-folders. Within the Examples project, for instance, the
OrgChart example folder is organized further into sub-folders for XML, XSL, and Schema files.

Projects thus enable you to gather together files that are used together and to access them quicker.
Additionally, you can define schemas and XSLT files for individual folders, thus enabling the batch processing of
files in a folder.

This section describes how to create and edit projects and how to use projects .1010 1014

1010 Projects Creating and Editing Projects

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

22.1 Creating and Editing Projects

Projects are managed via the Project Window (screenshot below) and the Project menu . One project
can be open at a time in the application. The open project is displayed in the Project Window .

Creating new projects, opening existing projects
A new project is created with the menu command Project | New Project. An existing project is opened with
the menu command Project | Open Project. The newly opened project (whether new or existing) replaces the
previously opened project in the Project Window. If the previously opened project contains unsaved changes
(indicated by an asterisk next to the folder name; see screenshot below), you are asked whether you wish to
save these changes.

Naming and saving projects
A new project is named when you save it. A project is saved with the Project | Save Project command and
has the .spp file extension. After a project has been modified, the project must be saved for the modifications
to be stored. Note that a project (indicated by the top-level folder in the Project Window) can only be re-named

116 1235

116

© 2018-2024 Altova GmbH

Creating and Editing Projects 1011Projects

Altova XMLSpy 2024 Enterprise Edition

by changing its name in Windows File Explorer; the name cannot be changed in the GUI. (The names of sub-
folders, however, can be changed in the GUI.)

Project structure
A project has a tree structure of folders and files. Folders and files can be created at any level and to an
unlimited depth. Do this by selecting a folder in the Project Window and then using the commands in the
Project menu or context menu to add folders, files, or resources. Folders, files, and resources that have been
added to a project can be deleted or dragged to other locations in the project tree.

When a new project is created, the default project structure organizes the project by file type (XML, XSL, etc)
(see screenshot below).

File-type extensions are associated with a folder via the property definitions for that folder. When a file is added
to a folder, it is automatically added to the appropriate child folder according to the file-type extension. For each
folder, you can define what file-type extensions are to be associated with it.

What can be added to a project
Folder, files, and other resources can be added either to the top-level project folder or to a folder at any level in
the project. There are three types of folders: (i) project folders; (ii) external folders; (iii) external web folders.

To add an object, select the relevant folder and then the required command from the Project menu or context
menu of the selected folder. The following objects are available for addition to a project folder

· Project folders (green) are folders that you add to the project in order to structure the project's
contents. You can define what file extensions are to be associated with a project folder (in the
properties of that folder). When files are added to a folder, they are automatically added to the first
child folder that has that file's extension associated with it. Consequently, when multiple files are
added to a folder, they will be distributed by file extension among the child folders that have the
corresponding file-extension associations.

· External folders (yellow) are folders in a file system. When an external folder is added to a folder, the
external folder and all its files, sub-folders, and sub-folder files are included in the project. Defining file
extensions on an external folder serves to filter the files available in the project.

· External web folders are like external folders, except that they are located on a web server and require
user authentication to access. Defining file extensions on an external web folder serves to filter the files
available in the project.

· Files can be added to a folder by selecting the folder and then using one of the three Add-File
commands: (i) Add Files, to select the file/s via an Open dialog; (ii) Add Active File, to add the file

1012 Projects Creating and Editing Projects

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

that is active in the Main Window; (iii) Add Active and Related Files, additionally adds files related to
an active XML file, for example, an XML Schema or DTD. Note that files associated by means of a
processing instruction (for example, XSLT files), are not considered to be related files.

· Global Resources are aliases for file, folder, and database resources. How they are defined and used
is described in the section on Global Resources .

· URLs identify a resource object via a URL.
· An Altova Scripting Project, which is a .asprj file, can be assigned to an XMLSpy project. This will

make macros and other scripts available to the project. How to create a Scripting Project and assign
one to an XMLSpy project is described in the section, Scripting .

Project and folder properties
Properties (such as the schema for validation and the XSLT for transformation) can be set not only on the entire
project, but also on individual folders. You can then carry out actions, such as validation and transformation, on
the entire project or individual folders. To carry out an action, right-click the project or folder, and select the
action you want to carry out from the context menu that appears.

The properties of a folder are stored in the Properties dialog of that folder, which is accessed by first selecting
the folder and then the menu command Project | Properties (or the folder's context menu command
Properties). The following properties of a folder can be defined and edited in the Properties dialog:

· Folder name: cannot be edited for the top-level project folder (for which, instead of a name, a filepath is
displayed).

· File extensions: cannot be edited for the top-level project. This is a list of file extensions separated by
semi-colons (for example, xml;svg;wml). This list determines what files are added to the folder when

files are added to a project. For example, when active and related files are added to a project, then the
File extensions determine into which folders the added files will be placed.

· Validation: specifies the DTD or XML Schema file that should be used to validate XML files in a folder.
· Transformations: specifies (i) the XSLT files to be used for transforming XML files in the folder, and (ii)

the XML files to be transformed with XSLT files in the folder.
· Destination files: for the output of transformations, specifies the file extension and the folder where the

files are to be saved.
· SPS files for Authentic View: specifies the SPS files to be used so that XML files in a folder can be

viewed and edited in Authentic View.

Note the following points:

· A property that is set on a folder overrides the same property that is set on the project.
· If a property is set on the project, it is applied to all folders that do not have the same property set.
· If an action is carried out on a project, it is applied to all applicable file types in all folders of the project.

For example, if a validation is carried out on a project, the validation is run on all XML files in all folders
of the project. In this case, the schema that has been set for the project is used for all validations,
except for XML files that are in folders which have the schema validation property set to some other
schema.

See the description of the Project | Properties command for more detailed information.

Source control in projects
Source control systems that are compatible with Microsoft Visual Source-Safe are supported in projects. How
to use this feature is described in the User Reference section of the manual.

991

1574

1261

1239

© 2018-2024 Altova GmbH

Creating and Editing Projects 1013Projects

Altova XMLSpy 2024 Enterprise Edition

Saving projects
Any changes you make to a project, such as adding or deleting a file, or modifying a project property, must be
saved with the Save Project command.

Find in project
You can search for project files and folders using their names or a part of their name. If the search is
successful, files or folders that are located are highlighted one by one.

To start a search, activate the Project window by clicking it (or in it), then select the command Edit | Find (or
the shortcut Ctrl+F). In the Find dialog that pops up (screenshot below) enter the text string you wish to search
for and select or deselect the search options (explained below) according to your requirements.

The following search options are available:

· Whole-word matching is more restricted since the entire string must match an entire word in the file or
folder name. In file names, the parts before and after the dot (without the dot) are each treated as a
word.

· It can be specified that casing in the search string must exactly match the text string in the file or
folder name.

· Folder names can be included in the search. Otherwise, only file names are searched.
· External folders can be included or excluded from the search. External folders are actual folders on

the system or network, as opposed to project folders, which are created within the project and not on
the system.

If the search is successful, the first matching item is highlighted in the Project sidebar. You can then browse
through all the returned matching items by clicking the Find Next and Find Prev buttons in the Find dialog.

Refreshing projects
If a change is made to an external folder, this change will not be reflected in the Project Window till the project
is refreshed.

1254

1014 Projects Using Projects

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

22.2 Using Projects

Projects are very useful for organizing your workspace, applying settings to multiple files, and for setting up and
executing batch commands. Using projects can therefore greatly help speed up and ease your work. For
information about managing projects, see Creating and Editing Projects and the description of the Project
Window .

Benefits of using projects
The following list lists the benefits of using projects.

· Files and folders can be grouped into folders by file extension or any other desired criterion.
· Schemas and XSLT files can be assigned to a folder. This can be useful if you wish to quickly validate

or transform a single XML file using different schema or XSLT files. Add the XML file to different folders
and define different schemas and XSLT files for the different folders.

· Batch processing can be applied to individual folders. The commands available for batch processing
are listed below.

· Output folders can be specified for transformations.

Organizing resources for quick access
Folder and file resources can be organized into a tree structure, giving you a clear overview of the various
folders and files in your project, and enabling you to quickly access any and all files in a project. Simply
double-click a file in the Project window to open it. You can quickly add files and folders to a project as required
and delete unwanted files and folders. When you wish to work with another project, close the project currently
open in the Project Window and open the required project.

Batch processing
The commands for batch processing of files in a folder, whether the top-level project folder or a folder at any
other level, are available in the context menu of that folder (obtained by right-clicking the folder). The steps
for batch processing are as follows:

1. Define the files to be used for validation or transformation in the Properties dialog of that folder.
2. Specify the folder in which the output of transformations should be saved. If no output folder is specified

for a folder, the output folder of the next ancestor folder in the project tree is used.
3. Use the commands in the context menu for batch execution. If you use the corresponding commands

in the XML, DTD/Schema, or XSL/XQuery menus, the command will be executed only on the
document active in the Main Window, not on any project folder in the Project Window.

The following commands in the context menu of a project folder (top-level or other) are available for batch
processing:

· Well-formed check : If any error is detected during the batch execution, it is reported in the Messages
Window.

· Validation: If any error is detected during the batch execution, it is reported in the Messages Window.
· Transformations: Transformation outputs are saved to the folder specified as the output folder in the

Properties dialog of that folder. If no folder is specified, the output folder of the next ancestor project
folder is used. If no ancestor project folder has an output folder defined, a document window is opened
and the results of each transformation is displayed successively in this document window. An XSL-FO
transformation transforms an XML document or FO document to PDF.

1010

116

© 2018-2024 Altova GmbH

Using Projects 1015Projects

Altova XMLSpy 2024 Enterprise Edition

· Generate DTD / XML Schema: Before the schemas are generated, you are prompted to specify an
output folder. The generated schema files are saved to this folder and displayed in separate windows in
the GUI.

Note: To execute batch commands use the context menu of the relevant folder in the Project Window. Do not
use the commands in the XML, DTD/Schema, or XSL/XQuery menus. These commands will be
executed on the document active in the Main Window.

Validation and XSLT/XQuery with RaptorXML Server
Context menu commands on project folder enable you to use RaptorXML Server for high-performance XML
validation and XSLT/XQuery transformations. See the section RaptorXML Server for more information.1016

1016 RaptorXML(+XBRL) Server

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

23 RaptorXML(+XBRL) Server

If Altova RaptorXML(+XBRL) Server (hereafter also called RaptorXML Server, RaptorXML, or Raptor for short) is
installed and licensed on your network and if your XMLSpy installation has access to it, then you can use
RaptorXML Server to validate XML and XBRL* documents, as well as run XSLT and XQuery transformations .
You can validate the active document or all the documents in an XMLSpy project folder. The validation results
are displayed in the Messages window of the GUI.

In XMLSpy, you can (i) validate documents, (ii) run XSLT/XQuery transformations, or (iii) execute XULE
documents (or document sets) on an XBRL instance. One of the main advantages of using Raptor is that you
can configure individual validations or executions by means of a large range of validation options. Furthermore,
you can store a set of Raptor options as a "configuration" in XMLSpy, and then select one of your defined
configurations for a particular Raptor validation. Using Raptor is also advantageous when large data collections
are to be validated.

Note: The actual performance depends on the number of PC processor cores used by RaptorXML Server for
the validation: The higher the number of cores used, the faster will be the processing.

*Note: There are two editions of Raptor: RaptorXML Server (for XML validations) and RaptorXML+XBRL Server
(for XML and XBRL validations). If you wish to validate XBRL documents, you must use
RaptorXML+XBRL Server. For more information about RaptorXML(+XBRL) Server, please see the Altova
website and the user manuals: RaptorXML Server and RaptorXML+XBRL Server.

Note: RaptorXML Server cannot be used with HTTP proxies because these do not support websocket
upgrades. If you encounter this problem, add the RaptorXML Server host to the proxy-ignore list.

How to validate or transform using RaptorXML Server
To validate an XML or XBRL document using RaptorXML Server, or to run an XSLT or XQuery transformation,
XMLSpy must know which RaptorXML Server to use, how to access this server, and what options to pass to
Raptor for the validation. This information is managed in XMLSpy as follows:

1. By adding a server to the pool of Raptor servers . In this step, RaptorXML Servers are added to a
pool, and the access information of each server is stored in XMLSpy. Each server is identified by a
name.

2. By defining configurations for each server . A configuration is a set of Raptor validation options.
Each server can have multiple configurations. For a validation, you select one configuration, which
becomes the active configuration.

3. Selecting a server configuration with which to validate . A server and one of its configurations is
selected to be the active configuration. The active configuration is used for all subsequent validations
that use Raptor.

4. Validate or run the XSLT/XQuery transformation with Raptor.

1038

1017

1018

1021

1021 1038

http://www.altova.com/raptorxml.html
http://www.altova.com/raptorxml.html
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/index.html
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/index.html

© 2018-2024 Altova GmbH

Adding Servers and Server Configurations 1017RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

23.1 Adding Servers and Server Configurations

In the RaptorXML Server Options dialog (screenshot below, Tools | Manage Raptor Servers), you can add
multiple Raptor Servers to the pool of available Raptor Servers and then define multiple configurations for
each server. The added servers, together with the configurations you define for each of them, will appear in the
Tools | Raptor Servers and Configurations submenu. In this submenu, you can select the server
configuration you want to use for a Raptor validation.

Adding a Raptor Server
In the dialog's Servers pane (screenshot below), click the Add Server icon, then enter the name by which you
wish to identify the Raptor server, the network name of the machine on which Raptor is installed (host name),
and the port of the Raptor Server. Click OK to save the settings.

1491

1017 1018

1494

1018 RaptorXML(+XBRL) Server Adding Servers and Server Configurations

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Name: Any string you choose. It is used in XMLSpy to identify a particular RaptorXML Server.
· Host name: The name or IP address of the network machine on which the Raptor server is installed.

Processing will be faster if you use an IP address rather than a host name. The IP address
corresponding to localhost (the local machine) is 127.0.0.1.

· Port: The port via which the Raptor server is accessed. This port is specified in Raptor's configuration
file (called server_config.xml). The port must be fixed and known so that requests can be correctly
addressed to the service. For more information about the Raptor configuration file, see the user
manuals: RaptorXML Server and RaptorXML+XBRL Server.

After entering the server information, click OK. The server name you entered appears in the server list (in the
left of the pane). A green icon appears next to the server's name, indicating that the Raptor server has been
started and is running. The details of the server are displayed in the pane (see screenshot above). A red icon
indicates that the server is offline. If the server cannot be found, an error message is displayed.

Note: The Raptor server must be running when the server is added. This is necessary so that XMLSpy can
obtain information about the server and store it. If, after the server has been added, the server is offline
or cannot be found, then these situations are indicated, respectively, by a red icon or an error
message.

To edit a server's name, host name, or port, select the server in the left-hand pane, click the Edit button, and,
in the dialog that appears, edit the information you want to change. To remove a server from the pool, select the
server and click the Remove Selected Server icon.

Server Configurations
A configuration is a set of RaptorXML validation options. When a server is added, it will have a configuration
named default. This is a set of RaptorXML options set to their default values. You can add new configurations
that contain other option values. After you have defined multiple server configurations, you can select one
configuration to be the active configuration. This is the configuration that will be used when the Validate on
Server command is executed.

The Configurations pane has two parts: (i) a left-hand pane, which shows the configurations, each containing a
list of document-types that can be validated; (ii) a right-hand pane, which displays the validation options for the
document-type selected in the left-hand pane; at the bottom of the right-hand pane is a description of the
selected option (see screenshot above).

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxhttp_server_config.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxhttp_server_config.htm

© 2018-2024 Altova GmbH

Adding Servers and Server Configurations 1019RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

Adding a configuration
In the Configurations pane of the RaptorXML Server Options dialog (screenshot above), click Add a
Configuration. A new configuration is added with default option values. You can also create a new
configuration by clicking Copy Selected Configuration. This creates a new configuration with option values
that are the same as that of the copied configuration. New configurations are created with default names of the
type config<X>; you can edit the name of a configuration by double-clicking it and entering the new name. You
can then edit any of the configuration's option values.

Editing a configuration's option values
First, select the document-type in the left-hand pane. This displays the validation options of the selected
document-type in the right-hand pane. To edit the value of an option, do one of the following (depending on the
type of option value):

· If the value can be one of a set of predefined values, select the value you want from the combo box of
that option's value column.

· If the value is not constrained, click in the option's value filed and enter the value you want.
· If the value is a file path, in addition to being able to enter the value, you can also browse for the file

you want by using the Browse button in the option's value column.

If you select an option, its description is displayed in a box at the bottom of the right-hand pane. For more

1020 RaptorXML(+XBRL) Server Adding Servers and Server Configurations

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

detailed descriptions of each option, see the command line interface chapters of the RaptorXML Server and
RaptorXML(+XBRL) Server user manuals.

Removing a configuration
In the left-hand pane, select the configuration to be removed and click Remove Selected Configuration.

XMLSpy in Visual Studio and Eclipse
When XMLSpy is integrated in Visual Studio and Eclipse , the active configuration in these IDEs will be
the one that is currently set as the active configuration in the standalone version of XMLSpy.

1069 1074

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/index.html
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/

© 2018-2024 Altova GmbH

Validating with RaptorXML Server 1021RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

23.2 Validating with RaptorXML Server

You can validate XML and XBRL* documents with RaptorXML Server. Validating involves two steps:

· Selecting the server and server configuration to use for the validation
· Running the validation (by using one of the Validate on Server commands; see below)

*Note: There are two editions of Raptor: RaptorXML Server (for XML validations) and RaptorXML+XBRL Server
(for XML and XBRL validations). If you wish to validate XBRL documents, you must use
RaptorXML+XBRL Server. For more information about RaptorXML(+XBRL) Server, please see the Altova
website and the user manuals: RaptorXML Server and RaptorXML+XBRL Server.

Selecting the server configuration to use
If you have defined multiple configurations on multiple servers, you can select a server and one of its
configurations as the active configuration. The active configuration will be used for subsequent validations. On
placing the cursor over the Tools | Raptor Servers and Configurations command (see screenshot below), a
submenu appears that contains all the added servers, together with the configuration of each. Select the server
configuration you want to make the active configuration. In the screenshot below, the xbrl configuration of the
server named Raptor-01 has been selected as the active configuration (indicated by the green arrow).

Validating with RaptorXML Server
You can validate XML and XBRL documents by using the validation engines of XMLSpy or by using RaptorXML
Server. To validate using RaptorXML Server, do one of the following:

· Click the toolbar icon Validate on Server
· Select the command XML | Validate XML on Server (high-performance) (Ctrl+F8)
· In the Project entry helper, right-click the project, a folder, or a file, and select Validate XML on

Server (high performance) to validate XML or XBRL data in the selected object.

Note: Raptor validation is available in Text View, Schema View, XBRL View, and Grid View.

http://www.altova.com/raptorxml.html
http://www.altova.com/raptorxml.html
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/index.html
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/index.html

1022 RaptorXML(+XBRL) Server Validation Options

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

23.3 Validation Options

This section is organized by the type of document being validated (see the left-hand pane of the screenshot
below). For example, XML with W3C Schema validates an XML document against a W3C XML Schema. When
a validation type is selected in the left-hand pane, the RaptorXML Server validation options available for that kind
of validation are displayed in the right-hand pane. These options are organized into groups, such as Scripting
and XML Schema (see screenshot below). Note that not all groups shown in the screenshot (such as the XBRL
groups) are available in Professional Edition.

The sub-sections of this section contain links to the descriptions of the respective RaptorXML Server validation
options.

23.3.1 Common Options

Options that are common to all types of validation.

© 2018-2024 Altova GmbH

Validation Options 1023RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

23.3.2 XML with DTD

Options for validating XML data against a DTD.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

XML

Enable Namespaces
External DTD
Streaming Mode

23.3.3 DTD

Options for validating DTDs.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm

1024 RaptorXML(+XBRL) Server Validation Options

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Scripting

Script
Script Parameters
Script API Version

23.3.4 XML with W3C Schema

Options for validating XML data against XML Schema.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

Scripting

Script
Script Parameters
Script API Version

XML

Streaming Mode

XML Schema

External Schemas (xsd)
Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
XML Processing Mode (xml-mode)
Enable XInclude (xinclude)
Assessment Mode
Parallel Assessment
Complex Type Restriction Check Mode
XML Processing Mode for Schemas
Report Import Namespace Mismatch as Warning

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm

© 2018-2024 Altova GmbH

Validation Options 1025RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

23.3.5 W3C Schema

Options for validating XML Schemas.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

Scripting

Script
Script Parameters
Script API Version

XML Schema

Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
Enable XInclude (xinclude)
Complex Type Restriction Check Mode
XML Processing Mode for Schemas
Report Import Namespace Mismatch as Warning

23.3.6 Inline XBRL Instance

Options for validating Inline XBRL documents.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm

1026 RaptorXML(+XBRL) Server Validation Options

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Scripting

Script
Script Parameters
Script API Version

XML Schema

Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
Enable XInclude (xinclude)
Parallel Assessment
Complex Type Restriction Check Mode
Report Import Namespace Mismatch as Warning

XBRL

Enable Dimensions Extension (dimensions)
Enable Extensible Enumerations Extension (extensible-enumerations)
Enable Unit Registry Extension
Preload XBRL Spec Schemas (preload-xbrl-schemas)
Taxonomy Packages
Taxonomy Packages Config File
Validate Referenced DTS Only
Treat XBRL Inconsistencies as Errors (treat-inconsistencies-as-errors)
UTR File
Supported UTR Status
Additional DTS Entry Point
URI Transformation Strategy (in Output Documents)
Report Summation-Item Inconsistencies
Report Essence-Alias Inconsistencies
Report Requires-Element Inconsistencies
Enable Generic Preferred Label Extension
Enable Generic Links Extension
De-duplicate
Report Duplicates
Report Duplicates Severity

Inline XBRL

Inline XBRL Version (ixbrl-version)
Inline XBRL Transformation Registry (transformation-registry)
Treat Arguments as Inline XBRL Document Set (document-set)
Enable Target Document Validation (validate-xbrl)
Target Document Output File (xbrl-output)
Non-numeric Whitespace Normalization
Extended Whitespace Normalization

XBRL Formula

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm

© 2018-2024 Altova GmbH

Validation Options 1027RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

Enable Formula Extension (formula)
Enable Assertion Severity Extension (assertion-severity)
Preload Formula Spec Schemas (preload-formula-schemas)
Report Unsatisfied Assertion Evaluations
Validation Message Language (message-lang)
Validation Message Role (message-role)
Formulas-to-Ignore File
Formulas-to-Process File
Assertions-to-Ignore File
Assertions-to-Process File
Formulas-to-Ignore
Assertions-to-Ignore
Validate Formula Output
Enable Formula Optimizations

XBRL Table

Enable Table Extension (table)
Preload Table Spec Schemas (preload-table-schemas)
Table Linkbase Namespace
Table AspectNode Order

XBRL XULE

XULE
XULE Stack Size
XULE Instance Namespace Bindings
XULE Rules to Process
Report XULE Rule Evaluations
XULE Output File

23.3.7 XBRL Instance

Options for validating XBRL instance documents.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm

1028 RaptorXML(+XBRL) Server Validation Options

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Scripting

Script
Script Parameters
Script API Version

XML Schema

Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
Enable XInclude (xinclude)
Parallel Assessment
Complex Type Restriction Check Mode
Report Import Namespace Mismatch as Warning

XBRL

Enable Dimensions Extension (dimensions)
Enable Extensible Enumerations Extension (extensible-enumerations)
Enable Unit Registry Extension
Preload XBRL Spec Schemas (preload-xbrl-schemas)
Taxonomy Packages
Taxonomy Packages Config File
Validate Referenced DTS Only
Treat XBRL Inconsistencies as Errors (treat-inconsistencies-as-errors)
UTR File
Supported UTR Status
Additional DTS Entry Point
URI Transformation Strategy (in Output Documents)
Report Summation-Item Inconsistencies
Report Essence-Alias Inconsistencies
Report Requires-Element Inconsistencies
Enable Generic Preferred Label Extension
Enable Generic Links Extension
De-duplicate
Report Duplicates
Report Duplicates Severity

XBRL Formula

Enable Formula Extension (formula)
Enable Assertion Severity Extension (assertion-severity)
Preload Formula Spec Schemas (preload-formula-schemas)
Report Unsatisfied Assertion Evaluations
Validation Message Language (message-lang)
Validation Message Role (message-role)
Formulas-to-Ignore File
Formulas-to-Process File
Assertions-to-Ignore File
Assertions-to-Process File

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm

© 2018-2024 Altova GmbH

Validation Options 1029RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

Formulas-to-Ignore
Assertions-to-Ignore
Validate Formula Output
Enable Formula Optimizations

XBRL Table

Enable Table Extension (table)
Preload Table Spec Schemas (preload-table-schemas)
Table Linkbase Namespace
Table AspectNode Order

XBRL XULE

XULE
XULE Stack Size
XULE Instance Namespace Bindings
XULE Rules to Process
Report XULE Rule Evaluations
XULE Output File

23.3.8 XBRL Taxonomy

Options for validating XBRL taxonomies.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

Scripting

Script
Script Parameters
Script API Version

XML Schema

Import Strategy (schema-imports)

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm

1030 RaptorXML(+XBRL) Server Validation Options

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
Enable XInclude (xinclude)
Complex Type Restriction Check Mode
Report Import Namespace Mismatch as Warning

XBRL

Enable Dimensions Extension (dimensions)
Enable Extensible Enumerations Extension (extensible-enumerations)
Preload XBRL Spec Schemas (preload-xbrl-schemas)
Taxonomy Packages
Taxonomy Packages Config File
Treat XBRL Inconsistencies as Errors (treat-inconsistencies-as-errors)
Enable Generic Preferred Label Extension
Enable Generic Links Extension

XBRL Formula

Enable Formula Extension (formula)
Enable Assertion Severity Extension (assertion-severity)
Preload Formula Spec Schemas (preload-formula-schemas)

XBRL Table

Enable Table Extension (table)
Preload Table Spec Schemas (preload-table-schemas)
Table Linkbase Namespace
Table AspectNode Order

23.3.9 XBRL Taxonomy Package

Options for validating XBRL taxonomy packages.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm

© 2018-2024 Altova GmbH

Validation Options 1031RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

Scripting

Script
Script Parameters
Script API Version

XML Schema

Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)

23.3.10 XBRL Versioning Report

Options for validating XBRL Versioning.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

XML Schema

Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
Enable XInclude (xinclude)

23.3.11 XSLT

Options for validating XSLT documents.

Common

Info Limit
Verbose
Network Timeout

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm

1032 RaptorXML(+XBRL) Server Validation Options

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Catalog

XML User Catalog

XML Schema

Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
XML Processing Mode (xml-mode)
Enable XInclude (xinclude)

Java Extension

Disable Java Extensions (javaext-disable)
Barcode Extension Location (javaext-barcode-location)

Chart Extensions

Disable Chart Extensions (chartext-disable)

.NET Extensions

Disable .NET Extensions (dotnetext-disable)

XEngines Common

Load XML with PSVI (load-xml-with-psvi)

XSLT

XSLT Engine Version (xslt-version)
Template Mode
Template Entry Point

23.3.12 XQuery

Options for validating XQuery documents.

Common

Info Limit
Verbose
Network Timeout

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm

© 2018-2024 Altova GmbH

Validation Options 1033RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

Catalog

XML User Catalog

XML Schema

Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
XML Processing Mode (xml-mode)
Enable XInclude (xinclude)

Java Extension

Disable Java Extensions (javaext-disable)
Barcode Extension Location (javaext-barcode-location)

Chart Extensions

Disable Chart Extensions (chartext-disable)

.NET Extensions

Disable .NET Extensions (dotnetext-disable)

XEngines Common

Load XML with PSVI (load-xml-with-psvi)

XQuery

XQuery Engine Version (xquery-version)
Omit XML Declaration

23.3.13 JSON

Options for validating JSON (instance) documents.

Common

Info Limit
Verbose
Network Timeout

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xslt.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xquery.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xquery.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm

1034 RaptorXML(+XBRL) Server Validation Options

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Catalog

XML User Catalog

JSON validation

Disable Format Checks
JSON Lines
JSON with Comments

23.3.14 JSON Schema

Options for validating JSON Schema documents.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

JSON validation

Disable Format Checks

23.3.15 AVRO

Options for validating a data block in one or more Avro binary files against the respective Avro schemas in each
binary file.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_JSONAvro.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_JSONAvro.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_JSONAvro.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_JSONAvro.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm

© 2018-2024 Altova GmbH

Validation Options 1035RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

23.3.16 AVRO JSON

Options for validating a JSON document against an AVRO schema.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

23.3.17 AVRO Schema

Options for validating one or more Avro schema documents against the Avro schema specification.

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

23.3.18 EDGAR

EDGAR (Electronic Data Gathering, Analysis, and Retrieval) is a system that performs automated collection,
validation, and indexing of financial statements filed by companies to the United States SEC (Securities and
Exchange Commission). When you validate via EDGAR, Raptor validates the XBRL instance document using
an internal EDGAR script. You can set the following additional options.

EDGAR Script Parameters

The EDGAR script performs extra checks as prescribed in the EDGAR Filing Manual Volume II: EDGAR
Filing. The script allows the following script parameters to be additionally specified:

CIK The CIK of the registrant

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
http://www.sec.gov/info/edgar/edmanuals.htm
http://www.sec.gov/info/edgar/edmanuals.htm

1036 RaptorXML(+XBRL) Server Validation Options

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

submissionType The EDGAR submission type, for example: '10-K'

cikList A list of CIKs, each separated by a comma: ','

cikNameList A list of official registrant names for each CIK in cikList, separated by '|
Edgar|'

forceUtrValidation Set to true to force-enable UTR validation

edbody-url The path to the edbody.dtd that is used to validate embedded HTML
fragments

edgar-taxonomies-url The path to the edgartaxonomies.xml, which contains a list of taxonomy
files that are allowed to be referenced from the company extension taxonomy

Common

Info Limit
Verbose
Network Timeout

Catalog

XML User Catalog

XML Schema

Import Strategy (schema-imports)
xsi:schemaLocation Strategy (schemalocation-hints)
Mapping Strategy (schema-mapping)
Enable XInclude (xinclude)
Parallel Assessment
Complex Type Restriction Check Mode
Report Import Namespace Mismatch as Warning

XBRL

Enable Dimensions Extension (dimensions)
Enable Extensible Enumerations Extension (extensible-enumerations)
Preload XBRL Spec Schemas (preload-xbrl-schemas)
Taxonomy Packages
Taxonomy Packages Config File
Treat XBRL Inconsistencies as Errors (treat-inconsistencies-as-errors)
UTR File
Supported UTR Status
Additional DTS Entry Point
URI Transformation Strategy (in Output Documents)
Report Summation-Item Inconsistencies
Report Essence-Alias Inconsistencies
Report Requires-Element Inconsistencies
Enable Generic Preferred Label Extension

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_messages.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_catalogs.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xml.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_processing.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xsd.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm

© 2018-2024 Altova GmbH

Validation Options 1037RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

Enable Generic Links Extension
De-duplicate
Report Duplicates
Report Duplicates Severity

XBRL Formula

Enable Formula Extension (formula)
Enable Assertion Severity Extension (assertion-severity)
Preload Formula Spec Schemas (preload-formula-schemas)
Report Unsatisfied Assertion Evaluations
Validation Message Language (message-lang)
Validation Message Role (message-role)
Formulas-to-Ignore File
Formulas-to-Process File
Assertions-to-Ignore File
Assertions-to-Process File
Formulas-to-Ignore
Assertions-to-Ignore
Validate Formula Output
Enable Formula Optimizations

XBRL Table

Enable Table Extension (table)
Preload Table Spec Schemas (preload-table-schemas)
Table Linkbase Namespace
Table AspectNode Order

XBRL XULE

XULE
XULE Stack Size
XULE Instance Namespace Bindings
XULE Rules to Process
Report XULE Rule Evaluations
XULE Output File

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxcli_options_xbrl.htm

1038 RaptorXML(+XBRL) Server XSLT and XQuery with RaptorXML Server

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

23.4 XSLT and XQuery with RaptorXML Server

You can use RaptorXML Server to run (i) XSLT transformations, (ii) and XQuery updates or executions on XML
documents. These actions are available only via Projects , and involve three steps:

· Selecting the server and server configuration to use for the job.
· Setting up the project folder , and specifying the XSLT/XQuery files to use (in the Project Properties

dialog). The XSLT/XQuery files that are assigned in the Project Properties dialog of a folder are
the files that will be used for XSLT and XQuery transformations of all XML files in that project folder.
You cannot assign XSLT/XQuery files for individual XML files in a project folder; XSLT/XQuery files can
only be assigned for an entire folder.

· Running the XSLT transformation or XQuery update/execution.

Note: If the XSLT or XQuery document uses Java extension functions or .NET extension functions, then file
paths are used to locate JAR files (Java) or external (unregistered) assembly files (.NET). This means
that, if the same XSLT/XQuery document is used for transformations/executions via XMLSpy as well as
RaptorXML Server, then file paths in it to JAR files and/or assembly files must correctly locate these
files.

Note: If RaptorXML Server is on the same machine as XMLSpy, you should, for best performance, specify
that the server setting server.unrestricted-filesystem-access has a value of true. For more

information, see the documentation of the RaptorXML Server configuration file.

Selecting the server configuration to use
If you have defined multiple configurations on multiple servers, you can select a server and one of its
configurations as the active configuration. The active configuration will be used for subsequent validations. On
placing the cursor over the Tools | Raptor Servers and Configurations command (see screenshot below), a
submenu appears that contains all the added servers, together with the configuration of each. Select the server
configuration you want to make the active configuration. In the screenshot below, the xbrl configuration of the
server named Raptor-01 has been selected as the active configuration (indicated by the green arrow).

Running an XSLT transformation
You can carry out an XSLT transformation by using the XSLT engines of XMLSpy or by using RaptorXML
Server. To run XSLT transformations using RaptorXML Server, do the following:

· Right-click the project folder where the XML files to transform are located. This folder can be the entire
project folder or an individual folder anywhere in the project hierarchy

1009

1010

1010 1010

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/

© 2018-2024 Altova GmbH

XSLT and XQuery with RaptorXML Server 1039RaptorXML(+XBRL) Server

Altova XMLSpy 2024 Enterprise Edition

· In the menu that appears, select the command XSL Transformation on Server (high-
performance)

Note: You cannot assign XSLT/XQuery files for individual XML files in a project folder; XSLT/XQuery files can
only be assigned for an entire folder. See start of section .

For more related information, see the sections XSLT and XSLT Transformation .

Running an XQuery update/execution
You can carry out an XQuery update/transformation by using the XQuery engines of XMLSpy or by using
RaptorXML Server. To run XQuery updates/transformation using RaptorXML Server, do the following:

· Right-click the project folder where the XQuery or XML files to, respectively, update or execute are
located. This folder can be the entire project folder or an individual folder anywhere in the project
hierarchy

· In the menu that appears, select the command XQuery/Update Execution on Server (high-
performance)

Note: You cannot assign XSLT/XQuery files for individual XML files in a project folder; XSLT/XQuery files can
only be assigned for an entire folder. See start of section .

For more related information, see the sections XQuery and XQuery/Update Execution .

1038

482 1327

1038

497 1332

1040 File/Directory Comparisons

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

24 File/Directory Comparisons

XMLSpy provides a File Comparison feature and a Directory Comparison feature that are linked to each other.
File Comparisons and Directory Comparisons are started with the Compare Open File With and Compare
Directories commands in the Tools menu, respectively. Comparison options for file comparisons can be
defined in the Settings dialog, which is accessed by clicking the Compare Options command in the Tools
menu.

Each of these commands is described in detail in the User Reference section. In the sub-sections of this
section we provide an overview of the File Comparisons and Directory Comparisons mechanisms.

1479

1041 1042

© 2018-2024 Altova GmbH

File Comparisons 1041File/Directory Comparisons

Altova XMLSpy 2024 Enterprise Edition

24.1 File Comparisons

The File Comparisons feature enables you to compare the active file with another file, which is selected via
an Open File dialog or via a global resource . The following points provide an overview of the mechanism. For
details, see the User Reference section.

· The settings current in the Compare Options dialog when a File Compare session is started are the
settings that will be active for that session.

· You can choose to compare the files as XML files (where document structure is also evaluated) or as
Text files. This choice is made by selecting, in the Settings dialog , either (i) Grid View or Text View
(Textual Comparison Only unchecked) for XML comparisons, or (ii) Text View (Textual Comparison
Only checked) for text comparisons.

· The two files appear in adjacent panes in the selected view (Grid View or Text View) and the
differences are highlighted in both files (screenshot below).

 A Compare Files control window also pops up which enables you to navigate through the differences
and to merge them.

The Settings dialog offers several options for specifying what aspects of the XML documents should be
considered for the comparison, and what aspects ignored. For more details, see the Compare Options
section in the User Reference .

1479

991

1479

1486

1486

1486

1486

1479

1042 File/Directory Comparisons Directory Comparisons

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

24.2 Directory Comparisons

The Directory Comparisons feature enables you to compare directories, each of which you select via
separate Browse for Folder dialogs. You can also select whether sub-directories are to be compared or not,
and what file types should be considered for the directory comparison.

Zip archives can also be included in the comparison by including the Zip file extension in the list of file types to
evaluate.

Directories are compared to indicate missing files and whether files of the same name are different or not. The
comparisons between files are based on the settings in the Settings dialog . The results of the directory
comparison are displayed in a separate window (screenshot below).

1483

1486

© 2018-2024 Altova GmbH

Directory Comparisons 1043File/Directory Comparisons

Altova XMLSpy 2024 Enterprise Edition

For details about how to read the symbols and manage the view in the Compare Directories window, see the
description of the Compare Directories command in the User Reference . You can then double-click a file
row to directly start a file comparison.

1479

1044 Source Control

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

25 Source Control

The source control support in XMLSpy is available through the Microsoft Source Control Plug-in API (formerly
known as the MSSCCI API), versions 1.1, 1.2 and 1.3. This enables you to run source control commands such
as "Check in" or "Check out" directly from XMLSpy to virtually any source control system that lets native or
third-party clients connect to it through the Microsoft Source Control Plug-in API.

You can use as your source control provider any commercial or non-commercial plug-in that supports the
Microsoft Source Control Plug-in API, and can connect to a compatible version control system. For the list of
source control systems and plug-ins tested by Altova, see Supported Source Control Systems .

Installing and configuring the source control provider
To view the source control providers available on your system, do the following:

1. On the Tools menu, click Options.
2. Click the Source Control tab.

Any source control plug-ins compatible with the Microsoft Source Code Control Plug-in API are displayed in the
Current source control plug-in drop-down list.

If a compatible plug-in cannot be found on your system, the following message is displayed:

"Registration of installed source control providers could not be found or is incomplete."

Some source control systems might not install the source control plug-in automatically, in which case you will
need to install it separately. For further instructions, refer to the documentation of the respective source control
system. A plug-in (provider) compatible with the Microsoft Source Code Control Plug-in API is expected to be
registered under the following registry entry on your operating system:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\InstalledSCCProviders

1047

© 2018-2024 Altova GmbH

 1045Source Control

Altova XMLSpy 2024 Enterprise Edition

Upon correct installation, the plug-in becomes available automatically in the list of plug-ins available to
XMLSpy.

Accessing the source control commands
The commands related to source control are available in the Project | Source Control menu.

Resource / Speed issues
Very large source control databases might be introducing a speed/resource penalty when automatically
performing background status updates.

You might be able to speed up your system by disabling (or increasing the interval of) the Perform
background status updates every ... seconds option in the Source Control tab accessed through Tools |
Options.

Note: The 64-bit version of your Altova application automatically supports any of the supported 32-bit source
control programs listed in this documentation. When using a 64-bit Altova application with a 32-bit
source control program, the Perform background status updates every ... seconds option is
automatically grayed-out and cannot be selected.

Differencing with Altova DiffDog
You can configure many source control systems (including Git and TortoiseSVN) so that they use Altova
DiffDog as their differencing tool. For more information about DiffDog, see https://www.altova.com/diffdog. For
DiffDog documentation, see https://www.altova.com/documentation.html.

https://www.altova.com/diffdog
https://www.altova.com/documentation.html

1046 Source Control Setting Up Source Control

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

25.1 Setting Up Source Control

The mechanism for setting up source control and placing files in a XMLSpy project under source control is as
follows:

1. If this hasn't been done already, install the source control system (see Supported Source Control
Systems) and set up the source control database (repository) to which you wish to save your
work.

2. Create a local workspace folder that will contain the working files that you wish to place under source
control. The folder that contains all your workspace folders and files is called the local folder, and the
path to the local folder is referred to as the local path. This local folder will be bound to a particular
folder in the repository.

3. In your Altova application, create an application project folder to which you must add the files you wish
to place under source control. This organization of files in an application project is abstract. The files in
a project reference physical files saved locally, preferably in one folder (with sub-folders if required) for
each project.

4. In the source control system's database (also referred to as source control or repository), a folder is
created that is bound to the local folder. This folder (called the bound folder) will replicate the structure
of the local folder so that all files to be placed under source control are correctly located hierarchically
within the bound folder. The bound folder is usually created when you add a file or an application
project to source control for the first time. See the section, Application Project , for information
about the repository's folder structure.

5. Project files are added to source control using the command Project | Source Control | Add to
Source Control. When you add a project or a file in a project for the first time to source control, the
correct bindings and folder structure will be created in the repository.

6. Source control actions, such as the checking in and out of files, and the removing of files from source
control, can be carried out via commands in the Project | Source Control submenu. These
commands are described in the Project menu section of the Menu Reference.

Note: If you wish to change the current source control provider, this can be done in one of two ways: (i) via
the Source Control options (Tools | Options | Source Control), or (ii) in the Change Source
Control dialog (Project | Source Control | Change Source Control).

1047

1050

1239

1556

© 2018-2024 Altova GmbH

Supported Source Control Systems 1047Source Control

Altova XMLSpy 2024 Enterprise Edition

25.2 Supported Source Control Systems

The list below shows the Source Control Servers (SCSs) supported by XMLSpy, together with their respective
Source Control Clients (SCCs). The list is organized alphabetically by SCS. Note the following:

· Altova has implemented the Microsoft Source Control Plug-in API (versions 1.1, 1.2, and 1.3) in
XMLSpy, and has tested support for the listed drivers and revision control systems. It is expected that
XMLSpy will continue to support these products if, and when, they are updated.

· Source Code Control clients not listed below, but which implement the Microsoft Source Control Plug-
in API, should also work with XMLSpy.

Source Control System Source Code Control Clients

AccuRev 4.7.0 Windows AccuBridge for Microsoft SCC 2008.2

Bazaar 1.9 Windows Aigenta Unified SCC 1.0.6

Borland StarTeam 2008 Borland StarTeam Cross-Platform Client 2008 R2

Codice Software Plastic SCM Professional
2.7.127.10 (Server)

Codice Software Plastic SCM Professional 2.7.127.10 (SCC
Plugin)

Collabnet Subversion 1.5.4 · Aigenta Unified SCC 1.0.6
· PushOK SVN SCC 1.5.1.1
· PushOK SVN SCC x64 version 1.6.3.1
· TamTam SVN SCC 1.2.24

ComponentSoftware CS-RCS (PRO) 5.1 ComponentSoftware CS-RCS (PRO) 5.1

Dynamsoft SourceAnywhere for VSS 5.3.2
Standard/Professional Server

Dynamsoft SourceAnywhere for VSS 5.3.2 Client

Dynamsoft SourceAnywhere Hosted Dynamsoft SourceAnywhere Hosted Client (22252)

Dynamsoft SourceAnywhere Standalone 2.2
Server

Dynamsoft SourceAnywhere Standalone 2.2 Client

Git PushOK GIT SCC plug-in (see Source Control with Git)

IBM Rational ClearCase 7.0.1 (LT) IBM Rational ClearCase 7.0.1 (LT)

March-Hare CVSNT 2.5 (2.5.03.2382) Aigenta Unified SCC 1.0.6

March-Hare CVS Suite 2008 · Jalindi Igloo 1.0.3
· March-Hare CVS Suite Client 2008 (3321)
· PushOK CVS SCC NT 2.1.2.5
· PushOK CVS SCC x64 version 2.2.0.4
· TamTam CVS SCC 1.2.40

Mercurial 1.0.2 for Windows Sergey Antonov HgSCC 1.0.1

Microsoft SourceSafe 2005 with CTP Microsoft SourceSafe 2005 with CTP

1064

1048 Source Control Supported Source Control Systems

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Source Control System Source Code Control Clients

Microsoft Visual Studio Team System
2008/2010 Team Foundation Server

Microsoft Team Foundation Server 2008/2010 MSSCCI
Provider

Perforce 2008 P4S 2008.1 Perforce P4V 2008.1

PureCM Server 2008/3a PureCM Client 2008/3a

QSC Team Coherence Server 7.2.1.35 QSC Team Coherence Client 7.2.1.35

Reliable Software Code Co-Op 5.1a Reliable Software Code Co-Op 5.1a

Seapine Surround SCM Client/Server for
Windows 2009.0.0

Seapine Surround SCM Client 2009.0.0

Serena Dimensions Express/CM 10.1.3 for
Win32 Server

Serena Dimensions 10.1.3 for Win32 Client

Softimage Alienbrain Server 8.1.0.7300 Softimage Alienbrain Essentials/Advanced Client 8.1.0.7300

SourceGear Fortress 1.1.4 Server SourceGear Fortress 1.1.4 Client

SourceGear SourceOffsite Server 4.2.0 SourceGear SourceOffsite Client 4.2.0 (Windows)

SourceGear Vault 4.1.4 Server SourceGear Vault 4.1.4 Client

VisualSVN Server 1.6 · Aigenta Unified SCC 1.0.6
· PushOK SVN SCC 1.5.1.1
· PushOK SVN SCC x64 version 1.6.3.1
· TamTam SVN SCC 1.2.24

© 2018-2024 Altova GmbH

Local Workspace Folder 1049Source Control

Altova XMLSpy 2024 Enterprise Edition

25.3 Local Workspace Folder

The files you will be working with should be saved in a hierarchy inside a local workspace folder (see diagram
below).

Local Workspace Folder

|

|-- MyProject.spp

|-- QuickStart

| |-- QuickStart.css

| |-- QuickStart.xml

| |-- QuickStart.xsd

|-- Grouping

| |-- Persons

| | |-- Persons.xml

The application project file (.spp file) typically will be located directly inside the local workspace folder (see
diagram above).

When one or more files in this (workspace) folder are placed under source control, the local workspace folder's
structure is partly or wholly reproduced in the repository. For example, if the file Persons.xml from the local
folder shown above is placed under source control, then the path to it in the repository will be:

[RepositoryFolder]/MyProject/Grouping/Persons/Persons.xml

The MyProject folder in the repository folder is bound to the local folder. Typically it would be the name of the
project, but you could give it any name.

If the entire application project is placed under source control (by selecting the project name in the Projects
window and placing it under source control), then the entire local folder structure is recreated in the repository.

Note: Files from outside the local workspace folder can be added to the application project. But whether you
can place such a file under source control depends upon the source control system you are using.
Some source control systems could have a problem placing a file from outside the local folder into the
repository. We therefore recommend that all project files you wish to place under source control be
located in the local workspace folder.

1050 Source Control Application Project

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

25.4 Application Project

Create or load the Altova application project you wish to place under source control. If you wish to place a
single file under source control, this file must be included in a project—since source control can only be
accessed via a project.

For example, consider a project in Altova's XMLSpy application. The project's properties are saved in a .spp
file. In the application, the project is displayed in the application's Project window (see screenshot below). The
project in the screenshot below is named MyProject and the project's properties are saved in the file
MyProject.spp.

You can place the entire project (all files in the project) or only some project files under source control. Only
files that are in the project can be placed under source control. So you will need to add files to the
project before you can place them under source control. The project file (.spp file) will automatically be placed
under source control as soon as a file from within the project is placed under source control.

The entire project, or one or more project files, is placed under source control via the command Project |
Source Control | Add to Source Control (see next section below).

Note, however, that the folder structure of the repository corresponds not to the project's folder structure
(screenshot above) but to the structure of the local workspace folder (see folder diagram below). In the
diagram below, notice that the MyProject folder in the repository has a folder structure corresponding to that of
the local workspace folder. Note that the bound folder occurs within the repository folder.

Local Workspace Folder Repository

| |

|-- MyProject.spp |-- MyProject (bound to Local Workspace)

|-- QuickStart ||-- MyProject.spp

| |-- QuickStart.css ||-- QuickStart

| |-- QuickStart.xml || |-- QuickStart.css

| |-- QuickStart.xsd || |-- QuickStart.xml

|-- Grouping || |-- QuickStart.xsd

| |-- Persons ||-- Grouping

1049

© 2018-2024 Altova GmbH

Application Project 1051Source Control

Altova XMLSpy 2024 Enterprise Edition

| | |-- Persons.xml || |-- Persons

|| | |-- Persons.xml

Note: An application project can contain project folders (green) and external folders (yellow). Only files in
(green) project folders can be placed under source control. Files in (yellow) external folders cannot be
placed under source control.

Note: Files from outside the local workspace folder can be added to the application project. But whether you
can place such a file under source control depends upon the source control system you are using.
Some source control systems could have a problem placing a file from outside the local folder into the
repository. We therefore recommend that all project files you wish to place under source control be
located in the local workspace folder.

1052 Source Control Add to Source Control

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

25.5 Add to Source Control

Adding the project to source control will automatically create the correct bindings and repository structure
before adding the project file (.spp file) or individual files to source control. Add the project to source control as
follows.

Select the project in the Project window (MyProject in the screenshot below) so that it is highlighted (as in the
screenshot below). Alternatively select a single file, or select multiple files by clicking them with the Ctrl key
pressed. Adding a single file to source control will automatically add the project file (.spp file) to source control
as well.

Next, select the menu command Project | Source Control | Add to Source Control. This pops up the
connection and configuration dialogs of the currently selected source control system. (You can change the
source control system via the Change Source Control dialog (Project | Source Control | Change Source
Control).)

Follow the source control system's instructions to make the connection and configuration. After this has been
completed, all the files selected for addition plus the project file (.spp file) are displayed in an Add to Source
Control dialog (screenshot below). Select the files you wish to add and click OK.

© 2018-2024 Altova GmbH

Add to Source Control 1053Source Control

Altova XMLSpy 2024 Enterprise Edition

The files will be added to the repository and be either checked in or checked out depending on whether the
Keep Checked Out check box has been checked or not.

Configuration notes
You might be prompted to create a folder in the repository for the project if it has not already been created. If
you are, go ahead and create it. The local workspace folder will be bound to this folder created in the
repository (see diagrams below).

Local Workspace Folder Repository

| |

|-- MyProject.spp |-- MyProject (bound to Local Workspace)

|-- QuickStart ||-- MyProject.spp

| |-- QuickStart.css ||-- QuickStart

| |-- QuickStart.xml || |-- QuickStart.css

| |-- QuickStart.xsd || |-- QuickStart.xml

|-- Grouping || |-- QuickStart.xsd

| |-- Persons ||-- Grouping

| | |-- Persons.xml || |-- Persons

|| | |-- Persons.xml

The configuration dialog of Jalindi Igloo is show below. The CVSROOT field is the path to the repository folder.

In the screenshot above, the local path locates the local workspace folder, which corresponds to the CVS
module, MyProject, and is bound to it.

1055

1049

1054 Source Control Working with Source Control

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

25.6 Working with Source Control

To work with source control, select the project, a project folder, or a project file in the Project window
(screenshot below) and then select the command you want in the Project | Source Control menu. The Check
In and Check Out commands are available as context menu commands of Project window items.

In this section, we describe the main source control features in detail:

· Add to, Remove from Source Control
· Check Out, Check In
· Getting Files as Read-Only
· Copying and Sharing from Source Control
· Changing Source Control

Additional commands in the Project | Source Control menu are described in the Menu Reference section
of the manual. For information specific to a particular source control system, please see the user
documentation of that system.

25.6.1 Add to, Remove from Source Control

Adding
After a project has been added to source control, you can place files either singly or in groups under source
control. This is also known as adding the files to source control. Select the file in the Project window and then
click the command Project | Source Control | Add to Source Control. To select multiple files, keep the Ctrl
key pressed while clicking on the files you wish to add. Running the command on a (green) project folder (see
screenshot below) adds all files in the folder and its sub-folders to source control.

1054

1055

1057

1059

1062

1239

© 2018-2024 Altova GmbH

Working with Source Control 1055Source Control

Altova XMLSpy 2024 Enterprise Edition

When files are added to source control, the local folder hierarchy is replicated in the repository (it is not the
project folder hierarchy that is replicated). So, if a file is in a sub-folder X levels deep in the local folder, then the
file's parent folder and all other ancestor folders are automatically created in the repository.

When the first file from a project is added to source control, the correct bindings are created in the repository
and the project file (.spp file) is added automatically. For more details, see the section Add to Source
Control .

Source control symbols
Files and the project folder display certain symbols, the meanings of which are given below.

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

Removing
To remove a file from source control, select the file and click the command Project | Source Control |
Remove from Source Control. You can also remove: (i) files in a project folder by executing the command on
the folder, and (ii) the entire project by executing the command on the project.

25.6.2 Check Out, Check In

After a project file has been placed under source control, it can be checked out or checked in by selecting the
file (in the Project window) and clicking the respective command in the Project | Source Control menu:
Check Out and Check In.

When a file is checked out, a copy from the repository is placed in the local folder. A file that is checked out
can be edited. If a file that is under source control is not checked out, it cannot be edited. After a file has been
edited, the changes can be saved to the repository by checking in the file. Even if the file is not saved in the

1050

1052

1056 Source Control Working with Source Control

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

application, checking it in will save the changes to the repository. Whether a file is checked out or not is
indicated with a tick or lock symbol in its Project window icon.

Files and the project folder display certain symbols, the meanings of which are given below.

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

Selecting the project or a folder within the project selects all files in the selected object. To select multiple
objects (files and folders), press the Ctrl key while clicking the objects. The screenshot below shows a project
that has been checked out. The file QuickStart.css has subsequently been checked in.

Getting Files as Read-Only

Saving and rejecting editing changes
Note that, when checking in a file, you can choose to leave the file checked out. What this does is save editing
changes to the repository while continuing to keep the file checked out, which is useful if you wish to
periodically save editing changes to the repository and then continue editing.

If you have checked out a file and made editing changes, and then wish to reject these changes, you can revert
to the document version saved in the repository by selecting the command Project | Source Control | Undo
Check Out.

Checking out
The Check Out dialog (screenshot below) allows you: (i) to select the files to check out, and (ii) to select
whether the repository version or the local version should be checked out.

1057

© 2018-2024 Altova GmbH

Working with Source Control 1057Source Control

Altova XMLSpy 2024 Enterprise Edition

Checking in
The Check In dialog (screenshot below) allows you: (i) to select the files to check in, and (ii) if you wish, to
keep the file checked out.

Note: In both dialogs (Check Out and Check In), multiple files appear if the selected object (project or project
folder/s) contain multiple files.

25.6.3 Getting Files as Read-Only

The Get command (in the Project | Source Control menu) retrieves files from the repository as read-only files.
(To be able to edit a file, you must check it out .) The Get dialog lists the files in the object (project or folder)
on which the Get command was executed (see screenshot below). You can select the files to retrieve by
checking them in the Get dialog list.

1055

1058 Source Control Working with Source Control

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: The Get Folders command allows you to select individual sub-folders in the repository if this is allowed
by your source control system, .

You can choose to overwrite changed checked-out files by checking this option at the bottom of the Get dialog.
On clicking OK, the files will be overwritten. If any of the overwritten files is currently open, a dialog pops up
(screenshot below) asking whether you wish to reload the file/s (Reload button), close the file/s (Close), or
retain the current view of the file (Cancel).

Advanced Get Options
The Advanced Get Options dialog (screenshot below) is accessed via the Advanced button in the Get dialog
(see first screenshot in this section).

© 2018-2024 Altova GmbH

Working with Source Control 1059Source Control

Altova XMLSpy 2024 Enterprise Edition

Here you can set options for (i) replacing writable files that are checked out, (ii) the timestamp, and (iii) whether
the read-only property of the retrieved file should be changed so that it will be writable.

Get latest version
The Get Latest Version command (in the Project | Source Control menu) retrieves and places the latest
source control version of the selected file(s) in the working directory. The files are retrieved as read-only and are
not checked out. This command works like the Get command (see above), but does not display the Get
dialog.

If the selected files are currently checked out, then the action taken will depend on how your source control
system handles such a situation. Typically, the source control system will ask whether you wish to replace,
merge with, or leave the checked-out file as it is.

Note: This command is recursive when performed on a folder, that is, it affects all files below the current one
in the folder hierarchy.

25.6.4 Copying and Sharing from Source Control

The Open from Source Control command creates a new application project from a project under source
control.

Create the new project as follows:

1. Depending on the source control system used, it might be necessary, before you create a new project
from source control, to make sure that no file from the source-controlled project is checked out.

2. No project need be open in the application, but can be.
3. Select the command Project | Source Control | Open from Source Control.
4. The source control system that is currently set will pop up its verification and connection dialogs. Make

the connection to the bound folder in the repository that you want to copy.
5. In the dialog that pops up (screenshot below), browse for the local folder to which the contents of the

bound folder in the repository (that you have just connected to) must be copied. In the screenshot
below the bound folder is called MyProject and is represented by the $ sign; the local folder is C:
\M20130326.

1050

1060 Source Control Working with Source Control

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6. Click OK. The contents of the bound folder (MyProject) will be copied to the local folder C:
\M20130326., and a dialog pops up asking you to select the project file (.spp file) that is to be created
as the new project.

7. Select the .spp file that will have been copied to the local folder. In our example, this will be
MyProject.spp located in the C:\M20130326 folder. A new project named MyProject will be created in
the application and will be displayed in the Project window. The project's files will be in the folder C:
\M20130326.

Sharing from source control
The Share from Source Control command is supported when the source control system being used supports
shares. You can share a file, so that it is available at multiple local locations. A change made to one of these
local files will be reflected in all the other "shared" versions.

In the application's Project window first select the project (highlighted in the screenshot below). Then click the
Share from Source Control.

© 2018-2024 Altova GmbH

Working with Source Control 1061Source Control

Altova XMLSpy 2024 Enterprise Edition

The Share To [Folder] dialog (screenshot below) pops up.

To select the files to share, first choose, in the project tree in the right-hand pane of the dialog (see screenshot
above), the folder in which the files are. The files in the chosen folder are displayed in the left-hand pane. Select
the file you wish to share (multiple files by pressing the Ctrl key and clicking the files you want to share). The
selected file/s will be displayed in the Files to Share text box (at top left). The files disappear from the left hand
pane. Click Share and then Close to copy the selected file/s to the local share folder. When you click Close,
the files to share will be copied to the selected local location.

The share folder is noted in the name of the Share to [Folder] dialog. In the screenshot above it is the local
folder (since the $ sign is the folder in the repository to which the local folder is bound). You can see and set
the share folder in the Change Source Control dialog (screenshot below, Change Source Control) by
changing the local path and server binding.

1062 Source Control Working with Source Control

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For more details about sharing using your source control system, see the source control system's user
documentation.

25.6.5 Changing Source Control

Source control settings can be changed via two commands in the Project | Source Control menu:

· Source Control Manager, which opens the source control system application and allows you to set
up databases and configure bindings.

· Change Source Control, which pops up the Change Source Control dialog, in which you can change
the source control system being used by the Altova application and the current binding. This dialog is
described below.

The current binding is what the active application project will use to connect to the source control database.
The current binding is correct when the application project file (.spp file) is in the local folder and the bound
folder in the repository is where this project's files are stored. Typically the bound folder and its sub-structure
will correspond with the local workspace folder and its sub-structure.

In the Change Source Control dialog (screenshot below), you can change the source control system (SCC
Provider), the local folder (Local Path), and the repository binding (Server Name and Server Binding).

Only after undoing the current binding can the settings be changed. Undo the current binding with the Unbind
button. All the settings are now editable.

© 2018-2024 Altova GmbH

Working with Source Control 1063Source Control

Altova XMLSpy 2024 Enterprise Edition

Change source control settings as follows:

1. Use the Browse button to browse for the local folder and the Select button to select from among the
installed source control systems.

2. After doing this you can bind the local folder to a repository database. Click the Bind button to do this.
This pops up the connection dialog of your source control system.

3. If you have entered a Logon ID, this will be passed to the source control system; otherwise you might
have to enter your logon details in the connection dialog.

4. Select the database in the repository that you wish to bind to this local folder. This setting might be
spread over more than one dialog.

5. After the setting has been created, click OK in the Change Source Control dialog.

1064 Source Control Source Control with Git

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

25.7 Source Control with Git

Support for Git as a source control system in XMLSpy is available through a third-party plug-in called GIT SCC
plug-in (http://www.pushok.com/software/git.html).

At the time when this documentation is written, the GIT SCC plug-in is available for experimental use.
Registration with the plug-in publisher is required in order to use the plug-in.

The GIT SCC plug-in enables you to work with a Git repository using the commands available in the Project |
Source Control menu of XMLSpy. Note that the commands in the Project | Source Control menu of XMLSpy
are provided by the Microsoft Source Control Plug-in API (MSSCCI API), which uses a design philosophy
different from Git. As a result, the plug-in essentially mediates between "Visual Source Safe"-like functionality
and Git functionality. On one hand, this means that a command such as Get latest version may not be
applicable with Git. On the other hand, there are new Git-specific actions, which are available in the "Source
Control Manager" dialog box provided by the plug-in (under the Project | Source Control | Source Control
Manager menu of XMLSpy).

The Source Control Manager dialog box

Other commands that you will likely need to use frequently are available directly under the Project | Source
Control menu.

The following sections describe the initial configuration of the plug-in, as well as the basic workflow:

· Enabling Git Source Control with GIT SCC Plug-in
· Adding a Project to Git Source Control
· Cloning a Project from Git Source Control

1065

1065

1067

http://www.pushok.com/software/git.html

© 2018-2024 Altova GmbH

Source Control with Git 1065Source Control

Altova XMLSpy 2024 Enterprise Edition

25.7.1 Enabling Git Source Control with GIT SCC Plug-in

To enable Git source control with XMLSpy, the third-party PushOK GIT SCC plug-in must be installed,
registered, and selected as source control provider, as follows:

1. Download the plug-in installation file from the publisher's website (http://www.pushok.com), run it, and
follow the installation steps.

2. On the Project menu of XMLSpy, click Change Source Control, and make sure PushOk GITSCC is
selected as source control provider. If you do not see Push Ok GITSCC in the list of providers, it is
likely that the installation of the plug-in was not successful. In this case, check the publisher's
documentation for a solution.

3. When a dialog box prompts you to register the plug-in, click Registration and follow the wizard steps
to complete the registration process.

25.7.2 Adding a Project to Git Source Control

You can save XMLSpy projects as Git repositories. The structure of files or folders that you add to the project
would then correspond to the structure of the Git repository.

To add a project to Git source control:

1. Make sure that PushOK GIT SCC Plug-in is set as source control provider (see Enabling Git Source
Control with GIT SCC Plug-in).

2. Create a new project using the menu command Project | Create Project.
3. Save the project to a local folder, for example C:\MyRepo\Project.spp
4. On the Project menu, under Source Control, click Add to Source Control.

1065

http://www.pushok.com

1066 Source Control Source Control with Git

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Click OK.

6. Enter the text of your commit message, and click OK.

You can now start adding files and folders to your project. Note that all project files and folders must be under
the root folder of the project. For example, if the project was created in the C:\MyRepo folder , then only files
under C:\MyRepo should be added to the project. Otherwise, if you attempt to add to your project files that are
outside the project root folder, a warning message is displayed:

© 2018-2024 Altova GmbH

Source Control with Git 1067Source Control

Altova XMLSpy 2024 Enterprise Edition

25.7.3 Cloning a Project from Git Source Control

Projects that have been previously added to Git source control (see Adding a Project to Git Source Control)
can be opened from the Git repository as follows:

1. Make sure that PushOK GIT SCC Plug-in is set as source control provider (see Enabling Git Source
Control with GIT SCC Plug-in).

2. On the Project menu, click Source Control | Open from Source Control.
3. Enter the path or the URL of the source repository. Click Check to verify the validity of the path or

URL.

4. Under Local Path, enter the path to local folder where you want the project to be created, and click
Next. If the local folder exists (even if it is empty), the following dialog box opens:

5. Click Yes to confirm, and then click Next.

1065

1065

1068 Source Control Source Control with Git

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

6. Follow the remaining wizard steps, as required by your specific case.
7. When the wizard completes, a Browse dialog box appears, asking you to open the XMLSpy Project

(*.spp) file. Select the project file to load the project contents into XMLSpy.

© 2018-2024 Altova GmbH

 1069XMLSpy in Visual Studio

Altova XMLSpy 2024 Enterprise Edition

26 XMLSpy in Visual Studio

XMLSpy can be integrated into the Microsoft Visual Studio IDE versions 2012/2013/2015/2017/2019/2022. This
unifies the best of both worlds, integrating advanced XML editing capabilities with the advanced development
environment of Visual Studio.

In this section, we describe:

· The broad installation process and the integration of the XMLSpy plugin in Visual Studio.
· Differences between the Visual Studio version and the standalone version.
· XMLSpy's Debuggers in Visual Studio.

1070

1071

1073

1070 XMLSpy in Visual Studio Installing the XMLSpy Plugin

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

26.1 Installing the XMLSpy Plugin

To install the XMLSpy Plug-in for Visual Studio, take the steps below:

1. Install Microsoft Visual Studio 2012/2013/2015/2017/2019/2022. Note that from Visual Studio 2022
onwards, Visual Studio is being made available only as a 64-bit application.

2. Install XMLSpy (Enterprise or Professional Edition). If you have installed Visual Studio 2022+, then you
must install the 64-bit version of XMLSpy.

3. Download and run the XMLSpy integration package for Microsoft Visual Studio. This package is
available on the XMLSpy (Enterprise and Professional Editions) download page at www.altova.com.

Once the integration package has been installed, you will be able to use XMLSpy in the Visual Studio
environment.

Important

You must use the integration package corresponding to your XMLSpy version (current version is 2024). The
integration package is not edition-specific and can therefore be used for both Enterprise and Professional
editions.

https://www.altova.com

© 2018-2024 Altova GmbH

Differences with XMLSpy Standalone 1071XMLSpy in Visual Studio

Altova XMLSpy 2024 Enterprise Edition

26.2 Differences with XMLSpy Standalone

This section lists the ways in which the Visual Studio versions differ from the standalone versions of XMLSpy.
The listing starts with features that are unsupported in the Visual Studio version, and continues with a listing of
other ways in which the Visual Studio version differs from the standalone version.

· Unsupported features in Visual Studio
· Additional XMLSpy menus in Visual Studio
· Entry helpers in Visual Studio
· Same functionality, different command
· XMLSpy commands as Visual Studio commands

Unsupported features in Visual Studio
The following XMLSpy features are not available in Visual Studio:

· The Scripting environment (Tools | XMLSpy Options | Scripting) is currently not supported. Toolbar
icons that were created to execute scripts will therefore not be displayed.

· The text state icons of Authentic View are not supported.
· Separate browser window (an option in the Tools | Options | View section) is not supported. This

means the the Text View and Browser View are always in the same window.
· All Source Control functionality.
· All comparison functionality (available in the Tools menu of the standalone version).

Additional XMLSpy menus in Visual Studio
The following commands are specific to XMLSpy in Visual Studio:

· View | XMLSpy Tool Windows
· View | XMLSpy View
· XMLSpy (includes Global Resources menu items, and the possibility to switch XMLSpy themes)
· Tools | XMLSPY Options

Note: In Visual Studio 2019 and later, XMLSpy functionality can be accessed in the Extensions menu of
Visual Studio. In earlier versions of Visual Studio, XMLSpy features are available in top-level menus of
Visual Studio.

Entry helpers (Tool windows in Visual Studio)
The entry helpers of XMLSpy are available as Tool windows in Visual Studio. The following points about them
should be noted. (For a description of entry helpers and the XMLSpy GUI, see the section, GUI and
Environment .)

· You can drag entry helper windows to any position in the development environment.
· Right-clicking an entry helper tab allows you to further customize your interface. Entry helper

configuration options are: dockable, hide, floating, and auto-hide.

Same functionality, different command
Some functionality of XMLSpy is available in Visual Studio under differently named commands. These are:

1071

1071

1071

1071

1072

583

113

1072 XMLSpy in Visual Studio Differences with XMLSpy Standalone

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XMLSpy Visual Studio Functionality

File | Open | Switch to URL File | Open | Website Opens file from URL

Switch to URL | Save File | Save XMLSpy File to URL Saves file to URL

XMLSpy commands as Visual Studio commands
Some XMLSpy commands are present as Visual Studio commands in the Visual Studio GUI. These are:

· Undo, Redo: These Visual Studio commands affect all actions in the Visual Studio development
environment.

· Projects: XMLSpy projects are handled as Visual Studio projects.
· Customize Toolbars, Customize Commands: The Toolbars and Commands tabs (screenshot below)

in the Customize dialog (Tools | Customize) contain both Visual Studio commands as well as
XMLSpy commands.

· Views: In the View menu, the two commands, XMLSpy Tool Windows and XMLSpy View, contain
options to toggle on entry helper windows and other sidebars, switch between the editing views, and
toggle certain editing guides on and off.

· XMLSpy Help: This XMLSpy menu appears as a submenu in Visual Studio's Help menu.

© 2018-2024 Altova GmbH

XMLSpy's Debuggers in Visual Studio 1073XMLSpy in Visual Studio

Altova XMLSpy 2024 Enterprise Edition

26.3 XMLSpy's Debuggers in Visual Studio

XMLSpy contains an XSLT/XQuery Debugger (Enterprise and Professional editions) and a SOAP Debugger
(Enterprise edition). A debugger process involves the display of more than one file (for example, XML, XSLT,
and XSLT output files), all of which are displayed in Visual Studio as a single tabbed group. To make the
debugging easier to follow, you can create one or more additional tab groups in Visual Studio. Do this as
follows:

1. Click the tab you wish to separate from the single tabbed group, then drag and drop it somewhere in
the currently active tab. This opens a pop-up menu which allows you to define the type of tab you want
to create.

2. Select New Vertical Tab Group. This creates a new tab containing just the selected tab (screenshot
below).

1074 XMLSpy in Eclipse

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

27 XMLSpy in Eclipse

Eclipse is an open source framework that integrates different types of applications delivered in the form of
plugins. The XMLSpy Integration Package for Eclipse enables you to integrate and access the functionality of
XMLSpy in the Eclipse Platform for Windows. Supported Eclipse versions are: 2024-03 (4.31), 2023-12 (4.30),
2023-09 (4.29), 2023-06 (4.28).

In this section, we describe the following:

· How to install the XMLSpy Integration Package for Eclipse and integrate XMLSpy in Eclipse
· The XMLSpy Perspective in Eclipse
· Other XMLSpy Entry Points in Eclipse
· XMLSpy Debugger perspectives

Note: Source Control functionality, which is available in the standalone version of XMLSpy, is not supported
in the Eclipse version.

1075

1077

1080

1082

© 2018-2024 Altova GmbH

Install the Integration Package for Eclipse 1075XMLSpy in Eclipse

Altova XMLSpy 2024 Enterprise Edition

27.1 Install the Integration Package for Eclipse

Prerequisites

· Eclipse 2024-03 (4.31), 2023-12 (4.30), 2023-09 (4.29), 2023-06 (4.28) (http://www.eclipse.org), 64-bit.
· A Java Runtime Environment (JRE) or Java Development Kit (JDK) for the 64-bit platform.
· XMLSpy Enterprise or Professional Edition 64-bit.

Note: All the prerequisites listed above must have the 64-bit platform. Integration with older Eclipse 32-bit
platforms is no longer supported, although it may still work.

After the prerequisites listed above are in place, you can install the XMLSpy Integration Package (64-bit) to
integrate XMLSpy in Eclipse. The integration can be carried out either during the installation of the Integration
Package or manually from Eclipse after the Integration Package has been installed. The XMLSpy Integration
Package is available for download at https://www.altova.com/components/download.

Note: Eclipse must be closed while you install or uninstall the XMLSpy Integration Package.

Integrate XMLSpy during installation of the Integration Package
You can integrate XMLSpy in Eclipse during the installation of the XMLSpy Integration Package. Do this as
follows:

1. Run the XMLSpy Integration Package to start the installation wizard.
2. Go through the initial steps of the installation with eth wizard.
3. In the Integration step, select Let this wizard integrate Altova XMLSpy plug-in into Eclipse, and browse

for the directory where the Eclipse executable (eclipse.exe) is located.
4. Click Next and complete the installation.

The XMLSpy perspective and menus will be available in Eclipse the next time you start it.

Integrate XMLSpy in Eclipse manually
After you have installed the XMLSpy Integration Package, you can manually integrate XMLSpy in Eclipse as
follows:

1. In Eclipse, select the menu command Help | Install New Software.
2. In the Install dialog box, click Add.

http://www.eclipse.org/
https://www.altova.com/components/download

1076 XMLSpy in Eclipse Install the Integration Package for Eclipse

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. In the Add Repository dialog box, click Local. Browse for the folder C:\Program
Files\Altova\Common2024\eclipse\UpdateSite, and select it. Provide a name for the site (such as
"Altova").

4. Repeat the steps 2-3 above, this time selecting the folder C:\Program
Files\Altova\XMLSpy\eclipse\UpdateSite and providing a name such as "Altova XMLSpy".

5. On the Install dialog box, select Only Local Sites. Next, select the "Altova category" folder and click
Next.

6. Review the items to be installed and click Next to proceed.
7. To accept the license agreement, select the respective check box.
8. Click Finish to complete the installation.

Note: If there are problems with the plug-in (missing icons, for example), start Eclipse from the command line
with the -clean flag.

© 2018-2024 Altova GmbH

XMLSpy Perspective in Eclipse 1077XMLSpy in Eclipse

Altova XMLSpy 2024 Enterprise Edition

27.2 XMLSpy Perspective in Eclipse

In Eclipse, a perspective is a GUI view that is configured with the functionality of a specific application. After
XMLSpy has been integrated in Eclipse, a new perspective, named XMLSpy, becomes available in Eclipse.
This perspective is a GUI that resembles the XMLSpy GUI and includes a number of its components.

When a file having a filetype associated with XMLSpy is opened (.xml, for example), this file can be edited in
the XMLSpy perspective. Similarly, a file of another filetype can be opened in another perspective in Eclipse.
Additionally, for any active file, you can switch the perspective (see below), thus allowing you to edit or process
that file in another environment.

There are therefore two main advantage of perspectives:

1. Being able to quickly change the working environment of the active file, and
2. Being able to switch between files without having to open a new development environment (the

associated environment is available in a perspective)

Working with the XMLSpy perspective involves the following key procedures, which are described further below:

· Switching to the XMLSpy perspective.
· Setting preferences for the XMLSpy perspective.
· Customizing the XMLSpy perspective.

Switch to the XMLSpy perspective
In Eclipse, select the command Window | Perspective | Open Perspective | Other. In the dialog that
appears (screenshot below), select XMLSpy, and click Open.

1078 XMLSpy in Eclipse XMLSpy Perspective in Eclipse

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The empty window or the active document will now have the XMLSpy perspective. This is how the user
switches the perspective via the menu. To access a perspective faster from another perspective, you can set
the required perspective to be listed in the Open Perspective submenu, above the Other item. This setting is
in the customization dialog (see further below).

Perspectives can also be switched when a file is opened or made active. The perspective of the application
associated with a file's filetype will be automatically opened when that file is opened for the first time. Before
the perspective is switched, a dialog appears asking whether you wish to have the default perspective
automatically associated with this filetype. Check the Do Not Ask Again option if you wish to associate the
perspective with the filetype without having to be prompted each time a file of this filetype is opened and then
click OK.

Preferences for the XMLSpy perspective
To access the Preferences of a perspective, select the command Window | Preferences. In the list of
perspectives in the left pane, select XMLSpy, then select the required preferences. Finish by clicking OK.

The preferences of a perspective include:

· To automatically switch to the XMLSpy perspective when a file of an associated filetype is opened (see
above)

· Options for including or excluding individual XMLSpy toolbars
· Access to XMLSpy options.

Customize the XMLSpy perspective
The customization options enable you to determine what shortcuts and commands are included in the

© 2018-2024 Altova GmbH

XMLSpy Perspective in Eclipse 1079XMLSpy in Eclipse

Altova XMLSpy 2024 Enterprise Edition

perspective. To access the Customize Perspective dialog of a perspective, make that perspective the active
perspective and select the command Window | Perspective | Customize Perspective.

· In the Toolbar Visibility and Menu Visibility tabs, you can specify which toolbars and menus are to be
displayed.

· In the Action Set Availability tab, you can add action sets to their parent menus and to the toolbar. If
you wish to enable an action group, check its check box.

· In the Shortcuts tab of the Customize Perspective dialog, you can set shortcuts for submenus. Select
the required submenu in the Submenus combo box. Then select a shortcut category, and check the
shortcuts you wish to include for the perspective.

Click Apply and Close to complete the customization and for the changes to take effect.

1080 XMLSpy in Eclipse Other XMLSpy Entry Points in Eclipse

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

27.3 Other XMLSpy Entry Points in Eclipse

In addition to the XMLSpy perspective, two other entry points in Eclipse can be used to access XMLSpy
functionality:

· XMLSpy menu
· XMLSpy toolbar

XMLSpy menu in Eclipse
The XMLSpy menu of Eclipse contains XMLSpy commands that provide key XMLSpy functionality. These
commands occur in various menus of the standalone version of XMLSpy.

At the bottom of this menu are commands to set the theme of the XMLSpy perspective in Eclipse.

XMLSpy toolbar in Eclipse
The XMLSpy toolbar in Eclipse (screenshot below) contains two buttons.

These buttons do the following:

· Open the XMLSpy Help
· Provide access to XMLSpy commands (as an alternative to accessing them from the XMLSpy menu,

see above).

Note: Toolbar commands are not supported. If you have set up a toolbar command in XMLSpy that runs a
command or script, then this toolbar command will not be available in the plug-in.

XMLSpy file formats and behavior of Eclipse views
When certain file types recognized by XMLSpy are active (in focus) in Eclipse, the Elements, Attributes, and
Entities views appear with a name that is meaningful for that format. For example, when a .css file is active,

the Elements view has the name CSS Outline. The following table illustrates how view names change based on
the active file:

This file format active Elements view
becomes...

Attributes view
becomes...

Properties view
becomes...

.css CSS Outline CSS Properties HTML Elements

.xquery, .xq XQuery Keywords XQuery Variables XQuery Functions

.xsd Components Details Facets

If you close any of these views, you can restore them later using the menu command Window | Show View.
Note, however, that views are displayed in this menu with their generic name (that is, Elements, Attributes, and
Entities). So, for example, in order to restore the view CSS Outline, you would select Show View | Elements.

© 2018-2024 Altova GmbH

Other XMLSpy Entry Points in Eclipse 1081XMLSpy in Eclipse

Altova XMLSpy 2024 Enterprise Edition

As an alternative, reset the XMLSpy perspective to its default values by clicking Window | Reset Perspective.

1082 XMLSpy in Eclipse XMLSpy's Debugger Perspectives

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

27.4 XMLSpy's Debugger Perspectives

There are two debuggers in the Enterprise edition of XMLSpy (XSLT/XQuery and SOAP), and one debugger in
the Professional edition of XMLSpy (XSLT/XQuery). Perspectives for these debuggers are available in Eclipse
according to the XMLSpy edition that is currently installed.

To switch to a debugger perspective, select the command Window | Open Perspective | Other. In the dialog
that pops up (screenshot below), select the debugger (for example, Debug XSLT/XQ), and click OK.

The empty window or the active document will now have the perspective of the selected debugger. This is how
the user switches the perspective via the menu. To access a perspective faster from another perspective, the
required perspective can be listed in the Open Perspective submenu, above the Other item; this setting is in
the customization dialog.

For a description of how to use the debuggers, see the respective sections in this documentation: XSLT and
XQuery, and WSDL and SOAP.

© 2018-2024 Altova GmbH

 1083Code Generator

Altova XMLSpy 2024 Enterprise Edition

28 Code Generator

XMLSpy includes a built-in code generator which can generate Java, C++ or C# class files from XML schemas.
The generated code consists of strongly-typed schema wrapper libraries that enable you to create software
applications that process XML data. The schema wrapper libraries enable you to work with XML data via
programs, using types generated from the schema. You would typically use code generator as follows. First,
model your XML Schema in XMLSpy's graphical schema editor (Schema View). Then generate code in your
preferred code language (Java, C++ or C#). If you change the schema's content model, re-run the code
generator.

The generated code supports the following operations:

· Read XML files into a Document Object Model (DOM) in-memory representation
· Write XML files from a DOM representation back to a system file
· Convert strings to XML DOM trees and vice versa.

The table below summarizes support information.

Target Language C++ C# Java

Development
environments

Microsoft Visual Studio
2013, 2015, 2017, 2019,
2022

Microsoft Visual Studio
2013, 2015, 2017, 2019,
2022

Target frameworks:

· .NET Framework
· .NET Core 3.1
· .NET 5.0
· .NET 6.0
· .NET 8.0

Java SE JDK 8, 11, 17, 21
(including OpenJDK)
Eclipse 4.4 or later
Apache Ant (build.xml file)

XML DOM
implementations

MSXML 6.0
Apache Xerces 3

System.Xml JAXP

Language-specific information
Language-specific information is provided in the subsections below.

C++
You can configure whether the C++ generated output should use MSXML 6.0 or Apache Xerces 3. XMLSpy
generates complete project (.vcproj) and solution (.sln) files for all supported versions of Visual Studio (see

table above). The generated code optionally supports MFC.

Note the following prerequisites:

· To compile the generated C++ code, Windows SDK must be installed on your computer.
· To use Xerces 3 for C++, you will need to install and build it using the instructions on the Apache

Xerces page. Make sure to add the XERCES3 environment variable that points to the directory where
Xerces is installed (e.g., C:\xerces-c-3.2.2). Also, the PATH environment variable must include the
path where the Xerces binaries are (e.g., %XERCES3%\bin).

https://xerces.apache.org/
https://xerces.apache.org/

1084 Code Generator

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· When you build C++ code for Visual Studio and use a Xerces library precompiled for Visual C++, you
will need to change the compiler setting in all the projects of the solution. Follow the steps below:

a) Select all projects in the Solution Explorer.
b) Click Properties in the Project menu.
c) Click Configuration Properties | C/C++ | Language.
d) In the list of configurations, select All Configurations.
e) Change Treat wchar_t as Built-in Type to No (/Zc:wchar_t-).

C#
The generated C# code can be used from any .NET capable programming language, such as VB.NET,
Managed C++, or J#. Project files can be generated for all supported versions of Visual Studio (see table
above).

Java
The generated Java output is written against the Java API for XML Processing (JAXP) and includes an Ant build
file and project files for supported versions of Java and Eclipse (see table above).

Resolving "Out of memory" exceptions during Java compilation

Complex schemas can produce a large amount of code, which might cause a java.lang.OutofMemory
exception during compilation using Ant. To rectify this:

· Add the environment variable ANT_OPTS, which sets specific Ant options such as the memory to be
allocated to the compiler, and set its value as shown below.

· To make sure that the compiler and the generated code run in the same process as Ant, change the
fork attribute, in build.xml, to false.

You may need to customize the values depending on the amount of memory in your machine and the size of
the project you are working with. For more details, see your Java VM documentation.

When running the ant jar command, you may get an error message similar to "[...] archive
contains more than 65535 entities". To prevent this, it is recommended that you use Ant 1.9 or later,
and, in the build.xml file, add zip64mode="as-needed" to the <jar> element.

Generated output
The designated destination folder for the generated code includes all the libraries and files required to
manipulate XML files programmatically, namely:

© 2018-2024 Altova GmbH

 1085Code Generator

Altova XMLSpy 2024 Enterprise Edition

· Standard Altova libraries
· Schema wrapper libraries
· An empty test application with sample source code. The test application skeleton is a compilable

application that calls an empty Example() method. You can add your test code into this method for
easy and quick testing of your new generated library.

Code generator templates
The generated code is built via a template that is written in a template language called SPL (Spy
Programming Language). You can customize the template used for code-generation. For example, you can use
SPL to map XML Schema's built-in data types to the primitive datatypes of a particular programming
language and to build your own templates to automate the generation of virtually any other format, for example,
EJB's, WSDL files, SQL scripts, ASP and WML code.

Examples
For examples illustrating code generation capabilities, see Example: Book Library and Example: Purchase
Order .

1175

1175

1098

1122

1086 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.1 Generate Code from XML Schemas or DTDs

With XMLSpy code generator, you can generate C#, C++, or Java program code from XML schemas or DTDs.
The generated schema wrapper libraries can then be integrated in your custom application in order to read,
modify, or write XML documents programmatically.

Generating program code
1. Open the schema for which you want to generate source code.
2. Select the menu item DTD/Schema | Generate Program Code.
3. In the Choose Template pane of the dialog that pops up, set the code generator options.
4. Click OK. The Browse for Folder dialog appears.
5. Select the target folder and click OK.
6. You are prompted to open the newly created project in Microsoft Visual Studio. Click Yes. If Java code

is produced, you are prompted to open the corresponding output directory.

When XMLSpy generates code from an XML Schema or DTD, the following libraries are created:

C++ or C# Java Purpose

Altova com.altova Base library containing common runtime support, identical
for every schema.

AltovaXML com.altova.xml Base library containing runtime support for XML, identical
for every schema.

[YourSchema] com.YourSchema A library containing declarations generated from the input
schema, named as the schema file or DTD. This library is
a DOM (W3C Document Object Model) wrapper that allows
you to read, modify and create XML documents easily and
safely. All data is held inside the DOM, and there are
methods for extracting data from the DOM, and to update
and create data into the DOM.

The generated C++ code supports either Microsoft MSXML
or Apache Xerces 3. The syntax for using the generated
code is generally similar for both DOM implementations,
except for a few slight differences (for example, Xerces
supports more overloaded functions).

The generated C# code uses the .NET standard
System.XML library as the underlying DOM
implementation.

The generated Java code uses JAXP (Java API for XML
Processing) as the underlying DOM interface.

[YourSchemaTest] com.YourSchemaTest The generated code also includes a test application
skeleton named after your schema (for example,
YourSchemaTest). This is a compilable application that
calls an empty Example() method. You can add your test

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1087Code Generator

Altova XMLSpy 2024 Enterprise Edition

code into this method for easy and quick testing of your
new generated library.

While prototyping an application from a frequently changing XML schema, you may need to frequently
generate code to the same directory, so that the schema changes are immediately reflected in the code.
Note that the generated test application and the Altova libraries are overwritten every time when you
generate code into the same target directory. Therefore, do not add code to the generated test application.
Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

Name generation and namespaces
XMLSpy generates classes corresponding to all declared elements or complex types which redefine any
complex type in your XML Schema, preserving the class derivation as defined by extensions of complex types
in your XML Schema. In the case of complex schemas which import schema components from multiple
namespaces, XMLSpy preserves this information by generating the appropriate C# or C++ namespaces or Java
packages.

Generally, the code generator tries to preserve the names for generated namespaces, classes and members
from the original XML Schema. Characters that are not valid in identifiers in the target language are replaced by
a "_". Names that would collide with other names or reserved words are made unique by appending a number.
Name generation can be influenced by changing the default settings in the SPL template.

The namespaces from the XML Schema are converted to packages in Java or namespaces in C# or C++ code,
using the namespace prefix from the schema as code namespace. The complete library is enclosed in a
package or namespace derived from the schema file name, so you can use multiple generated libraries in one
program without name conflicts.

Data Types
XML Schema has a more elaborate data type model than Java, C# or C++. Code Generator converts the built-in
XML Schema types to language-specific primitive types, or to classes delivered with the Altova library. Complex
types and derived types defined in the schema are converted to classes in the generated library. Enumeration
facets from simple types are converted to symbolic constants.

The mapping of simple types can be configured in the SPL template, see SPL Reference .

If your XML instance files use schema types related to time and duration, these are converted to Altova native
classes in the generated code. For information about the Altova library classes, see:

· Reference to Generated Classes (C++)
· Reference to Generated Classes (C#)
· Reference to Generated Classes (Java)

For information about type conversion and other details applicable to each language, see:

· About Schema Wrapper Libraries (C++)
· About Schema Wrapper Libraries (C#)
· About Schema Wrapper Libraries (Java)

1095

1175

1175

1130

1145

1160

1089

1091

1093

1088 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Memory management
A DOM tree is comprised of nodes, which are always owned by a specific DOM document - even if the node is
not currently part of the document's content. All generated classes are references to the DOM nodes they
represent, not values. This means that assigning an instance of a generated class does not copy the value, it
only creates an additional reference to the same data.

XML Schema support
The following XML Schema constructs are translated into code:

a) XML namespaces

b) Simple types:

· Built-in XML schema types
· Simple types derived by extension
· Simple types derived by restriction
· Facets
· Enumerations
· Patterns

c) Complex types:

· Built-in anyType node
· User-defined complex types
· Derived by extension: Mapped to derived classes
· Derived by restriction
· Complex content
· Simple content
· Mixed content

The following advanced XML Schema features are not supported (or not fully supported) in generated wrapper
classes:

· Wildcards: xs:any and xs:anyAttribute
· Content models (sequence, choice, all). Top-level compositor is available in SPL , but is not

enforced by generated classes.
· Default and fixed values for attributes. These are available in SPL , but are not set or enforced by

generated classes.
· The attributes xsi:type, abstract types. When you need to write the xsi:type attribute, use the

SetXsiType() method of the generated classes.
· Union types: not all combinations are supported.
· Substitution groups are partially supported (resolved like "choice").
· Attribute nillable="true" and xsi:nil
· Uniqueness constraints
· Identity constraints (key and keyref)

1175

1175

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1089Code Generator

Altova XMLSpy 2024 Enterprise Edition

28.1.1 About Schema Wrapper Libraries (C++)

Character Types
The generated C++ code can be compiled with or without Unicode support. Depending on this setting, the
types string_type and tstring will both be defined as std::string or std::wstring, consisting of narrow
or wide characters. To use Unicode characters in your XML file that are not representable with the current 8-bit
character set, Unicode support must be enabled. Pay special attention to the _T() macros. This macro
ensures that string constants are stored correctly, whether you're compiling for Unicode or non-Unicode
programs.

Data Types
The default mapping of XML Schema types to C++ data types is:

XML Schema C++ Remarks

xs:string string_type string_type is defined as std::string or
std:wstring

xs:boolean bool

xs:decimal double C++ does not have a decimal type, so
double is used.

xs:float, xs:double double

xs:integer __int64 xs:integer has unlimited range, mapped
to __int64 for efficiency reasons.

xs:nonNegativeInteger unsigned __int64 see above

xs:int int

xs:unsignedInt unsigned int

xs:dateTime, date, time,
gYearMonth, gYear, gMonthDay,
gDay, gMonth

altova::DateTime

xs:duration altova::Duration

xs:hexBinary and
xs:base64Binary

std::vector<unsigned
char>

Encoding and decoding of binary data is
done automatically.

xs:anySimpleType string_type

All XML Schema types not contained in this list are derived types, and mapped to the same C++ type as their
respective base type.

1130

1133

1090 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Generated Classes
For each type in the schema, a class is generated that contains a member for each attribute and element of
the type. The members are named the same as the attributes or elements in the original schema (in case of
possible collisions, a number is appended). For simple types, assignment and conversion operators are
generated. For simple types with enumeration facets, the methods GetEnumerationValue() and
SetEnumerationValue(int) can be used together with generated constants for each enumeration value. In
addition, the method StaticInfo() allows accessing schema information as one of the following types:

altova::meta::SimpleType

altova::meta::ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to set the
xsi:type attribute of the type. This method is useful when you want to create XML instance elements of a
derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with "CDoc"
below) is generated. It contains all possible root elements as members, and various other methods. For more
information about the class, see [YourSchema]::[CDoc] .

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about
such classes, see:

[YourSchema]::MemberAttribute
[YourSchema]::MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

See also Example: Using the Schema Wrapper Libraries .

Error Handling
Errors are reported by exceptions. The following exception classes are defined in the namespace altova:

Class Base Class Description

Error std::logic_error Internal program logic error
(independent of input data).

Exception std::runtime_error Base class for runtime errors.

InvalidArgumentsException Exception A method was called with invalid
argument values.

ConversionException Exception Exception thrown when a type
conversion fails.

StringParseException ConversionException A value in the lexical space cannot
be converted to value space.

1138

1137

1140

1143

1144

1098

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1091Code Generator

Altova XMLSpy 2024 Enterprise Edition

ValueNotRepresentableExcept
ion

ConversionException A value in the value space cannot be
converted to lexical space.

OutOfRangeException ConversionException A source value cannot be
represented in target domain.

InvalidOperationException Exception An operation was attempted that is
not valid in the given context.

DataSourceUnavailableExcept
ion

Exception A problem occurred while loading an
XML instance.

DataTargetUnavailableExcept
ion

Exception A problem occurred while saving an
XML instance.

All exception classes contain a message text and a pointer to a possible inner exception.

Method Purpose

string_type message() Returns a textual description of the exception.

std::exception inner() Returns the exception that caused this exception, if
available, or NULL.

Accessing schema information
The generated library allows accessing static schema information via the following classes. All methods are
declared as const. The methods that return one of the metadata classes return a NULL object if the respective
property does not exist.

altova::meta::Attribute
altova::meta::ComplexType
altova::meta::Element
altova::meta::SimpleType

28.1.2 About Schema Wrapper Libraries (C#)

The default mapping of XML Schema types to C# data types is as follows.

XML Schema C# Remarks

xs:string string

xs:boolean bool

xs:decimal decimal xs:decimal has unlimited range and
precision, mapped to decimal for
efficiency reasons.

xs:float, xs:double double

1136

1137

1138

1138

1092 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XML Schema C# Remarks

xs:long long

xs:unsignedLong ulong

xs:int int

xs:unsignedInt uint

xs:dateTime, date, time,
gYearMonth, gYear, gMonthDay,
gDay, gMonth

Altova.Types.DateTime

xs:duration Altova.Types.Duration

xs:hexBinary and
xs:base64Binary

byte[] Encoding and decoding of binary data
is done automatically.

xs:anySimpleType string

All XML Schema types not contained in this list are derived types, and mapped to the same C# type as their
respective base type.

Generated Classes
For each type in the schema, a class is generated that contains a member for each attribute and element of
the type. The members are named the same as the attributes or elements in the original schema (in case of
possible collisions, a number is appended). For simple types, assignment and conversion operators are
generated. For simple types with enumeration facets, the methods GetEnumerationValue() and
SetEnumerationValue(int) can be used together with generated constants for each enumeration value. In
addition, the method StaticInfo() allows accessing schema information as one of the following types:

Altova.Xml.Meta.SimpleType
Altova.Xml.Meta.ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to set the
xsi:type attribute of the type. This method is useful when you want to create XML instance elements of a
derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with "Doc"
below) is generated. It contains all possible root elements as members, and various other methods. For more
information about the class, see [YourSchema].[Doc] .

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about
such classes, see:

[YourSchemaType].MemberAttribute
[YourSchemaType].MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

1145

1149

1154

1152

1155

1158

1158

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1093Code Generator

Altova XMLSpy 2024 Enterprise Edition

Error Handling
Errors are reported by exceptions. The following exception classes are defined in the namespace Altova:

Class Base Class Description

ConversionException Exception Exception thrown when a type conversion
fails

StringParseException ConversionException A value in the lexical space cannot be
converted to value space.

DataSourceUnavailableException System.Exception A problem occurred while loading an XML
instance.

DataTargetUnavailableException System.Exception A problem occurred while saving an XML
instance.

In addition, the following .NET exceptions are commonly used:

Class Description

System.Exception Base class for runtime errors

System.ArgumentException A method was called with invalid argument values, or a type
conversion failed.

System.FormatException A value in the lexical space cannot be converted to value
space.

System.InvalidCastException A value cannot be converted to another type.

System.OverflowException A source value cannot be represented in target domain.

Accessing schema information
The generated library allows accessing static schema information via the following classes:

Altova.Xml.Meta.Attribute
Altova.Xml.Meta.ComplexType
Altova.Xml.Meta.Element
Altova.Xml.Meta.SimpleType

The properties that return one of the metadata classes return null if the respective property does not exist.

28.1.3 About Schema Wrapper Libraries (Java)

The default mapping of XML Schema types to Java data types is as follows:

1152

1152

1153

1154

1094 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XML Schema Java Remarks

xs:string String

xs:boolean boolean

xs:decimal java.math.BigDecimal

xs:float, xs:double double

xs:integer java.math.BigInteger

xs:long long

xs:unsignedLong java.math.BigInteger Java does not have unsigned types.

xs:int int

xs:unsignedInt long Java does not have unsigned types.

xs:dateTime, date, time,
gYearMonth, gYear, gMonthDay,
gDay, gMonth

com.altova.types.DateTim
e

xs:duration com.altova.types.Duratio
n

xs:hexBinary and xs:base64Binary byte[] Encoding and decoding of binary
data is done automatically.

xs:anySimpleType string

All XML Schema types not contained in this list are derived types, and mapped to the same Java type as their
respective base type.

Generated Classes
For each type in the schema, a class is generated that contains a member for each attribute and element of
the type. The members are named the same as the attributes or elements in the original schema (in case of
possible collisions, a number is appended). For simple types, assignment and conversion operators are
generated. For simple types with enumeration facets, the methods GetEnumerationValue() and
SetEnumerationValue(int) can be used together with generated constants for each enumeration value. In
addition, the method StaticInfo() allows accessing schema information as one of the following types:

com.altova.xml.meta.SimpleType
com.altova.xml.meta.ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to set the
xsi:type attribute of the type. This method is useful when you want to create XML instance elements of a
derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with "Doc"
below) is generated. It contains all possible root elements as members, and various other methods. For more
information about the class, see com.[YourSchema].[Doc] .

1160

1164

1169

1168

1170

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1095Code Generator

Altova XMLSpy 2024 Enterprise Edition

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about
such classes, see:

com.[YourSchema].[YourSchemaType].MemberAttribute
com.[YourSchema].[YourSchemaType].MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

Error Handling
Errors are reported by exceptions. The following exception classes are defined in the namespace com.altova:

Class Base Class Description

SourceInstanceUnvailableException Exception A problem occurred while loading
an XML instance.

TargetInstanceUnavailableException Exception A problem occurred while saving
an XML instance.

In addition, the following Java exceptions are commonly used:

Class Description

java.lang.Error Internal program logic error (independent of input data)

java.lang.Exception Base class for runtime errors

java.lang.IllegalArgumentsException A method was called with invalid argument values, or a type
conversion failed.

java.lang.ArithmeticException Exception thrown when a numeric type conversion fails.

Accessing schema information
The generated library allows accessing static schema information via the following classes:

com.altova.xml.meta.Attribute
com.altova.xml.meta.ComplexType
com.altova.xml.meta.Element
com.altova.xml.meta.SimpleType

The properties that return one of the metadata classes return null if the respective property does not exist.

28.1.4 Integrate Schema Wrapper Libraries

To use the Altova libraries in your custom project, refer to the libraries from your project or include them in your
project, as shown below for each language.

1173

1173

1168

1168

1169

1169

1096 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

C#
To integrate the Altova libraries into an existing C# project:

1. After XMLSpy generates code from a schema (for example, YourSchema.xsd), build the generated
YourSchema.sln solution in Visual Studio. This solution is in a project folder with the same name as
the schema.

2. Right-click your existing project in Visual Studio, and select Add Reference.
3. On the Browse tab, browse for the following libraries: Altova.dll, AltovaXML.dll, and

YourSchema.dll located in the output directory of the generated projects (for example, bin\Debug).

C++
The easiest way to integrate the libraries into an existing C++ project is to add the generated project files to
your solution. For example, let's assume that you generated code from a schema called Library.xsd and
selected c:\codegen\cpp\library as target directory. The generated libraries in this case are available at:

· c:\codegen\cpp\library\Altova.vcxproj
· c:\codegen\cpp\library\AltovaXML\AltovaXML.vcxproj
· c:\codegen\cpp\library\Library.vcxproj

First, open the generated c:\codegen\cpp\library\Library.sln solution and build it in Visual Studio.

Next, open your existing Visual Studio solution (in Visual Studio 2010, in this example), right-click it, select
Add | Existing Project, and add the project files listed above, one by one. Be patient while Visual Studio

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1097Code Generator

Altova XMLSpy 2024 Enterprise Edition

parses the files. Next, right-click your project and select Properties. In the Property Pages dialog box, select
Common Properties | Framework and References, and then click Add New Reference. Next, select and
add each of the following projects: Altova, AltovaXML, and Library.

See also the MSDN documentation for using functionality from a custom library, as applicable to your version of
Visual Studio, for example:

· If you chose to generate static libraries, see https://msdn.microsoft.com/en-
us/library/ms235627(v=vs.100).aspx

· If you chose to generate dynamic libraries, see https://msdn.microsoft.com/en-
us/library/ms235636(v=vs.100).aspx

The option to generate static or dynamic libraries is available in the code generation options (see Code
Generation Options).

Java
One of the ways to integrate the Altova packages into your Java project is to copy the com directory of the
generated code to the directory which stores the source packages of your Java project (for example, C:
\Workspace\MyJavaProject\src). For example, let's assume that you generated code in c:
\codegen\java\library. The generated Altova classes in this case are available at c:
\codegen\java\library\com.

After copying the libraries, refresh the project. To refresh the project in Eclipse, select it in the Package
Explorer, and press F5. To refresh the project in NetBeans IDE 8.0, select the menu command Source | Scan
for External Changes.

1300

https://msdn.microsoft.com/en-us/library/ms235627(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235627(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235636(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235636(v=vs.100).aspx

1098 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Once you perform the copy operation, the Altova packages are available in the Package Explorer (in case of
Eclipse), or under "Source Packages" in the Projects pane (in case of NetBeans IDE).

Altova packages in Eclipse 4.4

Altova packages in NetBeans IDE 8.0.2

28.1.5 Example: Book Library

This example illustrates how to use the generated schema wrapper libraries in order to write or read
programmatically XML documents conformant to the schema. Before using the sample code, take some time
to understand the structure of the schema below.

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1099Code Generator

Altova XMLSpy 2024 Enterprise Edition

The schema used in this example describes a library of books. The complete definition of the schema is shown
below. Save this code listing as Library.xsd if you want to get the same results as this example. You will

need this schema to generate the code libraries used in this example.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.nanonull.com/LibrarySample"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.nanonull.com/LibrarySample" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="Library">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Book" type="BookType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="LastUpdated" type="xs:dateTime"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="BookType">

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:integer" use="required"/>

 <xs:attribute name="Format" type="BookFormatType" use="required"/>

 </xs:complexType>

 <xs:complexType name="DictionaryType">

 <xs:complexContent>

 <xs:extension base="BookType">

 <xs:sequence>

 <xs:element name="FromLang" type="xs:string"/>

 <xs:element name="ToLang" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:simpleType name="BookFormatType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Hardcover"/>

 <xs:enumeration value="Paperback"/>

 <xs:enumeration value="Audiobook"/>

 <xs:enumeration value="E-book"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Library is a root element of a complexType which can be graphically represented as follows in the schema
view of XMLSpy:

1100 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

As shown above, the library has a LastUpdated attribute (defined as xs:dateTime), and stores a sequence of
books. Each book is an xs:complexType and has two attributes: an ID (defined as xs:integer), and a
Format. The format of any book can be hardcover, paperback, audiobook, or e-book. In the schema, Format is
defined as xs:simpleType which uses an enumeration of the above-mentioned values.

Each book also has a Title element (defined as xs:string), as well as one or several Author elements
(defined as xs:string).

The library may also contain books that are dictionaries. Dictionaries have the type DictionaryType, which is
derived by extension from the BookType. In other words, a dictionary inherits all attributes and elements of a
Book, plus two additional elements: FromLang and ToLang, as illustrated below.

The FromLang and ToLang elements store the source and destination language of the dictionary.

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1101Code Generator

Altova XMLSpy 2024 Enterprise Edition

An XML instance file valid according to the schema above could therefore look as shown in the listing below
(provided that it is in the same directory as the schema file):

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.nanonull.com/LibrarySample"

xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-

02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"

xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

The next topics illustrate how to read from such a file programmatically, or write to such a file
programmatically. To begin, generate the schema wrapper code from the schema above, using the steps
described in Generating Code from XML Schemas or DTD .

28.1.5.1 Reading and Writing XML Documents (C++)

After you generate code from the example schema , a test C++ application is created, along with several
supporting Altova libraries.

About the generated C++ libraries
The central class of the generated code is the CDoc class, which represents the XML document. Such a class
is generated for every schema and its name depends on the schema file name. As shown in the diagram, this
class provides methods for loading documents from files, binary streams, or strings (or saving documents to
files, streams, strings). For a description of all members exposed by this class, see the class reference
([YourSchema]::[CDoc]).

1086

1098

1140

1102 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Library field of the CDoc class represents the actual root of the document. Library is an element in the
XML file, so in the C++ code it has a template class as type (MemberElement). The template class exposes
methods and properties for interacting with the Library element. In general, each attribute and each element of
a type in the schema is typed in the generated code with the MemberAttribute and MemberElement template
classes, respectively. For more information, see [YourSchema]::MemberAttribute and
[YourSchema]::MemberElement class reference.

The class CLibraryType is generated from the LibraryType complex type in the schema. Notice that the
CLibraryType class contains two fields: Book and LastUpdated. According to the logic already mentioned
above, these correspond to the Book element and LastUpdated attribute in the schema, and enable you to
manipulate programmatically (append, remove, etc) elements and attributes in the instance XML document.

The DictionaryType is a complex type derived from BookType in the schema, so this relationship is also
reflected in the generated classes. As illustrated in the diagram, the class CDictionaryType inherits the
CBookType class.

1143

1144

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1103Code Generator

Altova XMLSpy 2024 Enterprise Edition

If your XML schema defines simple types as enumerations, the enumerated values become available as enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an enum that is a
member of the CBookFormatType class.

Writing an XML document
1. Open the LibraryTest.sln solution in Visual Studio generated from the Library schema mentioned

earlier in this example.

While prototyping an application from a frequently changing XML schema, you may need to frequently
generate code to the same directory, so that the schema changes are immediately reflected in the code.
Note that the generated test application and the Altova libraries are overwritten every time when you
generate code into the same target directory. Therefore, do not add code to the generated test application.
Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

2. In Solution Explorer, open the LibraryTest.cpp file, and edit the Example() method as shown below.

#include <ctime> // required to get current time

using namespace Doc; // required to work with Altova libraries

void Example()

{

1095

1104 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 // Create a new, empty XML document

 CDoc libDoc = CDoc::CreateDocument();

 // Create the root element <Library> and add it to the document

 CLibraryType lib = libDoc.Library.append();

 // Get current time and set the "LastUpdated" attribute using Altova classes

 time_t t = time(NULL);
 struct tm * now = localtime(& t);

 altova::DateTime dt = altova::DateTime(now->tm_year + 1900, now->tm_mon + 1, now-
>tm_mday, now->tm_hour, now->tm_min, now->tm_sec);
 lib.LastUpdated = dt;

 // Create a new <Book> and add it to the library

 CBookType book = lib.Book.append();

 // Set the "ID" attribute of the book

 book.ID = 1;

 // Set the "Format" attribute of the <Book> using an enumeration constant

 book.Format.SetEnumerationValue(CBookFormatType::k_Paperback);

 // Add the <Title> and <Author> elements, and set values

 book.Title.append() = _T("The XML Spy Handbook");
 book.Author.append() = _T("Altova");

 // Append a dictionary (book of derived type) and populate its attributes and elements

 CDictionaryType dictionary = CDictionaryType(lib.Book.append().GetNode());
 dictionary.ID = 2;
 dictionary.Format.SetEnumerationValue(CBookFormatType::k_E_book);
 dictionary.Title.append() = _T("English-German Dictionary");
 dictionary.Author.append() = _T("John Doe");
 dictionary.FromLang.append() = _T("English");
 dictionary.ToLang.append() = _T("German");

 // Since dictionary a derived type, set the xsi:type attribute of the book element

 dictionary.SetXsiType();

 // Optionally, set the schema location

 libDoc.SetSchemaLocation(_T("Library.xsd"));

 // Save the XML document to a file with default encoding (UTF-8),

 // "true" causes the file to be pretty-printed.

 libDoc.SaveToFile(_T("GeneratedLibrary.xml"), true);

 // Destroy the document

 libDoc.DestroyDocument();
}

3. Press F5 to start debugging. If the code was executed successfully, a GeneratedLibrary.xml file is
created in the solution output directory.

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1105Code Generator

Altova XMLSpy 2024 Enterprise Edition

Reading an XML document
1. Open the LibraryTest.sln solution in Visual Studio.
2. Save the code below as Library1.xml to a directory that can be read by the program code (for

example, the same directory as LibraryTest.sln).

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.nanonull.com/LibrarySample"

xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-

02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"

xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

3. In Solution Explorer, open the LibraryTest.cpp file, and edit the Example() method as shown below.

using namespace Doc;

void Example()

{
 // Load XML document

 CDoc libDoc = CDoc::LoadFromFile(_T("Library1.xml"));

 // Get the first (and only) root element <Library>

 CLibraryType lib = libDoc.Library.first();

 // Check whether an element exists:

 if (!lib.Book.exists())

 {
 tcout << "This library is empty." << std::endl;
 return;

 }

 // iteration: for each <Book>...

 for (Iterator<CBookType> itBook = lib.Book.all(); itBook; ++itBook)

 {
 // output values of ISBN attribute and (first and only) title element

 tcout << "ID: " << itBook->ID << std::endl;
 tcout << "Title: " << tstring(itBook->Title.first()) << std::endl;

 // read and compare an enumeration value

 if (itBook->Format.GetEnumerationValue() == CBookFormatType::k_Paperback)

1106 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 tcout << "This is a paperback book." << std::endl;

 // for each <Author>...

 for (CBookType::Author::iterator itAuthor = itBook->Author.all(); itAuthor; +

+itAuthor)
 tcout << "Author: " << tstring(itAuthor) << std::endl;

 // alternative: use count and index

 for (unsigned int j = 0; j < itBook->Author.count(); ++j)

 tcout << "Author: " << tstring(itBook->Author[j]) << std::endl;
 }

 // Destroy the document

 libDoc.DestroyDocument();
}

4. Press F5 to start debugging.

28.1.5.2 Reading and Writing XML Documents (C#)

After you generate code from the example schema , a test C# application is created, along with several
supporting Altova libraries.

About the generated C# libraries
The central class of the generated code is the Doc2 class, which represents the XML document. Such a class
is generated for every schema and its name depends on the schema file name. Note that this class is called
Doc2 to avoid a possible conflict with the namespace name. As shown in the diagram, this class provides
methods for loading documents from files, binary streams, or strings (or saving documents to files, streams,
strings). For a description of this class, see the class reference ([YourSchema].[Doc]).

1098

1155

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1107Code Generator

Altova XMLSpy 2024 Enterprise Edition

The Library member of the Doc2 class represents the actual root of the document.

According to the code generation rules mentioned in About Schema Wrapper Libraries (C#) , member
classes are generated for each attribute and for each element of a type. In the generated code, the name of
such member classes is prefixed with MemberAttribute_ and MemberElement_, respectively. Examples of
such classes are MemberAttribute_ID and MemberElement_Author, generated from the Author element and
ID attribute of a book, respectively (in the diagram below, they are classes nested under BookType). Such
classes enable you to manipulate programmatically the corresponding elements and attributes in the instance
XML document (for example, append, remove, set value, etc). For more information, see the
[YourSchemaType].MemberAttribute and [YourSchemaType].MemberElement class reference.

Since the DictionaryType is a complex type derived from BookType in the schema, this relationship is also
reflected in the generated classes. As illustrated in the diagram below, the class DictionaryType inherits the
BookType class.

1091

1158 1158

1108 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If your XML schema defines simple types as enumerations, the enumerated values become available as Enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an Enum that is a
member of the BookFormatType class.

Writing an XML document
1. Open the LibraryTest.sln solution in Visual Studio generated from the Library schema mentioned

earlier in this example.

While prototyping an application from a frequently changing XML schema, you may need to frequently
generate code to the same directory, so that the schema changes are immediately reflected in the code.
Note that the generated test application and the Altova libraries are overwritten every time when you
generate code into the same target directory. Therefore, do not add code to the generated test application.
Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

2. In Solution Explorer, open the LibraryTest.cs file, and edit the Example() method as shown below.

1095

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1109Code Generator

Altova XMLSpy 2024 Enterprise Edition

protected static void Example()

{
 // Create a new XML document

 Doc2 doc = Doc2.CreateDocument();
 // Append the root element

 LibraryType root = doc.Library.Append();

 // Create the generation date using Altova DateTime class

 Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

 // Append the date to the root

 root.LastUpdated.Value = dt;

 // Add a new book

 BookType book = root.Book.Append();
 // Set the value of the ID attribute

 book.ID.Value = 1;
 // Set the format of the book (enumeration)

 book.Format.EnumerationValue = BookFormatType.EnumValues.eHardcover;
 // Set the Title and Author elements

 book.Title.Append().Value = "The XMLSpy Handbook";
 book.Author.Append().Value = "Altova";

 // Append a dictionary (book of derived type) and populate its attributes and

elements

 DictionaryType dictionary = new DictionaryType(root.Book.Append().Node);

 dictionary.ID.Value = 2;
 dictionary.Title.Append().Value = "English-German Dictionary";
 dictionary.Format.EnumerationValue = BookFormatType.EnumValues.eE_book;
 dictionary.Author.Append().Value = "John Doe";
 dictionary.FromLang.Append().Value = "English";
 dictionary.ToLang.Append().Value = "German";
 // Since it's a derived type, make sure to set the xsi:type attribute of the

book element

 dictionary.SetXsiType();

 // Optionally, set the schema location (adjust the path if

 // your schema is not in the same folder as the generated instance file)

 doc.SetSchemaLocation("Library.xsd");

 // Save the XML document with the "pretty print" option enabled

 doc.SaveToFile("GeneratedLibrary.xml", true);

}

3. Press F5 to start debugging. If the code was executed successfully, a GeneratedLibrary.xml file is
created in the solution output directory (typically, bin/Debug).

Reading an XML document
1. Open the LibraryTest.sln solution in Visual Studio.
2. Save the code below as Library.xml to the output directory of the project (by default, bin/Debug).

This is the file that will be read by the program code.

<?xml version="1.0" encoding="utf-8"?>

1110 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.nanonull.com/LibrarySample"

xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-

02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"

xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

3. In Solution Explorer, open the LibraryTest.cs file, and edit the Example() method as shown below.

protected static void Example()

{
 // Load the XML file

 Doc2 doc = Doc2.LoadFromFile("Library.xml");
 // Get the root element

 LibraryType root = doc.Library.First;

 // Read the library generation date

 Altova.Types.DateTime dt = root.LastUpdated.Value;
 string dt_as_string = dt.ToString(DateTimeFormat.W3_dateTime);

 Console.WriteLine("The library generation date is: " + dt_as_string);

 // Iteration: for each <Book>...

 foreach (BookType book in root.Book)

 {
 // Output values of ID attribute and (first and only) title element

 Console.WriteLine("ID: " + book.ID.Value);
 Console.WriteLine("Title: " + book.Title.First.Value);

 // Read and compare an enumeration value

 if (book.Format.EnumerationValue == BookFormatType.EnumValues.ePaperback)

 Console.WriteLine("This is a paperback book.");

 // Iteration: for each <Author>

 foreach (xs.stringType author in book.Author)

 Console.WriteLine("Author: " + author.Value);

 // Determine if this book is of derived type

 if (book.Node.Attributes.GetNamedItem("xsi:type") != null)

 {
 // Find the value of the xsi:type attribute

 string xsiTypeValue =

book.Node.Attributes.GetNamedItem("xsi:type").Value;

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1111Code Generator

Altova XMLSpy 2024 Enterprise Edition

 // Get the namespace URI and the lookup prefix of this namespace

 string namespaceUri = book.Node.NamespaceURI;

 string prefix = book.Node.GetPrefixOfNamespace(namespaceUri);

 // if this book has DictionaryType

 if (namespaceUri == "http://www.nanonull.com/LibrarySample" &&

xsiTypeValue.Equals(prefix + ":DictionaryType"))
 {
 // output additional fields

 DictionaryType dictionary = new DictionaryType(book.Node);

 Console.WriteLine("Language from: " +
dictionary.FromLang.First.Value);
 Console.WriteLine("Language to: " + dictionary.ToLang.First.Value);
 }
 else

 {
 throw new Exception("Unexpected book type");

 }
 }
 }

 Console.ReadLine();
}

4. Press F5 to start debugging. If the code was executed successfully, Library.xml will be read by the
program code, and its contents displayed as console output.

Reading and writing elements and attributes
Values of attributes and elements can be accessed using the Value property of the generated member element
or attribute class, for example:

// Output values of ID attribute and (first and only) title element

Console.WriteLine("ID: " + book.ID.Value);
Console.WriteLine("Title: " + book.Title.First.Value);

To get the value of the Title element in this particular example, we also used the First() method, since this is
the first (and only) Title element of a book. For cases when you need to pick a specific element from a list by
index, use the At() method.

The class generated for each member element of a type implements the standard
System.Collections.IEnumerable interface. This makes it possible to loop through multiple elements of the
same type. In this particular example, you can loop through all books of a Library object as follows:

// Iteration: for each <Book>...

foreach (BookType book in root.Book)

{
 // your code here...

}

1112 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To add a new element, use the Append() method. For example, the following code appends the root element to
the document:

// Append the root element to the library

LibraryType root = doc.Library.Append();

You can set the value of an attribute (like ID in this example) as follows:

// Set the value of the ID attribute

book.ID.Value = 1;

Reading and writing enumeration values
If your XML schema defines simple types as enumerations, the enumerated values become available as Enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an Enum:

To assign enumeration values to an object, use code such as the one below:

// Set the format of the book (enumeration)

book.Format.EnumerationValue = BookFormatType.EnumValues.eHardcover;

You can read such enumeration values from XML instance documents as follows:

// Read and compare an enumeration value

if (book.Format.EnumerationValue == BookFormatType.EnumValues.ePaperback)

Console.WriteLine("This is a paperback book.");

When an "if" condition is not enough, create a switch to determine each enumeration value and process it as
required.

Working with xs:dateTime and xs:duration types
If the schema from which you generated code uses time and duration types such as xs:dateTime, or
xs:duration, these are converted to Altova native classes in generated code. Therefore, to write a date or
duration value to the XML document, do the following:

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1113Code Generator

Altova XMLSpy 2024 Enterprise Edition

1. Construct an Altova.Types.DateTime or Altova.Types.Duration object (either from
System.DateTime, or by using parts such as hours and minutes, see Altova.Types.DateTime
and Altova.Types.Duration for more information).

2. Set the object as value of the required element or attribute, for example:

// Create the library generation date using Altova DateTime class

Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

// Append the date to the root

root.LastUpdated.Value = dt;

To read a date or duration from an XML document, do the following:

1. Declare the element value (or attribute) as Altova.Types.DateTime or
Altova.Types.Duration object.

2. Format the required element or attribute, for example:

// Read the library generation date

Altova.Types.DateTime dt = root.LastUpdated.Value;
string dt_as_string = dt.ToString(DateTimeFormat.W3_dateTime);

Console.WriteLine("The library generation date is: " + dt_as_string);

For more information, see Altova.Types.DateTime and Altova.Types.Duration class reference.

Working with derived types
If your XML schema defines derived types, you can preserve type derivation in XML documents that you create
or load programmatically. Taking the schema used in this example, the following code listing illustrates how to
create a new book of derived type DictionaryType:

// Append a dictionary (book of derived type) and populate its attributes and elements

DictionaryType dictionary = new DictionaryType(root.Book.Append().Node);

dictionary.ID.Value = 2;
dictionary.Title.Append().Value = "English-German Dictionary";
dictionary.Author.Append().Value = "John Doe";
dictionary.FromLanguage.Append().Value = "English";
dictionary.ToLanguage.Append().Value = "German";

// Since it's a derived type, make sure to set the xsi:type attribute of the book element

dictionary.SetXsiType();

Note that it is important to set the xsi:type attribute of the newly created book. This ensures that the book
type will be interpreted correctly by the schema when the XML document is validated.

When you load data from an XML document, the following code listing shows how to identify a book of derived
type DictionaryType in the loaded XML instance. First, the code finds the value of the xsi:type attribute of
the book node. If the namespace URI of this node is http://www.nanonull.com/LibrarySample, and if the
URI lookup prefix and type matches the value of the xsi:type attribute, then this is a dictionary:

 // Determine if this book is of derived type

 if (book.Node.Attributes.GetNamedItem("xsi:type") != null)

1145 1149

1145

1149

1145

1149

1145 1149

1114 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 {
 // Find the value of the xsi:type attribute

 string xsiTypeValue = book.Node.Attributes.GetNamedItem("xsi:type").Value;

 // Get the namespace URI and the lookup prefix of this namespace

 string namespaceUri = book.Node.NamespaceURI;

 string prefix = book.Node.GetPrefixOfNamespace(namespaceUri);

 // if this book has DictionaryType

 if (namespaceUri == "http://www.nanonull.com/LibrarySample" &&

xsiTypeValue.Equals(prefix + ":DictionaryType"))
 {
 // output additional fields

 DictionaryType dictionary = new DictionaryType(book.Node);

 Console.WriteLine("Language from: " + dictionary.FromLang.First.Value);
 Console.WriteLine("Language to: " + dictionary.ToLang.First.Value);
 }
 else

 {
 throw new Exception("Unexpected book type");

 }
 }

28.1.5.3 Reading and Writing XML Documents (Java)

After you generate code from the example schema , a test Java project is created, along with several
supporting Altova libraries.

About the generated Java libraries
The central class of the generated code is the Doc2 class, which represents the XML document. Such a class
is generated for every schema and its name depends on the schema file name. Note that this class is called
Doc2 to avoid a possible conflict with the namespace name. As shown in the diagram, this class provides
methods for loading documents from files, binary streams, or strings (or saving documents to files, streams,
strings). For a description of this class, see the com.[YourSchema].[Doc] class reference.

1098

1170

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1115Code Generator

Altova XMLSpy 2024 Enterprise Edition

The Library member of the Doc2 class represents the actual root of the document.

According to the code generation rules mentioned in About Generated Java Code , member classes are
generated for each attribute and for each element of a type. In the generated code, the name of such member
classes is prefixed with MemberAttribute_ and MemberElement_, respectively. In the diagram below,
examples of such classes are MemberAttribute_ID and MemberElement_Author, generated from the Author
element and ID attribute of a book, respectively. Such classes enable you to manipulate programmatically the
corresponding elements and attributes in the instance XML document (for example, append, remove, set value,
etc). For more information, see the com.[YourSchema].[YourSchemaType].MemberAttribute and com.
[YourSchema].[YourSchemaType].MemberElement class reference.

Since the DictionaryType is a complex type derived from BookType in the schema, this relationship is also
reflected in the generated classes. As illustrated in the diagram below, the class DictionaryType inherits the
BookType class.

1093

1173

1173

1116 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If your XML schema defines simple types as enumerations, the enumerated values become available as Enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an Enum that is a
member of the BookFormatType class.

Writing an XML document
1. On the File menu of Eclipse, click Import, select Existing Projects into Workspace, and click

Next.
2. Next to Select root directory, click Browse, select the directory to which you generated the Java

code, and then click Finish.
3. In the Eclipse Package Explorer, expand the com.LibraryTest package and open the

LibraryTest.java file.

While prototyping an application from a frequently changing XML schema, you may need to frequently
generate code to the same directory, so that the schema changes are immediately reflected in the code.
Note that the generated test application and the Altova libraries are overwritten every time when you
generate code into the same target directory. Therefore, do not add code to the generated test application.
Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

4. Edit the Example() method as shown below.

protected static void example() throws Exception {

 // create a new, empty XML document

1095

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1117Code Generator

Altova XMLSpy 2024 Enterprise Edition

 Doc2 libDoc = Doc2.createDocument();

 // create the root element <Library> and add it to the document

 LibraryType lib = libDoc.Library.append();

 // set the "LastUpdated" attribute

 com.altova.types.DateTime dt = new com.altova.types.DateTime(DateTime.now());

 lib.LastUpdated.setValue(dt);

 // create a new <Book> and populate its elements and attributes

 BookType book = lib.Book.append();
 book.ID.setValue(java.math.BigInteger.valueOf(1));
 book.Format.setEnumerationValue(BookFormatType.EPAPERBACK);
 book.Title.append().setValue("The XML Spy Handbook");
 book.Author.append().setValue("Altova");

 // create a dictionary (book of derived type) and populate its elements and

attributes

 DictionaryType dict = new DictionaryType(lib.Book.append().getNode());

 dict.ID.setValue(java.math.BigInteger.valueOf(2));
 dict.Title.append().setValue("English-German Dictionary");
 dict.Format.setEnumerationValue(BookFormatType.EE_BOOK);
 dict.Author.append().setValue("John Doe");
 dict.FromLang.append().setValue("English");
 dict.ToLang.append().setValue("German");
 dict.setXsiType();

 // set the schema location (this is optional)

 libDoc.setSchemaLocation("Library.xsd");

 // save the XML document to a file with default encoding (UTF-8). "true" causes the

file to be pretty-printed.

 libDoc.saveToFile("Library1.xml", true);

 }

5. Build the Java project and run it. If the code is executed successfully, a Library1.xml file is created in
the project directory.

Reading an XML document
1. On the File menu of Eclipse, click Import, select Existing Projects into Workspace, and click

Next.
2. Next to Select root directory, click Browse, select the directory to which you generated the Java

code, and then click Finish.
3. Save the code below as Library1.xml to a local directory (you will need to refer to the path of the

Library1.xml file from the sample code below).

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.nanonull.com/LibrarySample"

xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-

02-03T17:10:08.4977404">

1118 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"

xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

4. In the Eclipse Package Explorer, expand the com.LibraryTest package and open the
LibraryTest.java file.

5. Edit the Example() method as shown below.

protected static void example() throws Exception {

 // load XML document from a path, make sure to adjust the path as necessary

 Doc2 libDoc = Doc2.loadFromFile("Library1.xml");

 // get the first (and only) root element <Library>

 LibraryType lib = libDoc.Library.first();

 // check whether an element exists:

 if (!lib.Book.exists()) {

 System.out.println("This library is empty.");
 return;

 }

 // read a DateTime schema type

 com.altova.types.DateTime dt = lib.LastUpdated.getValue();
 System.out.println("The library was last updated on: " + dt.toDateString());

 // iteration: for each <Book>...

 for (java.util.Iterator itBook = lib.Book.iterator(); itBook.hasNext();) {

 BookType book = (BookType) itBook.next();
 // output values of ID attribute and (first and only) title element

 System.out.println("ID: " + book.ID.getValue());
 System.out.println("Title: " + book.Title.first().getValue());

 // read and compare an enumeration value

 if (book.Format.getEnumerationValue() == BookFormatType.EPAPERBACK)

 System.out.println("This is a paperback book.");

 // for each <Author>...

 for (java.util.Iterator itAuthor = book.Author.iterator(); itAuthor

 .hasNext();)
 System.out.println("Author: " + ((com.Doc.xs.stringType)
itAuthor.next()).getValue());

 // find the derived type of this book

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1119Code Generator

Altova XMLSpy 2024 Enterprise Edition

 // by looking at the value of the xsi:type attribute, using DOM

 org.w3c.dom.Node bookNode = book.getNode();
 if (bookNode.getAttributes().getNamedItem("xsi:type") != null) {

 // Get the value of the xsi:type attribute

 String xsiTypeValue =
bookNode.getAttributes().getNamedItem("xsi:type").getNodeValue();

 // Get the namespace URI and lookup prefix of this namespace

 String namespaceUri = bookNode.getNamespaceURI();
 String lookupPrefix = bookNode.lookupPrefix(namespaceUri);

 // If xsi:type matches the namespace URI and type of the book node

 if (namespaceUri == "http://www.nanonull.com/LibrarySample"

 && (xsiTypeValue.equals(lookupPrefix + ":DictionaryType"))) {
 // ...then this is a book of derived type (dictionary)

 DictionaryType dictionary = new DictionaryType(book.getNode());

 // output the value of the "FromLang" and "ToLang" elements

 System.out.println("From language: " +
dictionary.FromLang.first().getValue());
 System.out.println("To language: " + dictionary.ToLang.first().getValue());
 }
 else

 {
 // throw an error

 throw new java.lang.Error("This book has an unknown type.");

 }
 }
 }
 }

6. Build the Java project and run it. If the code is executed successfully, Library1.xml will be read by the
program code, and its contents displayed in the Console view.

Reading and writing elements and attributes
Values of attributes and elements can be accessed using the getValue() method of the generated member
element or attribute class, for example:

// output values of ID attribute and (first and only) title element

System.out.println("ID: " + book.ID.getValue());
System.out.println("Title: " + book.Title.first().getValue());

To get the value of the Title element in this particular example, we also used the first() method, since this is
the first (and only) Title element of a book. For cases when you need to pick a specific element from a list by
index, use the at() method.

To iterate through multiple elements, use either index-based iteration or java.util.Iterator. For example,
you can iterate through the books of a library as follows:

// index-based iteration

for (int j = 0; j < lib.Book.count(); ++j) {

1120 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 // your code here

}

// alternative iteration using java.util.Iterator

for (java.util.Iterator itBook = lib.Book.iterator(); itBook.hasNext();) {

 // your code here

 }

To add a new element, use the append() method. For example, the following code appends an empty root
Library element to the document:

// create the root element <Library> and add it to the document

LibraryType lib = libDoc.Library.append();

Once an element is appended, you can set the value of any of its elements or an attributes by using the
setValue() method.

// set the value of the Title element

book.Title.append().setValue("The XML Spy Handbook");
// set the value of the ID attribute

book.ID.setValue(java.math.BigInteger.valueOf(1));

Reading and writing enumeration values
If your XML schema defines simple types as enumerations, the enumerated values become available as Enum
values in the generated code. In the schema used in this example, a book format can be hardcover, paperback,
e-book, and so on. Therefore, in the generated code, these values would be available through an Enum (see the
BookFormatType class diagram above). To assign enumeration values to an object, use code such as the one
below:

// set an enumeration value

book.Format.setEnumerationValue(BookFormatType.EPAPERBACK);

You can read such enumeration values from XML instance documents as follows:

// read an enumeration value

if (book.Format.getEnumerationValue() == BookFormatType.EPAPERBACK)

 System.out.println("This is a paperback book."

When an "if" condition is not enough, create a switch to determine each enumeration value and process it as
required.

Working with xs:dateTime and xs:duration types
If the schema from which you generated code uses time and duration types such as xs:dateTime, or
xs:duration, these are converted to Altova native classes in generated code. Therefore, to write a date or
duration value to the XML document, do the following:

1. Construct a com.altova.types.DateTime or com.altova.types.Duration object.1160 1164

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1121Code Generator

Altova XMLSpy 2024 Enterprise Edition

2. Set the object as value of the required element or attribute, for example:

// set the value of an attribute of DateTime type

com.altova.types.DateTime dt = new com.altova.types.DateTime(DateTime.now());

lib.LastUpdated.setValue(dt);

To read a date or duration from an XML document:

1. Declare the element value (or attribute) as com.altova.types.DateTime or
com.altova.types.Duration object.

2. Format the required element or attribute, for example:

// read a DateTime type

com.altova.types.DateTime dt = lib.LastUpdated.getValue();
 System.out.println("The library was last updated on: " + dt.toDateString());

For more information, see com.altova.types.DateTime and com.altova.types.Duration class
reference.

Working with derived types
If your XML schema defines derived types, you can preserve type derivation in XML documents that you create
or load programmatically. Taking the schema used in this example, the following code listing illustrates how to
create a new book of derived type DictionaryType:

// create a dictionary (book of derived type) and populate its elements and attributes

DictionaryType dict = new DictionaryType(lib.Book.append().getNode());

dict.ID.setValue(java.math.BigInteger.valueOf(2));
dict.Title.append().setValue("English-German Dictionary");
dict.Format.setEnumerationValue(BookFormatType.EE_BOOK);
dict.Author.append().setValue("John Doe");
dict.FromLang.append().setValue("English");
dict.ToLang.append().setValue("German");
dict.setXsiType();

Note that it is important to set the xsi:type attribute of the newly created book. This ensures that the book
type will be interpreted correctly by the schema when the XML document is validated.

When you load data from an XML document, the following code listing shows how to identify a book of derived
type DictionaryType in the loaded XML instance. First, the code finds the value of the xsi:type attribute of
the book node. If the namespace URI of this node is http://www.nanonull.com/LibrarySample, and if the
URI lookup prefix and type matches the value of the xsi:type attribute, then this is a dictionary:

 // find the derived type of this book

 // by looking at the value of the xsi:type attribute, using DOM

 org.w3c.dom.Node bookNode = book.getNode();
 if (bookNode.getAttributes().getNamedItem("xsi:type") != null) {

 // Get the value of the xsi:type attribute

 String xsiTypeValue =
bookNode.getAttributes().getNamedItem("xsi:type").getNodeValue();

1160

1164

1160 1164

1122 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 // Get the namespace URI and lookup prefix of the book node

 String namespaceUri = bookNode.getNamespaceURI();
 String lookupPrefix = bookNode.lookupPrefix(namespaceUri);

 // If xsi:type matches the namespace URI and type of the book node

 if (namespaceUri == "http://www.nanonull.com/LibrarySample"

 && (xsiTypeValue.equals(lookupPrefix + ":DictionaryType"))) {
 // ...then this is a book of derived type (dictionary)

 DictionaryType dictionary = new DictionaryType(book.getNode());

 // output the value of the "FromLang" and "ToLang" elements

 System.out.println("From language: " +
dictionary.FromLang.first().getValue());
 System.out.println("To language: " +
dictionary.ToLang.first().getValue());
 }
 else

 {
 // throw an error

 throw new java.lang.Error("This book has an unknown type.");

 }
 }

28.1.6 Example: Purchase Order

This example illustrates how to work with program code generated from a "main" XML schema that imports
other schemas. Each of the imported schema has a different target namespace. The goal here is to create
programmatically an XML document where all elements are prefixed according to their namespace. More
specifically, the XML document created from your C++, C#, or Java code should look like the one below:

<?xml version="1.0" encoding="utf-8"?>
<p:Purchase xsi:schemaLocation="http://NamespaceTest.com/Purchase Main.xsd"

 xmlns:p="http://NamespaceTest.com/Purchase"

 xmlns:o="http://NamespaceTest.com/OrderTypes"

 xmlns:c="http://NamespaceTest.com/CustomerTypes"

 xmlns:cmn="http://NamespaceTest.com/CommonTypes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <p:OrderDetail>

 <o:Item>

 <o:ProductName>Lawnmower</o:ProductName>

 <o:Quantity>1</o:Quantity>

 <o:UnitPrice>148.42</o:UnitPrice>

 </o:Item>

 </p:OrderDetail>

 <p:PaymentMethod>VISA</p:PaymentMethod>

 <p:CustomerDetails>

 <c:Name>Alice Smith</c:Name>

 <c:DeliveryAddress>

 <cmn:Line1>123 Maple Street</cmn:Line1>

 <cmn:Line2>Mill Valley</cmn:Line2>

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1123Code Generator

Altova XMLSpy 2024 Enterprise Edition

 </c:DeliveryAddress>

 <c:BillingAddress>

 <cmn:Line1>8 Oak Avenue</cmn:Line1>

 <cmn:Line2>Old Town</cmn:Line2>

 </c:BillingAddress>

 </p:CustomerDetails>

</p:Purchase>

The main schema used in this example is called Main.xsd. As illustrated in the code listing below, it imports
three other schemas: CommonTypes.xsd, CustomerTypes.xsd, and OrderTypes.xsd. To get the same
results as in this example, save all the code listings below to files, and use the same file names as above.
Notice that the schema maps each of the prefixes ord, pur, cmn, and cust to some namespace (Order types,

Purchase types, Common types, and Customer types, respectively). This means that, in the generated code,
the classes corresponding to Orders, Purchases, Customers, and so on, will be available under their respective
namespace.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://NamespaceTest.com/Purchase"

 xmlns:ord="http://NamespaceTest.com/OrderTypes"

 xmlns:pur="http://NamespaceTest.com/Purchase"

 xmlns:cmn="http://NamespaceTest.com/CommonTypes"

 xmlns:cust="http://NamespaceTest.com/CustomerTypes"

 elementFormDefault="qualified">

 <xs:import schemaLocation="CommonTypes.xsd"

namespace="http://NamespaceTest.com/CommonTypes" />

 <xs:import schemaLocation="CustomerTypes.xsd"

namespace="http://NamespaceTest.com/CustomerTypes" />

 <xs:import schemaLocation="OrderTypes.xsd"

namespace="http://NamespaceTest.com/OrderTypes" />

 <xs:element name="Purchase">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="OrderDetail" type="ord:OrderType" />

 <xs:element name="PaymentMethod" type="cmn:PaymentMethodType" />

 <xs:element ref="pur:CustomerDetails" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="CustomerDetails" type="cust:CustomerType" />

</xs:schema>

Main.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://NamespaceTest.com/CommonTypes"

 elementFormDefault="qualified">

 <xs:complexType name="AddressType">

 <xs:sequence>

 <xs:element name="Line1" type="xs:string"/>

1124 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 <xs:element name="Line2" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:simpleType name="PriceType">

 <xs:restriction base="xs:decimal">

 <xs:fractionDigits value="2"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="PaymentMethodType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="VISA"/>

 <xs:enumeration value="MasterCard"/>

 <xs:enumeration value="Cash"/>

 <xs:enumeration value="AMEX"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

CommonTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://NamespaceTest.com/CustomerTypes"

 xmlns:cmn="http://NamespaceTest.com/CommonTypes"

 elementFormDefault="qualified">

 <xs:import schemaLocation="CommonTypes.xsd"

namespace="http://NamespaceTest.com/CommonTypes" />

 <xs:complexType name="CustomerType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string" />

 <xs:element name="DeliveryAddress" type="cmn:AddressType" />

 <xs:element name="BillingAddress" type="cmn:AddressType" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

CustomerTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://NamespaceTest.com/OrderTypes"

 xmlns:cmn="http://NamespaceTest.com/CommonTypes"

 elementFormDefault="qualified">

 <xs:import schemaLocation="CommonTypes.xsd"

namespace="http://NamespaceTest.com/CommonTypes" />

 <xs:complexType name="OrderType">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="Item">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ProductName" type="xs:string" />

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1125Code Generator

Altova XMLSpy 2024 Enterprise Edition

 <xs:element name="Quantity" type="xs:int" />

 <xs:element name="UnitPrice" type="cmn:PriceType" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

OrderTypes.xsd

To complete this example, take the following steps:

1. Save all schemas from the code listings above to files on the disk, making sure that you preserve the
indicated file names.

2. Generate the schema wrapper code from the Main.xsd schema above, using the steps described in
Generating Code from XML Schemas or DTD . After completing this step, you should have
generated a compilable program in the language of your choice (C++, C#, or Java).

3. Add code to your C++, C#, or Java program from one the following example code listings, as required:

· XML Namespaces and Prefixes (C++)
· XML Namespaces and Prefixes (C#)
· XML Namespaces and Prefixes (Java)

28.1.6.1 XML Namespaces and Prefixes (C++)

After you generate code from the example schema , a test C++ application is created, along with several
supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations.
Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from
the schema, namely: Main::ord, Main::pur, Main::cmn, and Main::cust.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you
have the following methods at your disposal:

· DeclareAllNamespacesFromSchema() . Call this method if you want to declare the same
namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as
in this example, then DeclareNamespace() should be used. The method

DeclareAllNamespacesFromSchema() is not used in this example because we specifically want to

create XML elements with prefixes that are slightly different from those declared in the schema.
· DeclareNamespace() . Call this method to create or override the existing namespace prefix attribute

on an element. The element must already be created using either the append() or

appendWithPrefix() methods, as further illustrated below.

· appendWithPrefix(). Use this method to append an instance element with a specific prefix. To
create the XML instance illustrated in this example, it was sufficient to call this method for the root
element only. All other elements were appended using just append() , and their prefixes were added
automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and
prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example:
Purchase Order . Importantly, for illustrative purposes, some prefixes are overridden in the XML instance
(that is, they are not exactly the same as the ones declared in the schema).

1086

1125

1126

1128

1122

1140

1142

1144

1144

1122

1126 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

void Example()

{
 // Create the XML document and append the root element

 Main::pur::CMain doc = Main::pur::CMain::CreateDocument();
 Main::pur::CPurchaseType purchase = doc.Purchase.appendWithPrefix(_T("p"));

 // Set schema location

 doc.SetSchemaLocation(_T("Main.xsd"));

 // Declare namespaces on root element

 purchase.DeclareNamespace(_T("o"), _T("http://NamespaceTest.com/OrderTypes"));
 purchase.DeclareNamespace(_T("c"), _T("http://NamespaceTest.com/CustomerTypes"));
 purchase.DeclareNamespace(_T("cmn"), _T("http://NamespaceTest.com/CommonTypes"));

 // Append the OrderDetail element

 Main::ord::COrderType order = purchase.OrderDetail.append();
 Main::ord::CItemType item = order.Item.append();
 item.ProductName.append() = _T("Lawnmower");
 item.Quantity.append() = 1;
 item.UnitPrice.append() = 148.42;

 // Append the PaymentMethod element

 Main::cmn::CPaymentMethodTypeType paymentMethod = purchase.PaymentMethod.append();
 paymentMethod.SetEnumerationValue(Main::cmn::CPaymentMethodTypeType::k_VISA);

 // Append the CustomerDetails element

 Main::cust::CCustomerType customer = purchase.CustomerDetails.append();
 customer.Name.append() = _T("Alice Smith");
 Main::cmn::CAddressType deliveryAddress = customer.DeliveryAddress.append();
 deliveryAddress.Line1.append() = _T("123 Maple Street");
 deliveryAddress.Line2.append() = _T("Mill Valley");
 Main::cmn::CAddressType billingAddress = customer.BillingAddress.append();
 billingAddress.Line1.append() = _T("8 Oak Avenue");
 billingAddress.Line2.append() = _T("Old Town");

 // Save to file and release object from memory

 doc.SaveToFile(_T("Main1.xml"), true);

 doc.DestroyDocument();
}

28.1.6.2 XML Namespaces and Prefixes (C#)

After you generate code from the example schema , a test C# application is created, along with several
supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations.
Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from
the schema, namely: Main.ord, Main.pur, Main.cmn, and Main.cust.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you
have the following methods at your disposal:

1122

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1127Code Generator

Altova XMLSpy 2024 Enterprise Edition

· DeclareAllNamespacesFromSchema() . Call this method if you want to declare the same
namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as
in this example, then DeclareNamespace() should be used. The method

DeclareAllNamespacesFromSchema() is not used in this example because we specifically want to

create XML elements with prefixes that are slightly different from those declared in the schema.
· DeclareNamespace() . Call this method to create or override the existing namespace prefix attribute

on an element. The element must already be created using either the Append() or

AppendWithPrefix() methods, as further illustrated below.

· AppendWithPrefix(). Use this method to append an instance element with a specific prefix. To
create the XML instance illustrated in this example, it was sufficient to call this method for the root
element only. All other elements were appended using just Append() , and their prefixes were added
automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and
prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example:
Purchase Order . Importantly, for illustrative purposes, some prefixes are overridden in the XML instance
(that is, they are not exactly the same as the ones declared in the schema).

protected static void Example()

{
 // Create the XML document and append the root element
 pur.Main2 doc = pur.Main2.CreateDocument();
 pur.PurchaseType purchase = doc.Purchase.AppendWithPrefix("p");

 // Set schema location
 doc.SetSchemaLocation(@"Main.xsd");

 // Declare namespaces on root element
 purchase.DeclareNamespace("o", "http://NamespaceTest.com/OrderTypes");
 purchase.DeclareNamespace("c", "http://NamespaceTest.com/CustomerTypes");
 purchase.DeclareNamespace("cmn", "http://NamespaceTest.com/CommonTypes");

 // Append the OrderDetail element
 ord.OrderType order = purchase.OrderDetail.Append();
 ord.ItemType item = order.Item.Append();
 item.ProductName.Append().Value = "Lawnmower";
 item.Quantity.Append().Value = 1;
 item.UnitPrice.Append().Value = 148.42M;

 // Append the PaymentMethod element
 cmn.PaymentMethodTypeType paymentMethod = purchase.PaymentMethod.Append();
 paymentMethod.EnumerationValue = cmn.PaymentMethodTypeType.EnumValues.eVISA;

 // Append the CustomerDetails element
 cust.CustomerType customer = purchase.CustomerDetails.Append();
 customer.Name.Append().Value = "Alice Smith";
 cmn.AddressType deliveryAddress = customer.DeliveryAddress.Append();
 deliveryAddress.Line1.Append().Value = "123 Maple Street";
 deliveryAddress.Line2.Append().Value = "Mill Valley";
 cmn.AddressType billingAddress = customer.BillingAddress.Append();
 billingAddress.Line1.Append().Value = "8 Oak Avenue";
 billingAddress.Line2.Append().Value = "Old Town";

 // Save to file

1155

1157

1158

1158

1122

1128 Code Generator Generate Code from XML Schemas or DTDs

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 doc.SaveToFile("PurchaseOrder.xml", true);

}

28.1.6.3 XML Namespaces and Prefixes (Java)

After you generate code from the example schema , a test Java application is created, along with several
supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations.
Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from
the schema, namely: com.Main.ord, com.Main.pur, com.Main.cmn, and com.Main.cust.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you
have the following methods at your disposal:

· declareAllNamespacesFromSchema() . Call this method if you want to declare the same
namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as
in this example, then declareNamespace() should be used. The method

declareAllNamespacesFromSchema() is not used in this example because we specifically want to

create XML elements with prefixes that are slightly different from those declared in the schema.
· declareNamespace() . Call this method to create or override the existing namespace prefix attribute

on an element. The element must already be created using either the append() or

appendWithPrefix() methods, as further illustrated below.

· appendWithPrefix(). Use this method to append an instance element with a specific prefix. To
create the XML instance illustrated in this example, it was sufficient to call this method for the root
element only. All other elements were appended using just append() , and their prefixes were added
automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and
prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example:
Purchase Order . Importantly, for illustrative purposes, some prefixes are overridden in the XML instance
(that is, they are not exactly the same as the ones declared in the schema).

protected static void example() throws Exception {

 // Create the XML document and append the root element

 com.Main.pur.Main2 doc = com.Main.pur.Main2.createDocument();
 com.Main.pur.PurchaseType purchase = doc.Purchase.appendWithPrefix("p");

 // Set schema location

 doc.setSchemaLocation("Main.xsd");

 // Declare namespaces on root element

 purchase.declareNamespace("o", "http://NamespaceTest.com/OrderTypes");
 purchase.declareNamespace("c", "http://NamespaceTest.com/CustomerTypes");
 purchase.declareNamespace("cmn", "http://NamespaceTest.com/CommonTypes");

 // Append the OrderDetail element

 com.Main.ord.OrderType order = purchase.OrderDetail.append();
 com.Main.ord.ItemType item = order.Item.append();
 item.ProductName.append().setValue("Lawnmower");
 item.Quantity.append().setValue(1);
 java.math.BigDecimal price = new java.math.BigDecimal("148.42");

1122

1170

1172

1173

1173

1122

© 2018-2024 Altova GmbH

Generate Code from XML Schemas or DTDs 1129Code Generator

Altova XMLSpy 2024 Enterprise Edition

 item.UnitPrice.append().setValue(price);

 // Append the PaymentMethod element

 com.Main.cmn.PaymentMethodTypeType paymentMethod = purchase.PaymentMethod.append();
 paymentMethod.setEnumerationValue(com.Main.cmn.PaymentMethodTypeType.EVISA);

 // Append the CustomerDetails element

 com.Main.cust.CustomerType customer = purchase.CustomerDetails.append();
 customer.Name.append().setValue("Alice Smith");
 com.Main.cmn.AddressType deliveryAddress = customer.DeliveryAddress.append();
 deliveryAddress.Line1.append().setValue("123 Maple Street");
 deliveryAddress.Line2.append().setValue("Mill Valley");
 com.Main.cmn.AddressType billingAddress = customer.BillingAddress.append();
 billingAddress.Line1.append().setValue("8 Oak Avenue");
 billingAddress.Line2.append().setValue("Old Town");

 // Save to file

 doc.saveToFile("PurchaseOrder.xml", true);

}

1130 Code Generator Generated Classes (C++)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.2 Generated Classes (C++)

This chapter includes a description of C++ classes generated with XMLSpy from a DTD or XML schema (see
Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read,
modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to
modification.

28.2.1 altova::DateTime

This class enables you to process XML attributes or elements that have date and time types, such as
xs:dateTime.

Constructors

Name Description

DateTime() Initializes a new instance of the DateTime class to 12:00:00
midnight, January 1, 0001.

DateTime(__int64 value, short
timezone)

Initializes a new instance of the DateTime class. The value
parameter represents the number of ticks (100-nanosecond intervals)
that have elapsed since 12:00:00 midnight, January 1, 0001.

DateTime(int year, unsigned
char month, unsigned char day,
unsigned char hour, unsigned
char minute, double second)

Initializes a new instance of the DateTime class to the year, month,
day, hour, minute, and second supplied as argument.

DateTime(int year, unsigned
char month, unsigned char day,
unsigned char hour, unsigned
char minute, double second,
short timezone)

Initializes a new instance of the DateTime class to the year, month,
day, hour, minute, second and timezone supplied as argument. The
timezone is expressed in minutes and can be positive or negative.
For example, the timezone "UTC-01:00" is expressed as "-60".

Methods

Name Description

unsigned char Day() const Returns the day of month of the current DateTime object. The return
values range from 1 through 31.

int DayOfYear() const Returns the day of year of the current DateTime object. The return
values range from 1 through 366.

bool HasTimezone() const Returns Boolean true if the current DateTime object has a timezone
defined; false otherwise.

1086

© 2018-2024 Altova GmbH

Generated Classes (C++) 1131Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

unsigned char Hour() const Returns the hour of the current DateTime object. The return values
range from 0 through 23.

static bool IsLeapYear(int
year)

Returns Boolean true if the year of the DateTime class is a leap
year; false otherwise.

unsigned char Minute() const Returns the minute of the current DateTime object. The return values
range from 0 through 59.

unsigned char Month() const Returns the month of the current DateTime object. The return values
range from 1 through 12.

__int64 NormalizedValue() const Returns the value of the DateTime object expressed as the
Coordinated Universal Time (UTC).

double Second() const Returns the second of the current DateTime object. The return
values range from 0 through 59.

void SetTimezone(short tz) Sets the timezone of the current DateTime object to the timezone
value supplied as argument. The tz argument is expressed in
minutes and can be positive or negative.

short Timezone() const Returns the timezone, in minutes, of the current DateTime object.
Before using this method, make sure that the object actually has a
timezone, by calling the HasTimezone() method.

__int64 Value() const Returns the value of the DateTime object, expressed in the number
of ticks (100-nanosecond intervals) that have elapsed since 12:00:00
midnight, January 1, 0001.

int Weekday() const Returns the day of week of the current DateTime object, as an
integer. Values range from 0 through 6, where 0 is Monday (ISO-
8601).

int Weeknumber() const Returns the number of week in the year of the current DateTime
object. The return values are according to ISO-8601.

int WeekOfMonth() const Returns the number of week in the month of the current DateTime
object. The return values are according to ISO-8601.

int Year() const Returns the year of the current DateTime object.

Example

void Example()

{
 // initialize a new DateTime instance to 12:00:00 midnight, January 1st, 0001

 altova::DateTime dt1 = altova::DateTime();

 // initialize a new DateTime instance using the year, month, day, hour, minute, and

second

 altova::DateTime dt2 = altova::DateTime(2015, 11, 10, 9, 8, 7);

1132 Code Generator Generated Classes (C++)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 // initialize a new DateTime instance using the year, month, day, hour, minute,

second, and UTC +01:00 timezone

 altova::DateTime dt = altova::DateTime(2015, 11, 22, 13, 53, 7, 60);

 // Get the value of this DateTime object

 std::cout << "The number of ticks of the DateTime object is: " << dt.Value() <<
std::endl;

 // Get the year

 cout << "The year is: " << dt.Year() << endl;
 // Get the month

 cout << "The month is: " << (int)dt.Month() << endl;

 // Get the day of the month

 cout << "The day of the month is: " << (int) dt.Day() << endl;

 // Get the day of the year

 cout << "The day of the year is: " << dt.DayOfYear() << endl;
 // Get the hour

 cout << "The hour is: " << (int) dt.Hour() << endl;

 // Get the minute

 cout << "The minute is: " << (int) dt.Minute() << endl;

 // Get the second

 cout << "The second is: " << dt.Second() << endl;
 // Get the weekday

 cout << "The weekday is: " << dt.Weekday() << endl;
 // Get the week number

 cout << "The week of year is: " << dt.Weeknumber() << endl;
 // Get the week in month

 cout << "The week of month is: " << dt.WeekOfMonth() << endl;

 // Check whether a DateTime instance has a timezone

 if (dt.HasTimezone() == TRUE)

 {
 // output the value of the Timezone

 cout << "The timezone is: " << dt.Timezone() << endl;
 }
 else

 {
 cout << "No timezone has been defined." << endl;
 }

 // Construct a DateTime object with a timezone UTC+01:00 (Vienna)

 altova::DateTime vienna_dt = DateTime(2015, 11, 23, 14, 30, 59, +60);
 // Output the result in readable format

 cout << "The Vienna time: "
 << (int) vienna_dt.Month()

 << "-" << (int) vienna_dt.Day()

 << " " << (int) vienna_dt.Hour()

 << ":" << (int) vienna_dt.Minute()

 << ":" << (int) vienna_dt.Second()

 << endl;

 // Convert the value to UTC time

© 2018-2024 Altova GmbH

Generated Classes (C++) 1133Code Generator

Altova XMLSpy 2024 Enterprise Edition

 DateTime utc_dt = DateTime(vienna_dt.NormalizedValue());
 // Output the result in readable format

 cout << "The UTC time: "
 << (int) utc_dt.Month()

 << "-" << (int) utc_dt.Day()

 << " " << (int) utc_dt.Hour()

 << ":" << (int) utc_dt.Minute()

 << ":" << (int) utc_dt.Second()

 << endl;

 // Check if a year is a leap year

 int year = 2016;

 if(altova::DateTime::IsLeapYear(year))

 { cout << year << " is a leap year" << endl; }
 else

 { cout << year << " is not a leap year" << endl; }
}

28.2.2 altova::Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration() Initializes a new instance of the Duration class to an empty value.

Duration(const DayTimeDuration&
dt)

Initializes a new instance of the Duration class to a duration defined
by the dt argument (see altova::DayTimeDuration).

Duration(const
YearMonthDuration& ym)

Initializes a new instance of the Duration class to the duration
defined by the ym argument (see altova::YearMonthDuration).

Duration(const
YearMonthDuration& ym, const
DayTimeDuration& dt)

Initializes a new instance of the Duration class to the duration
defined by both the dt and the ym arguments (see
altova::YearMonthDuration and altova::DayTimeDuration).

Methods

Name Description

int Days() const Returns the number of days in the current Duration instance.

DayTimeDuration DayTime() const Returns the day and time duration in the current Duration instance,
expressed as a DayTimeDuration object (see
altova::DayTimeDuration).

int Hours() const Returns the number of hours in the current Duration instance.

bool IsNegative() const Returns Boolean true if the current Duration instance is negative.

1135

1136

1136 1135

1135

1134 Code Generator Generated Classes (C++)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

bool IsPositive() const Returns Boolean true if the current Duration instance is positive.

int Minutes() const Returns the number of minutes in the current Duration instance.

int Months() const Returns the number of months in the current Duration instance.

double Seconds() const Returns the number of seconds in the current Duration instance.

YearMonthDuration YearMonth()
const

Returns the year and month duration in the current Duration
instance, expressed as a YearMonthDuration object (see
altova::YearMonthDuration).

int Years() const Returns the number of years in the current Duration instance.

Example
The following code listing illustrates creating a new Duration object, as well as reading values from it.

void ExampleDuration()

{
 // Create an empty Duration object

 altova::Duration empty_duration = altova::Duration();

 // Create a Duration object using an existing duration value

 altova::Duration duration1 = altova::Duration(empty_duration);

 // Create a YearMonth duration of six years and five months

 altova::YearMonthDuration yrduration = altova::YearMonthDuration(6, 5);

 // Create a DayTime duration of four days, three hours, two minutes, and one second

 altova::DayTimeDuration dtduration = altova::DayTimeDuration(4, 3, 2, 1);

 // Create a Duration object by combining the two previously created durations

 altova::Duration duration = altova::Duration(yrduration, dtduration);

 // Get the number of years in this Duration instance

 cout << "Years: " << duration.Years() << endl;

 // Get the number of months in this Duration instance

 cout << "Months: " << duration.Months() << endl;

 // Get the number of days in this Duration instance

 cout << "Days: " << duration.Days() << endl;

 // Get the number of hours in this Duration instance

 cout << "Hours: " << duration.Hours() << endl;

 // Get the number of hours in this Duration instance

 cout << "Minutes: " << duration.Minutes() << endl;

 // Get the number of seconds in this Duration instance

1136

© 2018-2024 Altova GmbH

Generated Classes (C++) 1135Code Generator

Altova XMLSpy 2024 Enterprise Edition

 cout << "Seconds: " << duration.Seconds() << endl;
}

28.2.3 altova::DayTimeDuration

This class enables you to process XML schema duration types that consist of a day and time part.

Constructors

Name Description

DayTimeDuration() Initializes a new instance of the DayTimeDuration class to an
empty value.

DayTimeDuration(int days, int
hours, int minutes, double
seconds)

Initializes a new instance of the DayTimeDuration class to the
number of days, hours, minutes, and seconds supplied as
arguments.

explicit
DayTimeDuration(__int64 value)

Initializes a new instance of the DayTimeDuration class to a
duration that consists of as many ticks (100-nanosecond intervals)
as supplied in the value argument.

Methods

Name Description

int Days() const Returns the number of days in the current DayTimeDuration
instance.

int Hours() const Returns the number of hours in the current DayTimeDuration
instance.

bool IsNegative() const Returns Boolean true if the current DayTimeDuration instance is
negative.

bool IsPositive() const Returns Boolean true if the current DayTimeDuration instance is
positive.

int Minutes() const Returns the number of minutes in the current DayTimeDuration
instance.

double Seconds() const Returns the number of seconds in the current DayTimeDuration
instance.

__int64 Value() const Returns the value (in ticks) of the current DayTimeDuration
instance.

1136 Code Generator Generated Classes (C++)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.2.4 altova::YearMonthDuration

This class enables you to process XML schema duration types that consist of a year and month part.

Constructors

Name Description

YearMonthDuration() Initializes a new instance of the YearMonthDuration class to an
empty value.

YearMonthDuration(int years,
int months)

Initializes a new instance of the YearMonthDuration class to the
number of years and months supplied in the years and months
arguments.

explicit YearMonthDuration(int
value)

Initializes a new instance of the YearMonthDuration class to a
duration that consists of as many ticks (100-nanosecond intervals)
as supplied in the value argument.

Methods

Name Description

bool IsNegative() const Returns Boolean true if the current YearMonthDuration instance is
negative.

bool IsPositive() const Returns Boolean true if the current YearMonthDuration instance is
positive.

int Months() const Returns the number of months in the current YearMonthDuration
instance.

int Value() const Returns the value (in ticks) of the current YearMonthDuration
instance.

int Years() Returns the number of years in the current YearMonthDuration
instance.

28.2.5 altova::meta::Attribute

This class enables you to access schema information about classes generated from attributes. Note that this
class is not meant to provide dynamic information about particular instances of an attribute in an XML
document. Instead, it enables you to obtain programmatically information about a particular attribute defined in
the XML schema.

© 2018-2024 Altova GmbH

Generated Classes (C++) 1137Code Generator

Altova XMLSpy 2024 Enterprise Edition

Methods

Name Description

SimpleType GetDataType() Returns the type of the attribute content.

string_type GetLocalName() Returns the local name of the attribute.

string_type GetNamespaceURI() Returns the namespace URI of the attribute.

bool IsRequired() Returns true if the attribute is required.

Operators

Name Description

bool operator() Returns true if this is not the NULL Attribute.

bool operator!() Returns true if this is the NULL Attribute.

28.2.6 altova::meta::ComplexType

This class enables you to access schema information about classes generated from complex types. Note that
this class is not meant to provide dynamic information about particular instances of a complex type in an XML
document. Instead, it enables you to obtain programmatically information about a particular complex type
defined in the XML schema.

Methods

Name Description

Attribute FindAttribute(const
char_type* localName, const
char_type* namespaceURI)

Finds the attribute with the specified local name and namespace
URI.

Element FindElement(const
char_type* localName, const
char_type* namespaceURI)

Finds the element with the specified local name and namespace
URI.

std::vector<Attribute>
GetAttributes()

Returns a list of all attributes.

ComplexType GetBaseType() Returns the base type of this type.

SimpleType GetContentType() Returns the simple type of the content.

std::vector<Element>
GetElements()

Returns a list of all elements.

string_type GetLocalName() Returns the local name of the type.

1138 Code Generator Generated Classes (C++)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

string_type GetNamespaceURI() Returns the namespace URI of the type.

Operators

Name Description

bool operator() Returns true if this is not the NULL ComplexType.

bool operator!() Returns true if this is the NULL ComplexType.

28.2.7 altova::meta::Element

This class enables you to access information about classes generated from schema elements. Note that this
class is not meant to provide dynamic information about particular instances of an element in an XML
document. Instead, it enables you to obtain programmatically information about a particular element defined in
the XML schema.

Methods

Name Description

ComplexType GetDataType() Returns the type of the element. Note that this is always a complex
type even if declared as simple in the original schema. Use
GetContentType() of the returned object to get the simple content
type.

string_type GetLocalName() Returns the local name of the element.

unsigned int GetMaxOccurs() Returns the maxOccurs value defined in the schema.

unsigned int GetMinOccurs() Returns the minOccurs value defined in the schema.

string_type GetNamespaceURI() Returns the namespace URI of the element.

Operators

Name Description

bool operator() Returns true if this is not the NULL Element.

bool operator!() Returns true if this is the NULL Element.

28.2.8 altova::meta::SimpleType

This class enables you to access schema information about classes generated from simple types. Note that
this class is not meant to provide dynamic information about particular instances of simple types in an XML

© 2018-2024 Altova GmbH

Generated Classes (C++) 1139Code Generator

Altova XMLSpy 2024 Enterprise Edition

document. Instead, it enables you to obtain programmatically information about a particular simple type defined
in the XML schema.

Methods

Name Description

SimpleType GetBaseType() Returns the base type of this type.

std::vector<string_type>
GetEnumerations()

Returns a list of all enumeration facets.

unsigned int
GetFractionDigits()

Returns the value of this facet.

unsigned int GetLength() Returns the value of this facet.

string_type GetLocalName() Returns the local name of the type.

string_type GetMaxExclusive() Returns the value of this facet.

string_type GetMaxInclusive() Returns the value of this facet.

unsigned int GetMaxLength() Returns the value of this facet.

string_type GetMinExclusive() Returns the value of this facet.

string_type GetMinInclusive() Returns the value of this facet.

unsigned int GetMinLength() Returns the value of this facet.

string_type GetNamespaceURI() Returns the namespace URI of the type.

std::vector<string_type>
GetPatterns()

Returns a list of all pattern facets.

unsigned int GetTotalDigits() Returns the value of this facet.

WhitespaceType GetWhitespace() Returns the value of the whitespace facet, which is one of:
· Whitespace_Unknown
· Whitespace_Preserve
· Whitespace_Replace
· Whitespace_Collapse

Operators

Name Description

bool operator() Returns true if this is not the NULL SimpleType.

bool operator!() Returns true if this is the NULL SimpleType.

1140 Code Generator Generated Classes (C++)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.2.9 [YourSchema]::[CDoc]

When code is generated from an XML Schema, the generated code provides a document class with the same
name as the schema. This class contains all possible root elements as members, as well as the following
methods. Note that, in the method names below, "CDoc" stands for the name of the generated document class
itself.

Methods

Name Description

static CDoc CreateDocument() Creates a new, empty XML document. Must be released using
DestroyDocument().

static void
DeclareAllNamespacesFromSchema(Ele
mentType& node)

Declares all namespaces from the XML Schema on the element
supplied as argument (typically, the XML root element). Calling
this method is useful if your schema has multiple namespace
declarations, each mapped to a prefix, and you would like to
declare all of them on the element supplied as argument.

void DestroyDocument() Destroys a document. All references to the document and its
nodes are invalidated. This must be called when you finish
working with a document.

static CDoc LoadFromBinary(const
std:vector<unsigned char>& xml)

Loads an XML document from a byte array.

static CDoc LoadFromFile(const
string_type& fileName)

Loads an XML document from a file.

static CDoc LoadFromString(const
string_type& xml)

Loads an XML document from a string.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint)

Saves an XML document to a byte array. When set to true, the
prettyPrint argument re-formats the XML document for better
readability.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint,
const string_type & encoding)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint,
const string_type & encoding, bool
bBigEndian, bool bBOM)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding. Byte order and
Unicode byte-order mark can be specified for Unicode encodings.

void SaveToFile(const string_type
& fileName, bool prettyPrint)

Saves an XML document to a file, with optional "pretty-print"
formatting.

void SaveToFile(const string_type
& fileName, bool omitXmlDecl)

Saves an XML document to a file. If the omitXmlDecl argument
is set to true, the XML declaration will not be written.

© 2018-2024 Altova GmbH

Generated Classes (C++) 1141Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

void SaveToFile(const string_type
& fileName, bool omitXmlDecl,
const string_type & encoding)

Saves an XML document to a file with the specified encoding. If
the omitXmlDecl argument is set to true, the XML declaration
will not be written.

void SaveToFile(const string_type
& fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, bool bBigEndian, bool
bBOM)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. Byte order and Unicode
byte-order mark can be specified for Unicode encodings.

void SaveToFile(const string_type
& fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, bool bBigEndian, bool
bBOM, const string_type & lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding and the specified line end.
Byte order and Unicode byte-order mark can be specified for
Unicode encodings.

This method is only available if you generated the code for the
Xerces3 XML library (see Code Generation Options).

void SaveToFile(const string_type&
fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, const string_type &
lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding and the specified line
end.

This method is only available if you generated the code for the
Xerces3 XML library (see Code Generation Options).

void SaveToFile(const string_type
& fileName, bool prettyPrint,
const string_type & encoding)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding.

void SaveToFile(const string_type&
fileName, bool prettyPrint, const
string_type & encoding, bool
bBigEndian, bool bBOM)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. Byte order and Unicode
byte-order mark can be specified for Unicode encodings.

void SaveToFile(const string_type&
fileName, bool prettyPrint, const
string_type & encoding, bool
bBigEndian, bool bBOM, const
string_type & lineend)

Saves an XML document to a file with the specified encoding and
the specified line end. Byte order and Unicode byte-order mark
can be specified for Unicode encodings.

This method is only available if you generated the code for the
Xerces3 XML library (see Code Generation Options).

void SaveToFile(const string_type&
fileName, bool prettyPrint, const
string_type & encoding, const
string_type & lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding and the specified line
end.

This method is only available if you generated the code for the
Xerces3 XML library (see Code Generation Options).

string_type SaveToString(bool
prettyPrint)

Saves an XML document to a string, with optional "pretty-print"
formatting.

1300

1300

1300

1300

1142 Code Generator Generated Classes (C++)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

string_type SaveToString(bool
prettyPrint, bool omitXmlDecl)

Saves an XML document to a string, with optional "pretty-print"
formatting. If the omitXmlDecl argument is set to true, the XML
declaration will not be written.

void SetDTDLocation(const
string_type & dtdLocation)

Adds a DOCTYPE declaration with the specified system ID. A
root element must already exist. This method is not supported for
MSXML, since it is not possible to add a DOCTYPE declaration
to a document in memory.

void SetSchemaLocation(const
string_type & schemaLocation)

Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute to the root element.
A root element must already exist.

28.2.10 [YourSchema]::[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be
called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't
need to instantiate the class directly. Any element created using the append() or appendWithPrefix()

methods is of [ElementType] type.

Methods

Name Description

void DeclareNamespace(const
string_type prefix, const
string_type nsURI)

This method takes two arguments that are both of string type:
the prefix and the namespace URI that you want to use. The
prefix supplied as argument will be mapped to the namespace
URI value supplied as argument. If the prefix supplied as
argument is empty, the method creates or overrides the default
namespace declaration in the element.

For example, let's assume that the XML document has an XML
element called "purchase". If you call

purchase.DeclareNamespace(_T("ord"),
_T("http://OrderTypes"));

then the XML document becomes

<purchase xmlns:ord="http://OrderTypes" />

Another example, if you call:

purchase.DeclareNamespace(_T(""),
_T("http://OrderTypes"));

© 2018-2024 Altova GmbH

Generated Classes (C++) 1143Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

then the XML document becomes

<purchase xmlns="http://OrderTypes" />

Note: The declared namespace is used when appending
subsequent child elements or attributes, according to the
following rules:

1. If the child namespace is the default, then use empty
prefix.

2. If the child namespace is equal to the parent one, then
use the parent prefix.

3. Otherwise, search for nearest prefix from parent to top,
using the lookup algorithm described in section "B.2:
Namespace Prefix Lookup" at
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-
20021022/namespaces-algorithms.html.

4. If there is no prefix for element namespace found, then
use empty prefix.

28.2.11 [YourSchema]::MemberAttribute

When code is generated from an XML schema, a class such as this one is created for each member attribute
of a type.

Methods

Name Description

bool exists() Returns true if the attribute exists.

int GetEnumerationValue() Generated for enumeration types only. Returns one of the
constants generated for the possible values, or "Invalid" if the
value does not match any of the enumerated values in the
schema.

altova::meta::Attribute info() Returns an object for querying schema information (see
altova::meta::Attribute).

void remove() Removes the attribute from its parent element.

void SetEnumerationValue(int) Generated for enumeration types only. Pass one of the constants
generated for the possible values to this method to set the value.

1136

https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html

1144 Code Generator Generated Classes (C++)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.2.12 [YourSchema]::MemberElement

When code is generated from an XML schema, a class such as this one is created for each member element
of a type. In the descriptions below, "MemberType" stands for the name of the member element itself.

Methods

Name Description

Iterator<MemberType> all() Returns an object for iterating instances of the member element.

MemberType append() Creates a new element and appends it to its parent.

MemberType
appendWithPrefix(string_type
prefix)

Creates a new element having the prefix supplied as argument,
and appends it to its parent. For an example, see Example:
Purchase Order .

unsigned int count() Returns the count of elements.

int GetEnumerationValue() Generated for enumeration types only. Returns one of the
constants generated for the possible values, or Invalid if the
value does not match any of the enumerated values in the
schema.

bool exists() Returns true if at least one element exists.

MemberType first() Returns the first instance of the member element.

MemberType operator[](unsigned int
index)

Returns the member element specified by the index.

altova::meta::Element info() Returns an object for querying schema information (see
altova::meta::Element).

MemberType last() Returns the last instance of the member element.

void remove() Deletes all occurrences of the element from its parent.

void removeAt(unsigned int index) Deletes the occurrence of the element specified by the index.

void SetEnumerationValue(int) Generated for enumeration types only. Pass one of the constants
generated for the possible values to this method to set the value.

1122

1138

© 2018-2024 Altova GmbH

Generated Classes (C#) 1145Code Generator

Altova XMLSpy 2024 Enterprise Edition

28.3 Generated Classes (C#)

This chapter includes a description of C# classes generated with XMLSpy from a DTD or XML schema (see
Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read,
modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to
modification.

28.3.1 Altova.Types.DateTime

This class enables you to process XML attributes or elements that have date and time types, such as
xs:dateTime.

Constructors

Name Description

DateTime(DateTime obj) Initializes a new instance of the DateTime class to the DateTime
object supplied as argument.

DateTime(System.DateTime
newvalue)

Initializes a new instance of the DateTime class to the
System.DateTime object supplied as argument.

DateTime(int year, int month,
int day, int hour, int
minute, double second, int
offsetTZ)

Initializes a new instance of the DateTime class to the year,
month, day, hour, minute, second, and timezone offset supplied
as arguments.

DateTime(int year, int month,
int day, int hour, int
minute, double second)

Initializes a new instance of the DateTime class to the year,
month, day, hour, minute, and second supplied as arguments.

DateTime(int year, int month,
int day)

Initializes a new instance of the DateTime class to the year,
month and day supplied as arguments.

Properties

Name Description

bool HasTimezone Gets a Boolean value which indicates if the DateTime has a
timezone.

static DateTime Now Gets a DateTime object that is set to the current date and time
on this computer.

short TimezoneOffset Gets or sets the timezone offset, in minutes, of the DateTime
object.

1086

1146 Code Generator Generated Classes (C#)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

System.DateTime Value Gets or sets the value of the DateTime object as a
System.DateTime value.

Methods

Name Description

int CompareTo(object obj) The DateTime class implements the IComparable interface. This
method compares the current instance of DateTime to another
object and returns an integer that indicates whether the current
instance precedes, follows, or occurs in the same position in the
sort order as the other object. See also
https://msdn.microsoft.com/en-
us/library/system.icomparable.compareto(v=vs.110).aspx

override bool Equals(object
obj)

Returns true if the specified object is equal to the current object;
false otherwise.

System.DateTime
GetDateTime(bool correctTZ)

Returns a System.DateTime object from the current
Altova.Types.DateTime instance. The correctTZ Boolean
argument specifies whether the time of the returned object must
be adjusted according to the timezone of the current
Altova.Types.DateTime instance.

override int GetHashCode() Returns the hash code of the current instance.

int GetWeekOfMonth() Returns the number of the week in month as an integer.

static DateTime Parse(string
s)

Creates a DateTime object from the string supplied as argument.
For example, the following sample string values would be
converted successfully to a DateTime object:

2015-01-01T23:23:23
2015-01-01
2015-11
23:23:23

An exception is raised if the string cannot be converted to a
DateTime object.

Note that this method is static and can only be called on the
Altova.Types.DateTime class itself, not on an instance of the
class.

static DateTime Parse(string
s, DateTimeFormat format)

Creates a DateTime object from a string, using the format
supplied as argument. For the list of possible formats, see
Altova.Types.DateTimeFormat .

An exception is raised if the string cannot be converted to a
DateTime object.

1148

https://msdn.microsoft.com/en-us/library/system.icomparable.compareto(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.icomparable.compareto(v=vs.110).aspx

© 2018-2024 Altova GmbH

Generated Classes (C#) 1147Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

Note that this method is static and can only be called on the
Altova.Types.DateTime class itself, not on an instance of the
class.

override string ToString() Converts the DateTime object to a string.

string
ToString(DateTimeFormat
format)

Converts the DateTime object to a string, using the format
supplied as argument. For the list of possible formats, see
Altova.Types.DateTimeFormat .

Operators

Name Description

!= Determines if DateTime a is not equal to DateTime b.

< Determines if DateTime a is less than DateTime b.

<= Determines if DateTime a is less than or equal to DateTime b.

== Determines if DateTime a is equal to DateTime b.

> Determines if DateTime a is greater than DateTime b.

>= Determines if DateTime a is greater than or equal to DateTime b.

Examples
Before using the following code listings in your program, ensure the Altova types are imported:

using Altova.Types;

The following code listing illustrates various ways to create DateTime objects:

protected static void DateTimeExample1()

{
 // Create a DateTime object from the current system time

 Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

 Console.WriteLine("The current time is: " + dt.ToString());

 // Create an Altova DateTime object from parts (no timezone)

 Altova.Types.DateTime dt1 = new Altova.Types.DateTime(2015, 10, 12, 10, 50, 33);

 Console.WriteLine("My custom time is : " + dt1.ToString());

 // Create an Altova DateTime object from parts (with UTC+60 minutes timezone)

 Altova.Types.DateTime dt2 = new Altova.Types.DateTime(2015, 10, 12, 10, 50, 33, 60);

 Console.WriteLine("My custom time with timezone is : " + dt2.ToString());

1148

1148 Code Generator Generated Classes (C#)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 // Create an Altova DateTime object by parsing a string

 Altova.Types.DateTime dt3 = Altova.Types.DateTime.Parse("2015-01-01T23:23:23");
 Console.WriteLine("Time created from string: " + dt3.ToString());

 // Create an Altova DateTime object by parsing a string formatted as schema date

 Altova.Types.DateTime dt4 = Altova.Types.DateTime.Parse("2015-01-01",
DateTimeFormat.W3_date);
 Console.WriteLine("Time created from string formatted as schema date: " +
dt4.ToString());
}

The following code listing illustrates various ways to format DateTime objects:

protected static void DateTimeExample2()

{
 // Create a DateTime object from the current system time

 Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

 // Output the unformatted DateTime

 Console.WriteLine("Unformatted time: " + dt.ToString());

 // Output this DateTime formatted using various formats

 Console.WriteLine("S_DateTime: " + dt.ToString(DateTimeFormat.S_DateTime));
 Console.WriteLine("S_Days: " + dt.ToString(DateTimeFormat.S_Days));
 Console.WriteLine("S_Seconds: " + dt.ToString(DateTimeFormat.S_Seconds));
 Console.WriteLine("W3_date: " + dt.ToString(DateTimeFormat.W3_date));
 Console.WriteLine("W3_dateTime: " + dt.ToString(DateTimeFormat.W3_dateTime));
 Console.WriteLine("W3_gDay: " + dt.ToString(DateTimeFormat.W3_gDay));
 Console.WriteLine("W3_gMonth: " + dt.ToString(DateTimeFormat.W3_gMonth));
 Console.WriteLine("W3_gMonthDay: " + dt.ToString(DateTimeFormat.W3_gMonthDay));
 Console.WriteLine("W3_gYear: " + dt.ToString(DateTimeFormat.W3_gYear));
 Console.WriteLine("W3_gYearMonth: " + dt.ToString(DateTimeFormat.W3_gYearMonth));
 Console.WriteLine("W3_time: " + dt.ToString(DateTimeFormat.W3_time));
}

28.3.2 Altova.Types.DateTimeFormat

The DateTimeFormat enum type has the following constant values:

Value Description Example

S_DateTime Formats the value as standard
dateTime, with a precision of a ten-
millionth of a second, including
timezone.

2015-11-12 12:19:03.9019132+01:00

S_Days Formats the value as number of days
elapsed since the UNIX epoch.

735913.6318973451087962962963

© 2018-2024 Altova GmbH

Generated Classes (C#) 1149Code Generator

Altova XMLSpy 2024 Enterprise Edition

Value Description Example

S_Seconds Formats the value as number of
seconds elapsed since the UNIX
epoch, with a precision of a ten-
millionth of a second.

63582937678.0769062

W3_date Formats the value as schema date. 2015-11-12

W3_dateTime Formats the value as schema
dateTime.

2015-11-12T15:12:14.5194251

W3_gDay Formats the value as schema gDay. ---12

(assuming that the date is 12th of the
month)

W3_gMonth Formats the value as schema gMonth. --11

(assuming that the month is November)

W3_gMonthDay Formats the value as schema
gMonthDay.

--11-12

(assuming that the date is 12th of
November)

W3_gYear Formats the value as schema gYear. 2015

(assuming that the year is 2015)

W3_gYearMonth Formats the value as schema
gYearMonth.

2015-11

(assuming that the year is 2015 and the
month is November)

W3_time Formats the value as schema time,
with a precision of a ten-millionth of a
second.

15:19:07.5582719

28.3.3 Altova.Types.Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration(Duration obj) Initializes a new instance of the Duration class to the Duration object
supplied as argument.

Duration(System.TimeSpa
n newvalue)

Initializes a new instance of the Duration class to the System.TimeSpan
object supplied as argument.

Duration(long ticks) Initializes a new instance of the Duration class to the number of ticks
supplied as argument.

1150 Code Generator Generated Classes (C#)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

Duration(int newyears,
int newmonths, int
days, int hours, int
minutes, int seconds,
double partseconds,
bool bnegative)

Initializes a new instance of the Duration class to a duration built from
parts supplied as arguments.

Properties

Name Description

int Months Gets or sets the number of months of the current instance of Duration.

System.TimeSpan Value Gets or sets the value (as System.TimeSpan) of the current instance of
Duration.

int Years Gets or sets the number of years of the current instance of Duration.

Methods

Name Description

override bool
Equals(object other)

Returns true if the specified object is equal to the current object; false
otherwise.

override int
GetHashCode()

Returns the hash code of the current instance.

bool IsNegative() Returns true if the current instance of Duration represents a negative
duration.

static Duration
Parse(string s,
ParseType pt)

Returns an Altova.Types.Duration object parsed from the string
supplied as argument, using the parse type supplied as argument. Valid
parse type values:

DURATION Parse duration assuming that year, month, day, as well
as time duration parts exist.

YEARMONT
H

Parse duration assuming that only year and month parts
exist.

DAYTIME Parse duration assuming that only the day and time
parts exist.

Note that this method is static and can only be called on the class itself,
not on an instance of the class.

override string
ToString()

Converts the current Duration instance to string. For example, a time
span of 3 hours, 4 minutes, and 5 seconds would be converted to
"PT3H4M5S".

© 2018-2024 Altova GmbH

Generated Classes (C#) 1151Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

string
ToYearMonthString()

Converts the current Duration instance to string, using the "Year and
Month" parse type.

Operators

Name Description

!= Determines if Duration a is not equal to Duration b.

== Determines if Duration a is equal to Duration b.

Examples
Before using the following code listings in your program, ensure the Altova types are imported:

using Altova.Types;

The following code listing illustrates various ways to create Duration objects:

protected static void DurationExample1()

{
 // Create a new time span of 3 hours, 4 minutes, and 5 seconds

 System.TimeSpan ts = new TimeSpan(3, 4, 5);

 // Create a Duration from the time span

 Duration dr = new Duration(ts);

 // The output is: PT3H4M5S

 Console.WriteLine("Duration created from TimeSpan: " + dr.ToString());

 // Create a negative Altova.Types.Duration from 6 years, 5 months, 4 days, 3 hours,

 // 2 minutes, 1 second, and .33 of a second

 Duration dr1 = new Duration(6, 5, 4, 3, 2, 1, .33, true);

 // The output is: -P6Y5M4DT3H2M1.33S

 Console.WriteLine("Duration created from parts: " + dr1.ToString());

 // Create a Duration from a string using the DAYTIME parse type

 Duration dr2 = Altova.Types.Duration.Parse("-P4DT3H2M1S", Duration.ParseType.DAYTIME);
 // The output is -P4DT3H2M1S

 Console.WriteLine("Duration created from string: " + dr2.ToString());

 // Create a duration from ticks

 Duration dr3 = new Duration(System.DateTime.UtcNow.Ticks);

 // Output the result

 Console.WriteLine("Duration created from ticks: " + dr3.ToString());
}

The following code listing illustrates getting values from Duration objects:

1152 Code Generator Generated Classes (C#)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

protected static void DurationExample2()

{
 // Create a negative Altova.Types.Duration from 6 years, 5 months, 4 days, 3 hours,

 // 2 minutes, 1 second, and .33 of a second

 Duration dr = new Duration(6, 5, 4, 3, 2, 1, .33, true);

 // The output is: -P6Y5M4DT3H2M1.33S

 Console.WriteLine("The complete duration is: " + dr.ToString());

 // Get only the year and month part as string

 string dr1 = dr.ToYearMonthString();

 Console.WriteLine("The YEARMONTH part is: " + dr1);

 // Get the number of years in duration

 Console.WriteLine("Years: " + dr.Years);

 // Get the number of months in duration

 Console.WriteLine("Months: " + dr.Months);
}

28.3.4 Altova.Xml.Meta.Attribute

This class enables you to access schema information about classes generated from attributes. Note that this
class is not meant to provide dynamic information about particular instances of an attribute in an XML
document. Instead, it enables you to obtain programmatically information about a particular attribute defined in
the XML schema.

Properties

Name Description

SimpleType DataType Returns the type of the attribute content.

string LocalName Returns the local name of the attribute.

string NamespaceURI Returns the namespace URI of the attribute.

XmlQualifiedName
QualifiedName

Returns the qualified name of the attribute.

bool Required() Returns true if the attribute is required.

28.3.5 Altova.Xml.Meta.ComplexType

This class enables you to access schema information about classes generated from complex types. Note that
this class is not meant to provide dynamic information about particular instances of a complex type in an XML
document. Instead, it enables you to obtain programmatically information about a particular complex type
defined in the XML schema.

© 2018-2024 Altova GmbH

Generated Classes (C#) 1153Code Generator

Altova XMLSpy 2024 Enterprise Edition

Properties

Name Description

Attribute[] Attributes Returns a list of all attributes.

ComplexType BaseType Returns the base type of this type or null if no base type exists.

SimpleType ContentType Returns the simple type of the content.

Element[] Elements Returns a list of all elements.

string LocalName Returns the local name of the type.

string NamespaceURI Returns the namespace URI of the type.

XmlQualifiedName
QualifiedName

Returns the qualified name of this type.

Methods

Name Description

ComplexType BaseType Returns the base type of this type.

bool Equals(obj) Checks if two info objects refer to the same type, based on
qualified name comparison. Returns true if the type has the same
qualified name.

Attribute
FindAttribute(string
localName, string
namespaceURI)

Finds the attribute with the specified local name and namespace
URI.

Element FindElement(string
localName, string
namespaceURI)

Finds the element with the specified local name and namespace
URI.

28.3.6 Altova.Xml.Meta.Element

This class enables you to access information about classes generated from schema elements. Note that this
class is not meant to provide dynamic information about particular instances of an element in an XML
document. Instead, it enables you to obtain programmatically information about a particular element defined in
the XML schema.

Properties

Name Description

ComplexType DataType Returns the type of the element. Note that this is always a

1154 Code Generator Generated Classes (C#)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

complex type even if declared as simple in the original schema.
Use the ContentType property of the returned object to get the
simple content type.

string LocalName Returns the local name of the element.

int MaxOccurs Returns the maxOccurs value defined in the schema.

int MinOccurs Returns the minOccurs value defined in the schema.

string NamespaceURI Returns the namespace URI of the element.

XmlQualifiedName
QualifiedName

Returns the qualified name of the element.

28.3.7 Altova.Xml.Meta.SimpleType

This class enables you to access schema information about classes generated from simple types. Note that
this class is not meant to provide dynamic information about particular instances of simple types in an XML
document. Instead, it enables you to obtain programmatically information about a particular simple type defined
in the XML schema.

Properties

Name Description

SimpleType BaseType Returns the base type of this type.

string[] Enumerations Returns a list of all enumeration facets.

int FractionDigits Returns the value of this facet.

int Length Returns the value of this facet.

string LocalName Returns the local name of the type.

string MaxExclusive Returns the value of this facet.

string MaxInclusive Returns the value of this facet.

int MaxLength Returns the value of this facet.

string MinExclusive Returns the value of this facet.

string MinInclusive Returns the value of this facet.

int MinLength Returns the value of this facet.

string NamespaceURI Returns the namespace URI of the type.

string[] Patterns Returns the pattern facets, or null if no patterns are specified.

© 2018-2024 Altova GmbH

Generated Classes (C#) 1155Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

XmlQualifiedName
QualifiedName

Returns the qualified name of this type.

int TotalDigits Returns the value of this facet.

WhitespaceType Whitespace Returns the whitespace normalization facet.

28.3.8 [YourSchema].[Doc]

When code is generated from an XML Schema, the generated code provides a document class with the same
name as the schema. This class contains all possible root elements as members, as well as the members
listed below. Note that, in the method names below, "Doc" stands for the name of the generated document
class itself.

Methods

Name Description

static Doc CreateDocument() Creates a new, empty XML document.

static Doc

CreateDocument(string

encoding)

Creates a new, empty XML document, with encoding of type
"encoding".

static void

DeclareAllNamespacesFromSchem
a(Altova.Xml.ElementType

node)

Declares all namespaces from the XML Schema on the element
supplied as argument (typically, the XML root element). Calling
this method is useful if your schema has multiple namespace
declarations, each mapped to a prefix, and you would like to
declare all of them on the element supplied as argument.

static Doc

LoadFromBinary(byte[] binary)
Loads an XML document from a byte array.

static Doc

LoadFromFile(string filename)
Loads an XML document from a file.

static Doc

LoadFromString(string

xmlstring)

Loads an XML document from a string.

byte[] SaveToBinary(bool

prettyPrint)
Saves an XML document to a byte array, with optional "pretty-
print" formatting.

byte[] SaveToBinary(bool

prettyPrint, string encoding)
Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding.

byte[] SaveToBinary(bool

prettyPrint, string encoding,

bool bBigEndian, bool bBOM)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding, byte order, and
BOM (Byte Order Mark).

1156 Code Generator Generated Classes (C#)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

void SaveToFile(string

fileName, bool prettyPrint)
Saves an XML document to a file, with optional "pretty-print"
formatting.

void SaveToFile(string

fileName, bool prettyPrint,

bool omitXmlDecl)

Saves an XML document to a file, with optional "pretty-print"
formatting. When omitXmlDecl is true, the XML declaration will
not be written.

void SaveToFile(string

fileName, bool prettyPrint,

bool omitXmlDecl, string

encoding)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. When omitXmlDecl is
true, the XML declaration will not be written.

void SaveToFile(string

fileName, bool prettyPrint,

string encoding, string

lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding, and line ending
character(s).

void SaveToFile(string

fileName, bool prettyPrint,

bool omitXmlDecl, string

encoding, string lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding, and line ending
character(s). When omitXmlDecl is true, the XML declaration will
not be written.

void SaveToFile(string

fileName, bool prettyPrint,

bool omitXmlDecl, string

encoding, bool bBigEndian,

bool bBOM, string lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding, byte order, BOM (Byte
Order Mark), and line ending character(s). When omitXmlDecl is
true, the XML declaration will not be written.

void

SaveToFileWithLineEnd(string

fileName, bool prettyPrint,

bool omitXmlDecl, string

lineend)

Saves an XML document to a file, with optional "pretty-print"
formatting, and line ending character(s). When omitXmlDecl is
true, the XML declaration will not be written.

string SaveToString(bool

prettyPrint)
Saves an XML document to a file, with optional "pretty-print"
formatting.

string SaveToString(bool

prettyPrint, bool

omitXmlDecl)

Saves an XML document to a file, with optional "pretty-print"
formatting. When omitXmlDecl is true, the XML declaration will
not be written.

void SetDTDLocation(string

dtdLocation)
Adds a DOCTYPE declaration with the specified system ID. A
root element must already exist.

void SetSchemaLocation(string

schemaLocation)
Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute to the root element.
A root element must already exist.

© 2018-2024 Altova GmbH

Generated Classes (C#) 1157Code Generator

Altova XMLSpy 2024 Enterprise Edition

28.3.9 [YourSchema].[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be
called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't
need to instantiate the class directly. Any element created using the Append() or AppendWithPrefix()

methods is of [ElementType] type.

Methods

Name Description

void DeclareNamespace(string
prefix, string nsURI)

This method takes two arguments that are both of string type:
the prefix and the namespace URI that you want to use. The
prefix supplied as argument will be mapped to the namespace
URI value supplied as argument. If the prefix supplied as
argument is empty, the method creates or overrides the default
namespace declaration in the element.

For example, let's assume that the XML document has an XML
element called "purchase". If you call

purchase.DeclareNamespace("ord",
"http://OrderTypes");

then the XML document becomes

<purchase xmlns:ord="http://OrderTypes" />

Another example, if you call:

purchase.DeclareNamespace("", "http://OrderTypes");

then the XML document becomes

<purchase xmlns="http://OrderTypes" />

Note: The declared namespace is used when appending
subsequent child elements or attributes, according to the
following rules:

1. If the child namespace is the default, then use empty
prefix.

2. If the child namespace is equal to the parent one, then
use the parent prefix.

3. Otherwise, search for nearest prefix from parent to top,
using the lookup algorithm described in section "B.2:
Namespace Prefix Lookup" at

1158 Code Generator Generated Classes (C#)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-
20021022/namespaces-algorithms.html.

4. If there is no prefix for element namespace found, then
use empty prefix.

28.3.10 [YourSchemaType].MemberAttribute

When code is generated from an XML schema, a class is created for each member attribute of a type. In the
descriptions below, "AttributeType" stands for the type of the member attribute itself.

Methods

Name Description

bool Exists() Returns true if the attribute exists.

void Remove() Removes the attribute from its parent element.

Properties

Name Description

int EnumerationValue Generated for enumeration types only. Sets or gets the
attribute value using one of the constants generated for the
possible values. Returns Invalid if the value does not
match any of the enumerated values in the schema.

Altova.Xml.Meta.Attribute Info Returns an object for querying schema information (see
Altova.Xml.Meta.Attribute).

AttributeType Value Sets or gets the attribute value.

28.3.11 [YourSchemaType].MemberElement

When code is generated from an XML schema, a class with the following members is created for each member
element of a type. The class implements the standard System.Collections.IEnumerable interface, so it can
be used with the foreach statement.

In the descriptions below, "MemberType" stands for the type of the member element itself.

Methods

Name Description

MemberType Append() Creates a new element and appends it to its parent.

1152

https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html

© 2018-2024 Altova GmbH

Generated Classes (C#) 1159Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

MemberType AppendWithPrefix(string
prefix)

Creates a new element having the prefix supplied as
argument, and appends it to its parent. For an example,
see Example: Purchase Order .

MemberType At(int index) Returns the member element specified by the index.

System.Collections.IEnumerator
GetEnumerator()

Returns an object for iterating instances of the member
element.

void Remove() Deletes all occurrences of the element from its parent.

void RemoveAt(int index) Deletes the occurrence of the element specified by the
index.

Properties

Name Description

int Count Returns the count of elements.

int EnumerationValue Generated for enumeration types only. Sets or gets the
element value using one of the constants generated for the
possible values. Returns Invalid if the value does not
match any of the enumerated values in the schema.

bool Exists Returns true if at least one element exists.

MemberType First Returns the first instance of the member element.

Altova.Xml.Meta.Element Info Returns an object for querying schema information (see
Altova.Xml.Meta.Element).

MemberType Last Returns the last instance of the member element.

MemberType this[int index] Returns the member element specified by the index.

MemberType Value Sets or gets the element content (only generated if element
can have mixed or simple content).

1122

1153

1160 Code Generator Generated Classes (Java)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.4 Generated Classes (Java)

This chapter includes a description of Java classes generated with XMLSpy from a DTD or XML schema (see
Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read,
modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to
modification.

28.4.1 com.altova.types.DateTime

This class enables you to process XML attributes or elements that have date and time types, such as
xs:dateTime.

Constructors

Name Description

public DateTime() Initializes a new instance of the DateTime class to an empty
value.

public DateTime(DateTime

newvalue)
Initializes a new instance of the DateTime class to the DateTime
value supplied as argument.

public DateTime(int newyear,

int newmonth, int newday, int

newhour, int newminute, int

newsecond, double

newpartsecond, int

newoffsetTZ)

Initializes a new instance of the DateTime class to the year,
month, day, hour, minute, second, the fractional part of the
second, and timezone supplied as arguments. The fractional part
of the second newpartsecond must be between 0 and 1. The
timezone offset newoffsetTZ can be either positive or negative and
is expressed in minutes.

public DateTime(int newyear,

int newmonth, int newday, int

newhour, int newminute, int

newsecond, double

newpartsecond)

Initializes a new instance of the DateTime class to the year,
month, day, hour, minute, second, and the fractional part of a
second supplied as arguments.

public DateTime(int newyear,

int newmonth, int newday)
Initializes a new instance of the DateTime class to the year,
month, and day supplied as arguments.

public DateTime(Calendar

newvalue)
Initializes a new instance of the DateTime class to the
java.util.Calendar value supplied as argument.

Methods

Name Description

static DateTime now() Returns the current time as a DateTime object.

1086

© 2018-2024 Altova GmbH

Generated Classes (Java) 1161Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

static DateTime parse(String

s)
Returns a DateTime object parsed from the string value supplied
as argument. For example, the following sample string values
would be converted successfully to a DateTime object:

2015-11-24T12:54:47.969+01:00
2015-11-24T12:54:47
2015-11-24

int getDay() Returns the day of the current DateTime instance.

int getHour() Returns the hour of the current DateTime instance.

int getMillisecond() Returns the millisecond of the current DateTime instance, as an
integer value.

int getMinute() Returns the minute of the current DateTime instance.

int getMonth() Returns the month of the current DateTime instance.

double getPartSecond() Returns the fractional part of the second of the current DateTime
instance, as a double value. The return value is greater than
zero and smaller than one, for example:

0.313

int getSecond() Returns the second of the current DateTime instance.

int getTimezoneOffset() Returns the timezone offset, in minutes, of the current DateTime
instance. For example, the timezone "UTC-01:00" would be
returned as:

-60

Calendar getValue() Returns the current DateTime instance as a
java.util.Calendar value.

int getWeekday() Returns the day in week of the current DateTime instance.
Values range from 0 through 6, where 0 is Monday (ISO-8601).

int getYear() Returns the year of the current DateTime instance.

int hasTimezone() Returns information about the timezone of the current DateTime
instance. Possible return values are:

CalendarBase.TZ_MISSING A timezone offset is not defined.

CalendarBase.TZ_UTC The timezone is UTC.

CalendarBase.TZ_OFFSET A timezone offset has been
defined.

void setDay(int nDay) Sets the day of the current DateTime instance to the value
supplied as argument.

1162 Code Generator Generated Classes (Java)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

void setHasTimezone(int

nHasTZ)
Sets the timezone information of the current DateTime instance
to the value supplied as argument. This method can be used to
strip the timezone information or set the timezone to UTC
(Coordinated Universal Time). Valid values for the nHasTZ
argument:

CalendarBase.TZ_MISSIN
G

Set the timezone offset to
undefined.

CalendarBase.TZ_UTC Set the timezone to UTC.

CalendarBase.TZ_OFFSET If the current object has a
timezone offset, leave it
unchanged.

void setHour(int nHour) Sets the hour of the current DateTime instance to the value
supplied as argument.

void setMinute(int nMinute) Sets the minute of the current DateTime instance to the value
supplied as argument.

void setMonth(int nMonth) Sets the month of the current DateTime instance to the value
supplied as argument.

void setPartSecond(double

nPartSecond)
Sets the fractional part of the second of the current DateTime
instance to the value supplied as argument.

void setSecond(int nSecond) Sets the second of the current DateTime instance to the value
supplied as argument.

void setTimezoneOffset(int

nOffsetTZ)
Sets the timezone offset of the current DateTime instance to the
value supplied as argument. The value nOffsetTZ must be an
integer (positive or negative) and must be expressed in minutes.

void setYear(int nYear) Sets the year of the current DateTime instance to the value
supplied as argument.

String toString() Returns the string representation of the current DateTime
instance, for example:

2015-11-24T15:50:56.968+01:00

Examples
Before using the following code listings in your program, ensure the Altova types are imported:

import com.altova.types.*;

The following code listing illustrates various ways to create DateTime objects:

© 2018-2024 Altova GmbH

Generated Classes (Java) 1163Code Generator

Altova XMLSpy 2024 Enterprise Edition

protected static void DateTimeExample1()

{
 // Initialize a new instance of the DateTime class to the current time

 DateTime dt = new DateTime(DateTime.now());

 System.out.println("DateTime created from current date and time: " + dt.toString());

 // Initialize a new instance of the DateTime class by supplying the parts

 DateTime dt1 = new DateTime(2015, 11, 23, 14, 30, 24, .459);

 System.out.println("DateTime from parts (no timezone): " + dt1.toString());

 // Initialize a new instance of the DateTime class by supplying the parts

 DateTime dt2 = new DateTime(2015, 11, 24, 14, 30, 24, .459, -60);

 System.out.println("DateTime from parts (with negative timezone): " + dt2.toString());

 // Initialize a new instance of the DateTime class by parsing a string value

 DateTime dt3 = DateTime.parse("2015-11-24T12:54:47.969+01:00");

 System.out.println("DateTime parsed from string: " + dt3.toString());
}

The following code listing illustrates getting values from DateTime objects:

protected static void DateTimeExample2()

 {
 // Initialize a new instance of the DateTime class to the current time

 DateTime dt = new DateTime(DateTime.now());

 // Output the formatted year, month, and day of this DateTime instance

 String str1 = String.format("Year: %d; Month: %d; Day: %d;", dt.getYear(),
dt.getMonth(), dt.getDay());
 System.out.println(str1);

 // Output the formatted hour, minute, and second of this DateTime instance

 String str2 = String.format("Hour: %d; Minute: %d; Second: %d;", dt.getHour(),
dt.getMinute(), dt.getSecond());
 System.out.println(str2);

 // Return the timezone (in minutes) of this DateTime instance

 System.out.println("Timezone: " + dt.getTimezoneOffset());

 // Get the DateTime as a java.util.Calendar value

 java.util.Calendar dt_java = dt.getValue();
 System.out.println("" + dt_java.toString());

 // Return the day of week of this DateTime instance

 System.out.println("Weekday: " + dt.getWeekday());

 // Check whether the DateTime instance has a timezone defined

 switch(dt.hasTimezone())

 {
 case CalendarBase.TZ_MISSING:

 System.out.println("No timezone.");
 break;

 case CalendarBase.TZ_UTC:

1164 Code Generator Generated Classes (Java)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 System.out.println("The timezone is UTC.");
 break;

 case CalendarBase.TZ_OFFSET:

 System.out.println("This object has a timezone.");
 break;

 default:

 System.out.println("Unable to determine whether a timezone is defined.");
 break;

 }
 }

The following code listing illustrates changing the timezone offset of a DateTime object:

protected static void DateTimeExample3()

{
 // Create a new DateTime object with timezone -0100 UTC

 DateTime dt = new DateTime(2015, 11, 24, 14, 30, 24, .459, -60);

 // Output the value before the change

 System.out.println("Before: " + dt.toString());
 // Change the offset to +0100 UTC

 dt.setTimezoneOffset(60);
 // Output the value after the change

 System.out.println("After: " + dt.toString());
}

28.4.2 com.altova.types.Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration(Duration newvalue) Initializes a new instance of the Duration class to the Duration
object supplied as argument.

Duration(int newyear, int

newmonth, int newday, int

newhour, int newminute, int

newsecond, double

newpartsecond, boolean

newisnegative)

Initializes a new instance of the Duration class to a duration
built from parts supplied as arguments.

Methods

Name Description

static Duration

getFromDayTime(int newday,
Returns a Duration object created from the number of days,
hours, minutes, seconds, and fractional second parts supplied as

© 2018-2024 Altova GmbH

Generated Classes (Java) 1165Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

int newhour, int newminute,

int newsecond, double

newpartsecond)

argument.

static Duration

getFromYearMonth(int

newyear, int newmonth)

Returns a Duration object created from the number of years and
months supplied as argument.

static Duration parse(String

s)
Returns a Duration object created from the string supplied as
argument. For example, the string -P1Y1M1DT1H1M1.333S can
be used to create a negative duration of one year, one month,
one day, one hour, one minute, one second, and 0.333 fractional
parts of a second. To create a negative duration, append the
minus sign (-) to the string.

static Duration parse(String

s, ParseType pt)
Returns a Duration object created from the string supplied as
argument, using a specific parse format. The parse format can be
any of the following:

ParseType.DAYTIME May be used when the string s
consists of any of the following:
days, hours, minutes, seconds,
fractional second parts, for example
-P4DT4H4M4.774S.

ParseType.DURATION May be used when the string s
consists of any of the following:
years, months, days, hours,
minutes, seconds, fractional second
parts, for example
P1Y1M1DT1H1M1.333S.

ParseType.YEARMON
TH

May be used when the string s
consists of any of the following:
years, months. For example:
P3Y2M.

int getDay() Returns the number of days in the current Duration instance.

long getDayTimeValue() Returns the day and time value (in milliseconds) of the current
Duration instance. Years and months are ignored.

int getHour() Returns the number of hours in the current Duration instance.

int getMillisecond() Returns the number of milliseconds in the current Duration
instance.

int getMinute() Returns the number of minutes in the current Duration instance.

int getMonth() Returns the number of months in the current Duration instance.

double getPartSecond() Returns the number of fractional second parts in the current
Duration instance.

1166 Code Generator Generated Classes (Java)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

int getSecond() Returns the number of seconds in the current Duration
instance.

int getYear() Returns the number of years in the current Duration instance.

int getYearMonthValue() Returns the year and month value (in months) of the current
Duration instance. Days, hours, seconds, and milliseconds are
ignored.

boolean isNegative() Returns Boolean true if the current Duration instance is
negative.

void setDayTimeValue(long l) Sets the duration to the number of milliseconds supplied as
argument, affecting only the day and time part of the duration.

void setNegative(boolean

isnegative)
Converts the current Duration instance to a negative duration.

void setYearMonthValue(int

l)
Sets the duration to the number of months supplied as argument.
Only the years and months part of the duration is affected.

String toString() Returns the string representation of the current Duration
instance, for example:

-P4DT4H4M4.774S

String toYearMonthString() Returns the string representation of the YearMonth part of the
current Duration instance, for example:

P1Y2M

Examples
Before using the following code listings in your program, ensure the Altova types are imported:

import com.altova.types.*;

import com.altova.types.Duration.ParseType;

The following code listing illustrates various ways to create Duration objects:

protected static void ExampleDuration()

{
 // Create a negative duration of 1 year, 1 month, 1 day, 1 hour, 1 minute, 1 second,

 // and 0.333 fractional second parts

 Duration dr = new Duration(1, 1, 1, 1, 1, 1, .333, true);

 // Create a duration from an existing Duration object

 Duration dr1 = new Duration(dr);

 // Create a duration of 4 days, 4 hours, 4 minutes, 4 seconds, .774 fractional second

© 2018-2024 Altova GmbH

Generated Classes (Java) 1167Code Generator

Altova XMLSpy 2024 Enterprise Edition

parts

 Duration dr2 = Duration.getFromDayTime(4, 4, 4, 4, .774);

 // Create a duration of 3 years and 2 months

 Duration dr3 = Duration.getFromYearMonth(3, 2);

 // Create a duration from a string

 Duration dr4 = Duration.parse("-P4DT4H4M4.774S");

 // Create a duration from a string, using specific parse formats

 Duration dr5 = Duration.parse("-P1Y1M1DT1H1M1.333S", ParseType.DURATION);
 Duration dr6 = Duration.parse("P3Y2M", ParseType.YEARMONTH);
 Duration dr7 = Duration.parse("-P4DT4H4M4.774S", ParseType.DAYTIME);
}

The following code listing illustrates getting and setting the value of Duration objects:

protected static void DurationExample2()

{
 // Create a duration of 1 year, 2 month, 3 days, 4 hours, 5 minutes, 6 seconds,

 // and 333 milliseconds

 Duration dr = new Duration(1, 2, 3, 4, 5, 6, .333, false);

 // Output the number of days in this duration

 System.out.println(dr.getDay());

 // Create a positive duration of one year and 333 milliseconds

 Duration dr1 = new Duration(1, 0, 0, 0, 0, 0, .333, false);

 // Output the day and time value in milliseconds

 System.out.println(dr1.getDayTimeValue());

 // Create a positive duration of 1 year, 1 month, 1 day, 1 hour, 1 minute, 1 second,

 // and 333 milliseconds

 Duration dr2 = new Duration(1, 1, 1, 1, 1, 1, .333, false);

 // Output the year and month value in months

 System.out.println(dr2.getYearMonthValue());

 // Create a positive duration of 1 year and 1 month

 Duration dr3 = new Duration(1, 1, 0, 0, 0, 0, 0, false);

 // Output the value

 System.out.println("The duration is now: " + dr3.toString());
 // Set the DayTime part of duration to 1000 milliseconds

 dr3.setDayTimeValue(1000);
 // Output the value

 System.out.println("The duration is now: " + dr3.toString());
 // Set the YearMonth part of duration to 1 month

 dr3.setYearMonthValue(1);
 // Output the value

 System.out.println("The duration is now: " + dr3.toString());
 // Output the year and month part of the duration

 System.out.println("The YearMonth part of the duration is: " +
dr3.toYearMonthString());
}

1168 Code Generator Generated Classes (Java)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.4.3 com.altova.xml.meta.Attribute

This class enables you to access schema information about classes generated from attributes. Note that this
class is not meant to provide dynamic information about particular instances of an attribute in an XML
document. Instead, it enables you to obtain programmatically information about a particular attribute defined in
the XML schema.

Methods

Name Description

SimpleType getDataType() Returns the type of the attribute content.

String getLocalName() Returns the local name of the attribute.

String getNamespaceURI() Returns the namespace URI of the attribute.

boolean isRequired() Returns true if the attribute is required.

28.4.4 com.altova.xml.meta.ComplexType

This class enables you to access schema information about classes generated from complex types. Note that
this class is not meant to provide dynamic information about particular instances of a complex type in an XML
document. Instead, it enables you to obtain programmatically information about a particular complex type
defined in the XML schema.

Methods

Name Description

Attribute
findAttribute(String
localName, String
namespaceURI)

Finds the attribute with the specified local name and namespace
URI.

Element findElement(String
localName, String
namespaceURI)

Finds the element with the specified local name and namespace
URI.

Attribute[] GetAttributes() Returns a list of all attributes.

ComplexType getBaseType() Returns the base type of this type.

SimpleType getContentType() Returns the simple type of the content.

Element[] GetElements() Returns a list of all elements.

String getLocalName() Returns the local name of the type.

String getNamespaceURI() Returns the namespace URI of the type.

© 2018-2024 Altova GmbH

Generated Classes (Java) 1169Code Generator

Altova XMLSpy 2024 Enterprise Edition

28.4.5 com.altova.xml.meta.Element

This class enables you to access information about classes generated from schema elements. Note that this
class is not meant to provide dynamic information about particular instances of an element in an XML
document. Instead, it enables you to obtain programmatically information about a particular element defined in
the XML schema.

Methods

Name Description

ComplexType getDataType() Returns the type of the element. Note that this is always a
complex type even if declared as simple in the original schema.
Use getContentType() of the returned object to get the simple
content type.

String getLocalName() Returns the local name of the element.

int getMaxOccurs() Returns the maxOccurs value defined in the schema.

int getMinOccurs() Returns the minOccurs value defined in the schema.

String getNamespaceURI() Returns the namespace URI of the element.

28.4.6 com.altova.xml.meta.SimpleType

This class enables you to access schema information about classes generated from simple types. Note that
this class is not meant to provide dynamic information about particular instances of simple types in an XML
document. Instead, it enables you to obtain programmatically information about a particular simple type defined
in the XML schema.

Methods

Name Description

SimpleType getBaseType() Returns the base type of this type.

String[] getEnumerations() Returns an array of all enumeration facets.

int getFractionDigits() Returns the value of this facet.

int getLength() Returns the value of this facet.

String getLocalName() Returns the local name of the type.

String getMaxExclusive() Returns the value of this facet.

String getMaxInclusive() Returns the value of this facet.

int getMaxLength() Returns the value of this facet.

1170 Code Generator Generated Classes (Java)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

String getMinExclusive() Returns the value of this facet.

String getMinInclusive() Returns the value of this facet.

int getMinLength() Returns the value of this facet.

String getNamespaceURI() Returns the namespace URI of the type.

String[] getPatterns() Returns an array of all pattern facets.

int getTotalDigits() Returns the value of this facet.

int getWhitespace() Returns the value of the whitespace facet, which is one of:
com.altova.typeinfo.WhitespaceType.Whitespace_Unknown
com.altova.typeinfo.WhitespaceType.Whitespace_Preserv
e
com.altova.typeinfo.WhitespaceType.Whitespace_Replace
com.altova.typeinfo.WhitespaceType.Whitespace_Collaps
e

28.4.7 com.[YourSchema].[Doc]

When code is generated from an XML Schema, the generated code provides a document class with the same
name as the schema. This class contains all possible root elements as members, as well as the members
listed below. Note that, in the method names below, "Doc" stands for the name of the generated document
class itself.

Methods

Name Description

static Doc createDocument() Creates a new, empty XML document.

static void
declareAllNamespacesFromSchem
a(com.altova.xml.ElementType
node)

Declares all namespaces from the XML Schema on the element
supplied as argument (typically, the XML root element). Calling
this method is useful if your schema has multiple namespace
declarations, each mapped to a prefix, and you would like to
declare all of them on the element supplied as argument.

static Doc
loadFromBinary(byte[] xml)

Loads an XML document from a byte array.

static Doc
loadFromFile(String fileName)

Loads an XML document from a file.

static Doc
loadFromString(String xml)

Loads an XML document from a string.

byte[] saveToBinary(boolean
prettyPrint)

Saves an XML document to a byte array, with optional "pretty-
print" formatting.

© 2018-2024 Altova GmbH

Generated Classes (Java) 1171Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

byte[] saveToBinary(boolean
prettyPrint, String encoding)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding.

byte[] saveToBinary(boolean
prettyPrint, String encoding,
boolean bigEndian, boolean
writeBOM)

Saves an XML document to a byte array, with optional "pretty-
print" formatting, with the specified encoding. Byte order and
Unicode byte-order mark can be specified for Unicode encodings.

void saveToFile(String
fileName, boolean
prettyPrint)

Saves an XML document to a file, with optional "pretty-print"
formatting.

void saveToFile(String
fileName, boolean
prettyPrint, boolean
omitXmlDecl)

Saves an XML document to a file, with optional "pretty-print"
formatting, with UTF-8 encoding. When omitXmlDecl is true, the
XML declaration will not be written.

void saveToFile(String
fileName, boolean
prettyPrint, boolean
omitXmlDecl, String encoding)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. When omitXmlDecl is
true, the XML declaration will not be written.

void saveToFile(String
fileName, boolean
prettyPrint, boolean
omitXmlDecl, String encoding,
boolean bBigEndian, boolean
bBOM)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. When omitXmlDecl is
true, the XML declaration will not be written. Byte order and
Unicode byte-order mark can be specified for Unicode encodings.

void saveToFile(String
fileName, boolean
prettyPrint, String encoding)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding.

void saveToFile(String
fileName, boolean
prettyPrint, String encoding,
boolean bBigEndian, boolean
bBOM)

Saves an XML document to a file, with optional "pretty-print"
formatting, with the specified encoding. Byte order and Unicode
byte-order mark can be specified for Unicode encodings.

String saveToString(boolean
prettyPrint)

Saves an XML document to a string, with optional "pretty-print"
formatting.

String saveToString(boolean
prettyPrint, boolean
omitXmlDecl)

Saves an XML document to a string, with optional "pretty-print"
formatting. When omitXmlDecl is true, the XML declaration will
not be written.

void setSchemaLocation(String
schemaLocation)

Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute to the root element.
A root element must already exist.

1172 Code Generator Generated Classes (Java)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.4.8 com.[YourSchema].[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be
called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't
need to instantiate the class directly. Any element created using the append() or appendWithPrefix()

methods is of [ElementType] type.

Methods

Name Description

void declareNamespace(String
prefix, String nsURI)

This method takes two arguments that are both of string
type: the prefix and the namespace URI that you want to
use. The prefix supplied as argument will be mapped to the
namespace URI value supplied as argument. If the prefix
supplied as argument is empty, the method creates or
overrides the default namespace declaration in the
element.

For example, let's assume that the XML document has an
XML element called "purchase". If you call

purchase.declareNamespace("ord",
"http://OrderTypes");

then the XML document becomes

<purchase xmlns:ord="http://OrderTypes" />

Another example, if you call:

purchase.declareNamespace("",
"http://OrderTypes");

then the XML document becomes

<purchase xmlns="http://OrderTypes" />

Note: The declared namespace is used when appending
subsequent child elements or attributes, according
to the following rules:

1. If the child namespace is the default, then use
empty prefix.

2. If the child namespace is equal to the parent one,
then use the parent prefix.

3. Otherwise, search for nearest prefix from parent to

© 2018-2024 Altova GmbH

Generated Classes (Java) 1173Code Generator

Altova XMLSpy 2024 Enterprise Edition

Name Description

top, using the lookup algorithm described in
section "B.2: Namespace Prefix Lookup" at
https://www.w3.org/TR/2002/WD-DOM-Level-3-
Core-20021022/namespaces-algorithms.html.

4. If there is no prefix for element namespace found,
then use empty prefix.

28.4.9 com.[YourSchema].[YourSchemaType].MemberAttribute

When code is generated from an XML schema, a class is created for each member attribute of a type. In the
descriptions below, "AttributeType" stands for the type of the member attribute itself.

Methods

Name Description

boolean exists() Returns true if the attribute exists.

int getEnumerationValue() Generated for enumeration types only. Returns one of the
constants generated for the possible values, or Invalid if
the value does not match any of the enumerated values in
the schema.

com.altova.xml.meta.Attribute
getInfo()

Returns an object for querying schema information (see
com.altova.xml.meta.Attribute).

AttributeType getValue() Gets the attribute value.

void remove() Removes the attribute from its parent element.

void setEnumerationValue(int) Generated for enumeration types only. Pass one of the
constants generated for the possible values to this method
to set the value.

void setValue(AttributeType value) Sets the attribute value.

28.4.10 com.[YourSchema].[YourSchemaType].MemberElement

When code is generated from an XML schema, a class with the following members is created for each member
element of a type. In the descriptions below, "MemberType" stands for the type of the member element itself.

Methods

Name Description

MemberType append() Creates a new element and appends it to its parent.

1168

https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html
https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html

1174 Code Generator Generated Classes (Java)

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Description

MemberType appendWithPrefix(String
prefix)

Creates a new element having the prefix supplied as
argument, and appends it to its parent. For an example,
see Example: Purchase Order .

MemberType at(int index) Returns the instance of the member element at the
specified index.

int count() Returns the count of elements.

boolean exists() Returns true if at least one element exists.

MemberType first() Returns the first instance of the member element.

int getEnumerationValue() Generated for enumeration types only. Returns one of the
constants generated for the possible values, or Invalid if
the value does not match any of the enumerated values in
the schema.

com.altova.xml.meta.Element
getInfo()

Returns an object for querying schema information (see
com.altova.xml.meta.Element).

MemberType getValue() Gets the element content (only generated if element can
have simple or mixed content).

java.util.Iterator iterator() Returns an object for iterating instances of the member
element.

MemberType last() Returns the last instance of the member element.

void remove() Deletes all occurrences of the element from its parent.

void removeAt(int index) Deletes the occurrence of the element specified by the
index.

void setEnumerationValue(int

index)
Generated for enumeration types only. Pass one of the
constants generated for the possible values to this method
to set the value.

void setValue(MemberType value) Sets the element content (only generated if element can
have simple or mixed content).

1122

1169

© 2018-2024 Altova GmbH

SPL Reference 1175Code Generator

Altova XMLSpy 2024 Enterprise Edition

28.5 SPL Reference

This section gives you an overview of SPL (Spy Programming Language), code generator's template language.
It is assumed that you have prior programming experience, and are familiar with operators, functions, variables
and classes, as well as the basics of object-oriented programming - which is used heavily in SPL. You should
also have detailed knowledge of XML Schema.

The templates used by XMLSpy are supplied in the applications's spl folder. You can use these files as a

guide to developing your own templates.

How code generator works
Code is generated on the basis of the template files (.spl files) and the object model provided by XMLSpy. The

template files contain the code of the target programming language combined with SPL instructions for creating
files, reading information from the object model, and performing calculations.

The template file is interpreted by the code generator and outputs the source-code files of the target language/s
(that is, the non-compiled code files) and any other relevant project file or template-dependent file. The source
code can then be compiled into an executable file that accesses the XML data described by the schema file.

SPL files have access to a wide variety of information that is collated from the source schemas. Note that an
SPL file is not tied to a specific schema, but allows access to all schemas. So, make sure you write your SPL
files generically and avoid structures which apply to specific schemas.

Note about method names
When you customize code generation using the supplied SPL files, it might be necessary to reserve names to
avoid collisions with other symbols. Follow the instructions below:

1. Navigate to the program installation directory, for example, C:\Program Files\Altova\XMLSpy2024.
2. In the spl subdirectory, locate the directory corresponding to the programming language, for

example, ..\spl\java.

3. Open the settings.spl file and insert a new line into the reserve section, for example, reserve

"myReservedWord".

4. Regenerate the program code.

Example: Creating a new file in SPL
This is a very basic SPL file. It creates a file named test.cpp, and places the include statement within it. The

close command completes the template.

[create "test.cpp"]
#include "stdafx.h"
[close]

1176 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

28.5.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets '[' and ']'. Multiple statements can be included in a
bracket pair. Additional statements have to be separated by a new line or a colon ':'.

Valid examples are:

[$x = 42
$x = $x + 1]

or

[$x = 42: $x = $x + 1]

Adding text to files
Text not enclosed by [and], is written directly to the current output file. If there is no current output file, the
text is ignored (see Using files how to create an output file).

To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash use \\.

Comments
Comments inside an instruction block always begin with a ' character, and terminate on the next line, or at a
block close character].

28.5.2 Declarations

The following statements are evaluated while parsing the SPL template file. They are not affected by flow
control statements like conditions, loops or subroutines, and are always evaluated exactly once.

These keywords, like all keywords in SPL, are not case sensitive.

Remember that all of these declarations must be inside a block delimited by square brackets.

map ... to ...

map mapname key to value [, key to value]...

This statement adds information to a map. See below for specific uses.

map schemanativetype schematype to typespec

1180

© 2018-2024 Altova GmbH

SPL Reference 1177Code Generator

Altova XMLSpy 2024 Enterprise Edition

The specified built-in XML Schema type will be mapped to the specified native type or class, using the specified
formatter. This setting applies only to code generation for version 2007r3 and higher. Typespec is a native type
or class name, followed by a comma, followed by the formatter class instance.

Example:

map schemanativetype "double" to "double,Altova::DoubleFormatter"

map type ... to ...

map type schematype to classname

The specified built-in XML Schema type will be mapped to the specified class. This setting applies only to code
generation for version 2007 or lower.

Example:

map type "float" to "CSchemaFloat"

default ... is ...

default setting is value

This statement allows you to affect how class and member names are derived from the XML Schema. Note that
the setting names are case sensitive.

Example:

default "InvalidCharReplacement" is "_"

Setting name Explanation

ValidFirstCharSet Allowed characters for starting an identifier

ValidCharSet Allowed characters for other characters in an identifier

InvalidCharReplacement The character that will replace all characters in names that are not in the
ValidCharSet

AnonTypePrefix Prefix for names of anonymous types*

AnonTypeSuffix Suffix for names of anonymous types*

ClassNamePrefix Prefix for generated class names

1178 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Setting name Explanation

ClassNameSuffix Suffix for generated class names

EnumerationPrefix Prefix for symbolic constants declared for enumeration values

EnumerationUpperCase "on" to convert the enumeration constant names to upper case

FallbackName If a name consists only of characters that are not in ValidCharSet, use this
one

* Names of anonymous types are built from AnonTypePrefix + element name + AnonTypeSuffix

reserve

reserve word

Adds the specified word to the list of reserved words. This ensures that it will never be generated as a class or
member name.

Example:

reserve "while"

include
includes the specified file as SPL source. This allows you to split your template into multiple files for easier
editing and handling.

include filename

Example:

include "Module.cpp"

28.5.3 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code generator, and new
variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed by $. Variable
names are case sensitive.

Variables types:

· integer - also used as boolean, where 0 is false and everything else is true

1179

© 2018-2024 Altova GmbH

SPL Reference 1179Code Generator

Altova XMLSpy 2024 Enterprise Edition

· string
· object - provided by XMLSpy
· iterator - see foreach statement

Variable types are declared by first assignment:

[$x = 0]

x is now an integer.

[$x = "teststring"]

x is now treated as a string.

Strings
String constants are always enclosed in double quotes, like in the example above. \n and \t inside double
quotes are interpreted as newline and tab, \" is a literal double quote, and \\ is a backslash. String constants
can also span multiple lines.

String concatenation uses the & character:

[$BasePath = $outputpath & "/" & $JavaPackageDir]

Objects
Objects represent the information contained in the XML schema. Objects have properties, which can be
accessed using the . operator. It is not possible to create new objects in SPL (they are predefined by the code
generator, derived from the input schema), but it is possible to assign objects to variables.

Example:

class [=$class.Name]

This example outputs the word "class", followed by a space and the value of the Name property of the $class
object.

28.5.4 Predefined variables

After a Schema file is analyzed by the code generator, the objects in the table below exist in the Template
Engine.

Name Type Description

$schematype integer 1 for DTD, 2 for XML Schema

$TheLibrary Library The library derived from the XML Schema or DTD

$module string Name of the source Schema without extension

1184

1188

1180 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Name Type Description

$outputpath string The output path specified by the user, or the default output
path

For C++ generation only:

Name Type Description

$domtype integer 1 for MSXML, 2 for Xerces

$libtype integer 1 for static LIB, 2 for DLL

$mfc boolean True if MFC support is enabled

$VSVersion integer Specifies the Visual Studio version. Valid values:

0 No Visual Studio project

2010 Visual Studio 2010

2013 Visual Studio 2013

2015 Visual Studio 2015

2017 Visual Studio 2017

2019 Visual Studio 2019

For C# generation only:

Name Type Description

$VSVersion integer Specifies the Visual Studio version. Valid values:

0 No Visual Studio project

2010 Visual Studio 2010

2013 Visual Studio 2013

2015 Visual Studio 2015

2017 Visual Studio 2017

2019 Visual Studio 2019

28.5.5 Creating output files

These statements are used to create output files from the code generation. Remember that all of these
statements must be inside a block delimited by square brackets.

© 2018-2024 Altova GmbH

SPL Reference 1181Code Generator

Altova XMLSpy 2024 Enterprise Edition

create

create filename

creates a new file. The file has to be closed with the close statement. All following output is written to the
specified file.

Example:

[create $outputpath & "/" & $JavaPackageDir & "/" & $application.Name & ".java"]

package [=$JavaPackageName];

public class [=$application.Name]Application {
...
}
[close]

close

closes the current output file.

=$variable

writes the value of the specified variable to the current output file.

Example:

[$x = 20+3]
The result of your calculation is [=$x] - so have a nice day!

The file output will be:

The result of your calculation is 23 - so have a nice day!

write

write string

writes the string to the current output file.

Example:

1182 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

[write "C" & $name]

This can also be written as:

C[=$name]

filecopy ... to ...

filecopy source to target

copies the source file to the target file, without any interpretation.

Example:

filecopy "java/mapforce/mapforce.png" to $outputpath & "/" & $JavaPackageDir &
"/mapforce.png"

28.5.6 Operators

Operators in SPL work like in most other programming languages.

List of SPL operators in descending precedence order:

. Access object property
() Expression grouping
true boolean constant "true"
false boolean constant "false"

& String concatenation

- Sign for negative number
not Logical negation

* Multiply
/ Divide
% Modulo

+ Add
- Subtract

<= Less than or equal
< Less than
>= Greater than or equal
> Greater than

= Equal

© 2018-2024 Altova GmbH

SPL Reference 1183Code Generator

Altova XMLSpy 2024 Enterprise Edition

<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

= Assignment

28.5.7 Conditions

SPL allows you to use standard "if" statements. The syntax is as follows:

if condition

statements
else

statements
endif

or, without else:

if condition

statements
endif

Note: There are no round brackets enclosing the condition.

As in any other programming language, conditions are constructed with logical and comparison operators .

Example:

[if $namespace.ContainsPublicClasses and $namespace.Prefix <> ""]
whatever you want ['inserts whatever you want, in the resulting file]

[endif]

Switch
SPL also contains a multiple choice statement.

Syntax:

1182

1184 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

switch $variable

case X:

statements
case Y:

case Z:

statements
default:

statements
endswitch

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a "break"
statement.

28.5.8 Collections and foreach

Collections and iterators
 A collection contains multiple objects - like a ordinary array. Iterators solve the problem of storing and
incrementing array indexes when accessing objects.

Syntax:

foreach iterator in collection

statements
next

Example:

[foreach $class in $classes

if not $class.IsInternal

] class [=$class.Name];
[endif

next]

Example 2:

[foreach $i in 1 To 3

 Write "// Step " & $i & "\n"

 ‘ Do some work
next]

In the first line:

$classes is the global object of all generated types. It is a collection of single class objects.
1179

© 2018-2024 Altova GmbH

SPL Reference 1185Code Generator

Altova XMLSpy 2024 Enterprise Edition

Foreach steps through all the items in $classes, and executes the code following the instruction, up to the
next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class object instead of
using, classes[i]->Name(), as you would in C++.

All collection iterators have the following additional properties:

Index The current index, starting with 0

IsFirst true if the current object is the first of the collection (index is 0)

IsLast true if the current object is the last of the collection

Current The current object (this is implicit if not specified and can be left out)

Example:

[foreach $enum in $facet.Enumeration

if not $enum.IsFirst

], [
endif

]"[=$enum.Value]"[
next]

28.5.9 Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:

· By-value and by-reference passing of values
· Local/global parameters (local within subroutines)
· Local variables
· Recursive invocation (subroutines may call themselves)

28.5.9.1 Subroutine declaration

Subroutines

Syntax example:

Sub SimpleSub()

... lines of code
 EndSub

· Sub is the keyword that denotes the procedure.
· SimpleSub is the name assigned to the subroutine.
· Round parenthesis can contain a parameter list.

1186 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The code block of a subroutine starts immediately after the closing parameter parenthesis.
· EndSub denotes the end of the code block.

Note: Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may not contain
another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

· All parameters must be variables
· Variables must be prefixed by the $ character
· Local variables are defined in a subroutine
· Global variables are declared explicitly, outside of subroutines
· Multiple parameters are separated by the comma character "," within round parentheses
· Parameters can pass values

Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords ByVal and ByRef
respectively.

Syntax:

' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
] ...

· ByVal specifies that the parameter is passed by value. Note that most objects can only be passed by
reference.

· ByRef specifies that the parameter is passed by reference. This is the default if neither ByVal nor
ByRef is specified.

Function return values
To return a value from a subroutine, use the return statement. Such a function can be called from within an
expression.

Example:

' define a function
[Sub MakeQualifiedName(ByVal $namespacePrefix, ByVal $localName)
if $namespacePrefix = ""
 return $localName
else
 return $namespacePrefix & ":" & $localName
endif
EndSub
]

© 2018-2024 Altova GmbH

SPL Reference 1187Code Generator

Altova XMLSpy 2024 Enterprise Edition

28.5.9.2 Subroutine invocation

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.

Call SimpleSub()

or

Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name inside an
expression. Do not use the call statement to call functions. Example:

$QName = MakeQualifiedName($namespace, "entry")

28.5.9.3 Subroutine example

The following example shows subroutine declaration and invocation.

[create $outputpath & $module & "output.txt"

' define sub SimpleSub()
Sub SimpleSub()
]SimpleSub() called
[endsub

' execute sub SimpleSub()
Call SimpleSub()

$ParamByValue = "Original Value"
]ParamByValue = [=$ParamByValue]
[$ParamByRef = "Original Value"
]ParamByRef = [=$ParamByRef]

' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
]CompleteSub called.

param = [=$param]

paramByValue = [=$paramByValue]

paramByRef = [=$paramByRef]
[$ParamByRef = "Local Variable"
$paramByValue = "new value"
$paramByRef = "new value"
] Set values inside Sub
[$ParamByRef = "Local Variable"

1188 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

$paramByValue = "new value"
$paramByRef = "new value"
]CompleteSub finished.
[endsub

' run sub CompleteSub()
Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)
]
ParamByValue=[=$ParamByValue]
ParamByRef=[=$ParamByRef]
[
Close
]

28.5.10 Built in Types

The section describes the properties of the built-in types used in the predefined variables which describe the
parsed schema.

28.5.10.1 Library

This object represents the whole library generated from the XML Schema or DTD.

Property Type Description

SchemaNamespaces Namespace
collection

Namespaces in this library

SchemaFilename string Name of the XSD or DTD file this library is derived from

SchemaType integer 1 for DTD, 2 for XML Schema

Guid string A globally unique ID

CodeName string Generated library name (derived from schema file name)

28.5.10.2 Namespace

One namespace object per XML Schema namespace is generated. Schema components that are not in any
namespace are contained in a special namespace object with an empty NamespaceURI. Note that for DTD,
namespaces are also derived from attributes whose names begin with "xmlns".

Property Type Description

CodeName string Name for generated code (derived from prefix)

LocalName string Namespace prefix

1179

1188

© 2018-2024 Altova GmbH

SPL Reference 1189Code Generator

Altova XMLSpy 2024 Enterprise Edition

Property Type Description

NamespaceURI string Namespace URI

Types Type
collection

All types contained in this namespace

Library Library Library containing this namespace

28.5.10.3 Type

This object represents a complex or simple type. It is used to generate a class in the target language. There is
one additional type per library that represents the document, which has all possible root elements as members.

Anonymous types have an empty LocalName.

Property Type Description

CodeName string Name for generated code (derived from local
name or parent declaration)

LocalName string Original name in the schema

Namespace Namespace Namespace containing this type

Attributes Member
collection

Attributes contained in this type*

Elements Member
collection

Child elements contained in this type

IsSimpleType boolean True for simple types, false for complex types

IsDerived boolean True if this type is derived from another type,
which is also represented by a Type object

IsDerivedByExtension boolean True if this type is derived by extension

IsDerivedByRestriction boolean True if this type is derived by restriction

IsDerivedByUnion boolean True if this type is derived by union

IsDerivedByList boolean True if this type is derived by list

BaseType Type The base type of this type (if IsDerived is true)

IsDocumentRootType boolean True if this type represents the document itself

Library Library Library containing this type

IsFinal boolean True if declared as final in the schema

IsMixed boolean True if this type can have mixed content

1189

1188

1188

1190

1190

1188

1190 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Property Type Description

IsAbstract boolean True if this type is declared as abstract

IsGlobal boolean True if this type is declared globally in the
schema

IsAnonymous boolean True if this type is declared locally in an element

For simple types only:

Property Type Description

IsNativeBound boolean True if native type binding exists

NativeBinding NativeBinding Native binding for this type

Facets Facets Facets of this type

Whitespace string Shortcut to the Whitespace facet

* Complex types with text content (these are types with mixed content and complexType with simpleContent)
have an additional unnamed attribute member that represents the text content.

28.5.10.4 Member

This object represents an attribute or element in the XML Schema. It is used to create class members of types.

Property Type Description

CodeName string Name for generated code (derived from local
name or parent declaration)

LocalName string Original name in the schema. Empty for the
special member representing text content of
complex types.

NamespaceURI string The namespace URI of this Element/Attribute
within XML instance documents/streams.

DeclaringType Type Type originally declaring the member (equal to
ContainingType for non-inherited members)

ContainingType Type Type where this is a member of

DataType Type Data type of this member's content

Library Library Library containing this member's DataType

IsAttribute boolean True for attributes, false for elements

IsOptional boolean True if minOccurs = 0 or optional attribute

1191

1191

1189

1189

1189

1188

© 2018-2024 Altova GmbH

SPL Reference 1191Code Generator

Altova XMLSpy 2024 Enterprise Edition

Property Type Description

IsRequired boolean True if minOccurs > 0 or required attribute

IsFixed boolean True for fixed attributes, value is in Default
property

IsDefault boolean True for attributes with default value, value is in
Default property

IsNillable boolean True for nillable elements

IsUseQualified boolean True if NamespaceURI is not empty

MinOccurs integer minOccurs, as in schema. 1 for required
attributes

MaxOccurs integer maxOccurs, as in schema. 0 for prohibited
attributes, -1 for unbounded

Default string Default value

28.5.10.5 NativeBinding

This object represents the binding of a simple type to a native type in the target programming language, as
specified by the "schemanativetype" map.

Property Type Description

ValueType string Native type

ValueHandler string Formatter class instance

28.5.10.6 Facets

This object represents all facets of a simple type. Inherited facets are merged with the explicitly declared
facets. If a Length facet is in effect, MinLength and MaxLength are set to the same value.

Property Type Description

DeclaringType Type Type facets are declared on

Whitespace string "preserve", "collapse" or "replace"

MinLength integer Facet value

MaxLength integer Facet value

MinInclusive integer Facet value

1192 Code Generator SPL Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Property Type Description

MinExclusive integer Facet value

MaxInclusive integer Facet value

MaxExclusive integer Facet value

TotalDigits integer Facet value

FractionDigits integer Facet value

List Facet collection All facets as list

Facet
This object represents a single facet with its computed value effective for a specific type.

Property Type Description

LocalName string Facet name

NamespaceURI string Facet namespace

FacetType string one of "normalization", "lexicalspace",
"valuespace-length", "valuespace-enum" or
"valuespace-range"

DeclaringType Type Type this facet is declared on

FacetCheckerName string Name of facet checker (from schemafacet map)

FacetValue string or integer Actual value of this facet

1189

© 2018-2024 Altova GmbH

 1193Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29 Menu Commands

This section contains a complete description of all XMLSpy menu commands. In addition to the general
description of a command, we have attempted to explain relevant background where this has been thought to
be necessary or of use. If, however, you have a question that is not answered in this documentation, please
look up the FAQs and Discussion Forums on the Altova website. If you are not able to find a suitable answer at
these locations, do not hesitate to contact the Altova Support Center .

Standard Windows commands, such as (Open, Save, Cut, Copy and Paste) are in the File and Edit
menus. These menus additionally contain XML- and Internet-related commands.

1570

1194 1215

https://www.altova.com/support
https://www.altova.com/forum/
https://www.altova.com/

1194 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.1 File Menu

The File menu contains commands for file operations, ordered as in most Windows applications. In addition to
the standard New , Open , Save , Print , Print Setup , and Exit commands, XMLSpy also
offers XML-specific and application-specific commands.

29.1.1 New

This section:

· Icon and shortcut
· Description
· Templates for new documents
· Assigning a DTD or XML Schema to a new XML document
· Specifying the root element of a new XML document
· Assigning an SPS to a new XML document
· Creaing new XBRL taxonomies with the XBRL Taxonomy Wizard

1194 1199 1205 1211 1213 1214

1195

1195

1195

1196

1197

1198

1199

© 2018-2024 Altova GmbH

File Menu 1195Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Icon and shortcut

Icon:

Shortcut: Ctrl+N

Description
The New command is used to create a new document. Clicking New opens the Create New Document dialog
(screenshot below), in which you can select the type of document you wish to create (from among 80+ types
by file extension). If the document type you wish to create is not listed in the dialog, select XML and change
the file extension when you save the file. Note that you can add new document types to this dialog list using
the Tools | Options | File Types section .

Templates for new documents
The document-type list of the Create New Document dialog can also contain entries for user-defined document
templates of any document type. These templates can be opened directly from the Create New Document
dialog and edited. To create your own document template so that it appears in the list of document types in the
Create New Document dialog, first create the template document and then save it to document templates
folder: the Template folder of the application folder .

Create a document template as follows:

1. Open the Template folder of the application folder using Windows Explorer or your preferred
navigation tool, and select a rudimentary template file from among the files named new.xxx (where

.xxx is a file extension, such as .xml or .xslt).
2. Open the file in XMLSpy, and modify the file as required. This file will be the template file.

1516

34

34

1196 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. After you have finished, select File | Save as to save the file back to the Template folder with a
suitable name, say MyXMLTemplate.xml. You now have a document template called MyXMLTemplate,
which will appear in the list of document types in the Create New Document dialog.

4. To open the template, select File | New, and then the template (my-xml, in this case).

To delete a document template from the list of document types, delete (or move) the template file from the
template folder.

Assigning a DTD or XML Schema to a new XML document
When you create a new document of a certain type (say .xsd), then the new document will be created with the
necessary schema assignments (DTD or XML Schema)—if these have been defined in the document type's
specification. For example, an XHTML 1.0 Strict document will be assigned the DTD
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd since this is the assignment defined in the XHTML
specification for XHTML 1.0 Strict documents.

However, not every document type is associated with a specific schema—or can be associated with a schema
at all. For example, a text file does not have a schema association. And an XML file can be assigned any
schema by which it should be valid. If you are creating a new document for which the schema may be freely
chosen (for example, a new XML document), then you are prompted to assign a schema (DTD or XML Schema)
to the new document (screenshot below). This assignment will be written into the document and the chosen
schema will be used from this point onwards for validating the document. Subsequently, you can use the menu
command DTD/Schema | Assign DTD or DTD/Schema | Assign Schema to change the assigned
schema.

1285 1286

© 2018-2024 Altova GmbH

File Menu 1197Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The following options are available:

· Assign Schema/DTD File: Browse for the XML Schema or DTD file you want to assign. Note that you
can make the assignment in the document a relative or absolute path.

· Assign Packaged Schema: Some schemas are each actually a package of schema files rather than a
single schema file. The Assign Packaged Schema option opens a dialog that lists the schema
packages supported by Altova's Schema Manager . In this dialog, schemas listed in black have
already been installed on your machine, those in blue have not been installed and can be installed by
Schema Manager . When you select a schema package or one of its schema entry points and click
OK, the following happens: The schema package will be installed if it has not already been installed.
The selected schema package (previously installed or newly installed) will be assigned to the
document and will be used from this point onwards for document validation.

· Cancel: If a new file is being created, then it is created with no XML Schema or DTD assignment. If the
schema assignment is for an already existing document, then the dialog is exited.

Specifying the root element of a new XML document
If an XML Schema is selected as the associated schema of an XML document and if this schema has more
than one global element, each of these is a potential root element. In this case, the Select a Root Element
dialog (screenshot below) pops up, in which you can select which global element is to be the root element of
the XML document. In the screenshot below, the OrgChart global element is selected.

420

420

1198 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Clicking OK now will create a new XML document with this element (OrgChart) as its root element.

Assigning an SPS to a new XML document
When a new XML document is created, you can associate a StyleVision Power Stylesheet (.sps file) to view
the document in Authentic View. In the Create New Document dialog (see first screenshot in this section),
when you click the Select StyleVision Stylesheet, the Create New Document dialog (shown below) appears.

© 2018-2024 Altova GmbH

File Menu 1199Menu Commands

Altova XMLSpy 2024 Enterprise Edition

You can browse for the required SPS in the folder tabs, or you can click the Browse button to navigate for and
select the SPS.

Creating new XBRL taxonomies with the XBRL Taxonomy Wizard
In the Create a New Document dialog, if XBRL Taxonomy Schema (.xsd) is selected, then a wizard guides you
through the steps for creating a new XBRL taxonomy. Ths wizard is described in the XBRL section of the
documentation.

29.1.2 Open

Icon and shortcut

Icon:

Shortcut: Ctrl+O

Description
The Open command pops up the familiar Windows Open dialog, and allows you to open any XML-related
document or text document. In the Open dialog, you can select more than one file to open. Use the Files of
Type combo box to restrict the kind of files displayed in the dialog box. (The list of available file types can be
configured in the File Types section of the Options dialog (Tools | Options).) When an XML file is opened, it
is checked for well-formedness. If the file is not well-formed, you will get a file-not-well-formed error. Fix the error
and select the menu command XML | Check Well-Formedness (F7) to recheck. If you have opted for
automatic validation upon opening and the file is invalid, you will get an error message. Fix the error and
select the menu command XML | Validate XML (F8) to revalidate.

Selecting and saving files via URLs and Global Resources

In several File Open and File Save dialogs, you can choose to select the required file or save a file via a
URL or a global resource (see screenshot below). Click Switch to URL or Global Resource to go to one
of these selection processes.

793

1516

1268

1514

1275

1200 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Selecting files via URLs
To select a file via a URL (either for opening or saving), do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open or Save dialog
(the screenshot below shows the Open dialog).

© 2018-2024 Altova GmbH

File Menu 1201Menu Commands

Altova XMLSpy 2024 Enterprise Edition

2. Enter the URL you want to access in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this
type of server.

3. If the server is password protected, enter your User-ID and password in the User and Password
fields.

4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

1202 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The file URL appears in the File URL field (see screenshot above). The Open or Save button only
becomes active at this point.

6. Click Open to load the file or Save to save it.

Note the following:

· The Browse function is only available on servers which support WebDAV and on Microsoft
SharePoint Servers. The supported protocols are FTP, HTTP, and HTTPS.

· To give you more control over the loading process when opening a file, you can choose to load the
file through the local cache or a proxy server (which considerably speeds up the process if the file
has been loaded before). Alternatively, you may want to reload the file if you are working, say,
with an electronic publishing or database system; select the Reload option in this case.

.

Microsoft® SharePoint® Server Notes

Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons
have symbols that indicate the check-in/check-out status of files.

© 2018-2024 Altova GmbH

File Menu 1203Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Right-clicking a file pops up a context menu containing commands available for that file
(screenshot above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot
above), or via the context menu that pops up when you right-click the file tab in the Main Window
of your application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

1204 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova

application. The file is considered to be already checked out to you. The available commands at
this point in any Altova application supporting Microsoft® SharePoint® Server will be: Check In
and Undo Check Out.

Opening and saving files via Global Resources

To open or save a file via a global resources, click Global Resource. This pops up a dialog in which you
can select the global resource. These dialogs are described in the section, Using Global Resources .
For a general description of Global Resources, see the Global Resources section in this
documentation.

29.1.3 Reload

Icon

Icon:

Description
Reloads any open documents that have modified outside XMLSpy. If one or more documents is modified
outside XMLSpy, a prompt appears asking whether you wish to reload the modified document/s. If you choose
to reload, then any changes you may have made to the file since the last time it was saved will be lost.

29.1.4 Encoding

The Encoding command lets you: (i) view the current encoding of the active document (XML or non-XML), and
(ii) select a different encoding with which the active document will be saved the next time.

In XML documents, if you select a different encoding than the one currently in use, the encoding attribute in the
XML declaration will be modified accordingly. For two-byte and four-byte character encodings (UTF-16, UCS-2,
and UCS-4) you can also specify the byte-order to be used for the file. Another way to change the encoding of

1003

991

© 2018-2024 Altova GmbH

File Menu 1205Menu Commands

Altova XMLSpy 2024 Enterprise Edition

an XML document is to directly edit the encoding attribute of the document's XML declaration. Default
encodings for existing and new XML and non-XML documents can be set in the Encoding section of the
Options dialog .

Note: When saving a document, XMLSpy automatically checks the encoding specification and enables you
to select the required encoding via the Encoding dialog. If your document contains characters that
cannot be represented in the selected encoding and you attempt to save the file, you will get a warning
message to this effect.

29.1.5 Close, Close All, Close All But Active

Close
The Close command closes the active document window. If the file was modified (indicated by an asterisk *
after the file name in the title bar), you will be asked if you wish to save the file first.

Close All
The Close All command closes all open document windows. If any document has been modified (indicated by
an asterisk * after the file name in the title bar), you will be asked if you wish to save the file first.

Close All But Active
The Close All But Active command closes all open document windows except the active document window. If
any document has been modified (indicated by an asterisk * after the file name in the title bar), you will be

asked if you wish to save the file first.

29.1.6 Save, Save As, Save All

Icons and shortcuts

Command Icon Shortcut

Save Ctrl+S

Save All

Save
The Save command (Ctrl+S) saves the contents of the active document to the file from which it has been
opened. When saving a document, the file is automatically checked for well-formedness . The file will also be
validated automatically if this option has been set in the File section of the Options dialog (Tools | Options
). The XML declaration is also checked for the encoding specification, and this encoding is applied to the
document when the file is saved.

1519

1268

1514

1519

1206 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Save As
The Save As command pops up the familiar Windows Save As dialog box, in which you enter the name and
location of the file you wish to save the active file as. The same checks and validations occur as for the Save
command.

Save All
The Save All command saves all modifications that have been made to any open documents. The command is
useful if you edit multiple documents simultaneously. If a document has not been saved before (for example,
after being newly created), the Save As dialog box is presented for that document.

Selecting and saving files via URLs and Global Resources

In several File Open and File Save dialogs, you can choose to select the required file or save a file via a
URL or a global resource (see screenshot below). Click Switch to URL or Global Resource to go to one
of these selection processes.

© 2018-2024 Altova GmbH

File Menu 1207Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Selecting files via URLs
To select a file via a URL (either for opening or saving), do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open or Save dialog
(the screenshot below shows the Open dialog).

2. Enter the URL you want to access in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this
type of server.

3. If the server is password protected, enter your User-ID and password in the User and Password
fields.

4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

1208 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The file URL appears in the File URL field (see screenshot above). The Open or Save button only
becomes active at this point.

6. Click Open to load the file or Save to save it.

Note the following:

· The Browse function is only available on servers which support WebDAV and on Microsoft
SharePoint Servers. The supported protocols are FTP, HTTP, and HTTPS.

· To give you more control over the loading process when opening a file, you can choose to load the
file through the local cache or a proxy server (which considerably speeds up the process if the file
has been loaded before). Alternatively, you may want to reload the file if you are working, say,
with an electronic publishing or database system; select the Reload option in this case.

.

Microsoft® SharePoint® Server Notes

Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons
have symbols that indicate the check-in/check-out status of files.

© 2018-2024 Altova GmbH

File Menu 1209Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Right-clicking a file pops up a context menu containing commands available for that file
(screenshot above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot
above), or via the context menu that pops up when you right-click the file tab in the Main Window
of your application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

1210 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova

application. The file is considered to be already checked out to you. The available commands at
this point in any Altova application supporting Microsoft® SharePoint® Server will be: Check In
and Undo Check Out.

Opening and saving files via Global Resources

To open or save a file via a global resources, click Global Resource. This pops up a dialog in which you
can select the global resource. These dialogs are described in the section, Using Global Resources .
For a general description of Global Resources, see the Global Resources section in this
documentation.

29.1.7 Send by Mail

Icon

Icon:

Description
The Send by Mail command lets you send XML document/s or selections from an XML document by e-mail.
Depending on what kind it is, a document or selection can be sent as an attachment, content, or as a link. See
the table below for details.

What can be sent How it can be sent

Active XML document As e-mail attachment

Selection in active XML document As e-mail attachment or e-mail content

One or more files in Project window As e-mail attachment

One or more URLs in Project window As e-mail attachment or link

When the Send by Mail command is invoked on a selection in the active XML document, the Send by Mail
dialog (screenshot below) pops up and offers the sending options shown in the screenshot. If the Send by Mail
command is invoked with no text selected in the active file, then the Whole File radio button (refer to
screenshot above) is the only option that is enabled; the other options are disabled.

1003

991

© 2018-2024 Altova GmbH

File Menu 1211Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Since files sent from the Project window are always sent as e-mail attachments only, the Send by Email dialog
is skipped and an e-mail is opened that has the selected file/s as attachments. URLs in the project window can
be sent as an attachment or as a link (see screenshot below). Select how the URL is to be sent and click OK.

29.1.8 Print

Icon and shortcut

Icon:

Shortcut: Ctrl+P

Description
The Print command opens the printer's dialog for selecting print options.

In Grid View, the command opens a Print options dialog (screenshot below). Clicking Print in this dialog takes
you to the printer's dialog for selecting print options (see the Print Setup command).1213

1212 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The available options for Grid View printing are described below:

· What to print: Whether the current selection or the entire document is to be printed.
· Oversized grid: Here you can select what to do if contents are wider than the page: (i) Split pages

prints the entire document at normal size, splitting contents over pages both horizontally and vertically.
The pages could then be glued together to form a poster. (ii) Cut horizontally prints only the first, left-
hand page of the print area. The area that overflows horizontally is not printed. This option is useful if
most of the important information in your Grid View of the document is contained on the left side. (iii)
Shrink horizontally reduces the size of the output (proportionally) until it fits horizontally on the page;
the document may run on for several pages. (iv) Shrink both directions option shrinks the document in
both directions until it fits exactly on one sheet.

· The Print button takes you to the printer's dialog for selecting print options.
· The Preview button opens a print preview window that lets you view the final output before committing

it to paper.
· The Print Setup button opens the Print Setup dialog box and allows you to adjust the paper format,

orientation, and other printer options for this print job only. Also see the Print Setup command.

Note: You can change column widths in Grid View to optimize the print output.

Program logo
If you have a purchased license, you can turn off the program logo, copyright notice, and registration details
when printing a document from XMLSpy. This option is available in the View section of the Options dialog .

SDL and XBRL designs
Graphical views of WSDL and XBRL documents, as seen on screen, can also be printed using the Print
command.

1213

1528

© 2018-2024 Altova GmbH

File Menu 1213Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.1.9 Print Preview, Print Setup

Print Preview
The Print Preview command clicked in Text View, Authentic View, and Browser View opens a print preview of
the currently active document. From Grid View, Schema View, WSDL View, and XBRL View, it opens the Print
dialog box, in which you can select print options and then click the Preview button to get the print preview.

In Print Preview mode, the Print Preview toolbar at top left of the preview window provides print- and preview-
related options. The preview can be magnified or miniaturized using the the Zoom In and Zoom Out buttons.
When the page magnification is such that an entire page length fits in a preview window, then the One Page /
Two Page button toggles the preview to one or two pages at a time. The Next Page and Previous Page
buttons can be used to navigate among the pages. The toolbar also contains buttons to print all pages and to
close the preview window.

Note: To enable background colors and images in Print Preview, do the following: (i) In the Tools menu of
Internet Explorer, click Internet Options, and then click the Advanced tab; (ii) In the Settings box,
under Printing, select the Print background colors and images check box, and (iii) Then click OK.

Print Setup
The Print Setup command, displays the printer-specific Print Setup dialog box, in which you specify such
printer settings as paper format and page orientation. These settings are applied to all subsequent print jobs.

1214 Menu Commands File Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.1.10 Recent Files, Exit

Recent Files
At the bottom of the File menu is a list of the nine most recently used files, with the most recently opened file
shown at the top of the list. You can open any of these files by clicking its name. To open a file in the list using
the keyboard, press Alt+F to open the File menu, and then press the number of the file you want to open.

Exit
Quits XMLSpy. If you have any open files with unsaved changes, you are prompted to save these changes.
XMLSpy also saves modifications to program settings and information about the most recently used files.

© 2018-2024 Altova GmbH

Edit Menu 1215Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.2 Edit Menu

The Edit menu contains commands for editing documents in XMLSpy. These include the familiar Undo ,
Redo , Cut , Copy , Paste , Delete , Select All , Find , Find Next and Replace
commands.

XMLSpy also offers special commands to:

· copy a selection to the clipboard as XML text ,
· copy as tab/separated text

1216

1216 1216 1216 1216 1216 1224 1224 1224 1230

1217

1218

1216 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· copy an XPath selector to the selected item to the clipboard.
· insert and remove bookmarks, and to navigate to bookmarks.

29.2.1 Undo, Redo

Icons and shortcuts

Command Icon Shortcut

Undo Ctrl+Z

Redo Ctrl+Y

Undo
The Undo command contains support for unlimited levels of Undo. Every action can be undone and it is
possible to undo one command after another. The Undo history is retained after using the Save command,
enabling you go back to the state the document was in before you saved your changes. You can step
backwards and forwards through this history using the Undo and Redo commands (see Redo command
below).

Redo
The Redo command allows you to redo previously undone commands, thereby giving you a complete history of
work completed. You can step backwards and forwards through this history using the Undo and Redo
commands.

29.2.2 Cut, Copy, Paste, Delete

Icons and shortcuts

Command Icon Shortcut

Cut Ctrl+X or Shift+Del

Copy Ctrl+C

Paste Ctrl+V

Delete Del

Cut
The Cut command copies the selected text or items to the clipboard and deletes them from their present
location.

1219

© 2018-2024 Altova GmbH

Edit Menu 1217Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Copy
The Copy command copies the selected text or items to the clipboard. This can be used to duplicate data
within XMLSpy or to move data to another application.

Note: When copying from Grid View, the selection is copied using one of two methods: Copy as XML
Text and Copy as Tab-Separated Text . The former copies the selection as XML text; the
latter copies the selection as a table. Which of these two methods is used when the Copy command
is invoked is specified in the Editing section of the Tools | Options dialog .

Paste
The Paste command inserts the contents of the clipboard at the current cursor position.

Delete
The Delete command deletes the currently selected text or items without placing them in the clipboard.

29.2.3 Copy as XML/JSON Text

The Copy as XML/JSON Text command copies XML or JSON data from Grid View as XML text (shown in the
listing below) or JSON text. The text will be copied to the clipboard with its markup, and can be pasted to
other document locations. Note that this command is available in Grid View only.

<row>

 <para align="left">

 <bold>Check the FAQ</bold>

 </para>

 <para>

 <link mode="internal">

 <link_section>support</link_section>

 <link_subsection>faq2020</link_subsection>

 <link_text>XMLSPY 2020 FAQ</link_text>

 </link>

 <link mode="internal">

 <link_section>support</link_section>

 <link_subsection>faq2021</link_subsection>

 <link_text>XMLSPY 2021 FAQ</link_text>

 </link>

 </para>

</row>

The formatting of the text follows the currently active pretty-printing settings, which are specified in the Options
dialog (Tools | Options). The same effect can be obtained by switching to Text View and copying an XML
text fragment with Ctrl+C (Edit | Copy).

1217 1218

1520

1521

1218 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.2.4 Copy as Tab-Separated Text

The Copy as Tab-separated Text command is enabled only when the selection is a range of cells in the
Table Display of XML Grid View and JSON Grid View . It can be used to copy table-like data in tabular
form and to spreadsheet applications.

The screenshots below show how two rows in Table Display are copied as tab-separated text.

The next two screenshots below show the data pasted as tab-separated text into a Microsoft Excel document
and a Notepad document, respectively

Notice that while Excel (screenshot above) automatically formats each cell on the basis of the text's lexical
form, Notepad (screenshot below) pastes all cell text as strings.

For more information, see the sections Table Display (XML) and Table Display (JSON) .

29.2.5 Copy as Image

The Copy as Image command is enabled only when the selected cell in the Table Display of of XML Grid
View and JSON Grid View contains an image. The command copies the Base64-encoded string of the
selected image. If the string is pasted to a document where the Base64-encoded string can be rendered as an
image (for example to another table cell in Table Display), then it will be rendered. Otherwise, it will be pasted
as a string.

For more information, see the sections Context Menu in Grid View .

172 176

172 176

172 176

204

© 2018-2024 Altova GmbH

Edit Menu 1219Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.2.6 Copy XPath

The Copy XPath command is available in Text View and Grid View, and creates an XPath expression that
locates the currently selected node/s in the document, and copies the XPath expression to the clipboard. This
enables you to paste the XPath expression into a document (for example, in an XSLT document). All
expressions start from the document root. For example, if an element called LastName of the third Person
element of the second Company element is selected, the XPath expression tha is copied would
be: /Companies/Company[2]/Person[3]/LastName

Note: In Grid View the Copy XPath command can also be accessed via the context menu.

29.2.7 Copy XPointer/JSON-Pointer

The Copy XPointer/JSON-Pointer command is available in Grid View of XML and JSON documents and the
Text View of XML documents. It copies to the clipboard an XPointer/JSON-Pointer expression that locates the
selected node.

· XML documents: The command creates an element() scheme XPointer to the currently selected

node/s of the XML document and copies the XPointer to the clipboard. For example, the XPointer
element(/1/3) selects the third child of the document element (or root element).

· JSON documents: The command creates a JSON-Pointer to the currently selected node/s of the
JSON document and copies the JSON-Pointer to the clipboard. For example, the JSON-
Pointer /Artists/1/Albums/2/Tracks/3/Title selects a JSON node as follows: Lookup the first

object of the top-level Artists array; in which, lookup the second object of the Albums array; in which,

lookup the third object of the Tracks array; in which select the Title object.

Note the following points:

· XML attributes cannot be represented using the element() scheme. If an attribute is selected, the

XPointer of the attribute's parent element is generated.
· If multiple XML elements are selected, then the XPointer of the first of these is generated.
· If a JSON value is selected, the JSON-Pointer of the value's key is generated.
· If multiple JSON nodes are selected, then the JSON-Pointer of the first of these is generated.

Note: The Copy XPointer/JSON-Pointer command can also be accessed via the context menu.

29.2.8 Insert

Mousing over or selecting the Insert command rolls out a submenu with three commands (described below):

· Insert File Path
· Insert XInclude
· Insert Encoded External File

1220

1220

1223

1220 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Insert File Path
The File Path command is enabled in the Text View and Grid View of documents of any file type. Using it, you
can insert the path to a file at the cursor selection point. Clicking the command pops up a dialog (screenshot
below) in which you select the required file.

The required file can be selected in one of the following ways: (i) by browsing for the file, URL, or global
resource (use the Browse button); (ii) by selecting the window in which the file is open (the Window
button). When done, click OK. The path to the selected file will be inserted in the active document at the cursor
selection point.

Insert XInclude
The XInclude command is available in Text View and Grid View, and enables you to insert a new XInclude
element at the cursor selection point in Text View, or before the selected item in both Text View and Grid View.
If in Grid View the current selection is an attribute, the XInclude element is inserted after the attribute and
before the first child element of the attribute's parent element. Selecting this command pops up the XInclude
dialog (screenshot below).

1199

© 2018-2024 Altova GmbH

Edit Menu 1221Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The XML file to be included is entered in the href text box (alternatively, you can browse for the file by clicking
the Browse (...) button to the right of the text box). The filename will be entered in the XML document as the
value of the href attribute. The parse, xpointer, and encoding attributes of the XInclude element
(xi:include), and the fallback child element of xi:include can also be inserted via the dialog. Do this by
first checking the appropriate check box and then selecting/entering the required values. In the case of the
fallback element, checking its check box only inserts the empty element. The content of the fallback
element must be added subsequently in one of the editing views.

The parse attribute determines whether the included document is to be parsed as XML or text. (XML is the
default value and therefore need not be specified.) The xpointer attribute identifies a specific fragment of the
document located with the href attribute; it is this fragment that will be included. The encoding attribute
specifies the encoding of the included document so that XMLSpy can transcode this document (or the part of it
to be included) into the encoding of the including document. The contents of the fallback child element
replace the xi:include element if the document to be included cannot be located.

Here is an example of an XML document that uses XInclude to include two XML documents:

<?xml version="1.0" encoding="UTF-16"?>
<AddressBook xsi:schemaLocation="http://www.altova.com/sv/myaddresses AddressBook.xsd"

xmlns="http://www.altova.com/stylevision/tutorials/myaddresses"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="BusinessAddressBook.xml"/>

<xi:include href="PersonalAddressBook.xml"/>

</AddressBook>

When this XML document is parsed, it will replace the two XInclude elements with the files specified in the

1222 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

respective href attributes.

xml:base
When the XML validator of XMLSpy reads an XML document and encounters the include element in the
XInclude namespace (hereafter xi:include), it replaces this element (xi:include) with the XML document
named in the href attribute of the xi:include element. The document element (root element) of the included
XML document (or the element identified by an XPointer) will be included with an attribute of xml:base in order
to preserve the base URIs of the included element. If the resulting XML document (containing the included XML
document/s or tree fragment/s) must be valid according to a schema, then the document element of the
included document (or the top-level element of the tree fragment) must be created with a content model that
allows an attribute of xml:base. If, according to the schema, the xml:base attribute is not allowed on this
element, then the resulting document will be invalid. How to define an xml:base attribute in an element's
content model using XMLSpy's Schema View is described in the xml:Prefixed Attributes section of the
Schema View section of the documentation.

XPointers
XMLSpy supports XPointers in XInclude. The relevant W3C recommendations are the XPointer Framework and
XPointer element() Scheme recommendations. The use of an XPointer in an XInclude element enables a
specific part of the XML document to be included, instead of the entire XML document. XPointers are used
within an XInclude element as follows:

<xi:include href="PersonalAddressBook.xml" xpointer="element(usa)"/>
<xi:include href="BusinessAddressBook.xml" xpointer="element(/1/1)"/>
<xi:include href="BobsAddressBook.xml" xpointer="element(usa/3/1)"/>
<xi:include href="PatsAddressBook.xml" xpointer="element(usa)element(/1/1)"/>

In the element() scheme of XPointer, an NCName or a child sequence directed by integers may be used.

· In the first xi:include element listed above, the xpointer attribute uses the element scheme with an
NCName of usa. According to the XPointer Framework, this NCName identifies the element that has
an ID of usa.

· In the second xi:include listed above, the xpointer attribute with a value of element(/1/1)
identifies, in the first step, the first child element of the document root (which, if the document is well-
formed, will be its document (or root) element). In the second step, the first child element of the
element located in the previous step is located; in our example, this would be the first child element of
the document element.

· The xpointer attribute of the third xi:include listed above uses a combination of NCName and child
sequence. This XPointer locates the first child element of the third child element of the element having
an ID of usa.

· If you are not sure whether your first XPointer will work, you can back it up with a second one as
shown in the fourth xi:include listed above: xpointer="element(usa)element(/1/1)". Here, if
there is no element with an ID of usa, the back-up XPointer specifies that the first child element of the
document element is to be selected. Additional backups are also allowed. Individual XPointers may not
be separated, or they may be separated by whitespace: for example, xpointer="element(usa)
element(addresses/1) element(/1/1)".

Note: The namespace binding context is not used in the element() scheme because the element() scheme
does not support qualified names.

287

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/2003/REC-xptr-element-20030325/

© 2018-2024 Altova GmbH

Edit Menu 1223Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Insert Encoded External File
The Encoded External File command is available in Text View and Grid View. It enables an external file to be
included as encoded Base-16 or Base-64 text at any location in the XML document. This feature enables
external files to be embedded in the XML document.

Clicking the Insert | Encoded External File command pops up the Insert Encoded External File dialog
(screenshot below).

You can browse for or enter the name of the external file to be encoded and embedded. Either a Base-16 or
Base-64 encoding must be specified. If you wish to enclose the encoded text in an element, then select Create
Element and specify the name of the desired element (see screenshot above). Alternatively, select Create Text
to insert the encoded text directly at the cursor location.

On clicking OK, the encoded text of the selected file is inserted at the cursor location—with an enclosing
element if this has been specified.

 iVBORw0KGgoAAAANSUhEUgAAABAAAAAQAQMAAAAlPW0iAAAABlBMVEUAAAD/
 //+l2Z/dAAAAM0lEQVR4nGP4/5/h/1+G/58ZDrAz3D/McH8yw83NDDeNGe4U
 g9C9zwz3gVLMDA/A6P9/AFGGFyjOXZtQAAAAAElFTkSuQmCC

The listing above shows the encoded text of a PNG image file. An img element was created around the
encoded text.

29.2.9 Save as Image

This command is enabled when a Base64-encoded image is selected in Text View or Grid View. It converts the
selected Base64-encoded string to its image format. (Note that it is the Base64 string of the image that is
displayed in Text View, but it is the image generated from this string that is displayed in Grid View.) On
selecting the command, a Save As dialog appears. In it, select the location where you want to save the image
and enter a name for the image file. The extension of the image file (.png, .gif, .svg, etc) will be auto-
detected from the Base64 encoding and will appear in the Save dialog.

For more information, see the descriptions of Text View and Grid View in the sections about XML and
JSON documents.

322

1281

1224 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.2.10 Pretty-Print

Icon

Icon:

Description
The Pretty-Print command re-formats the text formatting of your XML or JSON document. The formatting
properties are specified in the Pretty Printing settings of the Options dialog (Tools | Options). The
indentation of text is specified in the Text View Settings dialog (View | Text View Settings).

Note the following points

· The XML document must be well-formed for this command to work.
· Pretty-printing adds spaces or tabs to the document when the document is saved.
· To remove all whitespace (new lines and indentation) created with the Pretty-Print command, use the

Strip Whitespaces command.

29.2.11 Strip Whitespaces

Icon

Icon:

Description
The Strip Whitespaces command strips all whitespace from the document. This can help reduce file size. This
command can be useful if you wish to remove whitespace generated by the Pretty-Print command.

29.2.12 Select All

The Select All command (Ctrl+A) selects the contents of the entire document.

29.2.13 Find, Find Next

Icons and shortcuts

Command Icon Shortcut

1521

1420

1224

1224

© 2018-2024 Altova GmbH

Edit Menu 1225Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Find Ctrl+F

Find Next F3

Find
The Find command displays the Find/Replace dialog (see screenshot below), in which you can specify the
string you want to find and other options for the search. To find text, enter the text in the Find field or use the
combo box to select from one of the last 10 search criteria, and then specify the options for the search.

The Find command can also be used to find file and folder names when a project is selected in the Project
window .

Find Next
The Find Next command repeats the last Find command. It searches for the next occurrence of the input text.

The Find Next command can also be used to find file and folder names when a project is selected in the
Project window .

Find/Replace dialog
The Find/Replace dialog described below appears in Text View and Grid View . The Find options can be
specified via buttons located below the search term field (see screenshot below). When an option is toggled on,
its button color changes to blue (see the first (casing) option in the screenshot below).

You can select from the following options:

· Match case: Case-sensitive search when toggled on (Address is not the same as address).
· Match whole word: Only the exact words in the text will be matched. For example, for the input string

fit, with Match whole word toggled on, only the word fit will match the search string; the fit in
fitness, for example, will not be matched.

· Regular expression: If toggled on, the search term will be read as a regular expression. See Regular
expressions below for a description of how regular expressions are used.

· Filter results: Select one or more document components where the search is to be carried out.
· Find anchor: Found items are indexed in document order and the index of the currently selected item

is given in the Find dialog. For example, from the information in the screenshot above, we can tell that
the second found item from four is currently selected. Clicking Find Next (highlighted at bottom right in
the screenshot) takes you to the next found item in index order. However, if the Find Anchor option is
selected, Find Next takes you to the next found item relative to the current cursor position. So, if the
currently selected item is the first (say, 1 of 4) and you were to place the cursor after item 3, then

Find Next would take you to item 4—and not to item 2 (as would have happened if Find Anchor was
toggled off).

· Find in selection: When toggled on, locks the current text selection and restricts the search to the
selection. Otherwise, the entire document is searched. Before selecting a new range of text, unlock
the current selection by toggling off the Find in Selection option.

116

116

139 155

1226 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Regular expressions
You can use regular expressions (regex) to find a text string. To do this, first, switch the Regular expression
option on (see Find options above). This specifies that the text in the search term field is to be evaluated as a
regular expression. Next, enter the regular expression in the search term field. For help with building a regular
expression, click the Regular Expression Builder button, which is located to the right of the search term field
(see screenshot below). Click an item in the Builder to enter the corresponding regex metacharacter/s in the
search term field. The screenshot below shows a simple regular expression to find email addresses. For a brief
description of metacharacters, see the section Regular expression metacharacters below.

Regular expression metacharacters
Given below is a list of regular expression metacharacters.

. Matches any character. This is a placeholder for a single character.

(Marks the start of a tagged expression.

) Marks the end of a tagged expression.

(abc) The (and) metacharacters mark the start and end of a tagged expression. Tagged

expressions may be useful when you need to tag ("remember") a matched region for
the purpose of referring to it later (back-reference). Up to nine expressions can be
tagged (and then back-referenced later, either in the Find or Replace field).

© 2018-2024 Altova GmbH

Edit Menu 1227Menu Commands

Altova XMLSpy 2024 Enterprise Edition

For example, (the) \1 matches the string the the. This expression can be literally

explained as follows: match the string "the" (and remember it as a tagged region),
followed by a space character, followed by a back-reference to the tagged region
matched previously.

\n Where n is a variable that can take integer values from 1 through 9. The expression
refers to the first through ninth tagged region when replacing. For example, if the find
string is Fred([1-9])XXX and the replace string is Sam\1YYY, this means that in the

find string there is one tagged expression that is (implicitly) indexed with the number 1;

in the replace string, the tagged expression is referenced with \1. If the find-replace

command is applied to Fred2XXX, it would generate Sam2YYY.

\< Matches the start of a word.

\> Matches the end of a word.

\x Allows you to use a character x, which would otherwise have a special meaning. For
example, \[would be interpreted as [and not as the start of a character set.

[...] Indicates a set of characters. For example, [abc] means any of the characters a, b or
c. You can also use ranges: for example [a-z] for any lower case character.

[^...] The complement of the characters in the set. For example, [^A-Za-z] means any
character except an alphabetic character.

^ Matches the start of a line (unless used inside a set, see above).

$ Matches the end of a line. Example: A+$ to find one or more A's at end of line.

* Matches 0 or more times. For example, Sa*m matches Sm, Sam, Saam, Saaam and so
on.

+ Matches 1 or more times. For example, Sa+m matches Sam, Saam, Saaam and so on.

Representation of special characters
Note the following expressions.

\r Carriage Return (CR). You can use either CR (\r) or LF (\n) to find or create a new line

\n Line Feed (LF). You can use either CR (\r) or LF (\n) to find or create a new line

\t Tab character

\\ Use this to escape characters that appear in regex expression, for example: \\\n

Regular expression examples
This example illustrates how to find and replace text using regular expressions. In many cases, finding and
replacing text is straightforward and does not require regular expressions at all. However, there may be
instances where you need to manipulate text in a way that cannot be done with a standard find and replace
operation. Consider, for example, that you have an XML file of several thousand lines where you need to rename
certain elements in one operation, without affecting the content enclosed within them. Another example: you
need to change the order of multiple attributes of an element. This is where regular expressions can help you,
by eliminating a lot of work which would otherwise need to be done manually.

1228 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Example 1: Renaming elements
The sample XML code listing below contains a list of books. Let's suppose your goal is to replace the
<Category> element of each book to <Genre>. One of the ways to achieve this goal is by using regular
expressions.

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="books.xsd">

 <book id="1">

 <author>Mark Twain</author>

 <title>The Adventures of Tom Sawyer</title>

 <category>Fiction</category>

 <year>1876</year>

 </book>

 <book id="2">

 <author>Franz Kafka</author>

 <title>The Metamorphosis</title>

 <category>Fiction</category>

 <year>1912</year>

 </book>

 <book id="3">

 <author>Herman Melville</author>

 <title>Moby Dick</title>

 <category>Fiction</category>

 <year>1851</year>

 </book>

</books>

To solve the requirement, follow the steps below:

1. Press Ctrl+H to open the Find and Replace dialog box.

2. Click Use regular expressions .
3. In the Find field, enter the following text: <category>(.+)</category> . This regular expression

matches all category elements, and they become highlighted.

© 2018-2024 Altova GmbH

Edit Menu 1229Menu Commands

Altova XMLSpy 2024 Enterprise Edition

To match the inner text of each element (which is not known in advance), we used the tagged
expression (.+) . The tagged expression (.+) means "match one or more occurrences of any

character, that is .+ , and remember this match". As shown in the next step, we will need the

reference to the tagged expression later.

4. In the Replace field, enter the following text: <genre>\1</genre> . This regular expression defines the

replacement text. Notice it uses a back-reference \1 to the previously tagged expression from the Find

field. In other words, \1 in this context means "the inner text of the currently matched <category>

element".

5. Click Replace All and observe the results. All category elements have now been renamed to
genre, which was the intended goal.

Example 2: Changing the order of attributes
The sample XML code listing below contains a list of products. Each product element has two attributes: id
and a size. Let's suppose your goal is to change the order of id and size attributes in each product element
(in other words, the size attribute should come before id). One of the ways to solve this requirement is by
using regular expressions.

<?xml version="1.0" encoding="UTF-8"?>
<products xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="products.xsd">

 <product id="1" size="10"/>

 <product id="2" size="20"/>

 <product id="3" size="30"/>

 <product id="4" size="40"/>

 <product id="5" size="50"/>

 <product id="6" size="60"/>

</products>

To solve the requirement, follow the steps below:

1. Press Ctrl+H to open the Find and Replace dialog box.

1230 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Click Use regular expressions .
3. In the Find field, enter the following: <product id="(.+)" size="(.+)"/> . This regular expression

matches a product element in the XML document. Notice that, in order to match the value of each
attribute (which is not known in advance), a tagged expression (.+) is used twice. The tagged

expression (.+) matches the value of each attribute (assumed to be one or more occurrences of any

character, that is .+).

4. In the Replace field, enter the following: <product size="\2" id="\1"/> . This regular expression

contains the replacement text for each matched product element. Notice that it uses two references \1

and \2 . These correspond to the tagged expressions from the Find field. In other words, \1 means

"the value of attribute id" and \2 means "the value of attribute size".

6. Click Replace All and observe the results. All product elements have now been updated so that
attribute size comes before attribute id.

29.2.14 Replace

Icons and shortcuts

Command Icon Shortcut

Replace Ctrl+H

Description
The Replace command in Text View and Grid View causes the Find/Replace dialog (screenshot below)
to appear. In this dialog, you can specify that one string be found and replaced with another string. For a
description of the options for the Find string, see the Find command. You can replace each item
individually, or you can use the Replace All button to perform a global find-and-replace operation.

To replace a text string, do the following:

1. Press Ctrl+H (or select the menu command Edit | Replace) to open the Find/Replace dialog
(screenshot below). (Alternatively, you can switch to Replace mode of the Find/Replace dialog by
clicking the down-arrow button at the top left of the dialog.)

139 155

1224

© 2018-2024 Altova GmbH

Edit Menu 1231Menu Commands

Altova XMLSpy 2024 Enterprise Edition

2. Enter the string to be replaced in the Find field, and enter the new string in the Replace field. The
number of text matches to replace and the index of the currently selected match is displayed below
the Replace field. Also, the locations of matches are indicated in the scroll bar by beige markers (see
Searching for text in a document above for more information). For example, the screenshot above
shows that there are five text matches for the string type, and that the third of these matches is

currently selected.
3. The Replace Next and Replace All buttons are located to the right of the Replace field. If you click

Replace Next, one of the following happens: (i) If the cursor is located adjacent to a match or inside a
match, then the match is replaced; (ii) if the cursor is located outside a match, it jumps to the next
match; click Replace Next to replace this match. Click Replace All to replace all matches.

Note the following points:

· To replace text within a selection—rather than the entire document—do the following: (i) Mark the
selection; (ii) Toggle on the Find in Selection option to lock the selection; (iii) Enter the Find and
Replace text strings; (iii) Click Replace Next or Replace All as required. To replace text within
another selection, unlock the current selection by toggling off the Find in Selection option, then make
the new selection and toggle on the Find in Selection option to lock the new selection.

· To undo a replace action, press Ctrl+Z or select Edit | Undo.

Note: When using the Replace All command, each replacement is recorded as a single operation, so
Replace All can be undone step-by-step.

29.2.15 Find in Files

The Find in Files command is a powerful way to find and replace text quickly among a large number of files.
Clicking the command pops up the Find in Files dialog (screenshot below). The Find in Files command is
different from the Find command in that it searches all the specified locations for the Find string at once and
executes replace actions immediately. A report is then displayed in the Find in Files window . In the case of
the Find command, however, the user enters the search string and goes through the (single) active document
one found item at a time.

123

1232 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Find criteria
There are two broad find criteria: (i) what to find, and (ii) where to look? For a description of how to set the text
that is to be searched (what to find), see the description of the Find command. If the text entered in the
Find What text box is a regular expression, then the Regular Expression check box must be checked. An
entry helper for regular expressions can be accessed by clicking the Unfold button to the right of the Find
What input box (the button marked >) button. The use of regular expressions for searching is explained in the
section about the Find command.

To specify what node types and parts of an XML document should be searched, check the Advanced XML
Search check box and then select the required node types.

You can specify where to search: (i) in a Project; (ii) in the files currently open in XMLSpy; (iii) in a project; or
(iv) in a folder. When a project folder is selected, external folders added to the project can be skipped. The files
to be searched can be filtered by file extension and a star (xml* or xsl*, for example). The separator between
two file extensions can be a comma or a semi-colon (xml*;xsl*, for example). The star character can also be
used as a wildcard.

The instances of the Find string at all the search locations are listed in the Find in Files window . Clicking on
one of the listed items opens that file in Text View and highlights the item.

1224

1226

123

© 2018-2024 Altova GmbH

Edit Menu 1233Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Replace
The most important thing to note is that clicking the Replace button replaces all the instances of the Find
string with the Replace string. If Open Files On Replacing was checked in the Find in Files dialog, then the file
will be opened in Text View; otherwise the replacement is done silently. All the replaced strings are listed in the
Find in Files window . Clicking on one of the listed items opens that file in Text View and highlights the item.

Note: Regular expressions are not supported in the Replace field.

29.2.16 Bookmark Commands

Icons and shortcuts

Command Icon Shortcut

Insert/Remove Bookmark Ctrl+F2

Remove All Bookmarks Ctrl+Shift+F2

Goto Next Bookmark F2

Goto Previous Bookmark Shift+F2

Insert/Remove Bookmark
The Insert/Remove Bookmark command inserts a bookmark at the current cursor position, or removes the
bookmark if the cursor is in a line that has been bookmarked previously. This command is only available in Text
View.

Bookmarked lines are displayed in one of the following ways:

· If the bookmarks margin has been enabled, then a solid blue ellipse appears to the left of the text in
the bookmark margin.

· If the bookmarks margin has not been enabled, then the entire line containing the cursor is highlighted.

The F2 key cycles through all the bookmarks in the document.

Remove All Bookmarks
The Remove All Bookmarks command removes all the currently defined bookmarks. This command is only
available in Text View. Note that the Undo command does not undo the effects of Remove All Bookmarks.

Goto Next Bookmark
The Goto Next Bookmark command places the text cursor at the beginning of the next bookmarked line. This
command is only available in Text View.

123

1234 Menu Commands Edit Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Goto Previous Bookmark
The Goto Previous Bookmark command places the text cursor at the beginning of the previous bookmarked
line. This command is only available in Text View.

29.2.17 Comment In/Out

The Comment In/Out command is available in Text View and is used to comment and uncomment XML text
fragments. Text in an XML document can be commented out using the XML start-comment and end-comment
delimiters, respectively <!-- and -->. In XMLSpy, these comment delimiters can be inserted around a text
selection by using the Comment In/Out menu command.

To comment out a block of text, select the text to be commented out and then select the command Comment
In/Out, either from the Edit menu or the context menu you get on right-clicking the selected text. The
commented text will be grayed out (see screenshot below).

To uncomment a commented block of text, place the cursor in the commented block and select the command
Comment In/Out, either from the Edit menu or the context menu you get on right-clicking within the
commented-out text. The comment delimiters will be removed and the text will no longer be grayed out.

© 2018-2024 Altova GmbH

Project Menu 1235Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.3 Project Menu

XMLSpy uses the familiar tree view to manage multiple files or URLs in XML projects. Files and URLs
can be grouped into folders by common extension or any arbitrary criteria, allowing for easy structuring and
batch manipulation.

Please note: Most project-related commands are also available in the context menu, which appears when you
right-click any item in the project window.

Absolute and relative paths
Each project is saved as a project file, and has the .spp extension. These files are actually XML documents

that you can edit like any regular XML File. In the project file, absolute paths are used for files/folders on the
same level or higher, and relative paths for files/folders in the current folder or in sub-folders. For example, if
your directory structure looks like this:

|-Folder1
| |

1252 1253

1254

1236 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

| |-Folder2
| |
| |-Folder3
| |
| |-Folder4

If your .spp file is located in Folder3, then references to files in Folder1 and Folder2 will look something like
this:

c:\Folder1\NameOfFile.ext
c:\Folder1\Folder2\NameOfFile.ext

References to files in Folder3 and Folder4 will look something like this:

.\NameOfFile.ext

.\Folder4\NameOfFile.ext

If you wish to ensure that all paths will be relative, save the .spp files in the root directory of your working disk.

Drag-and-drop
In the Project window, a folder can be dragged to another folder or to another location within the same folder. A
file can be dragged to another folder, but cannot be moved within the same folder (within which files are
arranged alphabetically). Additionally, files and folders can be dragged from Windows File Explorer to the
Project window.

Find in project
You can search for project files and folders using their names or a part of their name. If the search is
successful, files or folders that are located are highlighted one by one.

To start a search, select the project folder in the Project sidebar that you wish to search, then select the
command Edit | Find (or the shortcut Ctrl+F). In the Find dialog that pops up (screenshot below) enter the text
string you wish to search for and select or deselect the search options (explained below) according to your
requirements.

The following search options are available:

· Whole-word matching is more restricted since the entire string must match an entire word in the file or
folder name. In file names, the parts before and after the dot (without the dot) are each treated as a
word.

© 2018-2024 Altova GmbH

Project Menu 1237Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· It can be specified that casing in the search string must exactly match the text string in the file or
folder name.

· Folder names can be included in the search. Otherwise, only file names are searched.
· External folders can be included or excluded from the search. External folders are actual folders on

the system or network, as opposed to project folders, which are created within the project and not on
the system.

If the search is successful, the first matching item is highlighted in the Project sidebar. You can then browse
through all the returned matching items by clicking the Find Next and Find Prev buttons in the Find dialog.

Refreshing projects
If a change is made to an external folder, this change will not be reflected in the Project Window till the project
is refreshed.

Global resources in the context menu
When you right-click a folder in the Project window, in the context menu that appears, you can select the Add
Global Resource menu item to add a global resource . The menu command itself pops up the Choose
Global Resource dialog, which lists all the file-type and folder-type global resources in the currently active
Global Resources XML File. Select the required global resource, and it will be added to the selected project
folder.

Projects and source control providers
If you intend to add an XMLSpy project to a source control repository, please ensure that the project file's
position in the hierarchical file system structure is one which enables you to add files only from below it (taking
the root directory to be the top of the directory tree).

In other words, the directory where the project file is located, essentially represents the root directory of the
project within the source control repository. Files added from above it (the project root directory) will be added
to the XMLSpy project, but their location in the repository may be an unexpected one—if they are allowed to be
placed there at all.

For example, given the directory structure shown above, if a project file is saved in Folder3 and placed under
source control:

· Files added to Folder1 may not be placed under source control,
· Files added to Folder2 are added to the root directory of the repository, instead of to the project folder,

but are still under source control,
· Files located in Folder3 and Folder4 work as expected, and are placed under source control.

29.3.1 New Project

1254

991

1238 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The New Project command creates a new project in XMLSpy. If you are currently working with another
project, a prompt appears asking if you want to close all documents belonging to the current project. The
project's name is assigned when you save the project as a .spp file.

29.3.2 Open Project

The Open Project command opens an existing project in XMLSpy. If you are currently working with another
project, the previous project is closed first.

29.3.3 Reload Project

The Reload Project command reloads the current project from disk. If you are working in a multi-user
environment, it can sometimes become necessary to reload the project from disk, because other users might
have made changes to the project.

Please note: Project files (.spp files) are actually XML documents that you can edit like any regular XML File.

29.3.4 Close Project

The Close Project command closes the active project. If the project has been modified, you will be asked
whether you want to save the project first. When a project is modified in any way, an asterisk is added to the
project name in the Project Window.

29.3.5 Save Project, Save Project As

The Save Project command saves the current project. You can also save a project by making the project

window active and clicking the icon.

The Save Project As command saves the current project with a new name that you can enter when prompted
for one.

© 2018-2024 Altova GmbH

Project Menu 1239Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.3.6 Source Control

Your Altova application supports Microsoft SourceSafe and other compatible repositories. A list of supported
systems is given in the section, Supported Source Control Systems . This section describes the commands
in the Project | Source Control submenu, which are used to work with the source control system from within
your Altova application.

Overview of the Source Control feature
The mechanism for placing files in an application project under source control is as follows:

1. In XMLSpy, an application project folder containing the files to be placed under source control is
created. Typically, the application project folder will correspond to a local folder in which the project
files are located. The path to the local folder is referred to as the local path.

2. In the source control system's database (also referred to as source control or repository), a folder is
created that will contain the files to be placed under source control.

3. Application project files are added to source control using the command Project | Source Control |
Add to Source Control .

4. Source control actions, such as checking in to, checking out from, and removing files from source
control, can be carried out by using the commands in the Project | Source Control submenu .
The commands in this submenu are listed in the sub-sections of this section.

Note: If you wish to change the current source control provider, this can be done in any of two ways: (i) via
the Source Control options (Tools | Options | Source Control), or (ii) in the Change Source
Control dialog (Project | Source Control | Change Source Control).

Note: Note that a source control project is not the same as an application project. Source control projects
are directory-dependent, while XMLSpy projects are logical constructions without direct directory
dependence.

For additional information, see the section, Source Control .

29.3.6.1 Open from Source Control

The Open from Source Control command creates a new application project from a project under source
control.

Create the new project as follows:

1. Depending on the source control system used, it might be necessary, before you create a new project
from source control, to make sure that no file from the project is checked out.

2. No project need be open in the application, but can be.
3. Select the command Project | Source Control | Open from Source Control.
4. The source control system that is currently set will pop up its verification and connection dialogs. Make

the connection to the repository you want, that is, to the bound folder in the repository that
corresponds to the local folder.

5. In the dialog that pops up (screenshot below), browse for the local folder to which the contents of the
bound folder in the repository (that you have just connected to) must be copied. In the screenshot

1047

1245

1239 1239

1556

1251

1044

1240 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

below the bound folder is called MyProject and is represented by the $ sign; the local folder is C:
\M20130326.

6. Click OK. The contents of the bound folder (MyProject) will be copied to the local folder C:
\M20130326., and a dialog pops up asking you to select the project file (.spp file) that is to be created
as the new project.

7. Select the .spp file that will have been copied to the local folder. In our example, this will be
MyProject.spp located in the C:\M20130326 folder. A new project named MyProject will be created in
the application and will be displayed in the Project window. The project's files will be in the folder C:
\M20130326.

Source control symbols
Files and the project folder display certain symbols, the meanings of which are given below.

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

29.3.6.2 Enable Source Control

The Enable Source Control command allows you to enable or disable source control for an application
project. Selecting this option on any file or folder, enables/disables source control for the whole project. After
source control is enabled, the check in/out status of the various files are retrieved and displayed in the Project
window.

© 2018-2024 Altova GmbH

Project Menu 1241Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

29.3.6.3 Get Latest Version

The Get Latest Version command (in the Project | Source Control menu) retrieves and places the latest
source control version of the selected file(s) in the working directory. The files are retrieved as read-only and are
not checked out. This command works like the Get command , but does not display the Get dialog.If the
selected files are currently checked out, then the action taken will depend on how your source control system
handles such a situation. Typically, the source control system will ask whether you wish to replace, merge
with, or leave the checked-out file as it is.

Note: This command is recursive when performed on a folder, that is, it affects all files below the current one
in the folder hierarchy.

29.3.6.4 Get, Get Folders

The Get command (in the Project | Source Control menu) retrieves files from the repository as read-only files.
(To be able to edit a file, you must check it out.) The Get dialog lists the files in the object (project or folder) on
which the Get command was executed (see screenshot below). You can select the files to retrieve by checking
them.

Note: The Get Folders command allows you to select individual sub-folders in the repository if this is allowed
by your source control system, .

You can choose to overwrite changed checked-out files by checking this option at the bottom of the Get dialog.
On clicking OK, the files will be overwritten. If any of the overwritten files is currently open, a dialog pops up

1241

1242 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

(screenshot below) asking whether you wish to reload the file/s (Reload button), close the file/s (Close), or
retain the current view of the file (Cancel).

Advanced Get Options
The Advanced Get Options dialog (screenshot below) is accessed via the Advanced button in the Get dialog
(see first screenshot in this section).

Here you can set options for (i) replacing writable files that are checked out, (ii) the timestamp, and (iii) whether
the read-only property of the retrieved file should be changed so that it will be writable.

29.3.6.5 Check Out, Check In

After a project file has been placed under source control, it can be checked out or checked in by selecting the
file (in the Project window) and clicking the respective command in the Project | Source Control menu:
Check Out and Check In.

When a file is checked out, a copy from the repository is placed in the local folder. A file that is checked out
can be edited. If a file that is under source control is not checked out, it cannot be edited. After a file has been
edited, the changes can be saved to the repository by checking in the file. Even if the file is not saved,
checking it in will save the changes to the repository. Whether a file is checked out or not is indicated with a
tick or lock symbol in its icon.

Files and the project folder display certain symbols, the meanings of which are given below.

© 2018-2024 Altova GmbH

Project Menu 1243Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

Selecting the project or a folder within the project, selects all files in the selected object. To select multiple
objects (files and folders), press the Ctrl key while clicking the objects. The screenshot below shows a project
that has been checked out. The file QuickStart.css has subsequently been checked in.

Saving and rejecting editing changes
Note that, when checking in a file, you can choose to leave the file checked out. What this does is save editing
changes to the repository while continuing to keep the file checked out, which is useful if you wish to
periodically save editing changes to the repository and then continue editing.

If you have checked out a file and made editing changes, and then wish to reject these changes, you can revert
to the document version saved in the repository by selecting the command Project | Source Control | Undo
Check Out.

Checking out
The Check Out dialog (screenshot below) allows you: (i) to select the files to check out, and (ii) to select
whether the repository version or the local version should be checked out.

1244 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Checking in
The Check In dialog (screenshot below) allows you: (i) to select the files to check in, and (ii) if you wish, to
keep the file checked out.

Note: In both dialogs (Check Out and Check In), multiple files appear if the selected object (project or project
folder/s) contain multiple files.

29.3.6.6 Undo Check Out

If you have checked out a file and made editing changes, and then wish to reject these changes, you can revert
to the document version saved in the repository by selecting the command Project | Source Control | Undo
Check Out.

© 2018-2024 Altova GmbH

Project Menu 1245Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Files and the project folder display certain symbols, the meanings of which are given below.

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

29.3.6.7 Add to Source Control

After a project has been added to source control, you can add files either singly or in groups to source control.
Select the file in the Project window and then click the command Project | Source Control | Add to Source
Control. To select multiple files, keep the Ctrl key pressed while clicking on the files you wish to add. Running
the command on a (green) project folder (see screenshot below) adds all files in the folder and its sub-folders to
source control.

When files are added to source control, the local folder hierarchy is replicated in the repository (not the project
folder hierarchy). So, if a file is in a sub-folder X levels deep in the local folder, then the file's parent folder and all
other ancestor folders are automatically created in the repository.

When the first file from a project is added to source control, the correct bindings are created in the repository
and the project file (.spp file) is added automatically. For more details, see the section Add to Source
Control .

Source control symbols
Files and the project folder display certain symbols, the meanings of which are given below.

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

1052

1246 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.3.6.8 Remove from Source Control

To remove a file from source control, select the file and click the command Project | Source Control |
Remove from Source Control. You can also remove: (i) files in a project folder by executing the command on
the folder, (ii) multiple files that you select while keeping the Ctrl key pressed, and (iii) the entire project by
executing the command on the project.

29.3.6.9 Share from Source Control

The Share from Source Control command is supported when the source control system being used supports
shares. You can share a file, so that it is available at multiple local locations. A change made to one of these
local files will be reflected in all the other "shared" versions.

In the application's Project window first select the project (highlighted in the screenshot below). Then click the
Share from Source Control.

The Share To [Folder] dialog (screenshot below) pops up.

© 2018-2024 Altova GmbH

Project Menu 1247Menu Commands

Altova XMLSpy 2024 Enterprise Edition

To select the files to share, first choose, in the project tree in the right.hand pane, the folder in which the files
are. The files in the chosen folder are displayed in the left hand pane. Select the file you wish to share (multiple
files by pressing the Ctrl key and clicking the files you want to share). The selected file/s will be displayed in
the Files to Share text box (at top left). Click Share and then Close to copy the selected file/s to the local
share folder.

The share folder is noted in the name of the Share to [Folder] dialog. In the screenshot above it is the local
folder (since the $ sign is the folder in the repository to which the local folder is bound). You can see and set
the share folder in the Change Source Control dialog (screenshot below, Change Source Control) by
changing the local path and server binding.

1248 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For more details about sharing using your source control system, see the source control system's user
documentation.

29.3.6.10 Show History

The Show History command activates the Show History feature of the active source control system. It
displays the history of the file selected in the Project window. Select the project title to display the history of
the project file (.spp file). You can view information about previous versions of a file and differences, as well as
retrieve previous versions of the file.

The screenshot below shows the History dialog of the Visual SourceSafe source control system. It lists the
various versions of the MyProject.spp file.

This History dialog provides various ways of comparing and getting specific versions of the file in question.
Double-clicking an entry in the list opens the History Details dialog box for that file. The buttons in the History
dialog provide the following functionality:

· Close: Closes this dialog box.
· View: Opens a dialog box in which you can select the type of file viewer.
· Details: Opens a dialog box in which you can see the properties of the currently active file.
· Get: Retrieves a previous file version and places it in the working directory.
· Check Out: Allows you to check out a previous version of the file.
· Diff: Opens the Difference options dialog box for differencing options between two file versions. Use

Ctrl+Click to mark two file versions in this window, then click Diff to view the differences between
them.

1250

1249

© 2018-2024 Altova GmbH

Project Menu 1249Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· Pin: Pins or unpins a version of the file, allowing you to define the specific file version to use when
differencing two files.

· Rollback: Rolls back to the selected version of the file.
· Report: Generates a history report that you can send to a printer, file, or clipboard.
· Help: Opens the online help of the source control provider plugin.

29.3.6.11 Show Differences

The Show Differences command is enabled when a file in the Project window is selected. To select the
project file (.spp file), select the project title in the Project window. The Show Differences command starts
the source control system's differencing tool so that differences between files can be directly checked from
your Altova application.

The screenshot below shows the differencing tool of the Visual SourceSafe source control system.

The repository and local versions are shown by default in the Compare and To text fields respectively. You can
browse for other files as follows:

1. From the Browse button dropdown list, select SourceSafe projects (for browsing repository files) or
Windows folders (for browsing local folders).

2. Browse for the files you want and select them.

Select the options you want and click OK to run the check. The differencing results are displayed in a separate
window. The screenshots below show the results of a check in two formats.

1250 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The screenshot above shows the Visual SourceSafe differencing result in Visual format (see Options dialog
above), while the screenshot below shows the result in Unix format. In both, there are two differences, each of
which is a change of the grade from C to B.

For a detailed description of how your source control system handles differencing, see the product's user
documentation.

29.3.6.12 Show Properties

The Show Properties command displays the properties of the currently selected file (screenshot below). What
properties are displayed depends on the source control system you are using. The screenshot below shows
properties when Visual SourceSafe is the active source control system.

Note that this command is enabled only for single files.

© 2018-2024 Altova GmbH

Project Menu 1251Menu Commands

Altova XMLSpy 2024 Enterprise Edition

For details, see the source control system's user documentation.

29.3.6.13 Refresh Status

The Refresh Status command refreshes the status of all project files independent of their current status.

29.3.6.14 Source Control Manager

The Source Control Manager command starts your source control software with its native user interface.

29.3.6.15 Change Source Control

The current binding is what the active application project will use to connect to the source control database, so
the current binding must be correct. By this is meant that the application project file (.spp file) must be in the
local path folder and the bound folder on the repository must be the database where this project's files are
stored. Typically the bound folder and its sub-structure will correspond with the local workspace folder and its
sub-structure.

1252 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the Change Source Control dialog (screenshot below), you can change the source control system (SCC
Provider), the local folder (Local Path), and the repository binding (Server Name and Server Binding).

Only after unbinding the current binding can the settings be changed. Unbind the current binding with the
Unbind button. All the settings are now editable.

Change source control settings as follows:

1. Use the Browse button to browse for the local folder and the Select button to select from among the
installed source control systems.

2. After doing this you can bind the local folder to a repository database. Click the Bind button to do this.
This pops up the connection dialog of your source control system.

3. If you have entered a Logon ID, this will be passed to the source control system; otherwise you might
have to enter your logon details in the connection dialog.

4. Select the database in the repository that you wish to bind to this local folder. This setting might be
spread over more than one dialog.

5. After the setting has been created, click OK in the Change Source Control dialog.

29.3.7 Add Files to Project

The Project | Add Files to Project command adds files to the current project. Use this command to add files
to any folder in your project. You can either select a single file or any group of files (using Ctrl+ click) in the
Open dialog box. If you are adding files to the project, they will be distributed among the respective folders
based on the File Type Extensions defined in the Project Properties dialog box.1261

© 2018-2024 Altova GmbH

Project Menu 1253Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.3.8 Add Global Resource to Project

The Project | Add Global Resource to Project command pops up the Choose Global Resource dialog, in
which you can select a global resource of file or folder type to add to the project. If a file-type global resource is
selected, then the file is added to the appropriate folder based on the File Type Extensions defined in the
Project Properties dialog box. If a folder-type global resource is selected, that folder will be opened in a file-
open dialog and you will be prompted to select a file; the selected file is added to the appropriate folder based
on the File Type Extensions defined in the Project Properties dialog box. For a description of global
resources, see the Global Resources section in this documentation.

29.3.9 Add URL to Project

The Project | Add URL to Project command adds a URL to the current project. URLs in a project cause the
target object of the URL to be included in the project. Whenever a batch operation is performed on a URL or on
a folder that contains a URL object, XMLSpy retrieves the document from the URL, and performs the requested
operation.

29.3.10 Add Active File to Project

The Project | Add Active File to Project command adds the active file to the current project. If you have just
opened a file from your hard disk or through an URL, you can add the file to the current project using this
command.

29.3.11 Add Active And Related Files to Project

The Project | Add Active and Related Files to Project command adds the currently active XML document
and all related files to the project. When working on an XML document that is based on a DTD or Schema, this
command adds not only the XML document but also all related files (for example, the DTD and all external
parsed entities to which the DTD refers) to the current project.

Please note: Files referenced by processing instructions (such as XSLT files) are not considered to be related
files.

1261

1261

1254 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.3.12 Add Project Folder to Project

The Project | Add Project Folder to Project command adds a new folder to the current project. Use this
command to add a new folder to the current project or a sub-folder to a project folder. You can also access this
command from the context-menu when you right-click on a folder in the project window.

Note: A project folder can be dragged and dropped into another project folder or to any other location in the
project. Also, a folder can be dragged from Windows (File) Explorer and dropped into any project folder.

Note: Project folders are green, while external folders are yellow.

29.3.13 Add External Folder to Project

The Project | Add External Folder to Project command adds a new external folder to the current project.
Use this command to add a local or network folder to the current project. You can also access this command
from the context-menu when you right-click a folder in the project window.

Note: External folders are yellow, while project folders are green.

Note: Files contained in external folders cannot be placed under source control.

Adding external folders to projects
To add an external folder to the project:

1. Select the menu command Project | Add External Folder to Project.
2. Select the folder you want to include and click OK to confirm. The selected folder now appears in the

Project window.

3. Click the plus icon to view the folder contents.

1254

1254

© 2018-2024 Altova GmbH

Project Menu 1255Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Filtering contents of folders
To filter the contents of the folder:

1. Right-click the external folder that you added, and select Properties. This opens the Properties dialog
box.

2. Click in the File extensions field and enter the file extensions of the file types you want to see,
separating file types with a semicolon (see screenshot above).

3. Click OK to confirm.

The Project window now only shows the selected file types.

1256 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Validating external folders
To validate and check an external folder for well-formedness:

1. Select the file types you want to see or check from the external folder.
2. Select the folder and click the menu command XML | Check well-formedness or Validate XML

(hotkey F7 or F8, respectively). All the files visible under the folder are checked. If a file is malformed or
invalid, then this file is opened in the Main Window, allowing you to edit it.

3. Correct the error and run the validation process once more to recheck.

Updating a project folder
You might add or delete files in the local or network directory at any time. To update the folder view, right-click
the external folder, and select the popup menu option Refresh.

Deleting external folders and files in them
Select an external folder and press the Delete key to delete the folder from the Project window. Alternatively,
right-click the external folder and select the Delete command. Each of these actions only deletes the external
folder from the Project window. The external folder is not deleted from the hard disk or network.

To delete a file in an external folder, you have to delete it physically from the hard disk or network. To see the
change in the project, refresh the external folder contents (right-click the external folder and select Refresh).

Note: An external folder can be dragged and dropped into a project folder or to any other location in the
project (but not into another external folder). Also, an external folder can be dragged from Windows
(File) Explorer and dropped into any location in the project window except into another external folder.

29.3.14 Add External Web Folder to Project

This command adds a new external web folder to the current project. You can also access this command from
the context-menu when you right-click a folder in the project window. Note that files contained in external
folders cannot be placed under source control.

Adding an external web folder to the project
To add an external web folder to the project, do the following:

1. Select the menu option Project | Add External Web Folder to Project. This opens the Add Web
Folder to Project dialog box (screenshot below).

© 2018-2024 Altova GmbH

Project Menu 1257Menu Commands

Altova XMLSpy 2024 Enterprise Edition

2. Click in the Server URL field and enter the URL of the server URL. If the server is a Microsoft®
SharePoint® Server, check this option. See the Folders on a Microsoft® SharePoint® Server section
below for further information about working with files on this type of server.

3. If the server is password-protected, enter your User ID and password in the User and Password fields.
4. Click Browse to connect to the server and view the available folders.

1258 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

5. Click the folder you want to add to the project view. The Open button only becomes active once you do
this. The URL of the folder now appears in the File URL field.

6. Click Open to add the folder to the project.

7. Click the plus icon to view the folder contents.

© 2018-2024 Altova GmbH

Project Menu 1259Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Filtering folder contents
To filter the contents of a folder, right-click the folder and select Properties from the context menu. In the
Properties dialog that pops up, click in the File Extensions field and enter the file extensions of the file types
you want to see (for example, XML and XSD files). Separate each file type with a semicolon (for example: xml;
xsd; sps). The Project window will now show that folder only with files having the specified extension.

Validating and checking a folder for well-formedness
To check the files in a folder for well-formedness or to validate them, select the folder and then click the menu
command XML | Check well-formedness or XML | Validate XML icon (hotkey F7 or F8, respectively). All
the files that are visible in the folder are checked. If a file is malformed or invalid, then this file is opened in the
main window, allowing you to edit it. Correct the error and restart the process to recheck the rest of the folder.
Note that you can select discontinuous files in the folder by holding Ctrl and clicking the files singly. Only
these files are then checked when you press F7 or F8.

Updating the contents of the project folder
Files may be added or deleted from the web folder at any time. To update the folder view, right-click the
external folder and select the context menu option Refresh.

Deleting folders and files
Since it is the Web folder that has been added to the project, it is only the Web folder (and not files within it)
that can be deleted from the project. You can delete a Web folder from a project, by either (i) right-clicking the
folder and selecting Delete, or (ii) selecting the folder and pressing the Delete key. This only deletes the folder
from the Project view; it does not delete anything on the web server.

Note: Right-clicking a single file and pressing the Delete key does not delete a file from the Project window.
You have to delete it physically on the server and then refresh the contents of the external folder.

Folders on a Microsoft® SharePoint® Server
When a folder on a Microsoft® SharePoint® Server has been added to a project, files in the folder can be
checked out and checked in via commands in the context menu of the file listing in the Project window (see
screenshot below). To access these commands, right-click the file you wish to work with and select the
command you want (Check Out, Check In, Undo Check Out).

1260 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The User ID and password can be saved in the properties of individual folders in the project , thereby
enabling you to skip the verification process each time the server is accessed.

In the Project window (screenshot below), file icons have symbols that indicate the check-in/check-out status
of files. The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

The following points should be noted:

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Project window (see screenshot above), or
via the context menu that pops up when you right-click the file tab in the Main Window of your
application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova application.

The file is considered to be already checked out to you. The available commands at this point in any
Altova application supporting Microsoft® SharePoint® Server will be: Check In and Undo Check Out.

29.3.15 Script Settings

A scripting project is assigned to an XMLSpy project as follows:

1261

© 2018-2024 Altova GmbH

Project Menu 1261Menu Commands

Altova XMLSpy 2024 Enterprise Edition

1. In the XMLSpy GUI, open the required application project.
2. Select the menu command Project | Script Settings. The Scripting dialog (screenshot below) opens.

3. Check the Activate Project Scripts check box and select the required scripting project (.asprj file). If

you wish to run Auto-Macros when the XMLSpy project is loaded, check the Run Auto-Macros check
box.

4. Click OK to finish.

Note: To deactivate (that is, unassign) the scripting project of an XMLSpy project, uncheck the Activate
Project Scripts check box.

29.3.16 Properties

The Project | Project Properties command opens the Properties dialog (screenshot below) of the active
project. If you right-click a folder in the Project window (as opposed to the project folder itself) and select
Properties, the Properties dialog of that folder is opened. The dialog settings are described below.

Note: If your project file is under source control, a prompt appears asking if you want to check out the
project (.spp) file. Click OK if you want to edit settings and be able to save them.

1262 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Settings

File extensions
The File Extensions setting is enabled for individual folders, and not for the project folder. When a file is added
to a project, it will be added to the folder on which its file extension has been defined. For example, say a file
named MyReport.xml is added to the project. If .xml file extensions have been set on the Invoices-EU folder
(as shown in the screenshot above), then MyReport.xml will be added to the Invoices-EU folder. If there is
more than one folder to which you wish to add XML files, then you should add individual XML files directly to the
folder (instead of to the project).

© 2018-2024 Altova GmbH

Project Menu 1263Menu Commands

Altova XMLSpy 2024 Enterprise Edition

User ID and password for external folders
On external folders (including external Web folders), you can save the user ID and password that might be
required for accessing the server.

Validation
The DTD, XML Schema, or JSON schema that should be used to validate the files in the current folder
(or entire project if the properties are those of the project).

XSL transformation of XML files
The XSLT stylesheet to be used for XSLT transformation of XML files in the folder.

XSL-FO transformation of XML files
The XSLT stylesheet to transform XML files in the folder to XSL-FO.

XQuery/Update transformation of XML files
The XQuery or XQuery Update file to be used for XQuery executions or XQuery Update executions of XML files
in the folder.

Input XML for XSL/XQuery/Update transformation of XML files
The XML file to use as input for XSLT transformations or XQuery/XQuery Update executions with the respective
XSLT, XQuery, or XQuery Update files in the folder.

Output files for XSL/XQuery/Update transformation
The destination directory of transformations, and, optionally, the file extension of the result document.

XULE execution
The XBRL instance file to process with the XULE document that is active in the XMLSpy application window.

Authentic View
The Use config specifies the StyleVision Power Stylesheet (SPS file) to use for the Authentic View display of
XML files in the folder. Note that the XML file must be valid against the same schema used for the SPS.

JSON conformant files
This property specifies whether a project folder contains JSON Schema files or JSON instance files. It can be
very useful to help identify JSON Schema files if the files are not clearly identified as a JSON Schema file by
the $schema keyword and the files reference each other. You can set it to JSON Instance, JSON Schema, or

Auto detect. The default setting of Auto-detect would cause XMLSpy to check the structure and content of
JSON files to determine its type.

Notes about project properties
Note the following points about precedence:

701 1269

1327

1264 Menu Commands Project Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· When validations or XSLT/XQuery transformations are carried out via project folder context menus, then
the validation or transformation files specified in this dialog take precedence over any assignment in the
XML file. Also, settings specified for individual project folders take precedence over settings specified
for ancestor folders.

· If one file is present in multiple folders of the project and has been assigned different validation or
transformation files in the different folders, then you can set which assignment to use when the file is
processed outside the project. Specify this as follows: Locate the file in the project folder whose
assignment/s you wish to use. Right-click the file in that project folder, and select Properties. In the
dialog that appears (screenshot below), select Use settings in current folder as default. (The current
folder is the project folder in which the file is located.) If the option is disabled, it means that the
settings of the current folder are already selected as the default settings to use. If you select a file
instance that is in a project folder that is not the default, then the option is enabled, and you can
switch the default settings to be this folder's settings. Note that, if the file has a local assignment (that
is, an assignment within the file itself), then the local assignment will be used, and the default folder
settings will be ignored.

29.3.17 Most Recently Used Projects

This command displays the file name and path for the nine most recently used projects, allowing quick access
to these files.

Also note, that XMLSpy can automatically open the last project that you used, whenever you start XMLSpy.
(Tools | Options | File section, Project | Open last project on program start).

1514

© 2018-2024 Altova GmbH

XML Menu 1265Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.4 XML Menu

The XML menu contains commands that are commonly used when working with XML documents. You will find
commands to insert or append elements, modify the element hierarchy, set a namespace prefix, as well as to
evaluate XPaths in the context of individual XML documents.

Among the most frequently used XML tasks are checks for the well-formedness of documents and
validity of XML documents. Commands for these tasks are in this menu.

1268

1269

1266 Menu Commands XML Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.4.1 Type

The Type command has a submenu that contains a list of XML node types. You can change the type of the
node currently selected in Grid View to a new type from this list. The node types in the submenu become
enabled in Grid View only, and only those node types are enabled to which the currently selected node can be
changed.

See the topic XML | Document Content for more information.

29.4.2 Insert After/Before

The Insert After and Insert Before commands are enabled when a node in Grid View is selected. They add an
element node at the same level, respectively, after and before the selected item. Change the name of the newly
added element by double-clicking in its name cell and editing. Change the node type by clicking the element's
icon (to the left of its name) and selecting the node type you want, or by using the command XML | Type .

See the topic XML | Document Structure for more information.

29.4.3 Append, Add Child

The Append and Add Child commands are enabled when a node in Grid View is selected. The Append
command adds a new element node as the last sibling of the selected item. The Add Child command appends
a new element node as a child. Change the name of the newly added element by double-clicking in its name
cell and editing. Change the node type by clicking the element's icon (to the left of its name) and selecting the
node type you want, or by using the command XML | Type .

See the topic XML | Document Structure for more information.

29.4.4 Wrap in Element

The Wrap in Element command is enabled when a node in Grid View is selected. The selected node is given
a parent element with a default name. Change the name of the newly added parent element by double-clicking
in its name cell and editing.

See the topic XML | Document Structure for more information.

29.4.5 Edit as Raw Text

The Edit as Raw Text command is enabled when a node in Grid View is selected. It enables you to edit text
content of the selected item as raw text. This is useful, for instance, if you are editing complex content such as
HTML code.

165

1266

164

1266

164

164

© 2018-2024 Altova GmbH

XML Menu 1267Menu Commands

Altova XMLSpy 2024 Enterprise Edition

For more information, see the section XML in Grid View .

29.4.6 Move Up/Down/Left/Right

These Move commands are enabled when a node in Grid View is selected. If it is possible to move the node
up, down, left or right from its current location in the grid, then the corresponding command/s are enabled.
Select the respective command to carry out the move.

29.4.7 Display as Table

The Display as Table command is enabled when a repeating element in Grid View is selected. It is a toggle
command that switches the display of the set of repeating elements between standard Grid View and Table
Display . Table Display enables you to view repeated elements as a table in which the rows represent the
occurrences while the columns represent child nodes.

See the topic Table Display (XML) for more information.

29.4.8 Ascending/Descending Sort

The Ascending Sort and Descending Sort commands are enabled in Table Display when a column or cell
is selected. They sort the selected column in either alphabetic or numeric ascending/descending order,
depending to the datatype of the column.

See the topic Table Display (XML) for more information.

29.4.9 Flip Rows/Columns

The Flip Rows/Columns command is enabled in Table Display when the top left cell of a table is selected
(marked in red in screenshot below). The command switches rows to columns and vice versa.

See the topic Table Display (XML) for more information.

330

155

172

172

172

172

172

172

1268 Menu Commands XML Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.4.10 Evaluate XPath

The XML | Evaluate XPath command opens the Output Windows if these are not open and activates the
XPath Window in the Output Windows . In the XPath tab, you can evaluate an XPath expression on the
active document and see the results in the Output Window.

29.4.11 Check Well-Formedness

F7

The XML | Check well-formedness (F7) command checks the active document for well-formedness by the
definitions of the XML 1.0 specification. Every XML document must be well-formed. XMLSpy checks for well-
formedness whenever a document is opened or saved, or when the view is changed from Text View to any other
view. You can also check for well-formedness at any time while editing by using this command.

If the well-formedness check succeeds, a message is displayed in the Messages window (screenshot below).

If an error is encountered during the well-formedness check, a corresponding error message is displayed
(screenshot below).

Note that errors in the Messages window are displayed one error at a time.

121

© 2018-2024 Altova GmbH

XML Menu 1269Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Note: The Messages window has nine tabs. The validation result is always displayed in the active tab. So
you can validate one XML document in Tab-1 and retain the result in that tab. To validate a second
document, switch to Tab-2 (or Tab-3 if you like) before running the check. If you do not switch tabs,
Tab-1 (or the active tab) will be overwritten with the results of the latest validation.

Validating from the Project window
The Validate command can also be applied to a file, folder, or group of files in the active project. Select the
required file or folder in the Project Window (by clicking on it). Then click XML | Validate XML . You can
also use the Validate XML on Server (high-performance) command. Invalid files in a project will be
opened and made active in the Main Window, and the File is not valid error message will be displayed.

Note: The Messages window has nine tabs. The result of the well-formed check is always displayed in the
active tab. So you can check the well-formedness of one XML document in Tab-1 and retain the result
in that tab. To check the well-formedness of a second document, switch to Tab-2 (or Tab-3 if you like)
before running the check. If you do not switch tabs, Tab-1 (or the active tab) will be overwritten with the
results of the latest check.

It is generally not permitted to save a malformed XML document, but XMLSpy gives you a Save Anyway option.
This is useful when you want to suspend your work temporarily (in a not well-formed condition) and resume it
later.

Note: You can also use the Check well-formedness command on any file, folder, or group of files in the
active project window . Click on the respective item, and then on the Check Well-Formedness icon.

29.4.12 Validate XML

F8

The XML | Validate (F8) command enables you to validate XML documents against DTDs, XML Schemas, and
other schemas. Validation is automatically carried out when you switch from Text View to any other view. You
can specify that a document be automatically validated when a file is opened or saved (Tools | Options | File).
The Validate command also carries out a well-formedness check before checking validity, so there is no need
to use the Check Well-Formedness command before using the Validate command.

Note: You can also toggle on the Validate on Edit command to validate as you edit data.-

If a document is valid, a successful validation message is displayed in the Messages window.

1269

1273

116

1268

1275

1270 Menu Commands XML Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Otherwise, a message that describes the error is displayed. You can click on the links in the error message to
jump to the node in the XML document where the error was found. See the next section below for a description
of the error message and how to fix validation errors with the smart fixes of XMLSpy.

Validation errors and their fixes
When a validation error is displayed in the Messages window, the causes of the error are displayed in the left-
hand pane (see screenshot below). If a cause is selected in the left-hand pane, then smart fixes for it, if
available, are displayed in the right-hand pane. Smart fix suggestions are available in Text View and Grid
View, and are based on information in the associated schema. To view smart fixes, click the Show Smart Fix
button. Click Hide Smart Fix if you do not want these suggestions to be displayed. Note that errors of well-
formedness (such as mismatched start and end tags), if such exist, are displayed prior to validation errors
being displayed. So the Show/HIde Smart Fix button will be enabled only when a validation error is reached
(that is, after alll well-formedness errors have been corrected).

To apply a smart fix, either (i) double-click it, or (ii) select it and click either the Fix or Fix + Validate options
(see screenshot below). The Fix + Validate command will validate beyond the fixed error and pick up the next
error, if there is any.

© 2018-2024 Altova GmbH

XML Menu 1271Menu Commands

Altova XMLSpy 2024 Enterprise Edition

In Text View, there are two additional indicators of a validation error (see screenshot below): (i) a red
exclamation-mark icon in the line-numbering margin, and (ii) a red marker-square in the scroll bar (on the right
of the window).

The light-bulb icon next to the exclamation-mark icon (see screenshot above) is the smart-fix icon. If you hover
over it, all smart fixes across all causes of the error are displayed (see screenshot below). Select a smart fix to
apply it.

Note: The validation error indicators and smart fixes described above are refreshed only when the XML |
Validate (F8) command is executed; they are not updated in the background. So, after correcting an
error, you must run the Validate (F8) command again to make sure that the error has indeed been
fixed.

Note: The Messages window has nine tabs. The validation result is always displayed in the active tab. So
you can validate one XML document in Tab-1 and retain the result in that tab. To validate a second
document, switch to Tab-2 (or Tab-3 if you like) before running the check. If you do not switch tabs,
Tab-1 (or the active tab) will be overwritten with the results of the latest validation.

Validating from the Project window
The Validate command can also be applied to a file, folder, or group of files in the active project. Select the
required file or folder in the Project Window (by clicking on it). Then click XML | Validate or F8. Invalid files in a

1272 Menu Commands XML Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

project will be opened and made active in the Main Window, and the File is not valid error message will be
displayed..

Validating XML documents
To validate an XML file, make the XML document active in the Main Window, and click XML | Validate or F8.
The XML document is validated against the schema referenced in the XML file. If no reference exists, an error
message is displayed in the Messages window. As long as the XML document is open, the schema is kept in
memory (see Flush Memory Cache in the DTD/Schema menu).

Validating schema documents (DTDs and XML Schema)
XMLSpy supports major schema dialects, including DTD and XML Schema. To validate a schema document,
make the document active in the Main Window, and click XML | Validate or F8.

Validation messages
There are two kinds of messages:

· If the schema (DTD or XML Schema) is valid, a successful validation message is displayed in the
Messages window.

· If the schema is not valid, an error message is displayed in the Messages window (screenshot below).

An error message shows each possible cause of that error separately. For example, in the screenshot
above, four possible causes of the validation error are reported; the first one is expanded, the other
three are collapsed. Each cause is divided into three parts:

1. A description of the possible cause. The description contains links to the relevant definition in the
associated schema document. You can quickly go to the specific schema definition to see why
exactly the document is invalid.
2. The location path to the node in the XML document that has caused the error. Clicking any node in
this location path highlights that node in the document.
3. Detailed information about the error, as well as a link to the relevant paragraph in the schema
specification. This is where the schema rules that specify the relevant legality are specified.

Note: If the validation is done in Text View, then clicking a link in the Messages window will highlight the
corresponding definition in Text View. If the validation is done in Schema View, then clicking a
definition link will open the definition in Schema View and allow you to edit the component directly.

1302

© 2018-2024 Altova GmbH

XML Menu 1273Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Catalogs
For information about catalog support in XMLSpy, see the section Catalogs in XMLSpy .

Automating validation with RaptorXML 2024

RaptorXML is Altova's standalone application for XML validation, XSLT transformation, and XQuery

transformation. It can be used from the command line, via a COM interface, in Java programs, and in .NET
applications. Validation tasks can therefore be automated with the use of RaptorXML. For example, you can
create a batch file that calls RaptorXML to perform validation on a set of documents and sends the output to a
text file. See the RaptorXML documentation for details.

29.4.13 Validate XML on Server (high-performance)

Ctrl+F8

The XML | Validate on Server (high-performance) (Ctrl+F8) command validates the active XML document
by using the currently active RaptorXML Server and its active configuration . The command immediately
carries out the validation and displays the results in the Messages window.

Note: The actual performance depends on the number of PC processor cores used by RaptorXML Server for
the validation: The higher the number of cores used, the faster will be the processing.

If you have defined multiple configurations on multiple servers, you can select a server and one of its
configurations as the active configuration. The active configuration will be used for subsequent validations. On
placing the cursor over the Tools | Raptor Servers and Configurations command (see screenshot below), a
submenu appears that contains all the added servers, together with the configuration of each. Select the server
configuration you want to make the active configuration. In the screenshot below, the xbrl configuration of the
server named Raptor-01 has been selected as the active configuration (indicated by the green arrow).

The Validate XML on Server (high-performance) (Ctrl+F8) command is also available in the Project entry
helper. Right-click the project, a folder, or a file, and select Validate XML on Server to validate XML or XBRL
data in the selected object.

Note: Raptor validation is available in Text View, Grid View, and XBRL View.

451

1494 1494

http://www.altova.com/documentation.html

1274 Menu Commands XML Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.4.14 Validating WSDL Files

A WSDL document is not only a WSDL document but also an XML document. As a result, it can be validated
as XML and also as WSDL. The following list contains important information about WSDL validation
behavior in the Enterprise and Professional Editions of XMLSpy.

· The Professional Edition performs simple schema validation, that is, it treats the WSDL file as an XML
file and validates it according to the schema defined at http://schemas.xmlsoap.org/wsdl/.

· The Enterprise Edition provides WSDL validation that goes beyond the XML validation provided by the
Professional Edition. It does not validate against http://schemas.xmlsoap.org/wsdl/. Instead, it
uses the document http://www.altova.com/specs_wsdl.html#_document-s as well as its own
logic. This provides additional validation information in the context of WSDL. Thus it can happen that a
WSDL file is valid in the Professional Edition, but not valid in the Enterprise Edition (see example
below).

· There is a difference between http://schemas.xmlsoap.org/wsdl/ and
http://www.altova.com/specs_wsdl.html#_document-s. The former schema does not contain
definitions of extensibility elements, which are defined in the WSDL specification. It appears that this
shortcoming is an error in the official W3C schema; the shortcoming is addressed in the latter schema
(used by Enterprise Edition).

· Since Professional Edition uses http://schemas.xmlsoap.org/wsdl/ for validation, extensibility
elements will be reported as invalid in Professional Edition but valid in Enterprise Edition (which uses
http://www.altova.com/specs_wsdl.html#_document-s).

· Since the W3C schema is an official schema provided by the W3C working group, any errors in them
are, unfortunately, beyond Altova's control.

Example
The following example is part of a WSDL file. Notice the element getCityTime that has been declared in the
file. This element is mistakenly referenced as getCityTimes. The Enterprise Edition checks if elements that
are referenced have previously been declared in the file, the Professional Edition does not. This file (assuming
that the rest of the file is valid) would be found to be valid in the Professional Edition, but invalid in the
Enterprise Edition (assuming that getCityTimes is not defined somewhere else in the file).

<s:element name="getCityTime">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="city" type="s:string"/>
 </s:sequence>
 </s:complexType>
</s:element>
<s:element name="abc">
 <s:complexType>
 <s:sequence>
 <s:element ref="getCityTimes"/>
 </s:sequence>
 </s:complexType>
</s:element>

1269

© 2018-2024 Altova GmbH

XML Menu 1275Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.4.15 Validate on Edit

The Validate on Edit command toggles on/off theValidate on Edit mode, which enables validation as you type
in Text View , JSON Grid View , or Authentic View. The mode can also be switched on/off via the
command's toolbar button or the Validation > On Edit option of the File section of the Options dialog .

29.4.16 Update Entry Helpers

The Update Entry Helpers command updates the Entry Helper windows by reloading the underlying DTD or
Schema. If you have modified the DTD or XML Schema that an open XML document is based upon, you should
update Entry Helpers so that the intelligent editing information reflects the changes in the schema.

29.4.17 Namespace Prefix

The XML | Namespace Prefix command is available in Grid View and opens a dialog box in which you can
set the namespace prefix of the selected element or attribute, and, in the case of elements, of its descendants
as well.

You can choose to set the namespace prefix on either elements, attributes, or both. The namespace prefix is
applied to the selected element or attribute, and, if an element is selected, to descendant nodes of the
selected element.

29.4.18 Create XML Signature

The Create XML Signature command is enabled in Text View, Grid View, Schema View, WSDL View and
XBRL View, and enables you to create an XML signature for the active XML document. Clicking the command
opens the Create XML Signature dialog (screenshot below), the settings of which are explained below.

139 168

1514

1276 Menu Commands XML Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Authentication method: certificate or password
The signature can be based on a certificate or a password. Select the radio button of the method you wish to
use.

· Certificate: If you wish to use a certificate, the certificate must have a private key and be located in an
accessible certificate store . The signature is generated using the private key of the certificate. To
verify the signature, access to the certificate (or a public-key version of it) is required. The public key of
the certificate is used to verify the signature. To select the private-public-key certificate you wish to
use, click the Select button and browse for the certificate. For more details about certificates, see the
section Working with Certificates .

415

414

© 2018-2024 Altova GmbH

XML Menu 1277Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· Password: Enter a password with a length of five to 16 characters. This password will subsequently be
required to verify the signature.

Transformations
The XML data is transformed and the result of the transformation is used for the creation of the signature. You
can specify the canonicalization algorithm to be applied to the file's XML data (the SignedInfo content) prior to
performing signature calculations. Significant points of difference between the algorithms are noted below:

· Canonical XML with or without comments: If comments are included for signature calculation, then any
change to comments in the XML data will result in verification failure. Otherwise, comments may be
modified or be added to the XML document after the document has been signed, and the signature will
still be verified as authentic.

· Base64: The root (or document) element of the XML document is considered to be Base64 encoded,
and is read in its binary form. If the root element is not Base64, an error is returned or the element is
read as empty, depending on what type of element is encountered.

· None: No transformation is carried out and the XML data from the binary file saved on disk is passed
directly for signature creation. Any subsequent change in the data will result in a failed verification of
the signature. However, if the Strip Whitespace check box option is selected, then all whitespace is
stripped and changes in whitespace will be ignored. A major difference between the None option and a
Canonicalization option is that canonicalization produces an XML data stream, in which some
differences, such as attribute order, are normalized. As a result, a canonicalization transformation will
normalize any changes such as that of attribute order (so verification will succeed), while no-
transformation will reflect such a change (verification will fail).

Signature placement
The signature can be placed within the XML file or be created as a separate file. The following options are
available:

· Enveloped: The signature element is created as the last child element of the root (document) element.
· Enveloping: The signature element is created as the root (document) element and the XML document

is inserted as a child element.
· Detached: The XML signature is created as a separate file. In this case, you can specify the file

extension of the signature file and whether the file name is created with: (i) the extension appended to
the name of the XML file (for example, test.xml.xsig), or (ii) the extension replacing the XML
extension of the XML file (for example, test.xsig). You can also specify whether, in the signature file,
the reference to the XML file is a relative or an absolute path.

Note: XML signatures for XML Schema (.xsd) files and for XBRL files can only be created as external
signature files. For WSDL files, signatures can be created as external files and can be "enveloped" in
the WSDL file.

Note: If the XML signature is created as a separate file, then the XML file and signature file are associated
with each other via a reference in the signature file. Consequently, signature verification in cases where
the signature is in an external file must be done with the signature file active—not with the XML file
active.

Append key information
The Append Keyinfo option is available when the signature is certificate-based. It is unavailable if the signature
is password-based.

1278 Menu Commands XML Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If the option is selected, public-key information is placed inside the signature, otherwise key information is not
included in the signature. The advantage of including key information is that the certificate itself (specifically the
public-key information in it) will not be required for the verification process (since the key information is present
in the signature).

29.4.19 Verify XML Signature

An XML signature will be correctly verified if the XML file has not been changed since having been signed.
Otherwise the verification will fail. The Verify XML Signature command executes the verification process and
displays the results of the verification in the Messages windows. The various verification scenarios in XMLSpy
are described below:

· XML file contains certificate-based signature, key information included in signature
· XML file contains certificate-based signature, key information not contained in signature
· Certificate-based signature in external file, key information contained in signature
· Certificate-based signature in external file, key information not contained in signature
· XML file contains password-based signature
· Password-based signature in external file

XML file contains certificate-based signature, key information included in signature
To verify the XML signature in this scenario, make the XML file active in XMLSpy. On clicking the XML | Verify
XML Signature command, the verification process will be executed and the result will be displayed in the
Messages window (verification succeeded or failed).

XML file contains certificate-based signature, key information not contained in signature
If no key information is contained in the certificate-based signature, XMLSpy will prompt you for the certificate
from which public-key information for the verification can be read. Verification is done with the XML file active in
XMLSpy. On clicking the XML | Verify XML Signature command, you will be prompted to select the
certificate store in which the certificate is stored (screenshot below).

On selecting a certificate store and clicking OK, a dialog displaying the certificates in that store pops up
(screenshot below). Select the certificate required for the verification and click OK.

1278

1278

1279

1279

1279

1280

414

414

© 2018-2024 Altova GmbH

XML Menu 1279Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The signature is verified and the result is displayed in the Messages window.

Certificate-based signature in external file, key information contained in signature
If a certificate-based XML signature is in an external file, the signature is verified with the signature file active in
XMLSpy. On clicking the XML | Verify XML Signature command, the verification process will be executed
and the result will be displayed in the Messages window (verification succeeded or failed).

Certificate-based signature in external file, key information not contained in signature
If a certificate-based XML signature is in an external file, the signature is verified with the signature file active in
XMLSpy. On clicking the XML | Verify XML Signature command, XMLSpy will prompt you for the certificate
from which public-key information for the verification can be read. Select the certificate as described in the

section: XML file contains certificate-based signature, key information not contained in signature . The
verification process will be executed and the result will be displayed in the Messages window (verification
succeeded or failed).

XML file contains password-based signature
If the XML file contains a password-based XML signature, the signature is verified with the XML file active in
XMLSpy. On clicking the XML | Verify XML Signature command, a dialog pops up prompting you for the
password (screenshot below).

1278

1280 Menu Commands XML Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Enter the password, which must be five to sixteen characters long, and then click OK. The verification process
will be executed and the result will be displayed in the Messages window (verification succeeded or failed).

Password-based signature in external file
If a password-based XML signature is in an external file, the signature is verified with the signature file active in
XMLSpy. On clicking the XML | Verify XML Signature command, a dialog pops up prompting you for the
password (screenshot below).

Enter the password, which must be five to sixteen characters long, and then click OK. The verification process
will be executed and the result will be displayed in the Messages window (verification succeeded or failed).

© 2018-2024 Altova GmbH

JSON Menu 1281Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.5 JSON Menu

The JSON menu contains commands that are commonly required when working with JSON documents. A
majority of the commands are used when working in JSON Grid View . If a command is not applicable at the
current cursor location, then it is disabled.

The commands of this menu are described in the sub-sections of this section:

· Type
· Insert After&Before, Append, Add Child
· Wrap in Array/Object
· Move
· Display as Table
· Ascending/Descending Sort
· Flip Rows/Columns
· Remove Comments, Re-evaluate All

660

1282

1282

1282

1283

1283

1283

1283

1284

1282 Menu Commands JSON Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.5.1 Type

The Type (Ctrl + Menu key) command displays a menu containing JSON datatypes (screenshot below).
Select one type from the menu to assign it to the currently selected cell/s in Grid View. (The Menu key is

usually located at the bottom-right of the keyboard, next to the Ctrl key. Its icon is something like this:).

For more information on editing types, see Editing JSON Document Content .

29.5.2 Insert After/Before, Append, Add Child

The Insert After, Insert Before, Append, and Add Child commands are enabled when the current selection
in Grid View allows a component to be, respectively, inserted, appended, or added as a child.

· Insert After inserts a component of the same type as the selected component in a grid row below the
selected component.

· Insert Before inserts a component of the same type as the selected component in a grid row above
the selected component.

· Append appends a component of the same type as the selected component in a grid row after all the
siblings of the selected component.

· Add Child adds a new child component as a last child. The type will be the same as that of the child
that was previously last.

For more information about editing JSON document structure, see Editing JSON Document Structure .

29.5.3 Wrap in Array/Object

The Wrap in Array and Wrap in Object commands each wrap the selected component/s in an array or
object, respectively. For more information about editing JSON document structure, see Editing JSON
Document Structure .

165

164

164

© 2018-2024 Altova GmbH

JSON Menu 1283Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.5.4 Move

If it is possible to move a component up, down, left or right from its current location in the grid, then the
corresponding command/s are enabled. Select the respective command to carry out the move.

29.5.5 Display as Table

The Display as Table command is enabled when a repeating component in Grid View is selected. It is a
toggle command that switches the display of the repeating components between standard Grid View and
Table Display . Table Display enables you to view repeated elements as a table in which the rows represent
the occurrences while the columns represent child nodes.

See the topic Table Display (JSON) for more information.

29.5.6 Ascending/Descending Sort

The Ascending Sort and Descending Sort commands are enabled in Table Display when a column in the
table display of a component is selected. To select a column select its header. The sorting is based on the
values in the column.

See the topic Table Display (JSON) for more information.

29.5.7 Flip Rows/Columns

The Flip Rows/Columns command is enabled in Table Display when the top left cell of a table is selected
(marked in red in screenshot below). The command switches rows to columns and vice versa.

155

176

176

176

176

176

1284 Menu Commands JSON Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

See the topic Table Display (JSON) for more information.

29.5.8 Remove Comments, Re-evaluate All

The Remove Comments command removes all comments. The command can be used in JSON Grid View.

The Re-evaluate All command re-evaluates all filters and formulas . This is useful when the JSON
document accesses dynamic data which can change with time (for example, exchange rates). The command
can be used in Text View and JSON Grid View.

176

193 189

© 2018-2024 Altova GmbH

DTD/Schema Menu 1285Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.6 DTD/Schema Menu

The DTD/Schema menu (screenshot below) contains commands to work with DTDs and XML Schemas.

29.6.1 Assign DTD

The Assign DTD command is enabled when an XML file is active. It assigns a DTD to an XML document, thus
allowing the document to be validated and enabling intelligent editing for the document. The command opens
the Choose Schema or DTD dialog (screenshot below) via which you can select the DTD you want to assign.

1286 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The following options are available:

· Assign Schema/DTD File: Browse for the XML Schema or DTD file you want to assign. Note that you
can make the assignment in the document a relative or absolute path.

· Assign Packaged Schema: Some schemas are each actually a package of schema files rather than a
single schema file. The Assign Packaged Schema option opens a dialog that lists the schema
packages supported by Altova's Schema Manager . In this dialog, schemas listed in black have
already been installed on your machine, those in blue have not been installed and can be installed by
Schema Manager . When you select a schema package or one of its schema entry points and click
OK, the following happens: The schema package will be installed if it has not already been installed.
The selected schema package (previously installed or newly installed) will be assigned to the
document and will be used from this point onwards for document validation.

· Cancel: If a new file is being created, then it is created with no XML Schema or DTD assignment. If the
schema assignment is for an already existing document, then the dialog is exited.

When you are done, your XML document will contain a DOCTYPE declaration that references the assigned
DTD. The DOCTYPE declaration will look something like this:

<!DOCTYPE main SYSTEM "http://link.xmlspy.com/spyweb.dtd">

Note: A DTD can be assigned to a new XML file at the time the file is created.

29.6.2 Assign Schema

The Assign Schema command is enabled when an XML document is active. It assigns an XML Schema to an
XML document, thus allowing the document to be validated and enabling intelligent editing for the document.
The command opens the Choose Schema or DTD dialog (screenshot below) via which you can select the XML
Schema or XML schema package you want to assign.

420

420

1194

© 2018-2024 Altova GmbH

DTD/Schema Menu 1287Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The following options are available:

· Assign Schema/DTD File: Browse for the XML Schema or DTD file you want to assign. Note that you
can make the assignment in the document a relative or absolute path.

· Assign Packaged Schema: Some schemas are each actually a package of schema files rather than a
single schema file. The Assign Packaged Schema option opens a dialog that lists the schema
packages supported by Altova's Schema Manager . In this dialog, schemas listed in black have
already been installed on your machine, those in blue have not been installed and can be installed by
Schema Manager . When you select a schema package or one of its schema entry points and click
OK, the following happens: The schema package will be installed if it has not already been installed.
The selected schema package (previously installed or newly installed) will be assigned to the
document and will be used from this point onwards for document validation.

· Cancel: If a new file is being created, then it is created with no XML Schema or DTD assignment. If the
schema assignment is for an already existing document, then the dialog is exited.

When you are done, your XML document will contain an XML Schema assignment together with the required
namespaces. The schema assignment will look something like this:

xmlns="http://www.xmlspy.com/schemas/icon/orgchart"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xsi:schemaLocation="http://www.xmlspy.com/schemas/icon/orgchart
http://schema.xmlspy.com/schemas/icon/orgchart.xsd"

29.6.3 Include Another DTD

The DTD/Schema | Include another DTD command allows you to include another Document Type Definition
(DTD) or external parsed entity into the internal subset of a document type definition, or in any DTD document.
This is done by defining a corresponding external parsed entity declaration and using that entity in the following
line:

<!ENTITY % navigation.dtd SYSTEM "S:\xml\navigation.dtd">
%navigation.dtd;

The command opens the Assign File dialog to let you specify the DTD file you want to include in your DTD.

Note: This command is enabled in Grid View only.

420

420

1288 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.6.4 Go to DTD

The DTD/Schema | Go to DTD command opens the DTD on which the active XML document is based. If no
DTD is assigned, then an error message is displayed.

29.6.5 Go to Schema

The DTD/Schema | Go to Schema command opens the XML Schema on which the active XML document is
based. If no XML Schema is assigned, then an error message is displayed.

29.6.6 Go to Definition

The DTD/Schema | Go to Definition command displays the exact definition of an element or attribute in the
corresponding Document Type Definition or Schema document.

To see the item definition in Grid View
1. Click left on the item.
2. Select the menu item DTD/Schema | Go to Definition, or click on the icon.

To see the item definition in Schema View
· Use CTRL + Double click on the item you want to see the definition of, or
· Click the item and select menu option DTD/Schema | Go to Definition, or click on the icon.

In both cases, the corresponding DTD or Schema file is opened, and the item definition is highlighted.

© 2018-2024 Altova GmbH

DTD/Schema Menu 1289Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.6.7 Generate DTD/Schema

The DTD/Schema | Generate DTD/Schema command generates a new DTD or W3C XML Schema from an
XML document (or from a set of XML documents contained in a folder in the project window). This command is
useful when you want to generate a DTD or XML Schema from XML documents.

1290 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If you generate an XML Schema, the following options are available:

© 2018-2024 Altova GmbH

DTD/Schema Menu 1291Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· Elements: The type of elements can be defined locally or globally (Define types for elements). If
elements have the same name, a common type can be declared for use in the definition of these
elements (Generate one shared type).

· Attributes: The simple types of attributes (Define simple types for attributes) can be defined as (i)
common global types; (ii) distinct global types; (iii) local types. Attributes with the same name and
type can be defined either locally or globally.

· Simple type recognition: The recognition of types (Simple type recognition) can be set to: (i) best
possible; (ii) recognition of number datatypes only; (iii) no datatype recognition, in which case all
datatypes are set to xs:string.

· Entity resolution: In the XML document, entities may appear in element content and attribute values.
Whether they are resolved or not (Validate and resolve entities) is therefore significant for enumeration
values. Furthermore, some entities (especially parsed entities that contain markup) can affect the
content model differently depending on whether they are resolved or not. Note that the XML document
will be validated for being correct XML before the schema is generated. If the document is invalid, the
schema generation process will be discontinued.

· Enumerations: All types of values, or string values only, can be enumerated.

If you generate a DTD, the entity resolution and enumeration options are available.

The Generate DTD/Schema command normally operates on the active main window, but you can also use the
Generate DTD/Schema command on any file, folder, or group of files in the active project window.

If elements or attributes in more than one namespace are present, XMLSpy generates a separate XML Schema
for each distinct namespace; therefore, multiple files may be created on the disk.

29.6.8 Flatten DTD

The Flatten DTD command is enabled when a DTD is the active document. It creates a new flat DTD, removing
parameter entities and producing a single DTD from a collection of modules. It also suppresses sections
marked IGNORE and deletes unused parameter entities.

The command pops up a Save dialog, in which you select a location at which to save the generated DTD file.
Click Save to carry out the conversion. The flattened DTD file is generated and opened in XMLSpy.

29.6.9 Convert DTD to Schema

The Convert DTD to Schema command is enabled when a DTD is the active document. It converts a DTD into
an XML Schema document (XSD).

The command pops up the Convert DTD to W3C Schema dialog (screenshot below), in which you can select
whether complex elements should be converted into elements or complex types. On clicking OK, you are
prompted to select a location at which to save the generated XSD file. Click Save to carry out the conversion.
The XSD file is generated and opened in XMLSpy.

1292 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

When you convert a DTD to XML Schema, XMLSpy makes a few assumptions because of the limited
information available. Most notably, the values of certain DTD components are treated literally rather than
having their semantics parsed. This is because the program cannot know which of several possible usages is
intended. In these cases, you should modify the generated conversion.

In any case, you should carefully examine the generated conversion to see if you can enhance it. A few areas
in which improvements may be required are listed below.

Attribute Datatyping
DTDs allow for only 10 attribute datatypes, whereas XML Schemas, for instance, allow for more than 40
datatypes plus derived datatypes. You may wish to enhance a generated XML Schema, for example, by using
a more restrictive datatype. Note that when an XML Schema is converted to DTD datatype information will
be lost.

Namespaces
DTDs are not namespace-aware. As a result, if namespaces are to be specified in a DTD they must be hard-
coded into element and attribute names. This could pose challenging problems when converting from one
schema to another.

Entities
XML Schema does not have equivalents for the general entity declarations of DTDs. When XMLSpy converts a
DTD to an XML Schema, it ignores entity declarations.

Unparsed data declarations
DTDs and XML Schemas use different mechanisms for handling unparsed data. This is explained in more detail
below.

DTDs use the following mechanism:

· A notation is declared consisting of a name and an identifier, for example:
<!NOTATION gif SYSTEM "image/gif">

· You declare the entity, for example:
<!ENTITY cover_img SYSTEM "graphics/cover_img.gif" NDATA gif>

· Typically, you specify an attribute type of ENTITY on the relevant attribute, for example:<!ELEMENT img
EMPTY>

 <!ATTLIST img format ENTITY #REQUIRED>

In XML Schema, the corresponding mechanism is as follows:

· Declare a notation. This functions in the same way as for the DTD.

1294

© 2018-2024 Altova GmbH

DTD/Schema Menu 1293Menu Commands

Altova XMLSpy 2024 Enterprise Edition

<xs:notation name="gif" public="image/gif"/>

Note that the public attribute is mandatory and holds the identifier. An optional system attribute holds
the system identifier and is usually an executable that can deal with resources of the notation type.

· You associate the notation declaration with a given attribute value using the NOTATION datatype. You
cannot, however, use the NOTATION datatype directly, but must derive another datatype from the
NOTATION datatype.
<xs:simpleType name="formatType">
 <xs:restriction base="xs:NOTATION">
 <xs:enumeration value="gif"/>
 <xs:enumeration value="jpeg"/>
 </xs:restriction>
</xs:simpleType>

· You associate the attribute with the datatype derived from the NOTATION datatype, e.g.
<xs:complexType name="imgType">
 <xs:attribute name="height"/>
 <xs:attribute name="width"/>
 <xs:attribute name="location"/>
 <xs:attribute name="format" type="formatType" use="required"/>
</xs:complexType>
<xs:element name="img" type="imgType"/>

When you convert a DTD to an XML Schema, XMLSpy does the following:

· Something like
<!ATTLIST image format ENTITY #REQUIRED
...>

is converted to
<xs:attribute name="format" type="xs:ENTITY" use="required"/>

· And something like
<!NOTATION gif SYSTEM "image/gif">

is converted to
<xs:notation name="gif" system="image/gif"/>

You should therefore make the following modifications:

1. In notations like <xs:notation name="gif" system="image/gif"/> replace system with public, and
add an optional system identifier if required.

2. Derive a datatype from the NOTATION datatype as described above for formatType.
3. Associate the derived datatype with the relevant attribute.

Note: According to the XML Schema specification, you do not need to—or cannot, depending on your
viewpoint—declare an external entity.

1294 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.6.10 Flatten Schema

The Flatten Schema command is enabled when an XML Schema is the active document. It generates a new
flat XSD by (i) adding the components of all included schemas as global components of the active schema, and
(ii) deleting the included schemas.

The command redirects to the Flatten Schema command of the Schema Design menu. Since the Flatten
Schema command is available in Schema View only, you will be prompted about whether you wish to
switch to Schema View or not. For more information, see the Flatten Schema command.

29.6.11 Convert Schema to DTD

The Convert Schema to DTD command is enabled when an XML Schema is the active document. It converts
an XML Schema document (XSD) into a DTD.

The command pops up a Save dialog, in which you select a location at which to save the generated DTD file.
Click Save to carry out the conversion. The DTD file is generated and opened in XMLSpy.

Note the following points:

1. When you convert an XML Schema to a DTD, the namespace prefixes used in the XML Schema—not
the namespace URIs or the namespace declarations—are carried through to the names of the
corresponding elements and attributes in the DTD.

2. Since XML parsers ignore namespaces when validating an XML document against a DTD, the
namespace declarations themselves are not converted.

3. The elementFormDefault and attributeFormDefault attributes of the xs:schema element determine
what elements and attributes have their prefixes included in the conversion process. If set to
unqualified, then only globally declared elements and attributes, respectively, include prefixes in the
conversion. If set to qualified, all element and attribute names have their prefixes included in the
conversion.

4. Prefixes are converted to their corresponding string value plus a colon. Elements and attributes in
default namespaces are converted to elements and attributes with names that begin with the string:
default_NS_X, where X is an integer (starting with 1 and having a maximum value equal to the number
of default namespaces used in the XML Schema).

5. In the DTD, element names are composed of parameter entities. This enables you to easily change the
prefix in the DTD should the prefix in the XML document ever need to change. Parameter entity
definitions can be changed either in the DTD document itself or by overriding the parameter entity
definitions in the XML document's internal DTD subset.

Note: Namespaces have no semantic value in DTDs, and namespace prefixes carried over from the XML
Schema become merely a lexical part of the name of the element or attribute defined in the DTD.

1323

1323

1323

© 2018-2024 Altova GmbH

DTD/Schema Menu 1295Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.6.12 Convert to UML

The DTD/Schema | Convert to UML command converts a W3C XML Schema to an Altova UModel Project
(.ump) document (hereafter UModel project). UMP is the native format of Altova UModel, Altova's UML modeling
application. UMP files can then be viewed and edited in Altova UModel.

To convert a schema to UML, do the following:

1. With the schema open, click the Convert to UML command. This pops up the Convert to UML dialog
(screenshot below).

2. In the Content Diagrams tab, select the option Generate Diagrams for XSD Globals. This will generate,
in the UModel project, a content model diagram for each global component.

3. Select the required options from those available in the dialog. These options are explained below.
4. If you wish to view the created project in UModel immediately, select the option to open the project in

UModel. Otherwise leave this option unselected.
5. Click OK.
6. In the Save As dialog that appears, browse for the destination folder, then enter the name of the UMP

file, and click Save.

Convert to UML options
The following options are available in the Convert to UML dialog.

In the Content Diagrams tab:

· Hyperlink diagrams creates in each diagram a link to the entry of that global component in the Model
Tree view, thus enabling the component to be quickly located in the schema hierarchy.

· In the Style pane, the show compartments options enables various compartments to be either shown
or hidden.

In the Package Dependency Diagram tab:

· The Generate Diagram option determines whether a package dependency diagram is generated. A
package dependency diagram provides an overview of the entire package, showing the relationships of

1296 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

package components to one another. Note that the other options in this tab will be enabled only if the
Generate Diagram option is selected.

· Selecting the Hyperlink Package to Diagram option creates a link from the package diagram to the
Model Tree View.

· Four options are available for the layout of the package dependencies diagram: (i) unorganized layout
(Autolayout option unselected); (ii) hierarchical layout (Autolayout and Hierarchical options selected);
iii) block (Autolayout and Block options selected); and (iv) evenly spaced (Autolayout and Force
Directed options selected). The layout can be modified by editing the diagram in UModel.

Note: The Convert to UML feature supports W3C XML Schemas only.

29.6.13 Generate XML from DB, Excel, EDI with MapForce

The DTD/Schema | Generate XML from DB, Excel, EDI with MapForce command launches Altova's
MapForce if the application is installed. MapForce enables you to map a schema to another DTD, XML
Schema, or database and to generate XML.

29.6.14 Design HTML/PDF/Word Output with StyleVision...

The DTD/Schema | Design HTML/PDF Output in StyleVision... command launches Altova's StyleVision if
the application is installed. StyleVision enables you to design stylesheets for HTML, PDF, and RTF output.

29.6.15 Generate Sample XML/JSON File

The Generate Sample XML/JSON File command is enabled in Text View, Grid View, and Schema View, and
generates an XML, JSON instance, or YAML document based on the currently active schema file:

· If the currently active file is a DTD or XML Schema, then an XML instance file can be generated from it.
· If the currently active file is a JSON schema, then a JSON instance document or a YAML document

can be generated from it.

The generated file is opened in a new window in XMLSpy, from where you can save it to file. The setting for
generating (i) XML files and (ii) JSON and YAML files are described below.

Generating sample XML files
With a DTD or XML Schema active, you can generate a sample XML instance based on the schema. On
clicking the Generate Sample XML/JSON File command, the Generate Sample XML File dialog (screenshot
below) appears, in which you can specify the options for the sample generation.

© 2018-2024 Altova GmbH

DTD/Schema Menu 1297Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Elements of choice groups
A choice group is a group of elements from which one may be used. For example, if an element called items is
defined as having a choice group consisting of the three elements: cd, dvd, book, then items can validly have
any one of these three elements as a child element (with a maximum number of occurrences as specified in
that element's maxOccurs attribute).

In the Generate Sample XML File dialog, you can select whether (i) the first branch (element) of the choice
group, (ii) all branches, or (iii) the branch with the smallest number of descendant elements is generated. Note
that the All branches selection could generate an invalid document since only one branch from a choice group
is allowed.

If any of the choice groups's branches are repeatable (that is, it has a maxOccurs value of greater than 1), then
you specify, in the first text box of the dialog, how many of the repeatable elements to generate, up to a
maximum of 99. If the maxOccurs attribute of the choice group is defined as unbounded or as a large number

1298 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

and All branches is selected in the Generate Sample XML File dialog, then the maxOccurs of the choice group
is also limited by the number of repeatable elements you specify in the first text box of the dialog.

Generate non-mandatory elements
Activating this option generates both the mandatory and non-mandatory elements defined in the schema. If
activated, you can specify the level of nesting that you want. A greater nesting depth enables non-mandatory
elements to be generated up to the nesting level you specify.

Generate non-mandatory attributes
Activating this option generates both the mandatory and non-mandatory attributes defined in the schema.

Generate X elements if marked repeatable in Schema/DTD
Activating this option generates the number of repeatable elements you enter in the text box. This applies to all
elements, including those in choice groups.

Fill elements and attributes with data
Activating this option inserts the datatype values of the respective elements and attributes. For example if an
element is defined as being pf datatype string, then the element is given a dummy value of string.

Nillable elements and abstract types
The contents of nillable elements can be treated as non-mandatory, and elements with an abstract type can
use a non-abstract type for its xsi:type attribute.

Schema assignment for the generated XML file
The schema used to generate the XML file can be assigned to the generated XML file with a relative or absolute
path.

Use manually added sample values if available
If the schema component has sample values assigned to it, then these will be used as the value or content of
that component. For individual components, sample values are assigned in the Facets Entry Helper , in the
Samples tab. Which value from the available sample values is selected for a single file generation can be
specified:

· A random selection.
· Each sample value in turn for each instance of the component. For each file generation, the cycle

starts anew.
· The first value always.

Root element
If the schema contains more than one global element, these are listed, and the root element required for the
sample XML file can be selected from the list.

273

© 2018-2024 Altova GmbH

DTD/Schema Menu 1299Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Namespaces
Click the Namespaces button to open the Edit Namespaces dialog (screenshot below), The namespaces that
are defined in the schema, plus any standard XML Schema namespaces that are required in the sample XML
file, will appear in this dialog.

You can edit the following:

· The namespace prefix that is bound to any of the document's namespaces. The namespace prefixes
that are set in this dialog will be used (in the generated XML file) to prefix nodes that are in the
corresponding namespace. For example, the screenshot indicates that nodes in the
http://www.xmlspy.com/schemas/textstate namespace will be prefixed with ts: in the sample file

.
· You can set one of the document's namespaces to be the default namespace (xmlns=) by selecting, in

the xmlns= combo box, the namespace that you want. Nodes in the namespace that is selected as
the default namespace will then be generated without a namespace prefix.

Generating sample JSON files
With a JSON schema active, you can generate a sample JSON or YAML instance file that is based on the
JSON schema. On clicking the command, the Generate Sample JSON/YAML File dialog (screenshot below)
appears. Choose the format of the JSON/YAML file to generate and specify the options.

1300 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You can choose whether to generate non-mandatory object properties , non-mandatory pattern properties
, the length of arrays , the repetitions of recursive definitions, and the maximum number of optional values.
You can also specify whether the active JSON schema should be automatically assigned to the generated
JSON or YAML sample file. If the JSON schema is assigned, then it will be added as the validation schema to
the JSON tab of the Info window.

29.6.16 Generate Program Code

The DTD/Schema | Generate Program Code command displays a dialog in which you can (i) select a
programming language (Java, C++, or C#), for which code can be generated, (ii) specify a template to be used
for the code generation, and (iii) specify certain settings for C++ and C# code generation. On clicking OK,
class files of the target code language are generated from definitions in the active schema document (DTD or
XML Schema).

673 673

684

701

© 2018-2024 Altova GmbH

DTD/Schema Menu 1301Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The available settings are as follows.

C++ Settings Defines the specific compiler settings for the C++ environment, namely:

· The Visual Studio version (2013, 2015, 2017, 2019, 2022)
· Whether a makefile for Linux with GCC compiler must be generated.
· The XML library (MSXML, Xerces 3.x)
· Whether static or dynamic libraries must be generated
· Whether code must be generated with or without MFC support

The Makefile for Linux/GCC option adds makefiles to the generated code.
C++ source files are generated so that they are portable using #ifdef
constructs to support different compilers and operating systems.

Note the following if you intend to compile the generated code with GCC (GNU
Compiler Collection) on Linux:

· For Linux/GCC compilation, the only supported XML Library is Xerces
3.x.

· Selecting the check box MFC support has no effect on compilation
with Linux/GCC.

C# Settings Select the option Microsoft .NET Core 3.1, Microsoft .NET 5.0, or Microsoft
.NET 6.0 to generate a Visual Studio solution targeting the respective
platforms.

If you need to target the .NET Framework platform for a specific Visual
Studio version, select any of the Microsoft Visual Studio 2010-2019 options
—in this case, the generated solution will target the .NET Framework version
corresponding to the respective Visual Studio version.

1302 Menu Commands DTD/Schema Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

See the Code Generator section for details about code generation.

29.6.17 Flush Memory Cache

The DTD/Schema | Flush Memory Cache command flushes all cached schema (DTD and XML Schema)
documents from memory. To speed up validation and intelligent editing, XMLSpy caches recently used schema
documents and external parsed entities in memory. Information from these cached documents is also
displayed when the Go to Definition command is invoked.

Flush the memory cache if memory is tight on your system, or if you have used documents based on different
schemas recently.

1288

© 2018-2024 Altova GmbH

Schema Design Menu 1303Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.7 Schema Design Menu

The Schema Design menu enables you to configure the Schema View of XMLSpy. This view enables you to
design XML Schemas in a GUI. It is available when an XML Schema document is active in Schema View.

The commands available in this menu are described in this section.

29.7.1 Schema Settings

The Schema Design | Schema Settings command is enabled in Schema View and lets you define global
settings for the active schema. These settings are the attributes of the xs:schema element.

1304 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The settings defined in the Schema Settings dialog above (when XSD mode is set to 1.1) will create the
following xs:schema element.

<xs:schema xmlns="http://www.altova.com/schemas/org"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"
 targetNamespace="http://www.altova.com/schemas/org"
 elementFormDefault="qualified"
 xpathDefaultNamespace="##targetNamespace"
 version="1.1"
 defaultAttributes="Contact"
 vc:minVersion="1.1">

Note the following points:

· What's in the Schema Settings dialog will differ according to the active XSD mode. If XSD 1.0 is the
active mode, then XSD 1.1 attributes are not present in the dialog.

· In XSD 1.1 mode , the attribute vc:minVersion="1.1" must be present on the xs:schema element.
215

© 2018-2024 Altova GmbH

Schema Design Menu 1305Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· The defaultAttributes and xpathDefaultNamespace attributes are XML Schema 1.1 features and
will be available only in XSD 1.1 mode . They can be present in XSD 1.1.

· The other attributes are available in both XSD 1.0 and XSD 1.1.

The version attribute

The version attribute is the document version. It is not the XSD version of the document .

The defaultAttributes attribute

The defaultAttributes attribute enables you to select an attribute group as the default attribute group of all
complex types in the schema.

The default attribute group will be displayed in the content model of these complex types. In the screenshot
below, for example, the group element has complex content. As a result, the Contact attribute group, which

was set as the default attribute group of all complex types in the schema (see screenshot above where this
has been set), is automatically available on the group element. If you want to disable the default attribute group

on a particular complex type, then you must set the complex type's defaultAttributesApply attribute to
false. In Schema View, you can do this via the defAttrs property in the Details entry helper of the complex
type (see screenshot below).

The xpathDefaultNamespace attribute

The xpathDefaultNamespace attribute sets the default namespace for elements in XPath expressions used in
the schema. If set in the Schema Settings dialog, the attribute is applied to the top-level xs:schema element.
So the scope of the declaration will be the entire document. You can override the declaration on xs:schema
with declarations on elements where the attribute is allowed:

· xs:assert and xs:assertion
· xs:alternative

215

215

1306 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· xs:selector and xs:field (in identity constraints)

You can change the XPath default namespace in the Details entry helper of the elements listed above.

The xpathDefaultNamespace attribute can have one of three allowed values:

· ##targetNamespace: The XPath default namespace will be the same as the target namespace of the
schema

· ##defaultNamespace: The XPath default namespace will be the same as the default namespace of the
schema

· ##local: There is no XPath default namespace

If no XPath default namespace is declared in the document, unprefixed elements in XPath expressions will be
in no namespace. The XPath default namespace declaration does not apply to attributes.

29.7.2 Save Diagram

The Schema Design | Save Diagram command saves the diagram of the Content Model that is currently
displayed in the Main Window (of an XMLSchema or JSON Schema) as an image file in PNG or SVG format to
any desired location.

29.7.3 Generate Documentation

The Schema Design | Generate Documentation command generates detailed documentation about your
XML or JSON schema (see screenshot below) in HTML, MS Word, RTF or PDF. The documentation generated
by this command can be freely altered and used; permission from Altova to do so is not required.
Documentation is generated for components you select in the (JSON) Schema Documentation dialog (which
appears when you select the Generate Documentation command). Related elements (child elements,
complex types, etc.) are typically hyperlinked in the onscreen output, enabling you to navigate from component
to component. Components with a content model also have links to the content model definitions. Note that
schema documentation is also generated for included and imported schema components. The various
documentation-generation options for XML Schema are described in the section Documentation Options .
JSON schema documentation options are described in the section Generating JSON Schema
Documentation .

Note that the Documentation Options are applied on top of the settings you specify in the Schema Display
Configuration dialog .

1308

698

1308

1312

© 2018-2024 Altova GmbH

Schema Design Menu 1307Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Note: In order to generate documentation in MS Word format, you must have MS Word (version 2000 or later)
installed.

You can either use XMLSpy's fixed standard design for the generated document, or you can use a StyleVision
SPS for the design. Using a StyleVision SPS enables you to customize the design of the generated
documentation as well as to generate PDF as an additional output format. How to work with an SPS is
explained in the section, User-Defined Design .

Note: In order to use an SPS to generate schema documentation, you must have StyleVision installed on
your machine.

The screenshot above shows generated schema documentation with an index (all related schemas with their
global components organized by component type) at the top of the document.

Note: When generating documentation for W3C schema documents, XMLSpy uses application-internal
versions of these documents. Consequently, other locations of these documents are not considered,
and redefinitions and other schema modifications will not be reflected in the documentation.

1310

1308 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.7.3.1 Documentation Options

The Schema Design | Generate Documentation command generates detailed documentation of the active
schema: XML Schema or JSON schema. This section describes the generation of XML Schema
documentation. The procedure for generating JSON schema documentation is similar. For details about
generating JSON schema documentation and a description of documentation generation settings, see the
section Generating JSON Schema Documentation .

Generating XML Schema documentation
If an XML Schema document is active and you click the Generate Documentation command, the Schema
Documentation dialog (screenshot below) is displayed. In this dialog, you can select options for the
documentation.

In the Documentation Design pane of the dialog you can select whether to use the fixed XMLSpy design for the
generated documentation or whether to use a customized design created in a StyleVision SPS. Select the
option you want. Note that PDF output is available only for documentation generated with a StyleVision SPS,
not for documentation generated using a fixed design. How to work with a user-defined design is described in
the section, User-Defined Design .

698

1310

© 2018-2024 Altova GmbH

Schema Design Menu 1309Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Click to expand/collapse

The other options in the Schema Documentation dialog are explained below:

· The required format is specified in the Output Format pane: either HTML, Microsoft Word, RTF, or
PDF. (The PDF output format is only available if you use a StyleVision SPS to generate the
documentation.) On clicking OK, you will be prompted for the name of the output file and the location
to which it should be saved.

· Microsoft Word documents are created with the .doc file extension when generated using a fixed
design, and with a .docx file extension when generated using a StyleVision SPS.

· The PNG format for images is available in all output formats. The SVG image format is available in
HTML and PDF output formats.

1310 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The documentation can be generated either as a single file or be split into multiple files. When multiple
files are generated, each file corresponds to a component. What components are included in the
output is specified using the check boxes in the Include pane. In fixed designs, links between multiple
documents are created automatically.

· For HTML output, the CSS style definitions can be either saved in a separate CSS file or embedded in
the HTML file (in the <head> element). If a separate CSS file is created, it will be given the same name
as the HTML file, but will have a .css extension. Check or uncheck the Embed CSS in HTML check
box to set the required option.

· The Embed Diagrams option is enabled for the MS Word, RTF, and PDF output options. When this
option is checked, diagrams are embedded in the result file, in PNG or SVG format. Otherwise
diagrams are created as image files (PNG or SVG), which are displayed in the result file via object
links.

· When the output is HTML, all diagrams are created as document-external PNG files. If the Create
folder for diagrams check box is checked, then a folder will be created in the same folder as the HTML
file, and the PNG files will be saved inside it. This folder will have a name of the format
HTMLFilename_diagrams. If the Create folder for diagrams check box is unchecked, the image files

will be saved in the same folder as the HTML file.
· Links to local files (such as diagram image files and external CSS file) can be relative or absolute. In

the Generate links to local files pane, select the appropriate radio button according to the option you
prefer.

· In the Include pane, you select which item types you want to include in the documentation. Each item
of the selected types will be displayed in the generated documentation. For example, if Local
Attributes is checked, then the description of each local attribute is displayed as a separate entry. The
Index option lists all related schemas at the top of the file, with their global components organized by
component type. The Check All and Uncheck All buttons enable you to quickly select or deselect all
the options in the pane. Note that the Include option does not affect the display of an item type within
the graphical definitions. That display is controlled by the settings you make in the Schema Display
Configuration dialog. So if you wish to disable the display of attributes within the graphical
representation of a schema item, then uncheck the Attributes option in the Schema Display
Configuration dialog.

· The Details pane lists the details that may be included for each component. Select the details you
wish to include in the documentation. The Check All and Uncheck All buttons enable you to quickly
select or deselect all the options in the pane.

· The Show Result File option is enabled for all output options. When this option is checked, the result
files are displayed in Browser View (HTML output), MS Word (MS Word output), and the default
applications for .rtf files (RTF output) and .pdf files (PDF output).

Parameter values
If the StyleVision SPS contains one or more parameter definitions, then on clicking OK, a dialog pops up listing
all the parameters defined in the SPS. You can enter parameter values in this dialog to override the default
parameter values that were assigned in the SPS.

29.7.3.2 User-Defined Design

Instead of the fixed standard XMLSpy design, you can create a customized design for schema documentation.
The customized design is created in a StyleVision SPS, which is a design template for the output document.

1312

1312

© 2018-2024 Altova GmbH

Schema Design Menu 1311Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Creating the SPS
A StyleVision Power Stylesheet (or SPS) is created using Altova's StyleVision product. An SPS for generating
schema documentation must be based on an XML Schema that specifies the structure of the schema
documentation. This schema is called SchemaDocumentation.xsd, and it is delivered with your XMLSpy
package. It is stored in the folder: C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Documentation\Schema.

When creating the SPS design in StyleVision, nodes from the SchemaDocumentation.xsd schema are placed
in the design template and assigned styles and properties. Additional components, like links, tables and
images, can also be added to the SPS design. In this way, the entire output document can be designed in the
SPS. How to create an SPS design in StyleVision is described in detail in the StyleVision user manual.

The advantage of using an SPS for generating schema documentation is that you have complete control over
the schema documentation design. Note also that PDF output of the schema documentation is available only if
a user-defined SPS is used; PDF output is not available if the fixed XMLSpy design is used.

Specifying the SPS to use for schema documentation
After an SPS has been created, it can be used to generate schema documentation. The SPS you wish to use
for generating the schema documentation is selected in the Schema Documentation dialog (accessed via the
Schema Design | Generate Documentation command). In the Documentation Design pane of this dialog
(see screenshot below), select the Use User-Defined Design radio button. You can then click the Browse
button and browse for the SPS you want. Click the dialog's OK button, and, in the Save dialog that pops up,
select the folder for, and enter the name of, the output file.

Note: The SPS file must correctly locate the schema on which it is based: SchemaDocumentation.xsd (see
above).

The following editable SPS designs for schema documentation generation are delivered with XMLSpy. They are
in the Altova\XMLSpy2024\Documentation\Schema\ subfolder of the (My) Documents folder :

· OverallDocumentation.sps, which generates full documentation about the schema
· Statistics.sps, which lists the number of global and local elements, attributes and attribute groups,

and simple and complex types for the main schema and for each schema file independently
· StructureOverview.sps, which outputs a structure of global elements and complex types up to a

configurable depth

34

http://www.altova.com/

1312 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· TypeDerivations.sps, which lists simple and complex types and all their directly and indirectly
derived types in the form of a tree

· XPathGenerator.sps, which generates all possible XPath statements up to a configurable depth

These files, together with other SPS files you have recently browsed for, will be available in the combo box of
the Use User-Defined option (see screenshot above).

Clicking the Edit button in the Documentation Design pane launches StyleVision and opens the selected SPS
in a StyleVision window. In order to preview the result document in StyleVision, you will need a Working XML
file. The SPS designs listed above have already been assigned a sample XML file named Sample.xml, which is
located in the (My) Documents folder , in the following subfolder:

Altova\XMLSpy2024\Documentation\Schema\SampleData

Note: In order to use an SPS to generate schema documentation, you must have StyleVision installed on
your machine.

29.7.4 Configure View

The Schema Design | Configure view command is active in Content Model View and allows you to configure
the Content Model View. Clicking the command opens the Schema Display Configuration dialog at the bottom
right of the XMLSpy window, enabling you to see the effect of your settings as you enter them in the dialog. The
settings take effect when you click the OK button of the dialog, and apply to the Content Model View of all XML
Schema files that are opened subsequently. These settings also apply to the schema documentation output
and printer output. For example, if you wish to disable the display of attributes within the graphical
representation of a schema item in the schema documentation output, then uncheck the Attributes option in
the Schema Display Configuration dialog (screenshot below).

Note: For a description of how to configure JSON Schema Design View, see the section Configuring JSON
Schema Design View .

Defining property descriptor lines for the content model
You can define what properties of elements and attributes are displayed in the Content Model View. These
properties appear as grid lines in component boxes.

To define property descriptor lines:

1. Select Schema Design | Configure View. The Schema display configuration dialog appears.

2. In the Element or Attribute tab, click the Append or Insert icon to add a property descriptor
line. The line is added in the dialog and to element boxes in the Content Model View.

3. From the combo box, select the property you want to display. See screenshot.
4. Repeat steps 2 and 3 for as many properties as required.

34

1306

1312

697

© 2018-2024 Altova GmbH

Schema Design Menu 1313Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The Content Model View is updated, showing the defined property descriptor lines for all elements for which
they exist.

Note: For attributes, the configuration you define appears only when attributes are displayed in the diagram
(as opposed to them being displayed in a pane below the Content Model View). The configured view
applies to all Content Model Views opened after the configuration is defined.

Deleting a property descriptor line from the Content Model View
To delete individual property descriptor lines, in the Schema Display Configuration dialog, select the property

descriptor line you want to delete, and click the Delete icon .

1314 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Settings for configuring the Content Model View
The Content Model View can be configured using settings in the Schema Display Configuration dialog. How to
define what property descriptor lines are displayed in Content Model View has been described above. The other
settings are described below.

Single line settings
You can define whether a property descriptor line is to contain single or double content, and whether individual
lines must appear for every element or only for elements that contain that property. Use the appropriate radio
buttons to define your settings. Note that these two settings can be set for individual lines separately (select
the required line and make the setting).

Common line settings
This option toggles the line descriptions (i.e. the name of the property) on and off.

Widths
These sliders enable you to set the minimum and maximum size of the element rectangles in Content Model
View. Change the sizes if line descriptor text is not fully visible or if you want to standardize your display.

Distances
These sliders let you define the horizontal and vertical distances between various elements onscreen.

Show in diagram
The Annotations check box toggles the display of annotation text on or off, as well as the annotation text width
with the slider. You can also toggle the display of the substitution groups on or off. The Attributes and Identity
Constraints appear in the Content Model diagram if their check boxes are selected; otherwise they appear as
tabs in a pane at the bottom of the Content Model window.

Draw direction
These options define the orientation of the element tree on screen, horizontal or vertical.

Editing the content model in the diagram itself
You can change element properties directly in the content model diagram. To do this, double-click the property
you wish to edit and start entering data. If a selection is available, a drop-down list appears, from which you can
select an option. Otherwise, enter a value and confirm with Enter.

Buttons in the Schema display configuration dialog
This dialog has the following buttons:

· The Load/Save button allows you to load and save the settings you make here.
· The Predefined button, resets the display configuration to default values.
· The Clear all button empties the list box of all entries.

Enabling smart restrictions
To enable smart restrictions , check the Enable Schema Restrictions check box.282

© 2018-2024 Altova GmbH

Schema Design Menu 1315Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.7.5 Zoom

The Schema Design | Zoom command controls the zoom factor of the Content Model View. This feature is
useful if you have a large content model and wish to zoom out so that the entire content model fits in the Main
Window. You can zoom between 10% and 200% of actual size.

To zoom in and out, either drag the slider or click in the entry box and enter a percentage value.

29.7.6 Display All Globals

The Schema Design | Display All Globals command switches from Content Model View to Schema
Overview to display all global components in the schema. It is a toggle with the Display Diagram command.
The currently selected toggle is indicated with a check mark to its left (see screenshot).

Alternatively, you could use the Display All Globals icon at the top of the Content Model View to switch to
the Schema Overview.

29.7.7 Display Diagram

The Schema Design | Display Diagram command switches to the Content Model View of the selected
global component—if the selected component has a content model. Global components that have a content

model (complex types, elements, and element groups) are indicated with the icon to its left. The Display
Diagram command is a toggle with the Display All Globals command. The currently selected toggle is indicated
with a check mark to its left (screenshot below).

Alternatively, you could use the following methods to switch to Content Model View:

· Click the icon next to the component, the content model of which you want to display.

231

219

231

1316 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Double-click a component name in the Component Navigator Entry Helper (at top right).

29.7.8 Schema Extensions for Databases

This menu item pops out a sub-menu containing commands for Oracle and MS SQL Server schema
extensions.

· Enable Oracle Schema Extensions
· Oracle Schema Settings
· Enable Microsoft SQL Server Schema Extensions
· Named Schema Relationships
· Unnamed Element Relationships

29.7.8.1 Enable Oracle Schema Extensions

XMLSpy provides support for Oracle schema extensions for use with Oracle 9i Project XDB. Using these
schema extensions allows you to configure and customize how Oracle 9i Project XDB stores XML documents.
These XML documents are then accessible through SQL queries and legacy tools. Please see the Oracle
Website for more information.

When you select the Enable Oracle Schema Extensions command, the following occurs:

· The XDB namespace is declared on the schema element:

xmlns:xdb="http://xmlns.oracle.com/xdb".
· An Oracle tab is created in the Details Entry Helper, enabling you to add attributes—including XDB-

specific attributes—to schema elements such as xsd:complexType and xsd:element.

1316

1317

1318

1319

1319

http://www.Oracle.com
http://www.Oracle.com

© 2018-2024 Altova GmbH

Schema Design Menu 1317Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Oracle extensions can be defined for complex types, elements, and attributes. Use the Entry Helper as you
normally would in XMLSpy.

Note: This extensions can switched on or off by toggling the menu command on/off. When extensions are
enabled, the command is displayed with a check mark to its left. When extensions are switched off the
the XDB namespace declaration and all XDB extensions in the file are deleted. A warning message
appears since this action cannot be undone.

29.7.8.2 Oracle Schema Settings

The Oracle Schema Settings command allows you to define global settings for Oracle schema extensions.

In order to access this dialog, Oracle schema extensions must be enabled (using the Enable Oracle Schema
Extensions command).1316

1318 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.7.8.3 Enable Microsoft SQL Server Schema Extensions

XMLSpy provides support for Microsoft SQL Server 2000 schema extensions for use with Microsoft SQL Server.
Using these schema extensions allows you to configure and customize how Microsoft SQL Server stores XML
documents. These XML documents are then accessible through SQL queries and legacy tools. Please see the
Microsoft Website for more information.

When you select the Enable Microsoft SQL Server Schema Extensions command, the following occurs:

· The SQL Server namespace is declared on the schema element: xmlns:sql="urn:schemas-

microsoft-com:mapping-schema".
· An SQL Server tab is created in the Details Entry Helper, enabling you to add attributes to schema

elements such as xsd:element.

Where SQL Server extensions can be defined for a schema component, the SQL Server tab is available in the
Details Entry Helper when the component is selected. Use the Entry Helper as you normally would in XMLSpy.

Note: This extensions can switched on or off by toggling the menu command on/off. When extensions are
enabled, the command is displayed with a check mark to its left. When extensions are switched off the
the SQL Server namespace declaration and all SQL Server extensions in the file are deleted. A warning
message appears since this action cannot be undone.

http://www.microsoft.com

© 2018-2024 Altova GmbH

Schema Design Menu 1319Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.7.8.4 Named Schema Relationships

The Named Schema Relationships command allows the definition of named relationships to provide the
information needed to create the document hierarchy. You have to have previously enabled the SQL Server
schema extensions, using the menu option "Enable SQL Server Schema Extensions", to be able to access
this menu option.

To create a named schema relationship:

1. Click the insert or append icon , to add a new row to the dialog box.
2. Click the field and enter the corresponding relationship name.
3. Click OK to confirm.

This generates a SQL relationship element, placing it just after the namespace declaration.

Note: Click the delete icon , to delete a row from the dialog box.

29.7.8.5 Unnamed Element Relationships

The Unnamed Element Relationships command allows the definition of unnamed relationships to provide the
information needed to create the document hierarchy. You have to have previously enabled the SQL Server
schema extensions, using the menu option Enable Microsoft SQL Server Schema Extensions, to be able
to access this menu option.

To create an unnamed schema relationship:

1. Click the insert or append icon , to add a new row to the dialog box.
2. Click the field and enter the corresponding name.
3. Click OK to confirm.

1320 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

This generates a SQL relationship element for the currently selected schema element.

Note: Click the delete icon , to delete a row from the dialog box.

29.7.9 Connect to SchemaAgent Server

The Schema Design | Connect to SchemaAgent Server command is enabled when an XML Schema
document is active and it enables you to connect to a SchemaAgent Server. You are able to connect to a
SchemaAgent server only if a licensed Altova SchemaAgent product is installed on your machine. When you
click this command, the Connect to SchemaAgent Server dialog (screenshot below) opens:

You can use either the local server (the SchemaAgent server that is packaged with Altova SchemaAgent) or a
network server (the Altova SchemaAgent Server product, which is available free of charge). If you select Work
Locally, the local server of SchemaAgent will be started when you click OK and a connection with it will be
established. If you select Connect to Network Server, the selected SchemaAgent Server must be running in
order for a connection to be made.

© 2018-2024 Altova GmbH

Schema Design Menu 1321Menu Commands

Altova XMLSpy 2024 Enterprise Edition

When connected to SchemaAgent Server, XMLSpy acts as a SchemaAgent client, and provides powerful and
enhanced schema editing and management functionality. For details about SchemaAgent, the installation of
SchemaAgent Server, and how to connect to SchemaAgent Server, see SchemaAgent in the DTD and XML
Schema section of this user manual. For more information about installing and working with these two
products, see the SchemaAgent user manual that is delivered with these products.

After you connect to SchemaAgent Server, a message appears in the bar at the top of the Main Window with
information about the connection. You now have full access to all schemas and schema components in the
search path/s (folder/s) defined for the SchemaAgent server to which XMLSpy is connected.

Note: In order for the connection to succeed, you must have Altova's SchemaAgent Client product installed
with a valid license on the same machine as that on which XMLSpy is installed.

29.7.10 Disconnect from SchemaAgent Server

The Disconnect from SchemaAgent Server command is enabled when a connection to a SchemaAgent
Server has been made successfully. Selecting this command disconnects XMLSpy from the SchemaAgent
Server.

29.7.11 Show in SchemaAgent

The Show in SchemaAgent menu item causes the active schema and, optionally, linked schemas to be
displayed in the Altova product SchemaAgent. (This product must be installed on the same machine as
XMLSpy if you wish to use SchemaAgent functionality). The schema/s are opened in a new SchemaAgent
Design in SchemaAgent.

Mousing over the Show in SchemaAgent menu item pops out a submenu with options about what schemas
to show in SchemaAgent. These options are described in SchemaAgent in the DTD and XML Schema
section of this user manual.

29.7.12 SchemaAgent Validation

The SchemaAgent Validation command enables you to validate the currently active schema as well as
schemas related to the currently active schema. This feature is described in detail in the SchemaAgent
Validation section in the Schema View section of this user manual.

457

465

465

1322 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.7.13 Create Schema Subset

The Create Schema Subset. command pops up the Select Schema Components dialog (screenshot below).
In this dialog, you check the component or components you wish to create as a single schema subset, then
click Next. (Note that a check box below the pane enables components from all referenced files to also be
listed for selection.)

In the Schema Subset Generation dialog that now appears (screenshot below), enter the name/s you want the
file/s of the schema subset package to have. You must also specify the folder in which the new schema subset
files are to be saved. A schema subset package could have multiple files if one or more of the components
being created is an imported component in the original schema. A separate schema file is created for each
namespace in the schema subset. The filenames displayed in the dialog are, by default, the names of the
original files. But since you are not allowed to overwrite the original files, use new filenames if you wish to save
the files in the same folder as the original files.

© 2018-2024 Altova GmbH

Schema Design Menu 1323Menu Commands

Altova XMLSpy 2024 Enterprise Edition

On clicking OK, the schema subset file with the namespace corresponding to that of the active file is opened in
Schema View. Any other files in the package are created but not opened in Schema View.

29.7.14 Flatten Schema

Flattening the active schema in Schema View is the process of: (i) adding the components of all included
schemas as global components of the active schema, and (ii) deleting the included schemas.

To flatten the active schema, select the command Schema Design | Flatten Schema. This pops up the
Flatten Schema dialog (screenshot below), which contains the names of separate files, one for each
namespace that will be in the flattened schema. These default names are the same as the original filenames.
But since you are not allowed to overwrite the original files, the filenames must be changed if you wish to save
in the same folder as the active file. You can browse for a folder in which the flattened schema and its
associated files will be saved.

1324 Menu Commands Schema Design Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

On clicking OK, the flattened schema file will be opened in Schema View.

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1325Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.8 XSL/XQuery Menu

The XSL Transformation language lets you specify how an XML document should be converted into other XML
documents or text files. One kind of XML document that is generated with an XSLT document is an FO
document, which can then be further processed to generate PDF output. XMLSpy contains built-in XSLT
processors (for XSLT 1.0, XSLT 2.0, and XSLT 3.0) and can link to an FO processor on your system to
transform XML files and generate various kinds of outputs. The location of the FO processor must be specified
in the XSL section of the Options dialog (Tools | Options) in order to be able to use it directly from within
the XMLSpy interface.

XMLSpy also has a built-in XQuery engine, which can be used to execute XQuery documents (with or without
reference to an XML document).

Commands to deal with all the above transformations are accessible in the XSL/XQuery menu. In addition, this
menu also contains commands to work with the Altova XSLT/XQuery Debugger.

1544

1326 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1327Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.8.1 XSL Transformation

F10

The XSL/XQuery | XSL Transformation command transforms an XML document using an assigned XSLT
stylesheet. The transformation can be carried out using the appropriate built-in Altova XSLT Engine (Altova
XSLT 1.0 Engine for XSLT 1.0 stylesheets; Altova XSLT 2.0 Engine for XSLT 2.0 stylesheets; Altova XSLT 3.0
Engine for XSLT 3.0 stylesheets), the Microsoft-supplied MSXML module, or an external XSLT processor. The
processor that is used in conjunction with this command is specified in the XSL section of the Options
dialog (Tools | Options).

If your XML document contains a reference to an XSLT stylesheet, then this stylesheet is used for the
transformation. (An XSLT stylesheet can be assigned to an XML document using the Assign XSL
command. If the XML document is part of a project, an XSLT stylesheet can be specified on a per-folder basis
in the Project Properties dialog. Right-click the project folder/s or file/s you wish to transform and select
XSL Transformation.) If an XSLT stylesheet has not been assigned to an XML file, you are prompted for the
XSLT stylesheet to use. You can also select a file via a global resource or a URL (click the Browse button)
or a file in one of the open windows in XMLSpy (click the Window button).

Automating validation with RaptorXML 2024
RaptorXML is Altova's standalone application for XML validation, XSLT transformation, and XQuery
transformation. It can be used from the command line, via a COM interface, in Java programs, and in .NET
applications. XSLT transformation tasks can therefore be automated with the use of RaptorXML. For example,
you can create a batch file that calls RaptorXML to run XSLT transformations on a set of documents and sends
the output to a text file. See the RaptorXML documentation for details.

Transformations to ZIP files
In order to enforce output to a ZIP file, including Open Office XML (OOXML) files such as .docx, one must
specify the ZIP protocol in the file path of the output file. For example:

filename.zip|zip/filename.xxx

filename.docx|zip/filename.xxx

Note: The directory structure might need to be created before running the transformation. If you are
generating files for an Open Office XML archive, you would need to zip the archive files in order to
create the top-level OOXML file (for example, .docx).

29.8.2 XSL Speed Optimizer

The XSL Speed Optimizer command is enabled when an XSLT or XML document is active. It starts the XSL
Speed Optimizer, which analyzes the possibility of carrying out faster transformations using the XSLT
stylesheet being analyzed. The Optimizer works by running the XSLT stylesheet to be optimized over an XML

1544

1335

1261

1199

http://www.altova.com/documentation.html

1328 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

dataset (one or more XML documents), and analyzing the stylesheet's performance. An optimization strategy is
derived from this analysis and can be saved with the XSLT stylesheet (as a processing instruction at the end of
the stylesheet). The optimized stylesheet can be used subsequently to produce faster transformations.

On clicking the command, you will be prompted to select, depending on whether an XSLT or XML document is
active, respectively, an XML document or XSLT stylesheet. On clicking OK, the analysis starts. If the XSLT or
XML document already has, respectively, an XML assignment or XSLT assignment in the document, this
step is skipped, and the analysis starts straightaway. For details of how to use the Optimizer, see the section
XSL Speed Optimizer . The settings of the Optimizer can be made in the XSL Speed Optimizer tab of the
Options dialog (Tools | Options).

29.8.3 XSL-FO Transformation

Ctrl+F10

FO is an XML format that describes paged documents. An FO processor, such as the Apache XML Project's
FOP, takes an FO file as input and generates PDF as output. The production of a PDF document from an XML
document is, therefore, a two-step process.

1. The XML document is transformed to an FO document using an XSLT stylesheet.
2. The FO document is processed by an FO processor to generate PDF (or some alternative output).

The XSL/XQuery | XSL:FO Transformation command transforms an XML document or an FO document to
PDF.

· If the XSL:FO Transformation command is executed on a source XML document, then both of the
steps listed above are executed, in sequence, one after the other. If the XSLT stylesheet required to
transform to FO is not referenced in the XML document, you are prompted to assign one for the
transformation. Note that you can also select a file via a global resource or a URL (click the
Browse button) or a file in one of the open windows in XMLSpy (click the Window button). The
transformation from XML to XSL-FO is carried out by the XSLT processor specified in the XSL
section of the Options dialog (Tools | Options). By default the selected XSLT processor is
XMLSpy's built-in XSLT processor. The resultant FO document is directly processed with the FO
processor specified in the XSL section of the Options dialog (Tools | Options).

· If the XSL:FO Transformation command is executed on an FO document, then the document is
processed with the FO processor specified in the XSL section of the Options dialog (Tools |
Options).

XSL:FO Transformation output
The XSL:FO Transformation command pops up the Choose XSL:FO Output dialog (screenshot below). (If the
active document is an XML document without an XSLT assignment, you are first prompted for an XSLT file.)

1336 1335

495 1544

1199

1544

1544

1544

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1329Menu Commands

Altova XMLSpy 2024 Enterprise Edition

You can view the output of the FO processor directly on screen using FOP viewer or you can generate an
output file in any one of the following formats: PDF, text, an XML area tree, MIF PCL, or PostScript. You can
also switch on messages from the FO processor to show (i) the processor's standard output message in the
Messages window; and (ii) the processor's error messages in the Messages window. To switch on either of
these two options, check the appropriate check box at the bottom of the dialog.

Note:

· Unless you deselected the option to install the FOP processor of the Apache XML Project, it will have
been installed in the folder C:\ProgramData\Altova\SharedBetweenVersions. If installed, the path to
it will automatically have been entered in the XSL section of the Options dialog (Tools | Options) as
the FO processor to use. You can set the path to any FO processor you wish to use.

· The XSL:FO Transformation command can not only be used on the active file in the Main Window but
also on any file or folder you select in the active project. To do this, right-click and select XSL:FO
Transformation. The XSLT stylesheet assigned to the selected project folder is used.

29.8.4 XSL Parameters / XQuery Variables

The XSL/XQuery | XSL Parameters/XQuery Variables command opens the XSLT Input Parameters/XQuery
External Variables dialog (see screenshot). You can enter the name of one or more parameters you wish to
pass to the XSLT stylesheet, or one or more external XQuery variables you wish to pass to the XQuery
document, and their respective values. These parameters are used as follows in XMLSpy:

· When the XSL Transformation command in the XSL/XQuery menu is used to transform an XML
document, the parameter values currently saved in the dialog are passed to the selected XSLT
document and used for the transformation.

· When the XQuery Execution command in the XSL/XQuery menu is used to process an XQuery
document, the XQuery external variable values currently saved in the dialog are passed to the XQuery
document for the execution.

1544

http://xmlgraphics.apache.org/fop/

1330 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: Parameters or variables that you enter in the XSLT Input Parameters/XQuery External Variables dialog
are only passed on to the built-in Altova XSLT engine. Therefore, if you are using MSXML or another
external engine that you have configured, these parameters are not passed to this engine.

Note: It is not an error if an XSLT parameter or external XQuery variable is defined in the XSLT Input
Parameters/XQuery External Variables dialog but is not used in the XSLT/XQuery document or the
transformation.

Using XSLT Parameters
The value you enter for the parameter can be an XPath expression without quotes or a text string delimited by
quotes. If the active document is an XSLT document, the Get from XSL button will be enabled. Clicking this
button inserts parameters declared in the XSLT into the dialog together with their default values. This enables
you to quickly include declared parameters and then change their default values as required.

Note: Once a set of parameter-values is entered in the dialog, it is used for all subsequent transformations
until it is explicitly deleted or the application is restarted. Parameters entered in the dialog are
specified at the application-level for that session, and will be passed to the respective XSLT document
for every transformation that is carried out via the IDE from that moment onward. This means that:

· parameters are not associated with any particular document
· any parameter entered in the dialog is erased once XMLSpy has been closed.

Usage example for XSLT parameters
We have an XML document that contains the names of countries and their respective capitals:

<document>

 <countries>

 <country name="USA" capital="Washington DC"/>

 <country name="UK" capital="London"/>

 <country name="France" capital="Paris"/>

 <country name="Russia" capital="Moscow"/>

 <country name="China" capital="Beijing"/>

 </countries>

</document>

The following XSLT document will generate an XML document that displays one country from the XML file
together with that country's capital. The country is selected by entering its name as the value of the parameter
named country (shown highlighted in yellow below).

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1331Menu Commands

Altova XMLSpy 2024 Enterprise Edition

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:param name="country" select="'USA'"/>

 <xsl:template match="countries">

 <xsl:for-each select="country[@name=$country]">

 <country>

 <name><xsl:value-of select="$country"/></name>

 <capital><xsl:value-of select="@capital"/></capital>

 </country>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

When this XSLT document is run on the XML document listed above, the result will be this:

<country><name>USA</name><capital>Washington DC</capital></country>

Now, if in the XSLT Input Parameters/XQuery External Variables dialog you create a parameter named country

and give it a value (see screenshot above), then this value will be passed to the parameter country in the XSLT

stylesheet for the transformation. In this way, you can pass different values to different parameters at run time.

Note:

· If you use the XSL:FO Transformation command (XSL/XQuery | XSL:FO Transformation), then
parameters entered in the XSLT Input Parameters/XQuery External Variables dialog are not passed
to the stylesheet. In order for these parameters to be used in PDF output, first transform from XML to
FO using the XSLT Transformation command (XSL/XQuery | XSL Transformation), and then
transform the FO to PDF using the XSL:FO Transformation command (XSL/XQuery | XSL:FO
Transformation).

· If you use an XSLT processor other than the built-in Altova XSLT Engines, parameters you enter
using the Input Parameters dialog will not be passed to the external processor.

Using external XQuery variables
The value you enter for an external XQuery variable could be an XPath expression without quotes or a text
string delimited by quotes. The datatype of the external variable is specified in the variable declaration in the
XQuery document.

Note: Once a set of external XQuery variables are entered in the dialog, they are used for all subsequent
executions until they are explicitly deleted or the application is restarted. Variables entered in the

1332 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

dialog are specified at the application-level, and will be passed to the respective XQuery document for
every execution that is carried out via the IDE from that moment onward. This means that:
· Variables are not associated with any particular document
· Any variable entered in the dialog is erased once the application (XMLSpy) has been closed down.

Usage example for external XQuery variables
In the following example, a variable $first is declared in the XQuery document and is then used in the return
clause of the FLWOR expression:

 xquery version "1.0";
 declare variable $first as xs:string external;
 let $last := "Jones"
 return concat($first, " ", $last)

This XQuery returns Peter Jones, if the value of the external variable (entered in the XSLT Input
Parameters/XQuery External Variables dialog) is Peter. Note the following:

· The external keyword in the variable declaration in the XQuery document indicates that this variable is
an external variable.

· Defining the static type of the variable is optional. If a datatype for the variable is not specified in the
variable declaration, then the variable value is assigned the type xs:untypedAtomic.

· If an external variable is declared in the XQuery document, but no external variable of that name is
passed to the XQuery document, then an error is reported.

· If an external variable is declared and is entered in the XSLT Input Parameters/XQuery External
Variables dialog, then it is considered to be in scope for the XQuery document being executed. If a new
variable with that name is declared within the XQuery document, the new variable temporarily overrides
the in-scope external variable. For example, the XQuery document below returns Paul Jones even
though the in-scope external variable $first has a value of Peter.

xquery version "1.0";
declare variable $first as xs:string external;
let $first := "Paul"
let $last := "Jones"
return concat($first, " ", $last)

29.8.5 XQuery/Update Execution

The XSL/XQuery | XQuery/ Update Execution command executes an XQuery (1.0/3.1) or XQuery Update
(1.0/3.0) document. Depending on whether the selected file is an XQuery or XQuery Update file, either an
XQuery execution or an XQuery update is carried out. XMLSpy recognizes the type of document (XQuery or
XQuery Update) on the basis of the document's file type association (defined in the File types section of the
Options dialog).

The XQuery Engine to use (1.0 or 3.1) is selected automatically on the basis of the version declaration in the
document. If there is no version declaration in the document, then the default version specified in the XQuery
section of the Options dialog is used. The XQuery/ Update Execution command can be invoked when an

1516

1516

1547

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1333Menu Commands

Altova XMLSpy 2024 Enterprise Edition

XQuery, XQuery Update, or XML file is active. When invoked from an XML file, it opens a dialog asking for an
XQuery file to associate with the XML file. You can also select a file via a global resource or a URL (click the
Browse button) or a file in one of the open windows in XMLSpy (click the Window button).

Note: The command is also available in the context menu of Project window items.

Automating validation with RaptorXML 2024

RaptorXML is Altova's standalone application for XML validation, XSLT transformation, and XQuery

transformation. It can be used from the command line, via a COM interface, in Java programs, and in .NET
applications. XQuery execution tasks can therefore be automated with the use of RaptorXML. For example, you
can create a batch file that calls RaptorXML to run XQuery executions on a set of documents and sends the
output to a text file. See the RaptorXML documentation for details.

29.8.6 Enable Back-Mapping

This command, which is also available in the Main toolbar, switches on the Back-Mapping feature.

After Back-Mapping has been enabled (via this command), XSLT transformations and XQuery executions will be
carried out so that the result document can be mapped back on to the originating XSLT+XML or XQuery+XML
documents. This means that if you click on a node in the result document, then the XSLT instruction and the
XML source data that generated that particular result node will be highlighted (see screenshot below). This is
useful for checking how exactly the XSLT transformation or XQuery execution creates the different parts of the
result document. You can also click a node in either the XSLT/XQuery document or XML document to view the
corresponding parts in the other two documents.

Note: Result documents of all types except HTML are opened in Text View. HTML result documents are
opened in Browser View, but you can switch to Text View. If the result document is opened in Browser
View, then back-mapping is available only by selecting in the result document; back-mapping is not
available by selecting in either the XML or XSLT/XQuery document.

Note: Back-mapping is not available for transformations from Authentic View or those that are run as
project transformations .

The screenshot below shows the back-mapping of an XSLT transformation. All three documents—
XML+XSLT+Result—are tiled vertically, in that order, next to each other. The XSLT instruction that generates
the section/@id attribute in the result document has been clicked. As a result, all the result nodes generated

from this instruction are highlighted, as well as the XML source data from which the result node was generated.
You can also click nodes in the result document or XML document to highlight the corresponding nodes in the
other two documents.

1199

116

583

1261

http://www.altova.com/documentation.html

1334 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

When you click the Enable XSLT/XQuery Back-Mapping command, a dialog appears that asks whether you
wish to tile the document windows after transformation. If you choose to do this, then the three documents
will be tiled vertically side-by-side as in the screenshot above.

Note the following points:

· Only XML documents that are loaded from a disk location are displayed; temporary trees are not
displayed.

· In some cases, such as XQuery executions, the result document is created without obtaining data
from any XML source. In these cases, no XML file is involved in the back-mapping; as a result, none is
displayed.

· If multiple XML files are used as data sources, then the first one to be encountered in the
transformation or execution process is displayed.

· Back-mapping is slower and more memory-intensive than transformations/executions that are not
back-mapped. Be aware of this especially when working with large files.

· The context menu of the result document (when tiled and not tiled) contains commands (Go to
Context Node and Go to Source Instruction) to take you to the corresponding nodes in the XML and
XSLT/XQuery document, respectively.

The Back-Mapping toolbar
The Back-Mapping toolbar (screenshot below) contains the following icons:

· Highlight HTML in Browser View on mouseover: If the result document is displayed in Browser View,
then back-mapping is available only by selecting content in the result document; it is not available by
selecting in either the XML or XSLT/XQuery document. In Browser View, you can select content for
back-mapping in one of two ways: (i) by clicking content in Browser View, or (ii) by mousing over
content. Use this toggle command to choose between the two selection methods. Mousing over is
useful in cases where clicking content in Browser View might cause a change in the result document
(for example, by clicking a radio button or combo box).

· End back-mapping session: Ends the back-mapping session.

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1335Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Ending the back-mapping session
While a back-mapping session is running, an End Back-Mapping Session icon is displayed in the Back-
Mapping toolbar (see above). Click it to end the back-mapping session. You should use the back-mapping
session for diagnostics only. If you wish to edit any of the documents, it is best to end the back-mapping
session before editing.

Text highlighting colors
The colors of the active back-mapping (back-mapped content that is currently selected) and inactive back-
mapping (back-mapped content that is not selected) can be set in the Miscellaneous category of the Text Font
settings (Tools | Options | Fonts and Colors).

29.8.7 Enable XSLT/XQuery Profiling

The Enable XSLT/XQuery profiling command opens the Enable XSLT/XQuery profiling dialog. This dialog
allows you to activate the Profiler , which is a tool that analyzes the time it takes for instructions to execute
during an XSLT transformation or XQuery execution.

29.8.8 Assign XSL

The XSL/XQuery | Assign XSL... command assigns an XSLT stylesheet to an XML document. Clicking the
command opens a dialog to let you specify the XSLT file you want to assign. You can also select a file via a
global resource or a URL (click the Browse button) or a file in one of the open windows in XMLSpy (click
the Window button).

An xml-stylesheet processing instruction is inserted in the XML document:

<?xml-stylesheet type="text/xsl" href="C:\workarea\recursion\recursion.xslt"?>

1535

543

1199

1336 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: You can make the path of the assigned file relative by clicking the Make Path Relative To check box.

29.8.9 Assign XSL-FO

The XSL/XQuery | Assign XSL:FO command assigns an XSLT stylesheet for transformation to FO to an XML
document. The command opens a dialog to let you specify the XSL or XSLT file you want to assign and inserts
the required processing instruction into your XML document.

You can make the path of the assigned file relative by clicking the Make Path Relative To check box. You can
also select a file via a global resource or a URL (click the Browse button) or a file in one of the open
windows in XMLSpy (click the Window button).

Note: An XML document may have two XSLT files assigned to it: one for standard XSLT transformations, a
second for an XSLT transformation to FO.

29.8.10 Assign Sample XML File

The XSL/XQuery | Assign Sample XML File command assigns an XML file to an XSLT document. The
command inserts a processing instruction naming an XML file to be processed with this XSLT file when the XSL
Transformation is executed on the XSLT file:

<?altova_samplexml C:\workarea\html2xml\article.xml?>

Note: You can make the path of the assigned file relative by clicking the Make Path Relative To check box.
You can also select a file via a global resource or a URL (click the Browse button) or a file in one of
the open windows in XMLSpy (click the Window button).

29.8.11 Go to XSL

The XSL/XQuery | Go to XSL command opens the associated XSLT document. If your XML document
contains a stylesheet processing instruction (i.e. an XSLT assignment) such as this:

<?xml-stylesheet type="text/xsl" href="Company.xsl"?>

then the Go to XSL command opens the XSLT document in XMLSpy.

1199

1199

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1337Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.8.12 Go to Source Instruction

If you select a node in the result document of a back-mapping , clickingGo to Source Instruction takes the
cursor to the source instruction within the XSLT or XQuery document that generated the selected node in the
result document. You could then, for example, directly edit the instruction if you want to.

See the description of the menu command XSL | Enable Back-Mapping for a description of back-
mapping.

29.8.13 Go to Context Node

If you select a node in the result document of a back-mapping , clicking Go to Context Node takes the
cursor to the data node in the XML document that generated the content of the selected node in the result
document. You could then, for example, edit the data node if you want to.

See the description of the menu command XSL | Enable Back-Mapping for a description of back-
mapping.

29.8.14 Start Debugger / Go

Alt+F11

The XSL/XQuery | Start Debugger/Go command starts or continues processing the XSLT/XQuery document
till the end. If breakpoints have been set, then processing will pause at that point. If tracepoints have been set,
output for these statements will be displayed in the Trace window when the closing node of the statement with
the tracepoint has been reached. If the debugger session has not been started, then this button will start the
session and stop at the first node to be processed. If the session is running, then the XSLT/XQuery document
will be processed to the end, or until the next breakpoint is encountered.

29.8.15 Stop Debugger

The XSL/XQuery | Stop Debugger command stops the debugger. This is not the same as stopping the
debugger session in which the debugger is running. This is convenient if you wish to edit a document in the
middle of a debugging session or to use alternative files within the same debugging session. After stopping the
debugger, you must restart the debugger to start from the beginning of the XSLT/XQuery document.

1333

1333

1333

1333

1338 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.8.16 Restart Debugger

The XSL/XQuery | Restart Debugger command clears the output window and restarts the debugging session
with the currently selected files.

29.8.17 End Debugger Session

The XSL/XQuery | End Debugger Session command ends the debugging session and returns you to the
normal XMLSpy view that was active before you started the debugging session. Whether the output documents
that were opened for the debugging session stay open depends on a setting you make in the XSLT/XQuery
Debugger Settings dialog.

29.8.18 Step Into

F11

The XSL/XQuery | Step Into command proceeds in single steps through all nodes and XPath expressions in
the stylesheet. This command is also used to re-start the debugger after it has been stopped.

29.8.19 Step Out

Shift+F11

The XSL/XQuery | Step Out command steps out of the current node to the next sibling of the parent node, or
to the next node at the next higher level from that of the parent node.

541

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1339Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.8.20 Step Over

Ctrl+F11

The XSL/XQuery | Step Over command steps over the current node to the next node at the same level, or to
the next node at the next higher level from that of the current node. This command is also used to re-start the
debugger after it has been stopped.

29.8.21 Show Current Execution Node

The XSL/XQuery | Show Current Execution Node command displays/selects the current execution node in
the XSLT/XQuery document and the corresponding context node in the XML document. This is useful when you
have clicked in other tabs which show or mark specific code in the XSLT stylesheet or XML file, and you want
to return to where you were before you did this.

29.8.22 Insert/Remove Breakpoint

F9

The XSL/XQuery | Insert/Remove Breakpoint command inserts or removes a breakpoint at the current
cursor position. Inline breakpoints can be defined for nodes in both the XSLT/XQuery and XML documents, and
determine where the processing should pause. A dashed red line appears above the node when you set a
breakpoint. Breakpoints cannot be defined on closing nodes, and breakpoints on attributes in XSLT documents
will be ignored. This command is also available by right-clicking at the breakpoint location.

29.8.23 Insert/Remove Tracepoint

 Shift+F9

The XSL/XQuery | Insert/Remove Tracepoint command inserts or removes a tracepoint at the current cursor
position in an XSLT/XQuery document. For statements with a tracepoint, during debugging, the value of the
statement is displayed in the Trace window when the closing node of that statement is reached. A dashed blue
line appears above the node when you set a tracepoint. Tracepoints cannot be defined on closing nodes. This
command is also available by right-clicking at the tracepoint location.

1340 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.8.24 Enable/Disable Breakpoint

Ctrl+F9

The XSL/XQuery | Enable/Disable Breakpoint command enables or disables already defined breakpoints.
The red breakpoint highlight turns to gray when the breakpoint is disabled. The debugger does not stop at
disabled breakpoints. To disable/enable a breakpoint, place the cursor in that node name and click the
Enable/Disable Breakpoint command. This command is also available by right-clicking at the location where
you want to enable/disable the breakpoint.

29.8.25 Enable/Disable Tracepoint

Ctrl+Shift+F9

The XSL/XQuery | Enable/Disable Tracepoint command enables or disables already defined tracepoints.
The blue tracepoint highlight turns to gray when the tracepoint is disabled. No output is displayed for
statements with disabled tracepoints. To disable/enable a tracepoint, place the cursor in that node name and
click the Enable/Disable Tracepoint command. This command is also available by right-clicking at the
location where you want to enable/disable the tracepoint.

29.8.26 Breakpoints/Tracepoints

The XSL/XQuery | Breakpoints/Tracepoints command opens the XSLT Breakpoints/Tracepoints dialog. This
displays a list of all currently defined breakpoints and tracepoints (including disabled breakpoints and
tracepoints) in all files of the current debugging session.

© 2018-2024 Altova GmbH

XSL/XQuery Menu 1341Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The following features are available:

· The check boxes indicate whether a breakpoint or tracepoint is enabled (checked) or disabled.
· You can highlight one breakpoint or trace point at a time.
· Remove a highlighted breakpoint or tracepoint by clicking the corresponding Remove button.
· Remove all breakpoints or tracepoints by clicking the corresponding Remove All button.
· The Edit Code button takes you directly to the highlighted breakpoint or tracepoint in the

corresponding file.
· Click to move the highlighted breakpoint to the Tracepoints pane.
· Click to move the highlighted tracepoint to the Breakpoints pane.
· In the XPath column of the Tracepoints pane, you can set an XPath for each tracepoint. This enables

you to specify a condition that has to be met in order for the tracepoint to be applied.

29.8.27 Debug Windows

Placing the cursor over the XSL/XQuery | Debug Windows command pops out a submenu with a list of the
various Information Windows of the XSLT/XQuery Debugger. Selecting an Information Window from this list

1342 Menu Commands XSL/XQuery Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

shows/hides that Information Window in the XSLT/XQuery Debugger interface. This command can be used to
effect only when a debugging session is in progress.

29.8.28 Debug Settings

The XSL/XQuery | Debug Settings command opens the Debug Settings dialog , which enables you to set
user options for the Debugger. See the XSLT/XQuery Debugger section for details.

541

523

© 2018-2024 Altova GmbH

Authentic Menu 1343Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.9 Authentic Menu

Authentic View enables you to edit XML documents based on StyleVision Power Stylesheets (.sps files)

created in Altova's StyleVision product! These stylesheets contain information that enables an XML file to
be displayed graphically in Authentic View. In addition to containing display information, StyleVision Power
Stylesheets also allow you to write data to the XML file. This data is dynamically processed using all the
capability available to XSLT stylesheets and instantly produces the output in Authentic View.

Additionally, StyleVision Power Stylesheets can be created to display an editable XML view of a database. The
StyleVision Power Stylesheet contains information for connecting to the database, displaying the data from the
database in Authentic View, and writing back to the database.

The Authentic menu contains commands relevant to editing XML documents in Authentic View. For a tutorial
on Authentic View, see the Authentic View Tutorials section.585

1344 Menu Commands Authentic Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.9.1 New Document

This command enables you to open a new XML document template in Authentic View. The XML document
template is based on a StyleVision Power Stylesheet (.sps file), and is opened by selecting the StyleVision
Power Stylesheet (SPS file) in the Create New Document dialog (screenshot below). On selecting an SPS and
clicking OK, the XML document template defined for that SPS file is opened in Authentic View.

The Create New Document dialog offers a choice of XML document templates that are based on popular DTDs
or schemas. Alternatively, you can browse for a custom-made SPS file that has a Template XML File assigned
to it. SPS files are created using Altova StyleVision, an application that enables you to design XML document
templates based on a DTD or XML Schema. After designing the required SPS in StyleVision, an XML file is
assigned (in StyleVision) as a Template XML File to the SPS. The data in this XML file provides the starting
data of the new document template that is opened in the Authentic View of XMLSpy.

The new XML document template will therefore have the documentation presentation properties defined in the
SPS and the data of the XML file that was selected as the Template XML File. The Authentic View user can
now edit the XML document template in a graphical WYSIWYG interface, and save it as an XML document.

© 2018-2024 Altova GmbH

Authentic Menu 1345Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.9.2 Edit Database Data

The Authentic | Edit Database Data command opens an editable view of a database (DB) in Authentic View.
All information about connecting to the DB, and how to display the DB and accept changes to it via Authentic
View is contained in a StyleVision Power Stylesheet. The Edit Database Data command opens an
StyleVision Power Stylesheet, sets up a connection to the DB, and displays the DB data (through an XML
lens) in Authentic View.

On clicking Edit Database Data command, the Edit Database Data dialog (screenshot below) opens.

Browse for the required SPS file, and select it. This connects to the DB and opens an editable view of the DB in
Authentic View. The design of the DB view that is displayed in Authentic View is contained in the StyleVision
Power Stylesheet.

Note: If, with the Edit Database Data command, you attempt to open a StyleVision Power Stylesheet that
is not based on a DB or to open a DB-based StyleVision Power Stylesheet that was created in a
version of StyleVision prior to the StyleVision 2005 release, you will receive an error.

Note: StyleVision Power Stylesheets are created using Altova StyleVision.

29.9.3 Assign a StyleVision Stylesheet

The Assign a StyleVision Stylesheet command assigns a StyleVision Power Stylesheet (SPS) to an XML
document to enable the viewing and editing of that XML document in Authentic View. The StyleVision Power
Stylesheet that is to be assigned to the XML file must be based on the same schema as that on which the
XML file is based.

To assign a StyleVision Power Stylesheet to an XML file:

1. Make the XML file the active file and select the Assign a StyleVision Stylesheet command.

1346 Menu Commands Authentic Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. The command opens a dialog box in which you specify the StyleVision Power Stylesheet file you wish
to assign to the XML.

3. Click OK to insert the required SPS statement into your XML document. Note that you can make the
path to the assigned file relative by clicking the Make path relative to check box. You can also select a
file via a global resource or a URL (click the Browse button) or a file in one of the open windows in
XMLSpy (click the Window button).

<?xml version="1.0" encoding="UTF-8"?>
<?altova_sps HTML-Orgchart.sps?>

In the example above, the StyleVision Power Stylesheet is called HTML_Orgchart.sps, and it is located in

the same directory as the XML file.

Note: Previous versions of Altova products used a processing instruction with a target or name of xmlspysps,
so a processing instruction would look something like <?xmlspysps HTML-Orgchart.sps?>. These
older processing instructions are still valid with Authentic View in current versions of Altova products.

29.9.4 Edit StyleVision Stylesheet

The Edit StyleVision Stylesheet command is available only in Authentic View (which implies that the XML
document has been assigned a StyleVision Power Stylesheet). The command starts StyleVision and allows
you to edit the StyleVision Power Stylesheet immediately in StyleVision.

29.9.5 Select New Row with XML Data for Editing

The Select New Row with XML Data for Editing command enables you to select a new row from the
relevant table in an XML DB (such as IBM DB2). This row appears in Authentic View, can be edited there, and
then saved back to the DB.

When an XML DB is used as the XML data source, the XML data that is displayed in Authentic View is the
XML document contained in one of the cells of the XML data column. The Select New Row with XML Data
for Editing command enables you to select an XML document from another cell (or row) of that XML column.
Selecting the Select New Row command pops up the Choose XML Field dialog (screenshot below), which
displays the table containing the XML column.

1199

© 2018-2024 Altova GmbH

Authentic Menu 1347Menu Commands

Altova XMLSpy 2024 Enterprise Edition

You can enter a filter for this table. The filter should be an SQL WHERE clause (just the condition, without the
WHERE keyword, for example: CID>1002). Click Update to refresh the dialog. In the screenshot above, you can
see the result of a filtered view. Next, select the cell containing the required XML document and click OK. The
XML document in the selected cell (row) is loaded into Authentic View.

29.9.6 XML Signature

The XML Signature command is available in Authentic View when the associated SPS has XML Signatures

enabled. The XML Signature command is also available as the XML Signature toolbar icon in the
Authentic toolbar.

Verification and own certificate/password
Clicking the XML Signature command starts the signature verification process. If no signature is present in
the document, a message to that effect is displayed in the XML Signature dialog (see screenshot below), and
the dialog will have a button that enables the Authentic View user to sign the document.

1348 Menu Commands Authentic Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If the Select Own Certificate or Select Own Password button is present in this dialog, it means that the
Authentic View has been given the option of selecting an own certificate/password. (Whether a certificate or
password is to be chosen has been decided by the SPS designer at the time the signature was configured. The
signature will be either certificate-based or password-based.) Clicking either of these buttons, if present in the
dialog, enables the Authentic View user to browse for a certificate or to enter a password. The Authentic View
user's selection is stored in memory and is valid for the current session only. If, after selecting a certificate or
password, the document or application is closed, the certificate/password setting reverts to the setting
originally saved with the SPS.

Verification and authentication information
If the verification process is run on a signed document, two general situations are possible. First: If the
authentication information is available (in the signature or the SPS), then the verification process is executed
directly and the result is displayed (screenshot below).

Authentication information is either the signing certificate's key information or the signing password. The SPS
designer will have specified whether the certificate's key information is saved in the signature when the XML
document is signed, or, in the case of a password-based signature, whether the password is saved in the SPS.
In either of these cases, the authentication is available. Consequently the verification process will be run
directly, without requiring any input from the Authentic View user.

The second possible general situation occurs when authentication information is not available in the signature
(certificate's key information) or SPS file (password). In this situation, the Authentic View user will be asked to
supply the authentication information: a password (see screenshot below) or the location of a certificate. If the
SPS allows Authentic View to select their own password or certificate, click Select own Password (or
Certificate) to do that.

© 2018-2024 Altova GmbH

Authentic Menu 1349Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.9.7 Define XML Entities

You can define entities for use in Authentic View, whether your document is based on a DTD or an XML
Schema. Once defined, these entities are displayed in the Entities Entry Helper and in the Insert Entity
submenu of the context menu. When you double-click on an entity in the Entities Entry Helper, that entity is
inserted at the cursor insertion point.

An entity is useful if you will be using a text string, XML fragment, or some other external resource in multiple
locations in your document. You define the entity, which is basically a short name that stands in for the
required data, in the Define Entities dialog. After defining an entity you can use it at multiple locations in your
document. This helps you save time and greatly enhances maintenance.

There are two broad types of entities you can use in your document: a parsed entity, which is XML data
(either a text string or a fragment of an XML document), or an unparsed entity, which is non-XML data such as
a binary file (usually a graphic, sound, or multimedia object). Each entity has a name and a value. In the case
of parsed entities the entity is a placeholder for the XML data. The value of the entity is either the XML data
itself or a URI that points to a .xml file that contains the XML data. In the case of unparsed entities, the value of

the entity is a URI that points to the non-XML data file.

To define an entity:

1. Click Authentic | Define XML Entities. This opens the Define Entities dialog.

1350 Menu Commands Authentic Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Enter the name of your entity in the Name field. This is the name that will appear in the Entities Entry
Helper.

3. Enter the type of entity from the drop-down list in the Type field. Three types are possible. An Internal
entity is one for which the text to be used is stored in the XML document itself. Selecting PUBLIC or
SYSTEM specifies that the resource is located outside the XML file, and will be located with the use of
a public identifier or a system identifier, respectively. A system identifier is a URI that gives the location
of the resource. A public identifier is a location-independent identifier, which enables some processors
to identify the resource. If you specify both a public and system identifier, the public identifier resolves
to the system identifier, and the system identifier is used.

4. If you have selected PUBLIC as the Type, enter the public identifier of your resource in the PUBLIC
field. If you have selected Internal or SYSTEM as your Type, the PUBLIC field is disabled.

5. In the Value/Path field, you can enter any one of the following:

· If the entity type is Internal, enter the text string you want as the value of your entity. Do not enter
quotes to delimit the entry. Any quotes that you enter will be treated as part of the text string.

· If the entity type is SYSTEM, enter the URI of the resource or select a resource on your local
network by using the Browse button. If the resource contains parsed data, it must be an XML file
(i.e. it must have a .xml extension). Alternatively, the resource can be a binary file, such as a GIF
file.

· If the entity type is PUBLIC, you must additionally enter a system identifier in this field.

6. The NDATA entry tells the processor that this entity is not to be parsed but to be sent to the
appropriate processor. The NDATA field should therefore be used with unparsed entities only.

Dialog features
You can append, insert, and delete entities by clicking the appropriate buttons. You can also sort entities on
the alphabetical value of any column by clicking the column header; clicking once sorts in ascending order,
twice in descending order. You can also resize the dialog box and the width of columns.

Once an entity is used in the XML document, it is locked and cannot be edited in the Define Entities dialog.
Locked entities are indicated by a lock symbol in the first column. Locking an entity ensures that the XML
document is valid with respect to entities. (The document would be invalid if an entity is referenced but not
defined.)

Duplicate entities are flagged.

Limitations

· An entity contained within another entity is not resolved, either in the dialog, Authentic View, or XSLT
output, and the ampersand character of such an entity is displayed in its escaped form, i.e. &.

· External entities are not resolved in Authentic View, except in the case where an entity is an image file
and it is entered as the value of an attribute which has been defined in the schema as being of type
ENTITY or ENTITIES. Such entities are resolved when the document is processed with an XSLT

generated from the SPS.

© 2018-2024 Altova GmbH

Authentic Menu 1351Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.9.8 View Markup

The View Markup command has a submenu with options to control markup in the Authentic XML document.
These options are described below.

The Hide Markup command hides markup symbols in Authentic View.

The Show Small Markup command shows small markup symbols in Authentic View.

The Show Large Markup command shows large markup symbols in Authentic View.

The Show Mixed Markup command shows mixed markup symbols in Authentic View. The person who
designs the StyleVision Power Stylesheet can specify either large markup, small markup, or no markup for
individual elements/attributes in the document. The Authentic View user sees this customized markup in mixed
markup viewing mode.

29.9.9 RichEdit

Hovering over the RichEdit command pops out a submenu containing the RichEdit markup commands
(screenshot below). The menu commands in this submenu are enabled only in Authentic View and when the
cursor is placed inside an element that has been created as a RichEdit component in the SPS design.

1352 Menu Commands Authentic Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The text-styling properties of the RichEdit menu will be applied to the selected text when a RichEdit markup
command is clicked. The Authentic View user can, in addition to the font and font-size specified in the
Authentic toolbar, additionally specify the font-weight, font-style, font-decoration, color, background color and
alignment of the selected text.

29.9.10 Append/Insert/Duplicate/Delete Row

The Append Row command appends a row to the current table in Authentic View.

The Insert Row command inserts a row into the current table in Authentic View.

The Duplicate Row command duplicates the current table row in Authentic View.

The Delete Row command deletes the current table row in Authentic View.

29.9.11 Collapse/Expand Markup

This command becomes enabled when Authentic markup has been switched on (see View Markup) and a
node's markup tag has been selected. Clicking the command when the node is expanded collapses the node.
Clicking the command when the node is collapsed expands the node.

29.9.12 Move Row, Delete Row

The following row commands are enabled in Authentic View:

· Move Row Up moves the current table row up by one row in Authentic View.
· Move Row Down moves the current table row down by one row in Authentic View.
· Delete Row deletes the current row.

1351

© 2018-2024 Altova GmbH

Authentic Menu 1353Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.9.13 Generate HTML, RTF, PDF, Word 2007+ Document

These five commands are enabled when a PXF file is the active file. They generate output documents from the
Authentic View XML document stored in the PXF file:

· Generate an HTML Document
· Generate an RTF Document
· Generate a PDF Document
· Generate a Word 2007+ Document
· Generate a Text Document

The commands are also available in the Portable XML Form (PXF) toolbar (screenshot below).

Clicking the individual command or buttons generates HTML, RTF, PDF, or DocX output, respectively.

Individual commands and buttons are enabled if the PXF file was configured to contain the XSLT stylesheet for
that specific output format. For example, if the PXF file was configured to contain the XSLT stylesheets for
HTML and RTF, then only the commands and toolbar buttons for HTML and RTF output will be enabled while
those for Text, PDF and DocX (Word 2007+) output will be disabled.

29.9.14 Trusted Locations

The Trusted Locations command pops up the Trusted Locations dialog (screenshot below), in which you can
specify the security settings for scripts in an SPS. When an XML file based on a script-containing SPS is
switched to Authentic View, the script will be allowed to run or not depending on the settings you make in this
dialog.

1354 Menu Commands Authentic Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The three available options are:

· Authentic scripts are always run when a file is opened in Authentic View.
· Authentic scripts are never run when a file is opened in Authentic View.
· Only Authentic scripts in trusted locations are run. The list of trusted (folder) locations is shown in the

bottom pane. Use the Add button to browse for a folder and add it to the list. To remove an entry from
the list, select an entry in the Trusted Locations list and click Remove.

© 2018-2024 Altova GmbH

DB Menu 1355Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.10 DB Menu

The DB menu is the menu for database (DB) operations. It is shown in the screenshot below and contains the
menu items listed below. Descriptions of commands in the sub-menus of the DB menu are in the sub-sections
of this section.

· Query Database , which enables you to query a variety of databases.
· IBM DB2 , which contains commands that provide support for IBM DB2-specific functionality.
· SQL Server , which contains commands for managing SQL Server databases.
· Oracle databases , which contains command for working with Oracle databases.

The operations described in this section require a connection to a database (for instructions, see Connecting to
a Database).

29.10.1 Query Database

The Query Database command opens the Database Query window (screenshot below). Once the Query
Window is open, its display can be toggled on and off by clicking either the DB | Query Database command or

the Query Database toolbar icon .

1355

1371

1376

1379

904

1356 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Overview of the Database Query window
The Database Query window consists of three parts:

· A Browser pane at top left, which displays connection info and database tables.
· A Query pane at top right, in which the query is entered.
· A tabbed Results/Messages pane . The Results pane displays the query results in what we call the

Result Grid. The Messages pane displays messages about the query execution, including warnings
and errors.

The Database Query window has a toolbar at the top. At this point, take note of the two toolbar icons below.
The other toolbar icons are described in the section, Query Pane: Description and Features .

Toggles the Browser pane on and off.

1360

1364

1368

1364

© 2018-2024 Altova GmbH

DB Menu 1357Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Toggles the Results/Messages pane on and off.

Overview of the Query Database mechanism
The Query Database mechanism is as follows. It is described in detail in the sub-sections of this section

1. A connection to the database is established via the Database Query window. Supported databases
include: MS Access 2000 and 2003; Microsoft SQL Server; Oracle; MySQL; Sybase; and IBM DB2.

2. The connected database or parts of it are displayed in the Browser pane , which can be configured
to suit viewing requirements.

3. A query written in a syntax appropriate to the database to be queried is entered in the Query
pane , and the query is executed.

4. The results of the query can be viewed through various filters, edited, and saved back to the DB.

29.10.1.1 Data Sources

In order to query a database, you have to first connect to the required database This section describes how to:

· Connect to a database, and
· Select the required data source and root object from among multiple existing connections.

Connect to a database
Click the Query Database command to start building a connection. The Connect to a Data Source dialog
(screenshot below) appears. Select the DB type that you want and follow the wizard's instructions.

1357

1360

1367

1367

1368

1358 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If the DB connection is successful, then the Database Query window appears. To make connections to other

DBs from this point onwards, click the Quick Connect icon in the Database Query window. How to
connect to a database via the Quick Connect dialog is described in the section Connecting to a Data
Source .

The table below lists all the supported databases. If your Altova application is a 64-bit version, ensure that you
have access to the 64-bit database drivers needed for the specific database you are connecting to.

904

© 2018-2024 Altova GmbH

DB Menu 1359Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Database Notes

Firebird 2.x, 3.x, 4.x

IBM DB2 8.x, 9.x, 10.x, 11.x

IBM Db2 for i 6.x, 7.4, 7.5 Logical files are supported and shown as views.

IBM Informix 11.70 and later

MariaDB 10 and later MariaDB supports native connections. No separate drivers are
required.

Microsoft Access 2003 and later At the time of writing (early September 2019), there is no
Microsoft Access Runtime available for Access 2019. You can
connect to an Access 2019 database from Altova products only
if Microsoft Access 2016 Runtime is installed and only if the
database does not use the "Large Number" data type.

Microsoft Azure SQL Database SQL Server 2016 codebase

Microsoft SQL Server 2005 and later
Microsoft SQL Server on Linux

MySQL 5 and later MySQL 5.7 and later supports native connections. No separate
drivers are required.

Oracle 9i and later

PostgreSQL 8 and later PostgreSQL connections are supported both as native
connections and driver-based connections through interfaces
(drivers) such as ODBC or JDBC. Native connections do not
require any drivers.

Progress OpenEdge 11.6

SQLite 3.x SQLite connections are supported as native, direct connections
to the SQLite database file. No separate drivers are required.

In Authentic view, data coming from a SQLite database is not
editable. When you attempt to save SQLite data from the
Authentic view, a message box will inform you of this known
limitation.

Sybase ASE 15, 16

Teradata 16

Select the required data source
All the existing connections and the root objects of each are listed, respectively, in two combo boxes in the
toolbar of the Database Query window (screenshot below).

1360 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the screenshot above, a connection has been made to the database named BookCatalog. This DB has only
one available root object— named main— and it has been selected. The database and the root object are then
displayed in the Browser pane.

29.10.1.2 Browser Pane: Viewing the DB Objects

The Browser pane provides an overview of objects in the selected database. This overview includes database
constraint information, such as whether a column is a primary or foreign key. In IBM DB2 version 9 databases,
the Browser additionally shows registered XML schemas in a separate folder.

This section describes the following:

· The layouts available in the Browser pane.
· How to filter database objects.
· How to find database objects.

Browser pane layouts
The default Folders layout displays database objects hierarchically. Depending on the selected object, different
context menu options are available when you right-click an item.

1360

1362

1363

© 2018-2024 Altova GmbH

DB Menu 1361Menu Commands

Altova XMLSpy 2024 Enterprise Edition

To select a layout for the Browser, click the Layout icon in the toolbar of the Browser pane and select the
layout from the drop-down list (screenshot below). Note that the icon changes with the selected layout.

The available layouts are:

· Folders: Organizes database objects into folders based on object type in a hierarchical tree, this is the
default setting.

· No Schemas: Similar to the Folders layout, except that there are no database schema folders; tables
are therefore not categorized by database schema.

· No Folders: Displays database objects in a hierarchy without using folders.
· Flat: Divides database objects by type in the first hierarchical level. For example, instead of columns

being contained in the corresponding table, all columns are displayed in a separate Columns folder.
· Table Dependencies: Categorizes tables according to their relationships with other tables. There are

categories for tables with foreign keys, tables referenced by foreign keys and tables that have no
relationships to other tables.

To sort tables into User and System tables, switch to Folders, No Schemas or Flat layout, then right-click the
Tables folder and select Sort into User and System Tables. The tables are sorted alphabetically in the User
Tables and System Tables folders.

1362 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Filter database objects
In the Browser pane (in all layouts except No Folders and Table Dependencies), tables, views, function, filters
and other DB-specific objects can be filtered on their names. Objects are filtered as you type in the characters,
and filtering is case-insensitive by default.

To filter objects in the Browser, do the following:

1. Click the Filter Folder Contents icon in the toolbar of the Browser pane. Filter icons appear next to
the top-level folders, such as Tables and Functions as in the screenshot below.

2. Click the filter icon next to the folder you want to filter, and select the filtering option from the popup
menu, for example, Contains.

3. In the entry field that appears, enter the filter string. Iin the screenshot below, the filter string on the
Tables and Functions folders are Auth and STR, respectively, and they filter the contents of the two
folders to tables and functions that match the respective filter.

© 2018-2024 Altova GmbH

DB Menu 1363Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Find database objects
To find a specific database item by its name, you can use the Browser pane's Object Locator. This works as
follows:

1. In the toolbar of the Browser pane, click the Object Locator icon. A drop-down list appears at the
bottom of the Browser.

2. Enter the search string in the entry field of this list. In the screenshot below, we have entered author.
Clicking the drop-down arrow displays all objects that contain this string.

1364 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. Click the object in the list to highlight it in the Browser.

29.10.1.3 Query Pane: Description and Features

The Query pane is an intelligent SQL editor for entering queries to the selected database. After entering the
query, clicking the Execute command of the Database Query window executes the query and displays the
result and execution messages in the Results/Messages pane . How to work with queries is described in
the next section, Query Pane: Working with Queries . In this section, we describe the main features of the
Query pane:

· SQL Editor icons in the Database Query toolbar
· SQL Editor options
· Definition of regions in an SQL script
· Insertion of comments in an SQL script
· Use of bookmarks

1368

1367

© 2018-2024 Altova GmbH

DB Menu 1365Menu Commands

Altova XMLSpy 2024 Enterprise Edition

SQL Editor icons in the Database Query toolbar
The following icons in the toolbar of the Database Query window are used when working with the SQL Editor:

Execute Executes currently selected SQL statement. If script contains
multiple statements and none is selected, then all are executed.

Execute with
Data Editing

Same as for Execute command, except that results (in Results
tab) are editable.

Import SQL File Opens an SQL file in the SQL Editor.

Export SQL File Saves SQL queries to an SQL file.

Undo Undoes an unlimited number of edits in SQL Editor.

Redo Redoes an unlimited number of edits in SQL Editor.

Hide DB Query
on XML Open

Sets whether the DB Query window should be hidden when an
XML document is opened for editing.

Auto-Commit on
XML Save

When an edited XML document is saved in XMLSpy, changes
are committed to the DB if this toggle is on. Otherwise, changes
have to be explicitly committed in the Results Pane.

Options Open the Options dialog of SQL Editor.

Open SQL Script
in DatabaseSpy

Opens the SQL script in Altova's DatabaseSpy product.

Options
Clicking the Options icon in the Database Query toolbar pops up the Options dialog (screenshot below). A
page of settings can be selected in the left-hand pane, and the options on that page can be selected. Click the
Reset to Page Defaults button to reset the options on that page to their original settings.

1366 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The key settings are as follows:

· General | Encoding: Options for setting the encoding of new SQL files, of existing SQL files for which
the encoding cannot be detected, and for setting the Byte Order Mark (BOM). (If the encoding of
existing SQL files can be detected, the files are opened and saved without changing the encoding.)

· SQL Editor: Options for toggling syntax coloring and data source connections on execution on/off. A
timeout can be set for query execution, and a dialog to change the timeout can also be shown if the
specified time is exceeded. Entry helpers refer to the entry helpers that appear as part of the auto-
completion feature. When you type in an SQL statement, the editor displays a list of context-sensitive
auto-completion suggestions. These suggestions can be set to appear automatically. If the automatic
display is switched off, then you can ask for an auto-completion suggestion in SQL Editor by pressing
Ctrl+Spacebar. The buffer for the entry helper information can be filled either on connection to the data
source or the first time it is needed. The Text View settings button opens the Text View options
window of XMLSpy.

· SQL Editor | SQL Generation: The application generates SQL statements when you drag objects
from the Browser pane into the Query pane. Options for SQL statement generation can be set in the
SQL generation tab. Use the Database pane to select a database kind and set the statement
generation options individually for the different database kinds you are working with. Activating the
Apply to all databases check box sets the options that are currently selected for all databases.
Options include appending semi-colons to statements and surrounding identifiers with escape
characters. When the Append semicolons to statement end check box is activated, a semicolon is
appended when you generate an SQL statement in the SQL Editor. Note that editing of data in Oracle
databases and IBM iSeries and DB2 databases via a JDBC connection is possible only if this check
box is unchecked.

· SQL Editor | Result View: Options to configure the Result tab.
· SQL Editor | Fonts: Options for setting the font style of the text in the Text Editor and in the Result

View.

1420

© 2018-2024 Altova GmbH

DB Menu 1367Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Define regions in an SQL script
Regions are sections in SQL scripts that are marked and declared to be a unit. Regions can be collapsed and
expanded to hide or display parts of the script. It is also possible to nest regions within other regions. Regions
are delimited by --region and --endregion comments, respectively, before and after the region. Regions can
optionally be given a name, which is entered after the -- region delimiter (see screenshot below).

To insert a region, select the statement/s to be made into a region, right-click, and select Insert Region. The
expandable/collapsible region is created. Add a name if you wish. In the screenshot above, also notice the line-
numbering. To remove a region, delete the --region and --endregion delimiters.

Insert comments in an SQL script
Text in an SQL script can be commented out. These portions of the script are skipped when the script is
executed.

· To comment out a block, mark the block, right-click, and select Insert/Remove Block Comment. To
remove the block comment, mark the comment, right-click and select Insert/Remove Block
Comment.

· To comment out a line or part of a line, place the cursor at the point where the line comment should
start, right-click, and select Insert/Remove Line Comment. To remove the line comment, mark the
comment, right-click and select Insert/Remove Line Comment.

Bookmarks
Bookmarks can be inserted at specific lines, and you can then navigate through the bookmarks in the
document. To insert a bookmark, place the cursor in the line to be bookmarked, right-click, and select
Insert/Remove Bookmark. To go to the next or previous bookmark, right-click, and select Go to Next
Bookmark or Go to Previous Bookmark, respectively. To remove a bookmark, place the cursor in the line for
which the bookmark is to be removed, right-click, and select Insert/Remove Bookmark. To remove all
bookmarks, right-click, and select Remove All Bookmarks.

29.10.1.4 Query Pane: Working with Queries

After connecting to a database, an SQL script can be entered in the SQL Editor and executed. This section
describes:

· How an SQL script is entered in the SQL Editor.
· How the script is executed in the Database Query window.

1368 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The following icons are referred to in this section:

Execute Query Executes currently selected SQL statement. If script contains
multiple statements and none is selected, then all are executed.

Execute for
Data Editing

Same as for Execute command, except that results (in Results
tab) are editable.

Import SQL
File

Opens an SQL file in the SQL Editor.

Create SQL statements and scriptsThe following GUI methods can be used to create SQL statements or
scripts:

· Drag and drop: Drag an object from the Browser pane into the SQL Editor. An SQL statement is
generated to query the database for that object.

· Context menu: Right-click an object in the Browser pane and select Show in SQL Editor | Select.
· Manual entry: Type SQL statements directly in SQL Editor. The Auto-completion feature can help with

editing.
· Import an SQL script: Click the Import SQL File icon in the toolbar of the Database Query window.

Execute SQL statements
If the SQL script in the SQL Editor has more than one SQL statement, select the statement to execute and
click either the Execute icon or Execute with Data Editing icon in the toolbar of the Database Query window.
If no statement in the SQL script is selected, then all the statements in the script are executed. The database
data is retrieved and displayed as a grid in the Results tab . If Execute with Data Editing was selected,
then the retrieved data in the Result Grid can be edited . Messages about the execution are displayed in the
Messages tab .

29.10.1.5 Results and Messages

The Results/Messages pane has two tabs:

· The Results tab shows the data that is retrieved by the query.
· The Messages tab shows messages about the query execution.

Results tab
The data retrieved by the query is displayed in the form of a grid in the Results tab (screenshot below).

1368

1368

1368

1368

1370

© 2018-2024 Altova GmbH

DB Menu 1369Menu Commands

Altova XMLSpy 2024 Enterprise Edition

If the query results contain XML data, as, for example, would be the case with IBM DB2 databases, then the

XML documents in the Results tab are indicated with the XML icon (see screenshot below). If the Execute
for Data Editing toolbar command was used (instead of the Execute Query toolbar command), then XML

documents are shown with the Editable XML icon .

The following operations can be carried out in the Results tab, via the context menu that pops up when you
right-click in the appropriate location in the Results tab:

· Sorting on a column: Right-click anywhere in the column on which the records are to be sorted, then
select Sorting | Ascending/Descending/Restore Default.

· Copying to the clipboard: This consists of two steps: (i) selecting the data range; and (ii) copying the
selection. Data can be selected in several ways: (i) by clicking a column header or row number to
select the column or row, respectively; (ii) selecting individual cells (use the Shift and/or Ctrl keys to
select multiple cells); (iii) right-clicking a cell, and selecting Selection | Row/Column/All. After
making the selection, right-click, and select Copy Selected Cells. This copies the selection to the
clipboard, from where it can be pasted into another application.

· Appending a new row: If the query was executed for editing, right-click anywhere in the Results pane to
access the Append row command.

· Deleting a row: If the query was executed for editing, right-click anywhere in a row to access the
Delete row command.

· Editing records: If the query was executed for editing, individual fields can be edited. To commit
changes, click the Commit button in the toolbar of the Results tab.

· Editing XML records: This feature is supported for IBM DB2, SQLServer, PostgreSQL (8.3 and higher),
and Oracle (9 and higher) databases, and only for those DB tables that have a primary key. If the query

was executed for editing and an editable field is an XML field, clicking the Editable XML icon in the

1370 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Result Grid opens the Edit XML menu (screenshot below). An XML field can also be opened for data
editing by right-clicking the XML field in the Folders pane and selecting the command Edit Data.

The Open for Editing command opens the XML document in an XMLSpy window, and the Editable

XML icon changes to , in which the three dots are red. When this document is saved and if the

Auto-Commit XML Changes icon in the Query Database toolbar was selected when the
document was opened, the changes to the XML document are committed automatically to the
database. Otherwise, saved changes will have to be committed using the Commit button of the
Results pane. (Note that to toggle between the XML document window and the Database Query
window, you must click the DB | Query Database command.) The Load XML Document from File
command loads an external XML document to the selected field in the database. The Save XML
Document to File saves the XML document in the selected database field to a file location you choose.
The Assign XML Schema command pops up the Choose XML Schema dialog , in which you can
select an XML Schema to assign to the XML document. This assignment is saved to the database.
XML Schema assignment is explained in more detail in the section, IBM DB2 | Assign XML
Schema .

· Set NULL, Set default, Undo changes for this cell: If the query was executed for editing, right-clicking
in a cell provides access to commands that enable you to set a NULL value or, if defined, a column
default value for that cell. Changes made to a cell can be undone with the Undo changes for this cell
command; the current edited value is replaced by the value currently in the DB.

The Results tab has the following toolbar icons:

Go to Statement Highlights the statement in the SQL Editor that produced the
current result.

Find Finds text in the Results pane. XML document content is also
searched.

Add New Line Adds a new row to the Result Grid.

Delete Row Deletes the current row in the Result Grid.

Undo Changes
to Result Grid

Undoes all changes to the Result Grid.

Commit Commits changes made in the Result Grid to the database.

Messages tab
The Messages tab provides information on the previously executed SQL statement and reports errors or
warning messages.

1375

1375

© 2018-2024 Altova GmbH

DB Menu 1371Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The toolbar of the Messages tab contains icons that enable you to customize the view, navigate it, and copy
messages to the clipboard. The Filter icon enables the display of particular types of messages to be toggled
on or off. The Next and Previous icons move the selection down and up the list, respectively. Messages can
also be copied with or without their child components to the clipboard, enabling them to be pasted in
documents. The Find function enables you to specify a search term and then search up or down the listing for
this term. Finally, the Clear icon clears the contents of the Messages pane.

Note: These toolbar icon commands are also available as context menu commands.

29.10.2 IBM DB2

The IBM DB2 menu item rolls out a submenu containing commands (i) to register and unregister schemas with
an IBM DB2 database (Manage XML Schemas), and (ii) to assign schemas for XML file validation (Assign
XML Schema).

Both these mechanisms require that you connect to the required IBM DB2 database. For a connection
example, see Example: IBM DB2 (ODBC) . In this section the focus is on how to manage schemas in an
IBM DB2 database and how to assign XML Schemas to a DB XML file.

Note: The Result Grid of the Database Query window provides important functionality for working with XML
files in IBM DB2 databases. This functionality includes the ability to open files for editing, loading XML
files into DB cells as XML files, saving these DB XML files externally, and assigning XML Schemas to
DB XML files.

1372

1375

942

1355

1372 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.10.2.1 Manage XML Schemas

The Manage XML Schemas feature enables schemas to be added to and dropped from individual database
schemas in an IBM DB2 database. To manage schemas, you have to do the following:

· Connect to the IBM DB2 database
· Select the database schema for which XML Schemas need to be added or dropped
· Carry out the schema management actions.

These steps are described in detail below.

Connecting to the IBM DB2 database
Clicking the Manage XML Schemas command pops up the XML Schema Management for Databases dialog
(screenshot below).

The first thing to do if there is no connection to the required database is to connect to it. If a connection already
exists, it appears in the Database combo box. To start the connection process, click the Quick Connect icon

 in the dialog. This pops up the Quick Connect dialog, through which you can make the connection to the
database (for instructions, see Connecting to a Database).

Displaying the list of XML Schemas
After the connection to the IBM DB2 database has been established, the database is listed in the combo box
at left (see screenshot below). If more than one connection is currently open, you can select the required
database in this combo box. In the screenshot below, the StyleVision DB database is selected.

904

© 2018-2024 Altova GmbH

DB Menu 1373Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The combo box at right lists all the database schemas of the currently selected IBM DB2 database. When a
database schema is selected in this combo box, all the XML Schemas registered for the selected database
schema are displayed in the main pane. In the screenshot above, all the XML Schemas registered with the
Altova_User database schema are listed, together with their locations. Checking the Show Details check box
causes additional information columns to be displayed in the main pane.

Managing the XML Schemas
The list of schemas in the main pane represents the schemas registered for the selected database schema.
After the list of XML Schemas is displayed, you can add schemas to the list or drop (delete) schemas from the
list.

To add a schema, click the Add button, browse for the required schema file, and select it. The selected
schema file is added to the list in the main pane. Clicking the Commit Changes button registers the newly
added schema with the database schema.

To drop a schema, select the schema in the main pane and click the Drop Schema button. A Drop Flag is
assigned to the schema, indicating that it is scheduled for dropping when changes are next committed. The
Drop Flag can be removed by selecting the flagged schema and clicking the Remove Drop Flag button. When
the Commit Changes button is clicked, all schemas that have been flagged for dropping will be unregistered
from the database schema.

Clicking the View Schema button opens the schema in XMLSpy. To close the XML Schema Management
dialog, click the Close button.

Reports
When the Commit Changes button is clicked, the database is modified according to the changes you have
made. A report of the Commit action is displayed in the Report pane (screenshot below), enabling you to
evaluate the success of the action and to debug possible errors. Each subsequent report is displayed below
the previous report.

1374 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The report pane has a toolbar containing icons that enable you to customize the display of the report listing,
navigate the listing, copy report messages, search for text, and clear the pane (see screenshot below).

The Filter icon enables the display of particular types of messages to be toggled on or off. The Next and
Previous icons move the selection down and up the list, respectively. Messages can also be copied with or
without their child components to the clipboard, enabling them to be pasted in documents. The Find function
enables you to specify a search term and then search up or down the listing for this term. Finally, the Clear
icon clears the contents of the Report pane.

© 2018-2024 Altova GmbH

DB Menu 1375Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.10.2.2 Assign XML Schema

The Assign XML Schema assigns a schema to an XML file opened for editing via the Result Grid of the
Database Query window. After the assignment is made, the XML file can be validated against the assigned
schema. The assignment is written to the DB when the XML file is saved in XMLSpy.

Opening a DB XML file for editing
In the Database Query window, when a query is addressed to an XML DB and the query is executed for data
editing, the Result Grid at the bottom of the Database Query window provides access to the XML files in the
database so these can be edited (see screenshot below).

Clicking the XML icon pops up the following menu.

Selecting the Open for Editing command opens the XML document in XMLSpy, where it can be edited.

1376 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Assigning a schema to the DB XML file
It is when the DB XML file is opened for editing in XMLSpy that the IBM DB2 | Assign XML Schema command
is enabled. With the XML document active in XMLSpy, clicking the Assign XML Schema command pops up
the Choose XML Schema dialog (screenshot below).

A schema can be selected from among those stored in the database (these are listed in the dropdown list of
the Schema from Database combo box), or from among external files that can be browsed. Clicking OK
assigns the schema to the XML file. Note that the assignment is not written into the XML file. When the XML

file is saved in XMLSpy—and if the Auto-Commit XML changes icon in the Query Database toolbar was
selected when the document was opened—then the schema assignment is saved to the database. Note that
the schema assignment is written to the database—and not to the XML file.

Note: The Edit XML menu in the Result Grid of the Database Query window also has an Assign XML
Schema command (see screenshot below), which also assigns a schema to the DB XML file.

The difference between the two Assign XML Schema commands is that the command in the DB | IBM DB2
menu enables you to assign an XML Schema while you are editing the XML file thereby allowing you to change
schema assignments while editing the XML document and to validate the XML document immediately.

29.10.3 SQL Server

The SQL Server menu item rolls out a submenu containing the Manage XML Schemas command.

© 2018-2024 Altova GmbH

DB Menu 1377Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.10.3.1 Manage XML Schemas

XML Schema management for databases enables you to add and delete XML Schemas from the schema
repository of an XML database. After connecting to the database, XMLSpy provides the XML Schema
Management for Databases dialog, in which XML Schemas can be managed.

The dialog box provides a Quick Connect icon which calls the Quick Connect wizard to connect to a
data source. If more than one connection currently exists, the required connection can be selected from the
combo box on the left-hand side. The required root object can then be selected from the right-hand side combo
box. All the XML Schemas currently in the repository for that root object are displayed in the dialog box. The
name, location, and namespace of each schema are listed.

Note that the stored schemas can also be viewed in the Database Query window (screenshot below), but they
cannot be managed there. To manage schemas, use the XML Schema Management for Databases dialog.

905

1378 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the XML Schema Management dialog you can do the following:

· Add a schema using the Add Schema button. The selected schema will be appended to the list and
marked for addition.

· Mark schemas in the list for deletion with the Drop Schema button. The Drop flag can be removed
with the Remove Drop Flag button.

· Open a selected schema in Schema View by clicking the View Schema button.
· Commit the addition and drop (deletion) changes with the Commit Changes button.

After changes have been committed, a report of the commit action can be viewed in the Report tab (screenshot
below).

© 2018-2024 Altova GmbH

DB Menu 1379Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.10.4 Oracle XML DB

XMLSpy allows you to connect to and query Oracle XML Db databases.

The following database functions are supported:

· Add (and register) an XML schema to the Oracle XML Db. The Oracle XML DB client must be installed
for you to be able to register XML schemas through XMLSpy.

· Open and delete schemas
· Query the database using XPath statements (DBUri)
· Browse XML documents (using WebDAV)
· Create an XML document based on a schema saved in the database

General installation process:

· Download and install XMLSpy
· Install Oracle server (if necessary)
· Create an Oracle database

29.10.4.1 Manage XML Schemas

XML Schema management for databases enables you to add and delete XML Schemas from the schema
repository of an XML database. After connecting to the database, XMLSpy provides the XML Schema
Management for Databases dialog, in which XML Schemas can be managed.

1380 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The dialog box provides a Quick Connect icon which calls the Quick Connect wizard to connect to a
data source. If more than one connection currently exists, the required connection can be selected from the
combo box on the left-hand side. The required root object can then be selected from the right-hand side combo
box. All the XML Schemas currently in the repository for that root object are displayed in the dialog box. The
name, location, and namespace of each schema are listed.

Note that the stored schemas can also be viewed in the Database Query window (screenshot below), but they
cannot be managed there. To manage schemas, use the XML Schema Management for Databases dialog.

905

© 2018-2024 Altova GmbH

DB Menu 1381Menu Commands

Altova XMLSpy 2024 Enterprise Edition

In the XML Schema Management dialog you can do the following:

· Add a schema using the Add Schema button. The selected schema will be appended to the list and
marked for addition.

· Mark schemas in the list for deletion with the Drop Schema button. The Drop flag can be removed
with the Remove Drop Flag button.

· Open a selected schema in Schema View by clicking the View Schema button.
· Commit the addition and drop (deletion) changes with the Commit Changes button.

After changes have been committed, a report of the commit action can be viewed in the Report tab (screenshot
below).

1382 Menu Commands DB Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.10.4.2 Browse Oracle XML Documents

This command allows you to browse the XML documents available on your server. The server details are
automatically filled in if you previously queried the database or listed schemas. If this is not the case, then you
have to enter them manually.

© 2018-2024 Altova GmbH

DB Menu 1383Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Use the tree view to find specific XML files. Double clicking a file in the tree view opens it. You can also click a
file and click Open to achieve the same thing. The New Folder button adds a new folder, the Delete button
deletes the currently selected XML file.

1384 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.11 Convert Menu

The Convert menu (screenshot below) provides powerful data exchange functionality between data formats:

· Import and export text, word processor, database, and XML files.
· Import database data based on an existing XML Schema.
· Create an XML Schema based on the structure of an existing database.
· Create a database structure , based on an existing XML schema.
· Convert between XML instances and JSON instances , between XML Schemas and JSON

Schemas , and between JSON and YAML instance documents .
· Convert XBRL data to the OIM representations of xBRL-JSON and xBRL-CSV, and convert any one

OIM representation (xBRL-XML, xBRL-JSON, and xBRL-CSV) to another.

29.11.1 Import Text File

This command lets you import any structured text file into XMLSpy and convert it to XML format immediately.
This is useful when you want to import legacy data from older systems. The steps for importing data in a text
file as an XML document are described below.

1. Select the menu item Convert | Import Text File.
2. In the dialog that appears (screenshot below), select one of the two options. (For the mapping option to

work, Altova MapForce must be installed.)

1397

1392

1398

1407

1410 1413

https://www.altova.com/mapforce

© 2018-2024 Altova GmbH

Convert Menu 1385Menu Commands

Altova XMLSpy 2024 Enterprise Edition

3. Click OK. The Text Import dialog appears.
4. Select the text import options you want (described in the next section) and click Import. The imported

data is converted into an XML document and this is displayed in Grid View.

Text Import options
The text import options are specified in the Text Import dialog (screenshot below) and are described below. See
previous section for information on accessing the dialog..

1386 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Path
Enter the path to the file to import in the Path text box, or select the file using the Browse button to the right of
the text box. After the file is selected, a Grid View preview of the XML file is displayed in the Preview pane. Any
change in the options selected in this dialog will be reflected in the preview immediately.

Delimiter
To successfully import a text file, you need to specify the field delimiter that is used to separate columns or
fields within the file. XMLSpy will auto-detect common row separators (CR, LF, or CR+LF).

String quotes
Text files exported from legacy systems sometimes enclose textual values in quotes to better distinguish them
from numeric values. If this is the case, you can specify what kind of quotes are being used in your file, and
remove them automatically when the data is imported.

© 2018-2024 Altova GmbH

Convert Menu 1387Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Encoding
The data is converted into Unicode (the basis of all XML documents), so you need to specify which
character-set the file is currently encoded in. For US or Western European Windows systems this will most
likely be Codepage 1252, also referred to as the ANSI encoding.

Byte order
If you are importing 16-bit or 32-bit Unicode (UCS-2, UTF-16, or UCS-4) files, you can also switch between
little-endian and big-endian byte order.

First row contains column names
It is also very common for text files to contain the field names in the first row within the file. If this is the case,
check this check box.

Preview
In the Preview pane you can rename column headers by clicking in a name and editing it. The column headers
will be the element or attribute names in the XML document. You can also select whether a column should be
an element or an attribute in the XML document, or whether it should not be imported into the XML document.
Click the column-type icon in each column header to toggle through these options. For example, in the
screenshot above, the Longitude in Seconds column (LonS) will not be imported.

29.11.2 Import Database Data

The Import Database Data command enables you to import data from any of a variety of databases into an
XML file. The import mechanism involves two steps:

1. A connection to the database is established. For instructions, see Connecting to a Database .
2. The data to be imported is selected .

Select the import command
To import database data, do the following:

1. When you click the Import Database Data command, the Import Database Data dialog (screenshot
below) appears.

2201

904

1388

1388 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Select Convert Database Data into XML and click OK. (For the mapping option to work, Altova
MapForce must be installed.)

3. In the Connect to Data Source dialog that appears, you establish a connection to the database. For
instructions, see Connecting to a Database .

4. After the connection to the database is established, the Import Database Data dialog displays tabs and
windows that enable you to select the database data to import. These options are described below.
After finishing, click the Import button to import the database data as an XML document.

Data selection and import options
The Import Database Data dialog for setting the selection and import options consists of two parts (shown
separately in the screenshots below):

· an upper part with two tabs: (i) Selection, and (ii) Options.
· a lower part, which is a Preview window showing the data according to the data selection and import

options.

904

https://www.altova.com/mapforce
https://www.altova.com/mapforce

© 2018-2024 Altova GmbH

Convert Menu 1389Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Data selection method
In the Selection tab (screenshot above), the Source pane (screenshot below) displays either a representation of
the tables of the database or an editable SQL statement for selecting the required tables, each view being
selected by clicking the respective radio button.

1390 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Table selection options
In the Table selection view, you can select the database tables to import by checking the table's check box
(see the Table Selection screenshot above). The contents of the table can then be displayed in the Preview
pane by clicking the Preview button.

The table selection view provides selection commands via icons in a toolbar (screenshot below).

These icons are, from left:

· Folders Layout: which enables you to organize database objects into: (i) folders based on object type;
(ii) folders based on object type, but without schema folders; (iii) in a hierarchy, but without folders; and
(iv) categories of tables, based on their relationships with other tables.

· Filter folder contents: applies a filter to the selected folder, enabling the folder's objects to be filtered.
For example, in the screenshot below, a filter has been applied to display tables that contain the text
SysNav in its name. Clicking the icon pops up a menu with a list of filter possibilities.

· Show favorites: Filters the objects displayed to favorites.
· Show checked objects only: Filter the objects displayed to checked objects.

© 2018-2024 Altova GmbH

Convert Menu 1391Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· Object Locator: Displays a text field which behaves like a Search entry field. You can enter a text
string and the dropdown list will display all the objects with names that contain the text string.
Selecting one of these objects from the dropdown list will highlight that object in the tree.

Options tab
In the Options tab (screenshot below), you can specify how number, date, and time values are to be imported;
whether data is imported as elements or attributes; and whether comments and NULL fields are to be included
in the import.

When NULL fields are enabled for import, you can enter a substitution XML value for them.

Preview pane
The Preview pane (screenshot below) displays the structure of the table currently selected in the Selection tab.
When a new table is selected in the Selection tab, click the Preview button in the Preview pane to display the
table. Click the Reload button to refresh the preview.

1392 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

When the records are imported, each field can be imported as either an element or an attribute of the record.
Alternatively, you can choose to not import a field. To specify whether a field is to be imported as an element or
attribute or not imported at all, click the symbol to the left of the column name. Repeated clicks will cycle you
through the three options. In the screenshot above, for example, the Book_ID field has been set to be imported

as an attribute, the NumPages field to not be imported, and all other fields to be imported as elements.

Datatype conversions
Information about the conversion of database datatypes to XML Schema datatypes is listed in the
Appendices .

29.11.3 Import Microsoft Word Document

This command enables the direct import of a Microsoft Word document and its conversion into XML. On
selecting this command, the Open dialog box appears in which you select the Word document you want to
import. XMLSpy automatically generates an XML document with included CSS stylesheet. Each Word
document paragraph generates an XML element, the name of which is derived from the corresponding
paragraph style in the Word document.

29.11.4 Create XML Schema from DB Structure

The Create XML Schema from DB Structure command enables you to create an XML Schema from the
structure of any of a variety of databases. The XML Schema-creation mechanism involves two steps:

2186

© 2018-2024 Altova GmbH

Convert Menu 1393Menu Commands

Altova XMLSpy 2024 Enterprise Edition

1. A connection to the database is established. For instructions, see Connecting to a Database .
2. Options for the database data selection and the XML Schema are specified. These are described

below.

Select the data structure to import
After having established a connection to the database, the Create XML Schema from DB Structure dialog is
displayed (screenshot below). Here you can select the database structure to import. After doing this, click
Import to create an XML Schema that defines this structure for an XML document.

Data selection method
In the Selection tab (screenshot above), the Source pane (screenshot below) displays either a representation of
the tables of the database or an editable SQL statement for selecting the required tables, each view being

904

1394 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

selected by clicking the respective radio button.

Table selection options
In the Table selection view, you can select the database tables to import by checking the table's check box
(see the Table Selection screenshot above). The contents of the table can then be displayed in the Preview
pane by clicking the Preview button.

The table selection view provides selection commands via icons in a toolbar (screenshot below).

These icons are, from left:

· Folders Layout: which enables you to organize database objects into: (i) folders based on object type;
(ii) folders based on object type, but without schema folders; (iii) in a hierarchy, but without folders; and
(iv) categories of tables, based on their relationships with other tables.

· Filter folder contents: applies a filter to the selected folder, enabling the folder's objects to be filtered.
For example, in the screenshot below, a filter has been applied to display tables that contain the text
SysNav in its name. Clicking the icon pops up a menu with a list of filter possibilities.

· Show favorites: Filters the objects displayed to favorites.

© 2018-2024 Altova GmbH

Convert Menu 1395Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· Show checked objects only: Filter the objects displayed to checked objects.
· Object Locator: Displays a text field which behaves like a Search entry field. You can enter a text

string and the dropdown list will display all the objects with names that contain the text string.
Selecting one of these objects from the dropdown list will highlight that object in the tree.

Options tab
In the Options tab (screenshot below), you can specify the format of the schema, its extension type, whether
columns should be imported as elements or attributes, and the database constraints that should be generated
in the schema.

Schema format
You can select between a flat (SQL/XML Standard) and a hierarchical schema form.

· The flat schema model is based on an ISO-ANSI SQL/XML specification INCITS/ISO/IEC 9075-14-
2008. The SQL/XML specification defines how to map databases to XML. Relationships are defined in
schemas using identity constraints; there are no references to elements. Hence the schema is flat
structure which resembles a tree-like view of the database. The specification can be purchased at the
ANSI store. For more information, see www.iso.org.

· The hierarchical schema model displays the table dependencies visually, in a type of tree view where
dependent tables are shown as indented child elements in the content model. Table dependencies are
also displayed in the Identity constraints tab.

Tables are listed as global elements in the schema, and columns are the elements or attributes of these global
elements (The user decides whether to map the columns as elements or as attributes). Relationships are
created in a hierarchical way so that a foreign key field in one table is actually a reference to the global element
that represents that table.

Schema extension type
Schema extension information is additional information read from a database that is then embedded in the
schema as either annotation data or attributes. There are four extension type options when generating

http://www.iso.org/iso/catalogue_detail.htm?csnumber=45499
http://www.iso.org/iso/catalogue_detail.htm?csnumber=45499
http://webstore.ansi.org
http://www.iso.org/iso/catalogue_detail.htm?csnumber=45499

1396 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

schemas: (i) no extensions information; (ii) SQL/XML extensions; (iii) MS SQL Server extensions; and (iv)
Oracle extensions. These are described below:

· None: No additional information is provided by the database.
· SQL XML: SQL/XML extensions are only inserted when generating schemas in a flat format. The

extension information is stored in annotations and is described in the SQL/XML specification
(INCITS/ISO/IEC 9075-14-2008).

· MS SQL Server: Selecting Microsoft SQL Server generates SQL Server extensions. See SQL Server
Books Online for resources and MSDN's information about annotating XSD schemas. The following
annotation-related elements are generated in the schema: sql:relation, sql:field, sql:datatype,
sql:mapped.

· Oracle: Oracle extensions are selected by default when working with an Oracle database. Additional
database information is stored as attributes. Detailed information can be found in Oracle's online
documentation. The following subset of attributes is currently generated: SQLName, SQLType,
SQLSchema.

Note: Although SQL Server and Oracle extensions can be generated for their respective databases they are
not restricted in this way. This proves useful when working with a third database and wanting to
generate a schema that later should be working with either SQL Server or Oracle.

Preview pane
The Preview pane (screenshot below) displays the structure of the table currently selected in the Selection tab.
When a new table is selected in the Selection tab, click the Preview button in the Preview pane to display the
table. Click the Reload button to refresh the preview.

When the records are imported, each field can be imported as either an element or an attribute of the record.
Alternatively, you can choose to not import a field. To specify whether a field is to be imported as an element or
attribute or not imported at all, click the symbol to the left of the column name. Repeated clicks will cycle you
through the three options. In the screenshot above, for example, the Book_ID field has been set to be imported

as an attribute, the NumPages field to not be imported, and all other fields to be imported as elements.

Datatype conversions
Information about the conversion of database datatypes to XML Schema datatypes is listed in the
Appendices .

2186

http://www.iso.org/iso/catalogue_detail.htm?csnumber=45499
http://msdn.microsoft.com/en-us/library/ms130214%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms130214%28v=sql.105%29.aspx
http://msdn.microsoft.com/en-us/library/ms172649%28v=sql.90%29.aspx
http://docs.oracle.com/cd/A97630_01/appdev.920/a96620/xdb05obj.htm
http://docs.oracle.com/cd/A97630_01/appdev.920/a96620/xdb05obj.htm

© 2018-2024 Altova GmbH

Convert Menu 1397Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.11.5 DB Import Based on XML Schema

The DB Import Based on XML Schema command creates an XML document which is valid according to a
given XML Schema and contains data imported from a database. For this feature, the following databases are
supported:

· Microsoft Access 2000 and 2003
· Microsoft SQL Server
· Oracle
· MySQL
· Sybase
· IBM DB2

The data to be imported is determined by the table that is selected in the database. With the required XML
Schema (that on which you wish to base the import) as the active document in Schema View, connect to the
database. Then select the table/s you wish to import, and click Import. The data is imported into an XML
document, and the document has the structure of the XML Schema that was active when the data was
imported.

In the example below, data from an MS Access database is imported with an XML Schema active in Schema
View. These would be the steps to carry out for the import:

1. Open the schema file in Schema View (screenshot below).

2. Select the menu command DB Import based on XML Schema. This opens the Connect to Data
Source dialog.

3. Select the Microsoft Access (ADO) option and click Next.
4. Click Browse and select the database file. Then click Next.
5. In the DB Import Based on XML Schema dialog which pops up, go to the Tables tab, select one or

more tables you wish to import (for example, Altova), then click Import. The table is imported into an
XML document that is displayed in Grid View.

905

1398 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Datatype conversions
Information about the conversion of database datatypes to XML Schema datatypes is listed in the
Appendices .

29.11.6 Create DB Structure from XML Schema

XMLSpy allows you to create an empty database (or skeleton database) based on an existing schema file. The
method described below is generally the same for each type of database.

1. Open the schema file in Schema/WSDL View
2. Select the menu command Convert | Create DB Structure from XML Schema. This pops up the

Connect to a Data Source dialog, which enables you to connect to a database (DB).
3. Use the steps described in the section Connecting to a Data Source to connect to the required

database. For example, to connect to a Microsoft Access database, select the Microsoft Access radio
button, and continue the process to select a database. You can use an existing database or create a
new database in which the schema structure will be contained.

4. In the Create DB Structure from XML Schema dialog, tables are created from the schema and
displayed in a tree format at the location where they will occur in the DB. For example, in the
screenshot below, the Address table is created and selected for export. Tables that should not be
exported should be deselected (by unchecking the check box or selecting the appropriate item from
the context menu for that table).

2186

905

905

© 2018-2024 Altova GmbH

Convert Menu 1399Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Creating DB tables with relationships
If the XML Schema from which the DB structure is generated has relationships defined in the form of identity
constraints, then these relationships are automatically created in the generated DB structure and displayed in
the Table Structure. Tables with relationships are listed under the sections: Tables with ForeignKeys and
Tables used by ForeignKeys. Tables without relationships are listed in the Independent Tables section.

In the Relationships tab, you can create and modify table relationships. The tab lists all possible primary-
key/foreign-key relationships (screenshot below).

1400 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To create a relationship, do the following:

1. Select one of the possible primary-key/foreign-key relationships.
2. In the lower pane of the dialog, click the Plus button to create a relationship.
3. Select the required columns in each of the two tables from the respective dropdown lists.

You can also remove a relationship by selecting it and then clicking the Minus button.

Notes on database structure and connecting
The schema structure, defined by the identity constraints, is mirrored in the resulting database. The table below
shows the type of database created, the restrictions, and the connecting methods, when using the Create DB
Structure from XML Schema menu command.

© 2018-2024 Altova GmbH

Convert Menu 1401Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Directly Using ODBC Using ADO

MS Access (2000 and 2003) OK * OK OK

MS SQL Server OK * OK OK

Oracle OK * OK OK

MySQL - OK * OK +

Sybase - OK * OK

IBM DB2 - OK * OK

* Recommended connection method for each database.
+ MySQL: When creating the ADO connection based on ODBC, it is recommended to use either the
User or System DSN.
- Not supported

XMLSpy will map both hierarchical and flat formatted schemas . XMLSpy recognizes both formats
automatically.
The flat format is mapped to SQL in two different ways.

· SQL Server DB, Oracle DB, or Sybase DB:
A schema that was generated in flat format, for one of the above databases, will have the schema
catalog name extracted and used in the generated SQL script as the DB name. This means that the
resulting SQL script will be executed on a target DB whose name must be identical to the schema
catalog name.

· Access (2000 or 2003), MySQL, or DB2 DB:
A schema that was generated in flat format, for one of the above databases, will ignore the schema
catalog name when the SQL script is generated. This means that the resulting SQL script will be
executed on a target database that was logged into.

Datatype conversions
Information about the conversion of XML Schema datatypes to database datatypes is listed in the
Appendices .

29.11.7 Export to Text Files

The command Convert | Export to Text Files exports XML data into text formats for exchange with databases
or legacy systems. On clicking this command, the Export XML to Text dialog pops. It consists of two parts
(shown in separate screenshots below):

· an upper part with two tabs: (i) Selection, and (ii) Export Options.
· a lower part, which is a Preview window.

1392

2186

1402 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

After you have selected the desired options in this dialog (described below), click the Export button to export
to text file/s.

Selection
In the Selection tab (screenshot below), you can select the destination of the file to be exported and text
generation options.

Destination: The exported file can be saved directly to a folder. The file extension can be specified. The
filenames will be those of the elements (in the XML file) that will be exported. Alternatively, untitled files can be
exported to XMLSpy. These files will be displayed in the GUI, and can be saved later.

Include comments: Activate this option to include an XMLSpy-generated comment in the exported XML file.
The comment will contain the SQL query used to select the data as well as a list in which there is one listitem
for each column header in the database table.

Create first row with field names: When activated, the exported tables include the names of columns from the
database. Otherwise column names will not be included in the exported text file.

Remove delimiters: Removes delimiters that are contained in text values in the exported data. Set the
delimiter you want to remove by using the Delimiter combo box in this tab. For example, if this option is
activated and the selected delimiter is the apostrophe, when you export the XML value Ba'ker, the string will
be Baker in the exported text.

Remove newlines: Removes newlines from exported data.

Delimiter: Select from the drop-down list the character that you wish to have removed during export.
Alternatively, enter the desired character string.

© 2018-2024 Altova GmbH

Convert Menu 1403Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Encoding: Select from the drop-down list, the desired encoding for files that are generated during export.

Byte order: If you are exporting 16-bit or 32-bit Unicode (UCS-2, UTF-16, or UCS-4) files, you can also switch
between little-endian and big-endian byte order.

Export Options
Additional export options, which are described below, can be specified in the Options tab (screenshot below):

Start point of export: You can choose to export the entire XML document or restrict your export to the data
hierarchy starting from the currently selected element. The number of sub-levels below the start point that will
be exported is specified in the Export Depth option.

Export depth: Specifies the number of sub-levels below the start point that will be exported.

Export fields: Depending on your XML data, you may want to export only elements, attributes, or the textual
content of your elements. Note that you can also deselect the export of individual elements in the Preview
window.

Automatic fields: XMLSpy will produce one output file or table for each element type selected. You can
choose to automatically create primary/foreign key pairs to link your data in the relational model, or define a
primary key for each element.

Exclude namespace name: Together with the Replace Colon With Underscore radio button this is an either/or
choice. Specifies whether namespace prefixes of elements and attributes should be excluded or whether the
colon in the namespace prefix should be replaced with an underscore.

1404 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Apply Options: After you have set options, click this button to apply the options. The preview in the preview
pane will be updated with the new options.

Preview window
The Preview window (screenshot below) is displayed below the Selection and Options tabs.

The Resulting Elements from XML File pane shows the node names that will be exported and the name in the
generated file. You can select/deselect nodes that will be exported. When an element is selected, a preview of
its structure is shown in a second pane below. In this pane, clicking to the left of a column header name
toggles the export of that column on and off. In the screenshot above, the last column (FK_Office) has been
toggled off.

29.11.8 Export to a Database

The command Convert | Export to a Database exports XML data to a database. On clicking this command,
the Connection Wizard starts up and enables you to set up a connection to the database you wish to update.
After a connection has been established, the Export Data to Database dialog pops. It consists of two parts
(shown separately in the screenshots below):

· an upper part with two tabs: (i) Selection, and (ii) Export Options.
· a lower part, which is a Preview window.

© 2018-2024 Altova GmbH

Convert Menu 1405Menu Commands

Altova XMLSpy 2024 Enterprise Edition

After you have selected the desired options in this dialog (described below), click the Export button to export
to the database.

Selection
In the Selection tab, you can select the destination database and table generation options. The destination field
selects the connection to the database. You must select whether the data is created as new tables, updates
existing tables, or first tries to update an existing table and then creates a new table if an an update is not
possible. You can also set a stop action based on the number of errors, and, optionally, SQL script logging.

Export Options
Export options, which are described below, can be specified in the Options tab (screenshot below):

Start point of export: You can choose to export the entire XML document or restrict your export to the data
hierarchy starting from the currently selected element. The number of sub-levels below the start point that will
be exported is specified in the Export Depth option.

Export depth: Specifies the number of sub-levels below the start point that will be exported.

Export fields: Depending on your XML data, you may want to export only elements, attributes, or the textual
content of your elements. Note that you can also deselect the export of individual elements in the Preview
window.

Automatic fields: XMLSpy will produce one output file or table for each element type selected. You can
choose to automatically create primary/foreign key pairs to link your data in the relational model, or define a
primary key for each element.

1406 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Exclude namespace name: Together with the Replace Colon With Underscore radio button this is an either/or
choice. Specifies whether namespace prefixes of elements and attributes should be excluded or whether the
colon in the namespace prefix should be replaced with an underscore.

Apply Options: After you have set options, click this button to apply the options. The preview in the preview
pane will be updated with the new options.

Preview window
The Preview window (screenshot below) is displayed below the Selection and Options tabs.

The Resulting Elements from XML File pane shows the name of the nodes in the XML document that will be
exported and its corresponding name in the generated file. You can select/deselect nodes that will be exported.
When an element is selected, a preview of its structure in the generated file is shown in a second pane below.
This preview can be switched between a preview of: (i) data in the generated structure (Show Data); or (ii)
definitions of each column in the generated structure (Show Definition). The screenshot above shows the
column definitions.

In this second pane, clicking to the left of a column name cycles the column through four settings: (i) Include in
table structure; (ii) Unique constraint; (iii) Primary Key constraint; (iv) Exclude from table structure. In the
screenshot above, the Location column has a Unique constraint, while the Fax column has been excluded
from the table structure. All the other columns are included in the table structure.

When the element's table structure shows field definitions (Show Definition), the definitions can be edited by
selecting the definition and selecting an option from the definition's combo box (see screenshot above).

© 2018-2024 Altova GmbH

Convert Menu 1407Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.11.9 Convert XML Instance to/from JSON/YAML

If the active document is an XML document, this command generates a JSON or YAML document from it. If the
active document is a JSON or YAML document, the command generates an XML document from it. The
generated document is opened in a new window, and can then be saved to any location. Conversion options are
described below. For information about JSON and JSON editing support in XMLSpy, see the section JSON and
JSON Schema . For information about YAML, see the section YAML .

Sample conversions
Given below is an example of a source XML document, and, below it, the JSON and YAML documents
generated from it by the Convert XML Instance to/from JSON/YAML command.

XML document

<?xml version="1.0" encoding="UTF-8"?>
<Person first="Jim" last="James">
 <Address>
 <street>4 New Street</street>
 <city>New York</city>
 <state>NY</state>
 <code>10123</code>
 </Address>
 <Tel type="home">
 123 123-1234
 </Tel>
 <Tel type="office">
 123 987-9876
 </Tel>
</Person>

To convert an XML document to JSON or YAML, make the XML document active and click the Convert XML
Instance to/from JSON/YAML command.

JSON document

{
"XML": {

"version": 1.0,
"encoding": "UTF-8"

},
"Person": {

"first": "Jim",
"last": "James",
"Address": {

"street": "4 New Street",
"city": "New York",
"state": "NY",
"code": 10123

646 722

1408 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

},
"Tel": [{ "type": "home",

"Text": "\r 123 123-1234\r "}, { "type": "office",
"Text": "\r 123 987-9876\r "}]

}
}

To convert a JSON document to XML, make the JSON document active and click the Convert XML Instance
to/from JSON/YAML command.

YAML document

Person:
 "@first": Jim
 "@last": James
 Address:
 street: 4 New Street
 city: New York
 state: NY
 code: "10123"
 Tel:
 - "@type": home
 $: |

 123 123-1234

 - "@type": office
 $: |

 123 987-9876

To convert a YAML document to XML, make the YAML document active and click the Convert XML Instance
to/from JSON/YAML command.

XML to JSON conversion options
When you click the Convert XML Instance to/from JSON/YAML command to convert an XML instance
document to a JSON or YAML instance document, the Convert XML to JSON/YAML dialog (screenshot below)
appears. You can select whether you wish to convert to JSON, JSON5, JSON Comments, or YAML. Then set
the conversion options you want, and click OK. A JSON or YAML instance document will be generated from
the XML instance, and the generated document will be opened in a new window.

© 2018-2024 Altova GmbH

Convert Menu 1409Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The first two options define whether prefixes should be added to JSON/YAML property names so that conflicts
with elements at the same level are avoided. The two listings below explain this. The XML attribute somenode
has been converted to the JSON property @somenode. In this way, a conflict with the JSON property somenode
(created from the XML element somenode) is avoided.

XML instance

<root somenode="value">
 <somenode>content</somenode>
</root>

JSON instance

{
 "root": {
 "@somenode": "value",
 "somenode": "content"
 }
}

The next options enable you to specify whether certain types of XML nodes are to be converted or not. If XML
comments are included they are given the name "#". Text nodes (that typically occur in elements with mixed

content) are given the name "$". If an XML node has a namespace prefix, then the corresponding JSON/YAML

name will be created with this namespace prefix. If elements with the same name exist at the same level, they
are considered to be equal components. Similarly, nodes such as comments, processing instructions, and
text() at the same level are also equal components. If equal components are present at the same level, you are
able to choose whether to create an array or not. The options are whether to create the array out of all such
equal components, only neighboring equal components, or not to create an array at all.

1410 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Use XML Schema type info option enables conversions to be made on the basis of the XML Schema type
of the source node. For example, if a node is defined in the schema as being of type xs:string, then the
target JSON object's property will be of type string and will be enclosed in quotes. This is useful if, for
example, a number is stored as a string in the source XML node and the conversion to JSON must also be
faithful in terms of type.

JSON/YAML to XML conversion options
When you click the Convert XML Instance to/from JSON/YAML command to convert a JSON or YAML
instance document to an XML instance document, the Convert JSON/YAML to XML dialog (screenshot below)
appears. Set the conversion options you want, and click OK. An XML instance document will be generated
from the JSON or YAML instance, and the generated XML document will be opened in a new window.

Note the following points:

· JSON/YAML object properties are converted to XML elements. The first options in the dialog enable
you to chose whether some types of properties are created or not.

· Encode colons in property names: If selected, colons in JSON/YAML names are encoded and not
created as colons. If not selected, colons are left as is.

· Keep JSON value type information: If selected, a property's JSON type information is created as an
attribute-value pair of the corresponding element.

· Create container element for every JSON array: The container element in the XML document will be
given the name of the JSON array object. The items of the JSON array are created as XML elements
within this container. Each is given the name you specify in the Array item element name text box.

29.11.10 Convert XML Schema to/from JSON Schema

If the active document is an XML Schema, this command generates a JSON schema document from the XML
schema. If the active document is a JSON schema, the command generates an XML Schema from the JSON
schema. The generated document is opened in a new window, and can then be saved to any location.
Conversion options are described below. For more information about JSON and JSON editing support in
XMLSpy, see the section JSON and JSON Schema .646

© 2018-2024 Altova GmbH

Convert Menu 1411Menu Commands

Altova XMLSpy 2024 Enterprise Edition

XML Schema to JSON Schema conversion options
When you click the Convert XML Schema to/from JSON Schema command to convert an XML Schema
document to a JSON schema, the Convert XML Schema to JSON Schema dialog (screenshot below) appears.
Select the JSON Schema version you want and the conversion options, and click OK. A JSON schema will
be generated from the XML Schema, and the generated document will be opened in a new window.

The general conversion strategy is this: (i) XML Schema simple types are mapped to JSON Schema simple
types (such as string and number); (ii) XML Schema complex types are mapped to JSON objects.

The top part of the dialog provides information about how certain XML Schema components are converted. The
bottom part of the dialog provides the following options:

· Create a property named "#" in each subschema: If selected, a property with this name is created in
each JSON schema definition.

· Create pattern properties matching properties prefixed with '?', "@xsi", "@xmlns": Specifies, for each of
these prefixes, a pattern property to match properties with names that have these prefixes. For more
information about pattern properties, see the section JSON Objects and Properties .

· Always create arrays for particles with maxOccurs > 1: In XML Schema, particles are the elements of
complex content models. If the number of occurrences is more than one, then the particles are defined
as an array in JSON Schema. Otherwise, they are defined as properties of a JSON object.

· Create a pure object for complex types with simple content: XML Schema's complex type with simple
content is a type that allows attributes and text content, but no child elements. If the Create pure
object option is selected, then the complex type is converted to a JSON object. The type's attributes
are converted to properties of the JSON object, where the property names are prefixed with @. For the

type's text content, a property named $ is generated. If the Create pure object option is not selected,

then the complex type is converted into an object that may contain other objects and JSON simple
types such as string and number.

664

673

1412 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Create a local schema for built-in type definitions: If selected, this option creates the type definition in
the object itself. Otherwise, the type definition is a reference to a separate object. The two output
cases are shown in the JSON Schema code fragments below.

Type definition is referenced:

"properties": {
 "AccountManager": {
 "$ref": "#/definitions/xs:string"

 }
}
"xs:string": {

 "type": "string"
}

Type definition is local:

"properties": {
 "AccountManager": {
 "type": "string"

 }
}

JSON Schema to XML Schema conversion options
When you click the Convert XML Schema to/from JSON Schema command to convert a JSON Schema
document to an XML schema, the Convert JSON Schema to XML Schema dialog (screenshot below) appears.
Set the conversion options you want, and click OK. An XML schema will be generated from the JSON Schema,
and the generated document will be opened in a new window.

You can select the following options:

· Whether JSON property names that begin with '@' and '$' are created or not. They would be created,

respectively, as attribute nodes and text nodes.
· Whether properties named '#' are created, as XML comment nodes, or not.

· Whether pattern properties that match properties prefixed with '?', "@xsi", and/or "@xmlns" are

ignored or not. If not ignored, then the properties prefixed with '?', "@xsi", and "@xmlns" are

© 2018-2024 Altova GmbH

Convert Menu 1413Menu Commands

Altova XMLSpy 2024 Enterprise Edition

converted, respectively, to processing instructions, xsi: prefixed attributes, and xmlns: prefixed
attributes.

29.11.11 Convert JSON to/from YAML

Make the JSON or YAML file you want to convert to the other format the active file and select the Convert
JSON to/from YAML command. The active file will be converted into the document of the other format and will
be opened in a new window. You can save the document to file from this window.

Note: This command is also available in the context menu of XMLSpy project folders and files. When
used on a project folder, the command allows you to batch convert all the JSON files or all the YAML
files in the folder.

29.11.12 Convert to OIM xBRL-XML

Converts the following data formats to OIM xBRL-XML.

· OIM xBRL-JSON
· OIM xBRL-CSV

Make the file that you want to convert the active file, and then select the command.

The OIM xBRL-XML file will be generated, opened in a new window, and validated. You can then save the
generated file to any location you like.

29.11.13 Convert to OIM xBRL-JSON

Converts the following data formats to OIM xBRL-JSON.

· XBRL data file
· OIM xBRL-XML
· OIM xBRL-CSV

Make the file that you want to convert the active file, and then select the command.

The OIM xBRL-JSON file will be generated, opened in a new window, and validated. You can then save the
generated file to any location you like.

29.11.14 Convert to OIM xBRL-CSV

Converts the following data formats to OIM xBRL-CSV.

· XBRL data file

1009

1414 Menu Commands Convert Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· OIM xBRL-XML
· OIM xBRL-JSON

Make the file that you want to convert the active file, and then select the command.

You will be prompted for a file name under which to save a JSON file. This JSON file will contain the references
of the CSV data file/s that will be generated. After you have specified the JSON file and clicked Save, the JSON
and CSV files will be generated and the validation results of the generated file will be displayed.

© 2018-2024 Altova GmbH

View Menu 1415Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.12 View Menu

The View menu (screenshot below) controls the display of the active Main window and allows you to
change the way the document is displayed.

This section provides a description of commands in the View menu.

29.12.1 Text View

This command switches the current view of the document to Text View , which enables you to edit the
document in its text form. It supports a number of advanced text editing features, described in detail in Text
View section of this document.

Note: You can configure aspects of Text View in various tabs of the Options dialog (Tools | Options).

114

139

139

1513

1416 Menu Commands View Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.12.2 Enhanced Grid View

This command switches the current document into Grid View . If the previous view was Text View , the
document is automatically checked for well-formedness.

29.12.3 Schema Design View

This command switches the current document, if it is an XML Schema document, to Schema Design View. For
a detailed description of mechanisms available in this view, see the Schema View section of this
documentation.

29.12.4 WSDL Design View

This command switches the current document, if it is a WSDL document (having a .wsdl file extension) to
WSDL Design View. This view is described in detail in the WSDL View section of this documentation.

155 139

213

290

© 2018-2024 Altova GmbH

View Menu 1417Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.12.5 XBRL Taxonomy View

This command switches the current document to XBRL Taxonomy View if the document is an XBRL taxonomy
document (having a .xsd file extension). Note that XBRL instance documents, which are XML files and have
.xml suffixes, must be edited as normal XML files in other editing views and cannot be edited in XBRL
Taxonomy View. For more information, see the XBRL View section of this documentation.

29.12.6 Authentic View

This command switches the current document to Authentic View .

Authentic View enables you to edit XML documents based on StyleVision Power Stylesheet templates created
in Altova's StyleVision application. These templates (StyleVision stylesheets or SPS files) display XML
documents in a graphical format that makes editing the XML document easier (than editing it in a text format
with markup).

If an XML document is associated with an SPS file (Authentic | Assign a StyleVision Stylesheet), the
XML document can be viewed in Authentic View. You can also open an SPS file as a new empty template in
Authentic View, in one of two ways:

· Select the File | New command and then click the Select a StyleVision stylesheet button.
· Select the Authentic | New Document command and then browse for the SPS file.

See the Authentic View and StyleVision documentation for more information.

29.12.7 Browser View

This command switches the current document to Browser View . An XML-enabled browser renders the XML
document using information from available CSS and/or XSL stylesheets.

When switching to Browser View, the document is first checked for validity if the Validate upon saving option in
the File section of the Options dialog (Tools | Options) is checked. For more information, see the Browser
View section of this documentation.

302

598

1345

583

316

1514

316

1418 Menu Commands View Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.12.8 Expand

This command (shortcut: numeric pad '+') is enabled in Grid View and expands the selected element one level.
The element remains selected after expansion, so you can expand the element additional levels by repeatedly
clicking the shortcut '+' key.

29.12.9 Collapse

This command (shortcut: numeric pad '-') is enabled in Grid View and collapses the selected element one level.
You can expand or collapse any element by clicking the gray bar to the left of the element.

29.12.10 Expand Fully

This command (shortcut: * or x on the numeric keypad) is enabled in Grid View and in Text View if the Text
View folding margin is active. It expands all descendant nodes of the selected element.

29.12.11 Collapse Unselected

This command (shortcut: Ctrl + numeric pad '-') is enabled in Grid View and keeps the selected item
uncollapsed while collapsing all others items. This helps maximize focus on one element and its children while
reducing the focus on other nodes.

29.12.12 Optimal Widths

© 2018-2024 Altova GmbH

View Menu 1419Menu Commands

Altova XMLSpy 2024 Enterprise Edition

This command is enabled in Grid View and adjusts the widths of all columns in Grid View so that each column
has a width that exactly accommodates in one line the longest text string in any of its cells. A maximum
optimal width can be specified in the View section of the Options dialog (Tools | Options). Note that optimal
widths are calculated on the basis of the visible cells of columns. This enables the optimization of the view
when individual elements are collapsed or expanded.

29.12.13 Word Wrap

This command enables or disables word wrapping in Text View. When word-wrapping is toggled on, text will
wrap at the window's edge.

29.12.14 Go to Line/Character

This command (shortcut: Ctrl+G) is enabled in Text View and Grid View. It pops up a dialog (screenshot below)
in which you can enter the line number and character number to go to. In Text View, the cursor will jump to the
position you entered. In Grid View, the node closest to the line and/or character number you entered will be
highlighted.

This feature is useful when you need to quickly navigate to a location, for example, when the location of an error
is given in an error message.

29.12.15 Go to File

1420 Menu Commands View Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

This command is enabled in Text View and Grid View. When the cursor is placed inside text that references a
file (in Text View) or in a node (in Grid View) that contains text referencing a file, the referenced document is
opened.It opens a document that is being referred to, from within the file you are currently editing.

29.12.16 Text View Settings

The Text View Settings command is enabled in Text View. It opens the Text View Settings dialog (screenshot

below), in which you can configure Text View. A shortcut icon to open the dialog is available in the Text
toolbar.

Margins
In the Margins pane, the Line Number, Bookmark, and Source Folding margins can be toggled on and off. Each
of these is a separate margin in Text View and displays, respectively: (i) line numbers, (ii) bookmarks, and (ii)
source folding icons to expand/collapse nodes. The settings of the Margins pane determine whether the
margins are displayed in Text View or not. Bookmark commands are in the Edit menu. You can expand and
collapse nodes in Text View only if the Folding margin setting is toggled on.

Tabs
The Tab pane enables you to set the tab size in terms of spaces. The radio buttons below the Tab size setting
determine whether documents are displayed with tab or space indentation when pretty-printing-with-indentation
is enabled in the View section of the Options dialog (Tools | Options) .

Visual Aid
The Visual Aid pane contains settings to toggle on indentation guides (tab-distanced vertical lines that show
the indentation of the text; see screenshot below), end-of-line markers, and whitespace markers (tabs and

1528 1528 1528

© 2018-2024 Altova GmbH

View Menu 1421Menu Commands

Altova XMLSpy 2024 Enterprise Edition

space characters). (Tabs are indicated with arrows, while spaces are indicated with dots (both pink in the
screenshot below). The colors of whitespace markers can be customized in the Text View options of the
Options dialog .)

Enable auto-highlighting
If highlighting is enabled, then all occurrences of a selection in Text View are highlighted. What constitutes a
selection can be set via the options in this pane. A selection can be defined to be an entire word or a fixed
number of characters, with the text-casing counting or not counting for a match. For a character selection, you
can specify the minimum number of characters to match (for example, two or more characters). In Text View,
all occurrences of character sequences that match your selection will be highlighted. For word searches,
element names, attribute names, attribute values without quotes, and the angular brackets of element tags are
considered to be separate words.

Key map
The key map is a list of XMLSpy shortcuts and their associated commands.

1535

1422 Menu Commands Browser Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.13 Browser Menu

The Browser menu commands are enabled in Browser View only. The Back and Forward commands,
however, are additionally enabled in Schema View.

Back, Forward
The Back command (shortcut: Alt + Left arrow) is enabled in Browser View and Schema View.

· In Browser View, it displays the previously viewed page. The Backspace key achieves the same effect.
The command is useful if you click a link in your XML document and then want to return to your XML
document.

· In Schema View, it takes you back through previously viewed components or views. It can take you to
as many as 500 previously viewed positions.

The Forward command (shortcut: Alt + Right arrow) is enabled in Browser View and Schema View.

· In Browser View, it moves you forward through previously viewed pages.
· In Schema View, it takes you forward through previously viewed components or views. It can take you

to as many as 500 previously viewed positions.

Refresh
The Refresh (F5) command is enabled in Browser View and updates Browser View by reloading the current
document and documents related to the current document (such as CSS and XSL stylesheets, and DTDs).

Separate Window
The Separate Window command is enabled in Browser View and undocks Browser View from the application
window. As a separate window, Browser View can be displayed side-by-side with an editing view of the
document.

To refresh the separated Browser View after making a change in an editing view, press F5 in the editing view.
To dock a separate Browser View window back into the application window, make the Browser View window
active and click the Separate Window command.

316

© 2018-2024 Altova GmbH

WSDL Menu 1423Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.14 WSDL Menu

The commands in the WSDL menu are available when viewing a WSDL document in WSDL View , which is
graphical editor for creating and editing WSDL documents..

For a description of WSDL View, see the section WSDL View . To get started with WSDL, see the WSDL
Tutorial .

See also: More information about working with WSDL documents is available in the sections, WSDL View
and WSDL Tutorial .

29.14.1 WSDL 1.1 Components

Mousing over the WSDL 1.1 Components menu item scrolls out a submenu (screenshot below) from which
various commands for editing WSDL 1.1 components can be selected.

Each item of the WSDL 1.1 menu (screenshot above) rolls out its own submenu, from which commands
relating to that component can be selected. The commands in each of these submenus are described in the
subsections of this section.

290

290

732

290

732

1424 Menu Commands WSDL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.14.1.1 Messages

Insert message
Adds a new message to the WSDL document. The Messages item in the Overview entry helper opens, and the
newly created message is highlighted there.

Delete message
Deletes the selected message from the input or output element.

Add message part (parameter)
Adds a message part (parameter) to the selected message.

Delete message part (parameter)
Deletes a message part (parameter) from the selected message.

29.14.1.2 Operations

Append Operation
Appends a new operation to the selected PortType. The type of operation to be appended can be selected from
the submenu (screenshot below) of the Append Operation menu command.

Delete Operation
Deletes the selected PortType operation.

Add Input Element
Adds an input element to the selected PortType operation.

Add Output Element
Adds an output element to the selected PortType operation.

© 2018-2024 Altova GmbH

WSDL Menu 1425Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Add Fault Element
Adds a Fault element to the selected PortType operation.

Delete Input/Output/Fault Element
Deletes the selected PortType input, output or fault element.

Add New Message to Input/Output/Fault Element
Adds a new (default) message, to the currently selected PortType input, output, or fault element.

29.14.1.3 PortType

Insert PortType
Adds a new PortType to the PortTypes column of the Main Window.

Delete PortType
Deletes the selected PortType from the PortTypes column of the Main Window.

29.14.1.4 Binding

Insert Binding
Adds a new binding to the Bindings column of the Main Window.

Delete Binding
Deletes the selected binding from the Bindings column of the Main Window.

Append Child
Enables the addition of a new extensibility element to an input or output message. If the menu item is
unavailable, it is not allowed in this position. See the W3C WSDL Specs for more information on Extensibilty
items.

The following extensibility items are available:

· soap:body
· soap:header
· soap:headerfault
· soap:fault
· mime:content
· mime:multipartrelated
· mime:part
· mime:mimeXml

1426 Menu Commands WSDL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· http:urlencoded
· http:urlreplacement

Delete Extensibility
Deletes the selected extensibility item.

29.14.1.5 Service

Insert Service
Adds a new service in the Services column of the Main Window.

Delete Service
Deletes the selected service in the Services column of the Main Window.

Insert Port
Adds a new port to the selected service in the Services column of the Main Window.

Delete Port
Deletes the selected port from the currently selected service.

29.14.2 WSDL 2.0 Components

Mousing over the WSDL 2.0 Components menu item scrolls out a submenu (screenshot below) from which
various commands for editing WSDL 2.0 components can be selected.

Each item of the WSDL 2.0 Components menu (screenshot above) rolls out its own submenu, from which
commands relating to that component can be selected. The commands in each of these submenus are
described in the subsections of this section.

© 2018-2024 Altova GmbH

WSDL Menu 1427Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.14.2.1 Interface

The following commands are available in the Interface menu (screenshot below).

Add new interface
Adds a new interface box to the Interfaces column of the Main Window. The default name of the interface is
highlighted in the interface box, enabling you to enter a new name directly.

Delete interface
Deletes the selected interface.

Add new fault
Adds a new fault element to the selected interface. The default name of the fault is highlighted in the
interface box, enabling you to enter a new name directly.

Delete fault
Deletes the selected fault.

Add new operation
Adds a new operation element to the selected interface. The type of operation to be added is selected from
the pop-out menu (screenshot below), and may be one of the operation types shown in the screenshot.

1428 Menu Commands WSDL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The default name of the operation is highlighted in the interface box, enabling you to enter a new name
directly.

Delete operation
Deletes the selected operation.

29.14.2.2 Binding

The following commands are available in the Binding menu (screenshot below).

Add new binding
Adds a new binding box to the Bindings column of the Main Window. The default name of the binding is
highlighted in the binding box, enabling you to enter a new name directly.

Delete binding
Deletes the selected binding.

© 2018-2024 Altova GmbH

WSDL Menu 1429Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Add new fault
Adds a new fault element to the selected binding. A fault element in a binding contains a ref attribute that
references a fault declared in an interface. In the newly created fault in the binding, the interface fault that is to
be referenced can be selected from the combo box of the newly created fault.

Delete fault
Deletes the selected fault.

Add new operation
Adds a new operation element to the selected binding. An operation element in a binding contains a ref
attribute that references an operation declared in an interface. In the newly created operation in the binding, the
interface operation that is to be referenced can be selected from the combo box of the newly created binding
operation.

Delete operation
Deletes the selected operation.

29.14.2.3 Service

The following commands are available in the Service menu (screenshot below).

Add new service
Adds a new service box to the Services column of the Main Window. The default name of the service is
highlighted in the service box, enabling you to enter a new name directly. The interface reference can be
selected from the combo box for the Interface property.

Delete service
Deletes the selected service.

Add new endpoint
Adds a new endpoint element to the selected service. The default name of the endpoint is highlighted in the
service box, enabling you to enter a new name directly. The binding reference can be selected from the combo
box for the Binding property. The address of the endpoint must be entered in the field for the Address property

1430 Menu Commands WSDL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Delete endpoint
Deletes the selected endpoint.

29.14.3 Types, Save Diagram

The Types menu item has a sub-menu containing the following commands. These are described below.

· New Schema
· Embed Schema
· Extract Schema(s)
· Edit Schema(s) in Schema View

The Save Diagram command saves the design diagram as a PNG file.

Types | New Schema
This option only becomes active if the WSDL file does not contain a schema element.
Please note that when using the File | New menu option, a schema element is included in the skeleton WSDL
file. The menu item cannot be selected in this case (see below).

<types>
<xs:schema/>

</types>

Types | Embed Schema
The command pops up an Open-File dialog, in which you can browse for the schema file you wish to embed.
On clicking OK in the dialog, the schema is created as an inline schema within the types element. If the
selected schema has already been imported, you will be prompted about whether you wish to embed the
already imported schema. If you choose to embed the imported schema,it will be converted to an inline schema
within the types element.

Types | Extract Schema(s)
On selecting this command, each of the embedded schemas (defined inline within the types element) is
opened as a temporary file in Schema View and a Save As dialog pops up for each file. If you choose to save a
schema file, the schema will be extracted from the WSDL file, saved to the location you specify, and then
imported into the WSDL file. It will no longer be an embedded schema, but an external, imported schema.

Types | Edit Schema(s) in Schema View
Opens a skeleton schema file if the WSDL file does not contain a reference to a specific schema. This is the
case if you have used the File | New menu option. If a reference to a specific schema exists, then the schema
opens in the embedded Schema View of the graphical WSDL editor.

© 2018-2024 Altova GmbH

WSDL Menu 1431Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.14.4 Generate Documentation

The Generate Documentation command generates detailed documentation of the current WSDL file. You can
output the documentation as an HTML, MS Word, RTF, or PDF file. The documentation generated by this
command can be freely altered and used; permission from Altova to do so is not required. Documentation is
generated for components you select in the WSDL Documentation dialog (which appears when you select the
Generate Documentation command). Related components are hyperlinked in the onscreen output, enabling you
to navigate from component to component. Note that WSDL documentation can also be generated for
imported WSDL and XML Schema files. The various documentation-generation options are described in the
section, Documentation Options .

Note: In order to generate documentation in MS Word format, you must have MS Word (version 2000 or later)
installed.

You can either use XMLSpy's fixed design for the generated document, or you can use a StyleVision SPS for
the design. Using a StyleVision SPS enables you to customize the design of the generated documentation.
How to do this is explained in the section, User-Defined Design .

Note: In order to use an SPS to generate WSDL documentation, you must have StyleVision installed on your
machine.

29.14.4.1 Documentation Options

The WSDL | Generate Documentation command pops up the WSDL Documentation dialog (screenshot
below), in which you can select options for the documentation.

In the Documentation Design pane of the dialog you can select whether to use the fixed XMLSpy design for the
generated documentation or whether to use a customized design created in a StyleVision SPS. Select the
option you want. Note that PDF output is available only for documentation generated with a StyleVision SPS,
not for documentation generated using a fixed design. How to work with a user-defined design is described in
the section, User-Defined Design .

1431

1433

1433

1432 Menu Commands WSDL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The other options in the WSDL Documentation dialog are explained below. Depending on whether a WSDL 1.1
document or a WSDL 2.0 document is active, the items in the Include and Details pane of the dialog will be
different. The screenshot above shows the WSDL Documentation dialog for a WSDL 1.1 document.

· The required format is specified in the Output Format pane: either HTML, Microsoft Word, RTF, or
PDF. (The PDF output format is only available if you use a StyleVision SPS to generate the
documentation.) On clicking OK, you will be prompted for the name of the output file and the location
to which it should be saved.

· Microsoft Word documents are created with the .doc file extension when generated using a fixed
design, and with a .docx file extension when generated using a StyleVision SPS.

· The documentation can be generated either as a single file or be split into multiple files. When multiple
files are generated, each file corresponds to a component. What components are included in the
output is specified using the check boxes in the Include pane. In fixed designs, links between multiple
documents are created automatically.

· For HTML output, the CSS style definitions can be either saved in a separate CSS file or embedded in
the HTML file (in the <head> element). If a separate CSS file is created, it will be given the same name
as the HTML file, but will have a .css extension. Check or uncheck the Embed CSS in HTML check
box to set the required option.

© 2018-2024 Altova GmbH

WSDL Menu 1433Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· The Embed Diagrams option is enabled for the MS Word, RTF, and PDF output options. When this
option is checked, diagrams are embedded in the result file, in PNG format. Otherwise diagrams are
created as PNG files, which are displayed in the result file via object links.

· When the output is HTML, all diagrams are created as document-external PNG files. If the Create
folder for diagrams check box is checked, then a folder will be created in the same folder as the HTML
file, and the PNG files will be saved inside it. This folder will have a name of the format
HTMLFilename_diagrams. If the Create folder for diagrams check box is unchecked, the PNG files will

be saved in the same folder as the HTML file.
· In the Include pane, you select which items you want to include in the documentation. The Overview

option lists all components, organized by component type, at the top of the file. If the Imported Files
(WSDL 1.1) or Imported/Included Files (WSDL 2.0) option is checked, then components in imported
files (as well as included files in the case of WSDL 2.0) are included in the schema documentation.

· In the Schema pane, you can select whether schemas in the file are reported or not. If you choose to
have schemas reported, you can further choose: (i) whether the schema documentation should be
reported in a separate file or in the main documentation file, and (ii) whether the full schema should be
reported or only global elements, simple types, and complex types.

· The Details pane lists the details that may be included for each component. Select the details you
wish to include in the documentation. The Check All and Uncheck All buttons enable you to quickly
select or deselect all the options in the pane.

· The Show Result File option is enabled for all output options. When this option is checked, the result
files are displayed in Browser View (HTML output), MS Word (MS Word output), and the default
applications for .rtf files (RTF output) and .pdf files (PDF output).

Parameter values
If the StyleVision SPS contains one or more parameter definitions, then on clicking OK, a dialog pops up listing
all the parameters defined in the SPS. You can enter parameter values in this dialog to override the default
parameter values that were assigned in the SPS.

29.14.4.2 User-Defined Design

Instead of the fixed standard XMLSpy design, you can create a customized design for the WSDL
documentation. The customized design is created in a StyleVision SPS, which is a design template for the
output document.

Creating the SPS
A StyleVision Power Stylesheet (or SPS) is created using Altova's StyleVision product. An SPS for generating
WSDL documentation must be based on an XML Schema that specifies the structure of the WSDL
documentation. Two schemas, one for WSDL 1.1 and the second for WSDL 2.0, are delivered with your
XMLSpy package. They are, respectively, WSDLDocumentation.xsd and WSDL20Documentation.xsd, located
respectively in the folders of the (My) Documents folder :

· C:\Documents and Settings\<username>\My

Documents\Altova\XMLSpy2024\Documentation\WSDL.
· C:\Documents and Settings\<username>\My

Documents\Altova\XMLSpy2024\Documentation\WSDL20.

When creating the SPS design in StyleVision, nodes from the schema are placed in the design template and
assigned styles and properties. Additional components, like links, tables and images, can also be added to the

34

https://www.altova.com/stylevision

1434 Menu Commands WSDL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

SPS design. In this way, the entire output document can be designed in the SPS. How to create an SPS
design in StyleVision is described in detail in the StyleVision user manual.

The advantage of using an SPS for generating WSDL documentation is that you have complete control over the
SPS design. Note also that PDF output of the WSDL documentation is available only if a user-defined SPS is
used; PDF output is not available if the fixed XMLSpy design is used.

Specifying the SPS to use for WSDL documentation
After an SPS has been created, it can be used to generate WSDL documentation. The SPS you wish to use
for generating the WSDL documentation is selected in the WSDL Documentation dialog (accessed via the
WSDL | Generate Documentation command). In the Documentation Design pane of this dialog (screenshot
below), select the Use User-Defined Design radio button. You can then click the Browse button and browse for
the SPS you want. Click the dialog's OK button, and, in the Save dialog that pops up, select the folder for, and
enter the name of, the output file.

Note: The SPS file must correctly locate the schema on which it is based: WSDLDocumentation.xsd or
WSDL20Documentation.xsd (see above).

Two editable SPS designs, one each for WSDL 1.1 and WSDL 2.0, are delivered with XMLSpy. They are,
respectively, in the WSDL and WSDL20 sub-folders of the (My) Documents folder : C:\Documents and
Settings\<username>\My Documents\Altova\XMLSpy2011\Documentation\. They are named:

· WSDL\WSDLDocumentation.sps
· WSDL20\WSDL20Documentation.sps

These files, together with other SPS files you have recently browsed for, will be available in the combo box of
the Use User-Defined option (see screenshot above).

Clicking the Edit button in the Documentation Design pane launches StyleVision and opens the selected SPS
in a StyleVision window. In order to preview the result document in StyleVision, you will need a Working XML
file. Sample XML files for this purpose, called TimeService.xml and TimeService20.xml, are supplied with
your application and are located in the (My) Documents folder :

C:\Documents and Settings\<username>\My Documents\Altova\XMLSpy2024\Documentation\WSDL(20)
\SampleData

Note: In order to use an SPS to generate WSDL documentation, you must have StyleVision installed on your
machine.

34

34

© 2018-2024 Altova GmbH

WSDL Menu 1435Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.14.5 Reparse WSDL Document

Reparses the document. This is required in some situations, for example, when a schema associated with the
WSDL document has been modified. Reparsing the WSDL document will update it with information from the
modified schema document.

29.14.6 Convert to WSDL 2.0

The Convert to WSDL 2.0 command is enabled only when a WSDL 1.1 is active in WSDL View. It generates a
WSDL 2.0 document from the active WSDL 1.1 document. Clicking this command pops up a File Save dialog,
in which you can specify the location and name of the WSDL 2.0 file that will be generated by XMLSpy.

On clicking OK in the File Save dialog, a WSDL 2.0 document is generated and saved to the specified location,
and opened in WSDL View in a new tab. The file can then be edited as required, just like any other WSDL 2.0
document.

29.14.7 Generate WSDL Program Code with MapForce

The Generate WSDL Program Code with MapForce command launches Altova's MapForce if the
application is installed. MapForce enables you to map a schema to another DTD, XML Schema, or database,
to generate XML, and to generate program code from the WSDL file.

1436 Menu Commands SOAP Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.15 SOAP Menu

XMLSpy supports SOAP versions 1.1 and 1.2, and WSDL versions 1.1 and 2.0.

The SOAP: How To section that follows the menu descriptions, shows you how to use the SOAP debugger
using the nanonull.com timeservice server supplied by Altova. Please use this service to test the SOAP
debugger. The AirportWeather web service, described on the following pages, might not always be available to
you.

Use the SOAP functionality:

· To test your web services without having to implement client applications
· For quick testing of third party web services

Additional information
For more information about these specifications, see:

SOAP: http://www.w3.org/TR/SOAP/
WSDL: http://www.w3.org/TR/wsdl

29.15.1 Create New SOAP Request

This command creates a new SOAP request document. It involves the following steps:

1. Enter the WSDL file location and connect to the SOAP server .
2. The server responds with a list of operations. Select the SOAP operation you want .
3. The server responds with a SOAP Request form in XML format. Define the SOAP Request form .

We demonstrate the process below by creating a SOAP request for the US National Digital Forecast Database
(NDFD) SOAP Service (http://www.nws.noaa.gov/xml/).

744

1437

1437

1437

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.nws.noaa.gov/xml/

© 2018-2024 Altova GmbH

SOAP Menu 1437Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Connecting to the SOAP server
The connection is made via a WSDL file. In our example, the URI of the WSDL file is:
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl. To make the connection, click the
Create New SOAP Request command, and enter the file URI in the dialog that appears (screenshot below).

Click OK to confirm the selection.

Select the required SOAP operation
The server responds with a list of operation which are displayed in a dialog (screenshot below).

Select an operation and click OK. We selected the NDFDgenByDay operation.

Define the SOAP Request
The server responds by sending an XML file, which is displayed in the Text View of XMLSpy. For the operation
we selected, we received the following XML file.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:m0="http://www.weather.gov/forecasts/xml/DWMLgen/schema/DWML.xsd">
 <SOAP-ENV:Body>

http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl

1438 Menu Commands SOAP Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 <m:NDFDgenByDay
xmlns:m="http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <latitude xsi:type="xsd:decimal">0.0</latitude>
 <longitude xsi:type="xsd:decimal">0.0</longitude>
 <startDate xsi:type="xsd:date">1967-08-13</startDate>
 <numDays xsi:type="xsd:integer">0</numDays>
 <format xsi:type="m0:formatType">String</format>
 </m:NDFDgenByDay>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

We filled in the parameters as required by the XML (in bold red below; fill in a start date that is the current date
or one within the next week):

<SOAP-ENV:Body>
 <m:NDFDgenByDay
xmlns:m="http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <latitude xsi:type="xsd:decimal">45</latitude>

 <longitude xsi:type="xsd:decimal">-90</longitude>

 <startDate xsi:type="xsd:date">2019-12-10</startDate>

 <numDays xsi:type="xsd:integer">1</numDays>

 <format xsi:type="m0:formatType">24 hourly</format>

 </m:NDFDgenByDay>
</SOAP-ENV:Body>

This completes the definition of this SOAP request. In the next step, we shall send the request .

29.15.2 Send Request to Server

How to define a SOAP request is described in the previous topic, Create New SOAP Request . After the
SOAP request, which is an XML document, has been created, make it the active document. Then select this
command to send the SOAP request to the SOAP server.

After the SOAP request is sent, a response is received from the SOAP server. This response is an XML
document, which is displayed in the Text View of XMLSpy. For example, shown below is a screenshot of the
XML document that was returned in response to the SOAP request we defined in the section Create New
SOAP Request .

1438

1436

1436

© 2018-2024 Altova GmbH

SOAP Menu 1439Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Saving and reusing a SOAP request
XMLSpy allows you to save a SOAP request and resend it at a later time. Do this as follows:

1. Save the SOAP request XML document (File | Save as).
2. Close the SOAP request file.
3. Reopen the SOAP request XML document, and select the menu option SOAP | Send Request to

Server. (Any XML file can be used as a SOAP request document.)

29.15.3 SOAP Request Settings

This command displays the SOAP Request Settings dialog (screenshot below), in which you can specify
various settings of the SOAP request . These settings are described below.

1. Make the SOAP request document active.
2. Select the menu option Soap | SOAP Request Settings. This opens the SOAP Request Settings

dialog box (screenshot below).

1436

1440 Menu Commands SOAP Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3. In the Address field, enter the desired connection endpoint. If the SOAP request was created from a
WSDL file in XMLSpy, then the value of the Address field will be the location of the endpoint selected in
the WSDL. Click Reset to obtain this endpoint. A connection timeout value can be specified in
seconds. To set no timeout value, check the Infinite check box.

4. In the Action field, enter the SOAP action to perform. To send the request as SOAP 1.2, check the
Send as SOAP+XML (SOAP 1.2) check box. If the SOAP request was created from a WSDL file in
XMLSpy, then the SOAP action is received from the extensibility element under the corresponding
SOAP binding operation in the WSDL file. In this case, the SOAP version is also pre-selected from the
WSDL. (The SOAP version affects the value of the HTTP header Content-Type: text/xml or
application/soap+xml.) Click Reset to obtain the SOAP action from the WSDL file.

5. The HTTP Security Settings pane provides a summary of the security settings lists. If the Store
exceptions while sending request option is checked, then all the settings are saved when the request is
sent, and can be re-used for the next request. Click the Edit button to display the HTTP Security
Settings dialog (screenshot below). How to install server certificates is described below.

© 2018-2024 Altova GmbH

SOAP Menu 1441Menu Commands

Altova XMLSpy 2024 Enterprise Edition

If you wish to allow a host name mismatch (between the host name in the server certificate and the
actual address you use) or an expired server certificate, then check these options in the dialog. If the
server requires a client certificate, you can specify the location of the client certificate. If
authentication is required by the server, specify the user name and password for standard
authentication. When the initial client request to the server contains the required authentication
information, this process is referred to as preemptive authentication. If required by the server, select
the Preemptive authentication option. Otherwise, leave the Preemptive authentication option
unselected.

6. In addition to security on the transport layer (HTTP security settings), you can also specify web service
security settings if these are required by the web service. Click the Edit button of the WS Security
Settings pane to display the WS Security Settings dialog (screenshot below). The security information
includes the username, password, the type of the password, an automatically generated nonce code
string, and a timestamp. You can also specify the validity period of the security information (Add
Timestamp). The dialog creates an XML fragment that contains the security information and embeds
this fragment in the SOAP request. See listing below.

1442 Menu Commands SOAP Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

7. When you are done, click OK.

About trusted certificates
Altova products use Internet Explorer (IE) to access and manage trusted certificates of secure webservers.
Installing the certificate of a webserver in IE allows IE to access the webserver without issuing a warning or
aborting the process. In order to install the certificate of a secure webserver, do the following:

· In Internet Explorer 8, open the secure website.
· Select File | Properties, and click the Certificates button.
· Click Install Certificate and start the Import Certificate Wizard. (This Wizard can also be accessed

via Tools | Internet Options| Content | Certificates | Import.)
· The certificate should be placed in the Trusted Root Certification Authorities store, for which you can

browse manually.
· Finish the Wizard steps, close the Certificates and Properties dialogs respectively by clicking OK. You

might need to restart Internet Explorer.

Note: Only change the SOAP action settings if you can access all the SOAP methods and their
corresponding SOAP actions.

Web service security information
Some web services require user authentication. (The web service security layer would be in addition to the
HTTP security layer implemented by the server.) The web service authentication information is stored in the
SOAP request as an XML fragment having a structure as listed below. This XML fragment is generated
automatically in the SOAP request from the web service authentication information you enter in the WS
Security Settings dialog.

© 2018-2024 Altova GmbH

SOAP Menu 1443Menu Commands

Altova XMLSpy 2024 Enterprise Edition

<wsse:Security xmlns:wsse="…" xmlns:wsu="…" SOAP-ENV:mustUnderstand="true">
 <wsse:UsernameToken>
 <wsse:Username>usr</wsse:Username>
 <wsse:Password Type="...#PasswordText">pwd</wsse:Password>
 <wsse:Nonce EncodingType="…#Base64Binary">UqrtD963797WBRgWiJPu2w==</wsse:Nonce>
 <wsu:Created>2014-11-17T16:08:07.016Z</wsu:Created>
 </wsse:UsernameToken>
 <wsu:Timestamp>
 <wsu:Created>2014-11-17T16:08:07.016Z</wsu:Created>
 <wsu:Expires>2014-11-17T16:09:07.016Z</wsu:Expires>
 </wsu:Timestamp>
</wsse:Security>

29.15.4 SOAP Debugger Session

This command starts a SOAP debugger session.
· A dialog box is immediately opened after you select this command. You then have to select a WSDL

file location, generally a URL. You can also select a file via a global resource (click the Global
Resource button and browse) or a file in one of the open windows in XMLSpy.

· Select the source and target ports needed for the debugger proxy server and the web service, in the
following dialog box.

This opens the SOAP debuggers proxy server in its inactive state. Clicking one of the SOAP toolbar
icons, starts the SOAP debugger and waits for the client requests.

Please see the Soap - How to section for a more detailed description. 744

1444 Menu Commands SOAP Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.15.5 Go

This command activates the SOAP proxy server and processes the WSDL file until a breakpoint is
encountered. The respective SOAP document then appears in one of the SOAP document windows.

© 2018-2024 Altova GmbH

SOAP Menu 1445Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.15.6 Single Step

This command allows you to single-step through the incoming and outgoing SOAP requests and responses.
The SOAP debugger stops for each request and response. The proxy server is also started if it was inactive.

29.15.7 Break on Next Request

This command causes the debugger to stop on the next SOAP request, and display the data in the SOAP
Request document window. You can directly edit the data in this window before sending it on to the web
service.

29.15.8 Break on Next Response

This command causes the debugger to stop on the next SOAP Response, and display the data in the SOAP
Response document window. You can directly edit the data in this window before sending it on to the client.

29.15.9 Stop the Proxy Server

This command stops the debugger proxy server.

29.15.10 SOAP Debugger Options

The SOAP Debugger Options dialog (screenshot below) enables you to specify the computer's IP address, and
other debugger options, which are listed below. Access the dialog with the SOAP | SOAP Debugger Options
menu command.

1446 Menu Commands SOAP Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Computer Address: The address of the proxy server from which the debugger runs. The debugger on
the proxy server takes requests from machines on the network and sends them to the web service.
Since the debugger runs inside XMLSpy, the machine on which XMLSpy is installed also serves as the
proxy server. The IP address of the machine is automatically detected and entered in this field. Only if
the IP address cannot be detected automatically, do you need to enter the IP address (as an http
address) in this field. To find out your computer's IP address, open a command prompt window, enter
the command ipconfig /all, and press Enter.

· Timeout: This value is the amount of time the SOAP Debugger stays in a breakpoint. The default is 5
seconds.

· Hide entry helpers; Hide project/info windows: These options are useful for providing more screen space
for the SOAP Debugger window.

© 2018-2024 Altova GmbH

XBRL Menu 1447Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.16 XBRL Menu

The XBRL menu (screenshot below) contains commands that are enabled when a taxonomy is being edited in
XBRL View. These commands are listed below and described in the sub-sections of this section.

· Arcroles : defines arcroles
· Linkroles : defines linkroles
· Namespace Prefixes : manages taxonomy namespaces
· Set Target Namespace : defines and declares the target namespace of the taxonomy
· Parameter Values : displays formula parameters and table parameters in a dialog, where they can

be edited
· Import/Reference : imports an XBRL taxonomy or references a linkbase
· Find Formula Component by ID : finds formula components on the basis of the user-supplied ID
· Generate Documentation : generates documentation of the current XBRL taxonomy
· View Settings : sets default for XBRL View
· Generate XBRL from DB, Excel, CSV with MapForce : launches Altova MapForce for generating an

XBRL instance file
· Present XBRL as HTML/PDF/Word with StyleVision : launches Altova StyleVision for designing an

XBRL report
· Execute Formula : Executes formulas and/or assertions from the DTS associated with the active

XBRL instance document
· Generate Table : Generates XBRL Tables from an XBRL instance
· Detect Duplicates : Detects duplicate facts in XBRL instances
· Execute XULE : Executes a XULE document on an XBRL instance document
· Transform Inline XBRL : Generates the Inline XBRL part of an XHTML document as XBRL
· Validate EDGAR on Server : Validates XBRL instances using EDGAR on RaptorXML+XBRL Server
· Processing Options : Enables the settings of options for the processing of XBRL instances

For more information about XBRL, see the sections XBRL and Editing Views | XBRL View .

For conversion to OIM xBRL formats, see the Convert Menu .

29.16.1 Arcroles

The Arcroles command pops up the Arc Roles dialog (screenshot below) in which arcroles can be created for a
taxonomy. Arcroles are stored in the concept definitions file, within the appinfo element. They specify the role
of an arc.

In the Taxonomies tab of the Arc Roles dialog (screenshot below), only taxonomies that are editable or that
contain an arcrole or linkrole are listed in the combo box. You can add an arcrole to a taxonomy by clicking the
Add button. Then define the arcrole's URI, ID, definition, and cycles. To specify in which kinds of relationships
the arcrole should be available, check the boxes of the required relationship kinds. Linkbases that reference an
arcrole can be added to the Referencing Linkbase Files column.

1447

1449

1451

1452

1452

1453

1455

1455

1458

1459

1460

1460

1463

1465

1466

1467

1468

1468

773 302

1384

1448 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Linkbases tab provides another view of the taxonomy's arcroles. In this view, you add and view arcroles
according to individual linkbases (for example calculation or presentation linkbases). Select a linkbase in the
combo box and then add or delete an arcrole as required. When you click the Add button, the Add Arcrole
Reference dialog (screenshot below) pops up.

Each of the entries in this dialog is a combo box that enables you to select from available options. The Defined
in Schema field enables you to select the taxonomy in which the arcrole is defined. The ID and Role combo
boxes provide the available arcroles. After you have selected an arcrole and clicked OK, the reference is added
to the linkbase. In the Taxonomies tab, the arcrole you referenced will show the referencing linkbase in the
Referencing Linkbase Files column. If you wish to make this arcrole available for a particular kind of
relationship, you will still, however, have to check the appropriate relationship kind check box.

After an arcrole has been created in the taxonomy it can be used to specify the role of an arc in a relationship
kind for which the arc is available according to its definition. In the screenshot above, for example, the arcrole
has been made available for arcs in label relationships.

The arcrole of an arc is selected in the Details entry helper (screenshot below; arcrole highlighted).

© 2018-2024 Altova GmbH

XBRL Menu 1449Menu Commands

Altova XMLSpy 2024 Enterprise Edition

With the element at the to end of an arc selected, in the Details Entry Helper, select the required item from the
dropdown list of the arcrole entry.

29.16.2 Linkroles

The Linkroles command pops up the Link Roles dialog (screenshot below) in which linkroles can be created
for a taxonomy. Linkroles are stored in the concept definitions file, within the appinfo element (see listing
below). Linkroles are used not only in definitionLink elements but also in the containing elements of other
relationship kinds (for example, in calculationLink and presentationLink elements).

<xs:appinfo>
 <link:roleType id="SegmentRevenueAndOperatingIncome"
 roleURI="http://www.nanonull.com/taxonomy/role/SegmentRevenueAndOperatingIncome">
 <link:definition>006091 - Disclosure - Segment Revenue and Operating
Income</link:definition>
 <link:usedOn>link:calculationLink</link:usedOn>
 <link:usedOn>link:definitionLink</link:usedOn>
 <link:usedOn>link:presentationLink</link:usedOn>
 </link:roleType>
</xs:appinfo>

In the listing above, notice that there are usedOn elements that specify in which kind of relationships this
linkrole may be used.

1450 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

In the Taxonomies tab of the Link Roles dialog (screenshot below), you can add a linkrole to a taxonomy file
by clicking the Add button. Then define the linkrole's URI and ID (refer to listing above). To specify for which
kinds of relationships a linkrole should be available, check the boxes of the required relationship kinds. In the
Referencing Linkbase Files column, for each linkrole, you can add or delete the linkbase files that reference the
linkrole.

The Linkbases tab provides another view of the taxonomy's linkroles. In this view, you add and view linkroles
according to individual linkbases (for example calculation or presentation linkbases). Select a linkbase in the
combo box and then add or delete a linkrole as required. For example, you could add a linkrole to the
calculation linkbase. When you click the Add button, the Add Reference to Linkbase File dialog (screenshot
below) pops up.

Each of the entries in this dialog is a combo box that enables you to select from available options. The Defined
in Schema field enables you to select the taxonomy in which the linkrole is defined. The ID and Role combo
boxes provide the available linkroles. After you have selected a linkrole and clicked OK, the reference is added
to the linkbase. In the Taxonomies tab, the linkrole you referenced will show the referencing linkbase in the
Referencing Linkbase Files column. If you wish to make this linkrole available for a particular kind of
relationship, you will still, however, have to check the appropriate relationship kind check box.

After a linkrole has been created in the taxonomy it is used when creating relationships .810

© 2018-2024 Altova GmbH

XBRL Menu 1451Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.16.3 Namespace Prefixes

The Namespace Prefixes command pops up the Namespace Prefixes dialog (screenshot below), which
displays all the namespaces in the taxonomy, including those of imported taxonomies. In the Namespace
Prefixes dialog you can edit namespaces and prefixes, and set background colors for individual namespaces.
When a background color is set for a namespace, elements in that namespace appear in the Main Window and
entry helpers with that background color. Note that a color setting for a given namespace applies for that
namespace across all taxonomy documents opened in XBRL View.

To add or delete a namespace, use the Add or Delete buttons, respectively. A color is assigned to a
namespace via the color palette for that namespace. When you are done with editing in the Namespaces
dialog, click OK to finish.

The target namespace of the taxonomy is also listed in the Namespaces dialog. The target namespace,
however, should not be modified in this dialog, but via the Set Target Namespace command. For more
information on target namespaces, see the XBRL section of the documentation .

1452

798

1452 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.16.4 Set Target Namespace

The Set Target Namespace command enables a target namespace to be set for a taxonomy document.
Clicking the command pops up the Set Target Namespace dialog (screenshot below). In it you can enter the
desired target namespace and a prefix for it. Click OK to finish.

The target namespace will be defined and it will also be declared:

<xs:schema targetNamespace="http://www.altova.com/XBRL/Taxonomies"
xmlns:ns1="http://www.altova.com/XBRL/Taxonomies" >
...

</xs:schema>

In the listing above, the target namespace is defined with the targetNamespace attribute and it is then declared
with a prefix of ns1.

29.16.5 Parameter Values

The Parameter Values command displays the XBRL Parameter Values dialog (screenshot below). It displays
parameters defined in the Formula tab (formula parameters) and Table tab (table parameters). In the XBRL
Parameter Values dialog, you can edit the parameter's datatype and provide a parameter value that overrides
the default value. The parameter value you enter will override the default value that you entered via the diagram.
Since table parameters can take multiple values, you can add additional parameter values for a parameter by
clicking the + icon in the Value column.

© 2018-2024 Altova GmbH

XBRL Menu 1453Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The values of global parameters as assigned in this dialog are evaluated for table parameters only. Formula
parameters, although displayed, are not editable in this dialog.

29.16.6 Import/Reference

The Import/Reference command pops up a dialog (screenshot below) in which you can specify the schema to
import or the linkbase to reference.

1454 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The dialog provides the following radio button options:

· Importing a standard taxonomy: This option enables you to quickly and correctly import a US-GAAP
taxonomy or an IFRS taxonomy. Select the required standard taxonomy from the dropdown menu of
the combo box and click Next. This takes you to the respective next dialog, for completing your
specification of the required taxonomy. The process is described in the section, Creating a New
Taxonomy .

· Importing any taxonomy (Reference Schema): This option enables you to import any taxonomy by
specifying the location of the taxonomy file (.xsd file).

· Referencing a linkbase: A linkbase can be specified for inclusion in the taxonomy. Do this by
specifying the location of the linkbase file and clicking Finish. A reference to the linkbase file is
created in the taxonomy. The relationship type of the newly referenced linkbase can then be specified
by right-clicking the filename and selecting the Set Linkbase Kind command.

<xsl:template match="*">
 <xsl:copy>
 <xsl:copy-of select="@*[not(.='')]"/>
 <xsl:apply-templates/>
 </xsl:copy>
</xsl:template>

793

800

© 2018-2024 Altova GmbH

XBRL Menu 1455Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.16.7 Find Component by ID

In taxonomies with large formula or table linkbases containing several components of the same kind, it might
be helpful to search for a component by its ID. The menu command XBRL | Find Component By Id enables
a search by ID. On clicking the command a dialog pops asking for the ID to find (screenshot below).

Click OK to start the search.

29.16.8 Generate Documentation

The XBRL | Generate Documentation command generates detailed documentation of the current XBRL
taxonomy. You can output the documentation as an HTML, MS Word, RTF, or PDF file. The documentation
generated by this command can be freely altered and used; permission from Altova to do so is not required.
Documentation is generated for components you select in the XBRL Taxonomy Documentation dialog (which
appears when you select the Generate Documentation command). Related components are hyperlinked in the
onscreen output, enabling you to navigate from component to component. The various documentation-
generation options are described in the section, Documentation Options .

Note: In order to generate documentation in MS Word format, you must have MS Word (version 2000 or later)
installed.

You can either use XMLSpy's fixed standard design for the generated document, or you can use a StyleVision
SPS for the design. Using a StyleVision SPS enables you to customize the design of the generated
documentation as well as to generate PDF as an additional output format. How to work with an SPS this is
explained in the section, User-Defined Design .

Note: In order to use an SPS to generate schema documentation, you must have StyleVision installed on
your machine.

29.16.8.1 Documentation Options

The XBRL | Generate Documentation command pops up the XBRL Taxonomy Documentation dialog
(screenshot below), in which you can select options for the documentation.

In the Documentation Design pane of the dialog you can select whether to use the fixed standard XMLSpy
design for the generated documentation or whether to use a customized design created in a StyleVision SPS.
Select the option you want. Note that PDF output is available only for documentation generated with a
StyleVision SPS, not for documentation generated using a fixed design. How to work with a user-defined
design is described in the section, User-Defined Design .

1455

1457

1457

1456 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: In order to use an SPS to generate schema documentation, you must have StyleVision installed on
your machine.

Clicking the Generate Documentation command opens the XBRL Taxonomy Documentation dialog:

· The required format is specified in the Output Format pane: either HTML, Microsoft Word, RTF, or
PDF. (The PDF output format is only available if you use a StyleVision SPS to generate the
documentation.) On clicking OK, you will be prompted for the name of the output file and the location
to which it should be saved.

· Microsoft Word documents are created with the .doc file extension when generated using a fixed
design, and with a .docx file extension when generated using a StyleVision SPS. In order to generate
documentation in MS Word format, you must have MS Word (version 2000 or later) installed.

· For HTML output, the CSS style definitions can be either saved in a separate CSS file or embedded in
the HTML file (in the <head> element). If a separate CSS file is created, it will be given the same name
as the HTML file, but will have a .css extension. Check or uncheck the Embed CSS in HTML check
box to set the required option.

© 2018-2024 Altova GmbH

XBRL Menu 1457Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· The Embed Diagrams option is enabled for the MS Word and RTF output options. When this option is
checked, diagrams are embedded in the result file, in PNG format. Otherwise diagrams are created as
PNG files, which are displayed in the result file via object links.

· When the output is HTML, all diagrams are created as document-external PNG files. If the Create
folder for diagrams check box is checked, then a folder will be created in the same folder as the HTML
file, and the PNG files will be saved inside it. This folder will have a name of the format
HTMLFilename_diagrams. If the Create folder for diagrams check box is unchecked, the PNG files will

be saved in the same folder as the HTML file.
· In the Include pane, you select which items you want to include in the documentation. The Overview

option lists all components, organized by component type, at the top of the file. The Check All and
Uncheck All buttons enable you to quickly select or deselect all the options in the pane.

· The Details pane lists the details that may be included for each component. Select the details you
wish to include in the documentation. The Check All and Uncheck All buttons enable you to quickly
select or deselect all the options in the pane. The Messages check box is only enabled, if Generic
Linkroles is checked in the Include pane. All other checkboxes are enabled if Global Elements or
Generic Linkroles is checked in the Include pane.

· The Show Result File option is enabled for all output options. When this option is checked, the result
files are displayed in Browser View (HTML output), MS Word (MS Word output), and the default
applications for .rtf files (RTF output) and .pdf files (PDF output).

· In the Options pane, you can select (i) whether element name should be shown with just a prefix (short
qualified name) or in its expanded form (with the full namespace); and (ii) whether imported elements
should also be displayed.

Parameter values
If the StyleVision SPS contains one or more parameter definitions, then on clicking OK, a dialog pops up listing
all the parameters defined in the SPS. You can enter parameter values in this dialog to override the default
parameter values that were assigned in the SPS.

29.16.8.2 User-Defined Design

Instead of the fixed standard XMLSpy design, you can create a customized design for XBRL taxonomy
documentation. The customized design is created in a StyleVision SPS, which is a design template for the
output document.

Creating the SPS
A StyleVision Power Stylesheet (or SPS) is created using Altova's StyleVision product. An SPS for generating
XBRL taxonomy documentation must be based on an XML Schema that specifies the structure of the XBRL
taxonomy documentation. This schema is called XBRLDocumentation.xsd, and it is delivered with your
XMLSpy package. It is stored in the folder: C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Documentation\XBRL.

When creating the SPS design in StyleVision, nodes from the XBRLDocumentation.xsd schema are placed in
the design template and assigned styles and properties. Additional components, like links, tables and images,
can also be added to the SPS design. In this way, the entire output document can be designed in the SPS.
How to create an SPS design in StyleVision is described in detail in the StyleVision user manual.

https://www.altova.com/stylevision

1458 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The advantage of using an SPS for generating XBRL taxonomy documentation is that you have complete
control over the SPS design. Note also that PDF output of the XBRL taxonomy documentation is available only
if a user-defined SPS is used; PDF output is not available if the fixed XMLSpy design is used.

Specifying the SPS to use for XBRL taxonomy documentation
After an SPS has been created, it can be used to generate XBRL taxonomy documentation. The SPS you wish
to use for generating the XBRL taxonomy documentation is selected in the XBRL Taxonomy Documentation
dialog (accessed via the XBRL | Generate Documentation command). In the Documentation Design pane of
this dialog (see screenshot below), select the Use User-Defined Design radio button. You can then click the
Browse button and browse for the SPS you want. Click the dialog's OK button, and, in the Save dialog that
pops up, select the folder for, and enter the name of, the output file.

Note: The SPS file must correctly locate the schema on which it is based: XBRLDocumentation.xsd (see
above).

One editable SPS design for XBRL taxonomy documentation generation is delivered with XMLSpy. It is named
XBRLDocumentation.sps and is in the folder: C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2011\Documentation\XBRL\. This SPS file, together with other SPS files you have
recently browsed for, will be available in the combo box of the Use User-Defined option (see screenshot above).

Clicking the Edit button in the Documentation Design pane launches StyleVision and opens the selected SPS
in a StyleVision window. In order to preview the result document in StyleVision, you will need a Working XML
file. A sample XML file for this purpose, called nanonull.xml, is supplied with your application and is located in
the folder:

C:\Documents and Settings\<username>\My
Documents\Altova\XMLSpy2024\Documentation\XBRL\SampleData

Note: In order to use an SPS to generate XBRL taxonomy documentation, you must have StyleVision
installed on your machine.

29.16.9 View Settings

The View Settings command pops up the XBRL View Settings dialog (screenshot below), in which you can
specify default settings for XBRL View.

© 2018-2024 Altova GmbH

XBRL Menu 1459Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The following settings can be made:

· Display of concept names can be set to the short or expanded qualified name or to labels. These
settings apply to the Main Window and the Details entry helper, but not to the Global Elements entry
helper. The display of items in the Global Elements entry helper is defined in the entry helper's menu
bar .

· Resource display format: In the Formula and Table tabs, resources can be displayed either by their
names or labels. (If no name has been assigned, the description of the resource is used.)

· Expand by default: In the Main Window, element details, the labels box, and the references box can be
set by default to the expanded state. Note that, if the labels or references boxes are set to be shown
expanded by default, then the expanded boxes will be visible only when the Element details are
expanded (either by default or manually). Each time the view is refreshed (for example, when the view
is switched from Text View to XBRL View), XBRL View reverts to the default settings.

· Label defaults specifies the default language and the default label roles to use if labels are not defined.
The combo box for each property displays a list of available values.

· XBRL Table Layout Preview: The minimum and maximum column widths can be set in pixels.

29.16.10 Generate XBRL from DB, Excel, CSV with MapForce

This command starts the generation of an XBRL instance file based on the currently active taxonomy. The data
for the instance file is obtained from an MS Excel datasheet, a database, or a CSV file. The XBRL instance file

311

1460 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

is generated by Altova's MapForce program which you must have installed on your machine. The command
starts Altova MapForce and loads the taxonomy into it. You can then specify the source data file and
graphically design the required instance file output.

29.16.11 Present XBRL as HTML/PDF/Word with StyleVision

This command loads the currently active taxonomy into Altova StyleVision, which enables you to generate a
design for reports based on the taxonomy. In order to use this command, you must have Altova's StyleVision
program installed on your machine.

29.16.12 Execute Formula (on Server)

The Execute Formula and Execute Formulas on Server (high-performance) commands are enabled
when an XBRL instance document is the active document in Text View or Grid View. These commands
execute formulas and/or assertions defined in the DTS associated with the XBRL instance file. (A DTS, short
for Discoverable Taxonomy Set, is a collection of taxonomies.) Formulas are evaluated with data in the XBRL
instance file, and the results are output in an XBRL instance file. Assertions are evaluated separately, and the
results are output in a JSON or XML file.

The Execute Formula on Server (high-performance) command uses an associated RaptorXML+XBRL
Server to execute formulas. Use the command Tools | Manage Raptor Servers to set up a
RaptorXML+XBRL Server.

If there are no formulas or assertions defined in the DTS, a message to this effect is displayed. If there is a valid
formula or assertion in the DTS, the XBRL Formula Execution dialog (screenshot below) pops up.

1016 1491

https://www.altova.com/mapforce
https://www.altova.com/stylevision

© 2018-2024 Altova GmbH

XBRL Menu 1461Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Parameters
If parameters are defined in the DTS, each parameter will be displayed in the Parameters pane and a value can
be entered for it. Parameter names are read-only. Mandatory parameters are displayed with a red exclamation
mark, and the OK button is disabled till the parameter is assigned a value. Optional parameters have a default
value. If a required type is specified, the type is displayed. Parameters that require multiple values are indicated
with a + icon, which can be clicked to add a new value. Note that optional parameters without a value will not
be passed to the engine for execution. Default values are read-only and will be executed if the user does not
enter a value.

Namespace mappings
This table defines prefixes that are used in the QNames of parameters and types. Additional namespaces for
use in parameter evaluation may be defined here.

Saving and loading parameters
Parameter settings, including namespace mappings, can be saved in JSON or XML format by clicking the
Save button. The file format is determined by the file extension given to the file. Note that optional parameters
without a value will not be saved. Once saved, a parameters file can be loaded into the dialog via the Load
button.

XBRL processing options
The Options button opens the XBRL Processing Options dialog , in which you can switch on de-duplication
(to automatically ignore duplicate facts).

1468

1462 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Components
This pane contains a tree view that allows the selection of formula and/or assertion components to be
executed. Each item shows an icon and its description, as well as the ID and expression if these are available.
To select a component for execution, check its check box. Outputs of assertion executions can be either
JSON or XML; select the output format from the Output Format combo box. The format of an XBRL formula
execution is always XML.

Execution
You can select whether the execution should be done with XMLSpy's internal engine or with Altova's
RaptorXML Server . In case of an execution error, an error message is shown in the output window.
Otherwise, a success message is displayed. The output files, assertions-ouput-file.xml/json and/or
formula-output-file.xml, are opened in new document windows, not saved to disk. You will need to
explicitly save the file to the desired location on disk.

Trace
If you select <trace> in the Output Format combo box (at the bottom left of the dialog), extra debug information

for all “variable set evaluations” will be collected during the formula execution and then be displayed in the
Messages window (see screenshot below). The trace lists the individual variable set evaluations for each
formula/assertion at the points where the actual assignment of the variables in that evaluation are displayed. If
the variables reference instance facts, clicking on the values takes you to the corresponding fact element in the
instance. Clicking on the formula/assertion or variable name will take you to the corresponding definition in the
formula linkbase files. In the case of validation assertions, the assertion messages that have been generated in
that evaluation step are also displayed.

Note: Running a trace can require significant overheads in terms of memory as well as computation speed.
When using large XBRL instances, assertions can be evaluated millions of times, and each evaluation
might need to store the values of up to 40 variables. So, this feature should only be used for debugging

1016

© 2018-2024 Altova GmbH

XBRL Menu 1463Menu Commands

Altova XMLSpy 2024 Enterprise Edition

with small/reduced samples, otherwise execution will be slow and XMLSpy might even run out of
memory. For this reason, each trace is has a hard-coded limit of 1000 evaluations.

29.16.13 Generate Table (on Server)

The Generate Table and Generate Table on Server (high-performance) commands are enabled when (i)
an XBRL instance document is the active document in Text View or Grid View, or (ii) an XBRL taxonomy is the
active document in XBRL View, Text View, Grid View, or Schema View. These commands generate an XML or
HTML document containing XBRL tables defined in the DTS associated with the active document. (A DTS,
short for Discoverable Taxonomy Set, is a collection of taxonomies.) In the case of XBRL instance files, tables
are generated with data in the XBRL instance file.

The Generate Table on Server (high-performance) command uses an associated RaptorXML+XBRL
Server to generate tables. Use the command Tools | Manage Raptor Servers to set up a
RaptorXML+XBRL Server.

If there are no tables defined in the DTS, a message to this effect is displayed. If there is a valid table definition
in the DTS, the XBRL Table Generation dialog (screenshot below) pops up.

1016 1491

1464 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Parameters
If parameters are defined in the DTS, each parameter will be displayed in the Parameters pane and a value can
be entered for it. Parameter names are read-only. Mandatory parameters are displayed with a red exclamation
mark, and the OK button is disabled till the parameter is assigned a value. Optional parameters have a default
value. If a required type is specified, the type is displayed. Parameters that require multiple values are indicated
with a + icon, which can be clicked to add a new value. Note that optional parameters without a value will not
be passed to the engine for execution. Default values are read-only and will be executed if the user does not
enter a value.

© 2018-2024 Altova GmbH

XBRL Menu 1465Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Namespace mappings
This table defines prefixes that are used in the QNames of parameters and types. Additional namespaces for
use in parameter evaluation may be defined here.

Saving and loading parameters
Parameter settings, including namespace mappings, can be saved in JSON or XML format by clicking the
Save button. The file format is determined by the file extension given to the file. Note that optional parameters
without a value will not be saved. Once saved, a parameters file can be loaded into the dialog via the Load
button.

XBRL processing options
The Options button opens the XBRL Processing Options dialog , in which you can switch on de-duplication
(to automatically ignore duplicate facts).

Components
This pane contains a tree view that allows the selection of table components to be executed. Each item shows
an icon and its description, as well as the ID if this is available. To select a table component for execution,
check its check box. Outputs can be either in XML or HTML format; select the output format from the Output
Format combo box. Click the Options button to display the XBRL Processing Options dialog in which you
specify XBRL table generation options and whether to ignore duplicates. If preferred label options are available,
these are used; otherwise, the defaults specified in the XBRL Processing Options dialog are used.

Execution
In case of an execution error, an error message is shown in the output window. Otherwise, a success message
is displayed. The output files, table-ouput-file.xml/html is opened in new document window, not saved to
disk. You will need to explicitly save the file to the desired location on disk.

29.16.14 Detect Duplicates (on Server)

The Detect Duplicate and Detect Duplicate on Server (high-performance) commands are enabled when
an XBRL instance document is the active document in Text View or Grid View. These commands check the
instance document for duplicate facts and report any found duplicates in the Messages window. The Detect
Duplicate on Server (high-performance) command uses an associated RaptorXML+XBRL Server to
check for duplicates. Use the command Tools | Manage Raptor Servers to set up a RaptorXML+XBRL
Server. On clicking either command, the XBRL Duplicate Detection dialog (screenshot below) appears. In this
dialog, you can select the type/s of duplicates you want to detect.

The different types of duplicates are explained in detail in the Handling Duplicate Facts in XBRL and Inline
XBRL 1.0 specification. They are briefly reviewed here:

· Complete duplicates are duplicates that are the same in terms of name, context, value;
· Consistent duplicates are duplicate numeric facts that have the same value up to the decimal place

specified for rounding;
· Multi-language duplicates repeat the same fact in multiple languages;
· Inconsistent duplicates are duplicates that fulfill the conditions for duplicate facts set out in the XBRL

2.1 specification, but which are not complete duplicates, consistent duplicates, or multi-language
duplicates (for example, a numeric duplicate with a different numeric value).

1468

1468

1468

1016

1491

http://www.xbrl.org/WGN/xbrl-duplicates/WGN-2018-04-19/xbrl-duplicates-WGN-2018-04-19.html
http://www.xbrl.org/WGN/xbrl-duplicates/WGN-2018-04-19/xbrl-duplicates-WGN-2018-04-19.html
http://www.xbrl.org/Specification/XBRL-2.1/REC-2003-12-31/XBRL-2.1-REC-2003-12-31+corrected-errata-2013-02-20.html
http://www.xbrl.org/Specification/XBRL-2.1/REC-2003-12-31/XBRL-2.1-REC-2003-12-31+corrected-errata-2013-02-20.html

1466 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.16.15 Execute XULE

The Execute XULE command executes XULE rules on an XBRL instance document. The XULE rules can be in
a single .xule file or in a zip archive (.zip) containing XULE documents. See the XBRL | XULE section for

more information.

The command is enabled in the following cases:

· When a XULE document is the active document. A XULE document typically has the .xule file

extension. In this case, you will be prompted to select the XBRL instance on which the XULE
document is to be processed.

· When an XBRL instance document (typically having a .xbrl or .xml file extension) is the active

document. In this case, you will be prompted to select the XULE document to use, or the zip archive of
XULE files (the XULE ruleset).

Note: If the XULE document and XBRL instance document are both part of an XMLSpy project , then you
can specify the target XBRL instance file in the properties of the XMLSpy project . If you
subsequently right-click the XULE file and select the Execute XULE command, then execution will be
carried out on the XBRL document that is specified as the target for XULE execution.

Execution options
XULE output
The output of XULE execution is sent either: (i) to the Messages window, or (ii) to a new document that is
displayed in a new XMLSpy window and stored temporarily in memory; this document can be stored to file with
the File | Save As command. To specify whether the output goes to a window or a new document, select
the option you want in the XBRL XULE options tab (Tools | Options | XBRL | XULE); see screenshot
below.

874

1009

1261

1205

1555

© 2018-2024 Altova GmbH

XBRL Menu 1467Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Duplicate facts
Duplicate facts refer to multiple references to the same fact. You can avoid duplicate facts in the result by
checking the Ignore Duplicate Facts option in the XBRL XULE options tab (Tools | Options | XBRL |
XULE); see screenshot above. In this case duplicate facts will be reported only once.

29.16.16 Transform Inline XBRL

The Transform Inline XBRL command is enabled when an XHTML document containing inline XBRL is the
active document in Text View, Grid View, or Browser View. The command extracts the Inline XBRL data from
the active XHTML document and generates an XBRL document containing the extracted data. The generated
XBRL document is opened in a new window, and can be saved to file. In order for the command to work
correctly, all resources referenced by the Inline XBRL document must be available for processing.

Note: A setting to ignore duplicates is available in the XBRL Processing Options dialog , which is
accessed via the menu command XBRL | Processing Options .

Processing multiple Inline XBRL documents
You can process multiple Inline XBRL documents by adding the additional Inline XBRL documents to the Inline
XBRL Document Set of the HTML tab of the Info Window (see screenshot below). Note that this tab appears
in the Info Window only when an HTML document is active in the Main Window.

1555

1468

1468

118

1468 Menu Commands XBRL Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Click the menu button of Inline XBRL Document Set, then click Add Document (see screenshot) and browse
for the Inline XBRL files you want to add. When you run the Transform Inline XBRL command, the active file
as well as the files of the document set will be processed. The extracted Inline XBRL data from all these files
will be combined into a single XBRL document that is opened in a new window.

29.16.17 Validate EDGAR on Server

The Validate EDGAR on Server (high-performance) command validates the active XBRL instance document
by using the currently active RaptorXML+XBRL Server and its active configuration . When you validate via
EDGAR, Raptor validates the XBRL instance document using an internal EDGAR script . The command
immediately carries out the validation and displays the results in the Messages window.

Note: The actual performance depends on the number of PC processor cores used by RaptorXML+XBRL
Server for the validation: The higher the number of cores used, the faster will be the processing.

If you have defined multiple configurations on multiple servers, you can select a server and one of its
configurations as the active configuration. The active configuration will be used for subsequent validations. On
placing the cursor over the Tools | Raptor Servers and Configurations command (see screenshot below), a
submenu appears that contains all the added servers, together with the configuration of each. Select the server
configuration you want to make the active configuration. In the screenshot below, the xbrl configuration of the
server named Raptor-01 has been selected as the active configuration (indicated by the green arrow).

For more information, see the section that describes how to use RaptorXML+XBRL Server .

29.16.18 Processing Options

The XBRL Processing Options command displays the XBRL Processing Options dialog (screenshot below).
Here you can specify:

· that duplicate facts are ignored for: (i) XBRL formula execution, (ii) XBRL table generation, (iii) Inline
XBRL transformations

· for XBRL formula executions, (i) the trace limit for assertions, and (ii) whether only unsatisfied
assertions are traced or whether both satisfied and unsatisfied assertions are traced

· label settings for XBRL table generation
· that empty rows and columns are eliminated during XBRL table generation

1494 1494

1035

1016

© 2018-2024 Altova GmbH

XBRL Menu 1469Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Note: The XBRL Processing Options dialog can also be accessed from the XBRL Formula Execution
dialog and XBRL Table Generation dialog .

Note about de-duplication
Only the following types of duplicate fact are ignored: (i) complete duplicates, and (ii) consistent duplicates.
The fact (among the duplicates) that is selected (not ignored) is the most precise one. For example, among
consistent duplicates of a numeric fact, the fact with the highest numeric precision is selected.

For more information about duplicates, see the Handling Duplicate Facts in XBRL and Inline XBRL 1.0
specification.

1460 1463

http://www.xbrl.org/WGN/xbrl-duplicates/WGN-2018-04-19/xbrl-duplicates-WGN-2018-04-19.html

1470 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.17 Tools Menu

The Tools menu allows you to:

· Check the spelling of your XML documents
· Access the scripting environment of XMLSpy. You can create, manage and store your own forms,

macros and event handlers
· View the currently assigned macros
· Compare any two files to check for differences
· Compare any two folders to check for differences
· Access customized commands that use external applications. These commands can be created in the

Tools tab of the Customize dialog ..
· Define global resources
· Change the active configuration for global resources in XMLSpy
· Add RaptorXML Servers for XML and XBRL validation, and to configure RaptorXML validation

options
· Select a Raptor Server configuration as the active configuration
· Manage your XBRL taxonomy packages via a dedicated application, Taxonomy Manager
· Customize your version of XMLSpy: define your own toolbars, keyboard shortcuts, menus, and

macros
· Define global XMLSpy settings

1471

1574

1478

1499

1489

1490

1491

1492

1494

1494

1495

© 2018-2024 Altova GmbH

Tools Menu 1471Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.1 Spelling

XMLSpy's spellchecker with built-in language dictionaries (see note below) is enabled in Text View, Grid View,
and Authentic View. If you wish to spellcheck a document that you have been editing in another view, you can
switch to Text View or Grid View and run a spelling check. For example, if you have been editing an XML
Schema document in Schema View, switch to Text View or Grid View for the spelling check.

Note: The built-in dictionaries that ship with Altova software do not indicate any language preferences by
Altova. The selection of dictionaries is based on the availability of dictionaries that permit redistribution
with commercial software, such as the MPL, LGPL, or BSD licenses. Many other open-source
dictionaries exist, but are distributed under more restrictive licenses, such as the GPL license. Many
of these dictionaries are available as part of a separate installer located at
http://www.altova.com/dictionaries. You should choose the dictionaries you want to use on the basis of
their license and their usefulness to you.

This section describes how to use the spellchecker. It is organized into the following sub-sections:

· Selecting the spellchecker language
· Defining the scope of the check
· Running the spelling check

Selecting the spellchecker language
The spellchecker language can be set as follows:

1. Click the Tools | Spelling Options menu command.
2. In the Spelling Options dialog that appears (screenshot below), select one of the installed dictionaries

from the dropdown list of the Dictionary Language combo box.

3. Click OK to finish.

1471

1472

1472

http://www.mozilla.org/MPL/
http://www.gnu.org/copyleft/lesser.html
http://en.wikipedia.org/wiki/BSD_licenses
http://www.gnu.org/licenses/gpl.html
http://www.altova.com/dictionaries

1472 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The dictionary language you selected will be used by the spellchecker for spelling checks. If the language you
want is not already installed, you can download additional language dictionaries. How to do this is described in
the section, Adding dictionaries for the spellchecker .

Defining the scope of the check
When the spellchecker is run in Text View or Grid View, the scope of the check can be defined immediately
before starting the check. Do this by selecting the command Tools | Spelling Options and by defining the
required scope in the XML Spelling Options dialog that pops up (see screenshot below).

You can select which elements and attributes are to be checked and whether CDATA sections and comments
should be checked. Also see the description of the Spelling Options command for related information.

Running the spellchecker
The Tools | Spelling (Shift+F7) command automatically starts checking the currently active XML document
according to the defined scope . If an unknown word is encountered, the Spelling: Not in Dictionary dialog
pops up (screenshot below). Otherwise the spelling check runs through to completion.

1476

1474

1474

1472

© 2018-2024 Altova GmbH

Tools Menu 1473Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The various parts of the Spelling: Not in Dictionary dialog and the available options are described below:

Not in Dictionary
This text box contains the word that cannot be found in either the selected language dictionary or user
dictionary. The following options are available:

· You can edit the word in the text box manually or select a suggestion from the Suggestions pane.
Then click Change to replace the word in the XML document with the edited word. (Double-clicking a
suggestion inserts it directly in the XML document.) When a word is shown in the Not in Dictionary text
box, it is also highlighted in the XML document, so you can edit the word directly in the document if
you like. Clicking Change All will replace all occurrences of the word in the XML document with the
edited word.

· You can choose to not make any change and to ignore the spellchecker warning—either just for the
current occurrence of the word or for every occurrence of it.

· You can add the word to the user dictionary and so allow the word to be considered correct for all
checks from the current check onwards.

Suggestions
This list box displays words resembling the unknown word (supplied from the language and user dictionaries).
Double-clicking a word in this list automatically inserts it in the document and continues the spellchecking
process.

Ignore once
This command allows you to continue checking the document while ignoring the first occurrence of the
unknown word. The same word will be flagged again if it appears in the document.

Ignore all
This command ignores all instances of the unknown word in the whole document.

1474 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Add to dictionary
This command adds the unknown word to the user dictionary. You can access the user dictionary (in order to
edit it) via the Spelling Options dialog.

Change
This command replaces the currently highlighted word in the XML document with the (edited) word in the Not in
Dictionary text box.

Change all
This command replaces all occurrences of the currently highlighted word in the XML document with the (edited)
word in the Not in Dictionary text box.

Recheck Document
The Recheck Document button restarts the check from the beginning of the document.

Options
Clicking the Options button opens a dialog box depending on the current view.

· If the current view is Authentic View, the Spelling Options dialog box is opened.
· If the current view is Text View or Grid View, then the XML Spelling Options dialog box is opened.

For more information about these dialog boxes, see the section Spelling Options .

Close
This command closes the Spelling dialog box.

29.17.2 Spelling Options

The Tools | Spelling Options command opens the Spelling Options . Depending on which view is active,
the Tools | Spelling Options command opens either the Spelling Options dialog directly (Schema View,
WSDL View, XBRL View, Authentic View, Browser View), or the XML Spelling Options dialog (Text View,
Grid View,). The XML Spelling Options dialog has a Spelling Options button to access the Spelling Options
dialog.

The various settings available in these two dialogs are described in the sub-sections of this section:

· Spelling check context
· Spelling options
· Adding dictionaries for the spellchecker
· Working with the user dictionary

XML Spelling Options dialog
Clicking the Tools | Spelling Options command in Text View or Grid View opens the XML Spelling Options
dialog (screenshot below), in which you can select the scope of the spelling check. You can select which
elements and attributes are to be checked and whether CDATA sections and comments should be checked.

1477

1474

1474

1474

1475

1475

1474

1474

1475

1476

1477

© 2018-2024 Altova GmbH

Tools Menu 1475Menu Commands

Altova XMLSpy 2024 Enterprise Edition

You can compile a list of elements and/or attributes that you wish to have spellchecked or have excluded from
the spelling check. Alternatively, you can choose to run the spelling check on all elements and/or attributes or
on no element or attribute.

Clicking the More Spelling Options button at the bottom of the dialog opens the Spelling Options dialog.

Spelling options
The Spelling Options dialog is used to define global spellchecker options.

1476 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Always suggest corrections:
Activating this option causes suggestions (from both the language dictionary and the user dictionary) to be
displayed in the Suggestions list box. Disabling this option causes no suggestions to be shown.

Make corrections only from main dictionary:
Activating this option causes only the language dictionary (main dictionary) to be used. The user dictionary is
not scanned for suggestions. It also disables the User Dictionary button, preventing any editing of the user
dictionary.

Ignore words in UPPER case:
Activating this option causes all upper case words to be ignored.

Ignore words with numbers:
Activating this option causes all words containing numbers to be ignored.

Split CamelCase words
CamelCase words are words that have capitalization within the word. For example the word "CamelCase" has
the "C" of "Case" capitalized, and is therefore said to be CamelCased. Since CamelCased words are rarely
found in dictionaries, the spellchecker would flag them as errors. To avoid this, the Split CamelCase words
option splits CamelCased words into their capitalized components and checks each component individually.
This option is checked by default.

Dictionary Language
Use this combo box to select the dictionary language for the spellchecker. The default selection is US English.
Other language dictionaries are available for download free of charge from the Altova website.

Adding dictionaries for the spellchecker
For each dictionary language there are two Hunspell dictionary files that work together: a .aff file and .dic
file. All language dictionaries are installed in a Lexicons folder at the following location: C:
\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons.

https://www.altova.com/dictionaries

© 2018-2024 Altova GmbH

Tools Menu 1477Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Within the Lexicons folder, different language dictionaries are each stored in a different folder: <language
name>\<dictionary files>. For example, files for the two English-language dictionaries (English
(British) and English (US)) will be stored as below:

C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (British)
\en_GB.aff
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (British)
\en_GB.dic
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (US)\en_US.aff
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (US)\en_US.dic

In the Spelling Options dialog, the dropdown list of the Dictionary Language combo box displays the language
dictionaries. These dictionaries are those available in the Lexicons folder and have the same names as the
language subfolders in the Lexicons folder. For example, in the case of the English-language dictionaries
shown above, the dictionaries would appear in the Dictionary Language combo box as: English (British) and
English (US).

All installed dictionaries are shared by the different users of the machine and the different major versions of
Altova products (whether 32-bit or 64-bit).

You can add dictionaries for the spellchecker in two ways, neither of which require that the files be registered
with the system:

· By adding Hunspell dictionaries into a new subfolder of the Lexicons folder. Hunspell dictionaries can
be downloaded, for example, from https://wiki.openoffice.org/wiki/Dictionaries or
http://extensions.services.openoffice.org/en/dictionaries. (Note that OpenOffice uses the zipped OXT
format. So change the extension to .zip and unzip the .aff and .dic file to the language folders in
the Lexicons folder. Also note that Hunspell dictionaries are based on Myspell dictionaries. So
Myspell dictionaries can also be used.)

· By using the Altova dictionary installer, which installs a package of multiple language dictionaries by
default to the correct location on your machine. The installer can be downloaded via the link in the
Dictionary language pane of the Spelling Options dialog (see screenshot below). Installation of the
dictionaries must be done with administrator rights, otherwise installation will fail with an error.

Note: It is your choice as to whether you agree to the terms of the license applicable to the dictionary and
whether the dictionary is appropriate for your use with the software on your computer.

Working with the user dictionary
Each user has one user dictionary, in which user-allowed words can be stored. During a spellcheck, spellings
are checked against a word list comprising the words in the language dictionary and the user dictionary. You
can add words to and delete words from the user dictionary via the User Dictionary dialog (screenshot below).
This dialog is accessed by clicking the User Dictionary button in the Spelling Options dialog (see second
screenshot in this section).

https://wiki.openoffice.org/wiki/Dictionaries
http://extensions.services.openoffice.org/en/dictionaries
https://www.altova.com/dictionaries

1478 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To add a word to the user dictionary, enter the word in the Word text box and click Add. The word will be
added to the alphabetical list in the Dictionary pane. To delete a word from the dictionary, select the word in the
Dictionary pane and click Delete. The word will be deleted from the Dictionary pane. When you have finished
editing the User Dictionary dialog, click OK for the changes to be saved to the user dictionary.

Words may also be added to the User Dictionary during a spelling check. If an unknown word is encountered
during a spelling check, then the Spelling dialog pops up prompting you for the action you wish to take. If
you click the Add to Dictionary button, then the unknown word is added to the user dictionary.

The user dictionary is located at: C:\Users\<user>\Documents\Altova\SpellChecker\Lexicons\user.dic

29.17.3 Scripting Editor

The Scripting Editor command opens the Scripting Editor window. How to work with the Scripting Editor is
described in the Scripting section of this documentation.

Note: The .NET Framework version 2.0 or higher will have to be installed on your machine in order for the
Scripting Editor to run.

29.17.4 Macros

Mousing over the Macros command rolls out a submenu containing the macros defined in the Scripting Project
that is currently active in XMLSpy (screenshot below).

1471

1574

© 2018-2024 Altova GmbH

Tools Menu 1479Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Clicking a macro in the submenu (see screenshot above) runs the macro.

29.17.5 Comparisons

XMLSpy provides a comparison (or differencing) feature, with which you can compare XML and Text files, as
well as folders, in order to check for differences.

There are the following menu items in the Tools menu that enable you to perform comparison tasks on files
and folders:

· Compare open file with
· Compare directories
· Compare options

These commands are described in detail in the following sub-sections.

29.17.5.1 Compare Open File With

This command allows you to compare the open file with another file. The comparison shows the files to
compare tiled vertically in the main window with the differences between them highlighted in each file. If a
difference is between two files, then the difference is highlighted in green. If content is different across three
files (available in the Enterprise Edition only), then this is referred to as a conflict, and the conflict is highlighted
in pink. You can compare files as XML documents (where the structure and semantics of tags is significant) or
as text documents.

Note: Three-way file comparisons are available in the Enterprise Edition only.

To compare the active file (in the GUI) with another file, do the following:

1. With the file to compare active in the Main Window (only one open file can be active at a given time),
click Tools | Compare open file with. A Browse dialog appears (screenshot below), in which you
can browse for one or two files to compare with the active file.

1479

1483

1486

1480 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Click Browse to select a file via file explorer, a global resource, or a URL. Click Window to select
a file that is open in one of the windows of XMLSpy.

3. Click OK. The Settings dialog appears (screenshot below). These settings are described in the topic
Compare Options . If you wish to not have this dialog appear each time you start a compare
session, uncheck Show settings before starting compare (located at the bottom of the dialog).

1199

1486

© 2018-2024 Altova GmbH

Tools Menu 1481Menu Commands

Altova XMLSpy 2024 Enterprise Edition

4. Select the required settings, then click OK. Two things happen: (i) The files to compare are displayed
side-by-side in separate panes; (ii) The Compare Files control window appears. (Screenshots in next
section, File Comparisons .)

5. You can navigate and merge differences by using the buttons in the Compare Files control window.
(For usage information, see the next section, File Comparisons .)

6. When you finish reviewing and/or merging differences, click Done.

Note: Compare settings can be changed during a Compare session (by selecting Tools | Compare
options), but will only take effect from the next Compare session onward; the new settings will not
affect the current session.

File comparisons and merging of differences
There are two types of comparison:

· Two-way comparison: Two files are compared. The file that was active (when comparison was
requested; called active file for short) is displayed in the left-hand pane and is compared against a
second file (see screenshot below).

1481

1481

1486

1482 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Three-way comparison (Enterprise Edition only): Three files are compared. The active file is displayed in
the left-hand pane. The first of the two files that were selected for comparison against the active file is
displayed in the middle pane. This middle file is known as the base file. You can merge a difference
between the left-hand file and the base file, or a difference between the right-hand file and the base file.

Note: You should not move panes in the window; otherwise, the Copy To directions of the buttons in the
Compare Files control window might not be correct any longer.

Differences and conflicts
Differences and conflicts are highlighted in different colors (see Highlight colors below) and can be navigated
separately.

· Differences: When content at corresponding locations in two files is different. Highlighted in green.
· Conflicts: When content at corresponding locations in three files is different. Highlighted in pink.

Note: Two-way comparisons show only differences, no conflicts.

Navigating differences and conflicts
You can navigate through the document by using the buttons in the Select Difference pane of the Compare
Files control window (shown below: two-way comparison, followed by three-way comparison). The pane contains
four buttons for two-way comparison, and six buttons for three-way comparison (see screenshots).

The Compare Files control window contains the following buttons:

· First: Goes to the first of all the differences and conflicts in the document.
· Last: Goes to the last of all the differences and conflicts in the document.
· Previous: Goes to the previous difference from the currently active difference or conflict.
· Next: Goes to the next difference from the currently active difference or conflict.
· Previous Conflict: Goes to the previous conflict from the currently active difference or conflict.
· Next Conflict: Goes to the next conflict from the currently active difference or conflict.

1483

© 2018-2024 Altova GmbH

Tools Menu 1483Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Merging differences and conflicts
You can use the buttons in the Merge pane to copy the highlighted content from one pane to another. Use the
appropriate Copy-direction button of a pane-pair. In order to enable merging, the following Compare options
must be set:

· Detailed differencing must be checked, and
· Ignore node depth must be unchecked.

When you finish reviewing and/or merging differences, click Done.

Note: If you wish to undo a merge, stop the Compare session, select the file in which the change is to be
undone, and select Edit | Undo or press Ctrl+Z.

Note: While the Compare session is active, no editing or change of views is allowed. Any attempt to edit or
change the view of either file will pop up a message warning that the Compare session will be ended.

Highlight colors
If corresponding lines are different in two files, then they are highlighted in green in both files (differences). If
lines are different in three files, then they are highlighted in pink in all three files. If a difference is selected, it is
indicated in both files in a darker green color. If a conflict is selected, it is indicated in both files in a darker pink
color.

The highlight colors used in Compare sessions are given in the table below.

Difference

Current difference

Merged difference

Current merged difference

Conflict

Current conflict

29.17.5.2 Compare Directories

The Compare Directories command allows you to compare two directories, with or without their sub-
directories. Directories are compared to indicate missing files, and whether files of the same name are different
or not.

To compare two directories:

1. Click Tools | Compare directories. The following dialog appears.

1486

1484 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Browse for the directories to compare, and check the Include subdirectories check box if you wish to
include subdirectories in the Compare.

3. Select the file types you want to compare in the Files of type field. There are three options in the
dropdown menu: (i) XML filetypes; (ii) Filetypes defined in XMLSpy ; and (iii) all filetypes. Zip
archives are treated as directories, and directories and files in the Zip archive are displayed in the
results window. To ensure that Zip archives are read as directories, make sure that the required
extension is included in the Files of Type entry.

4. Click OK. The Settings dialog (described in Compare Options) appears.
5. Select the required settings for comparing files.
6. Click OK. A dialog will appear indicating the progress of the Compare.

The result will appear in a window, and will look like this:

1516

1486

© 2018-2024 Altova GmbH

Tools Menu 1485Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Directory symbols
All directory names are given in black.

Directory is collapsed and its contents are not displayed.

Directory is expanded, indicated by the turned down corner. The contents are displayed.

Directory contains files, all of which either cannot be compared or are not different from the
corresponding file in the compared directory.

Directory contains one or more files that do not exist in the compared directory.

Directory contains one or more files that are different from the corresponding file in the compared
directory.

Directory contains one or more files that do not exist in the compared directory and one or more files
that are different from the corresponding file in the compared directory.

File symbols
The colors in which file names appear depend on their compare status. These colors are noted below.

This file cannot be compared (with the corresponding file in the compared directory). A
question mark appears in the middle column. The file name appears in black.

1486 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

This file is not different from the corresponding file in the compared directory. An
equals-to sign appears in the middle column. The file name appears in black.

This file does not exist in the compared directory. The middle column is empty. The
file name appears in blue.

This file is different from the corresponding file in the compared directory, and the last
modification to this file is more recent than the last modification to the corresponding file. The newer file
appears in a brighter red, and the icon shows the brighter red file symbol on the side having the newer file.

Viewing options

· Select what files to show by checking or unchecking the options in the Show pane at the bottom of the
Result window.

· Open or close all subdirectories by clicking the appropriate button in the Directories pane.
· Expand or collapse subdirectories by double-clicking the folder icon.
· The Size and Last Modified can be toggled on and off by right-clicking on either file titlebar and clicking

Size and Last Modified.

· Change column widths by dragging columns.
· The Result window can be maximized, minimized, and resized.

Comparing and merging files
Double-clicking on a line opens both files on that line in the Main Window, and directly starts a File Compare
for the two files. You can then continue as in a regular Compare session (see Compare open file with...).

29.17.5.3 Compare Options

Click Tools | Compare options to open the Settings dialog (see screenshot). In it you make the settings for
your Compare sessions. The settings that are current when a Compare session is started are the settings that
are applied to that Compare session.

1479

© 2018-2024 Altova GmbH

Tools Menu 1487Menu Commands

Altova XMLSpy 2024 Enterprise Edition

View results
Selects the view in which results are shown. You can select from the following options:

· Grid View (XML comparison)
· Text View with Textual Comparison Only unchecked (XML comparison)
· Text View with Textual Comparison Only checked (Text comparison)

If a view that provides XML comparison is selected, then the documents are treated as XML documents, and
XML Compare Options are enabled. If Text comparison is selected, only Compare Options valid for Text
comparison (Whitespaces and Case-sensitivity) are enabled; all other Compare Options are disabled.

Note: You can merge differences in both Grid View and Text View, and in both XML and Text comparison
modes. If you wish to undo a merge, stop the Compare session, select the file in which the change is
to be undone, and select Edit | Undo or press Ctrl + Z.

1488 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Detailed differencing
If unselected, differences in immediate sibling elements are represented as a single difference, and the merge
option is disabled. If selected, differences in immediate siblings are represented as separate differences, and
merging is enabled.

Note: The Detailed differencing check box must be checked to enable merging.

Whitespaces
Whitespace characters are space, tab, carriage return, and line feed. When whitespace is normalized,
consecutive whitespace characters are reduced to one whitespace character; however, note that, according to
the XML specification, leading and trailing whitespace in attribute values are completely removed when
whitespace is normalized. The options here compare files with: (i) whitespace unchanged; (ii) whitespace
normalized; and (iii) all whitespace stripped. The Whitespaces option is available for both XML and Text
comparisons.

Case sensitivity
If the Ignore case check box is checked, then you have the option of ignoring or not ignoring case in node
names (for XML comparisons only). The Case-sensitivity option is available for both XML and Text comparisons.

Namespace/Prefix
These are options for ignoring namespaces and prefixes when searching for differences.

Order
If Ignore order of child nodes is checked, then the position of child nodes relative to each other does not
matter. The comparison is made for the entire set of child nodes, and if the only difference between a child
node in one document and a child node in the compare document is the relative position in the nodeset, then
this difference is ignored. Each child element node is identified by its name, its attributes, and its position. If
the names of more than one node in the sibling set are the same, then the position of these nodes is used to
identify the nodes even if the "Ignore order of child nodes" option is checked. This option applies to each level
separately. If Ignore order of child nodes is unchecked, then differences in order are represented as
differences.

The option of ignoring the order of attributes is also available, and applies to the order of attributes of a single
element.

Entities
If "Resolve entities" is selected, then all entities in the document are resolved. Otherwise the files are compared
with the entities as is.

Text
If "Ignore text" is selected, then differences in corresponding text nodes are not reported.

© 2018-2024 Altova GmbH

Tools Menu 1489Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Ignore node types
Check the node types that will not be compared in the Compare session. Node types that may be ignored are
Attributes, CDATA, Comments, Processing Instructions, DOCTYPE statements, and the XML declaration.

Depth
If Ignore node depth is checked, then the additional depth of any element (i.e. more levels of descendants)
relative to the depth of the corresponding element in the compared file is ignored. This option must be
unchecked to enable merging.

Show settings before starting compare
Checking this option causes the Settings dialog (this dialog) to appear before each file or directory comparison
is carried out (via the Compare open file with and Compare Directories commands). Having the Settings
dialog appear before each comparison allows you to check and modify the settings for each comparison.

If this command is unchecked, then the Compare session will start directly when a comparison is invoked.

29.17.6 User-Defined Tools

Placing the cursor over the User-defined Tools command rolls out a sub-menu containing custom-made
commands that use external applications. You can create these commands in the Tools tab of the Customize
dialog . Clicking one of these custom commands executes the action associated with this command.

The User-Defined Tools | Customize command opens the Tools tab of the Customize dialog (in which you
can create the custom commands that appear in the menu of the User-Defined Tools command.)

29.17.7 Global Resources

The Global Resources command pops up the Global Resources dialog (screenshot below), in which you can:

· Specify the Global Resources XML File to use for global resources.
· Add file, folder, and database global resources (or aliases)
· Specify various configurations for each global resource (alias). Each configuration maps to a specific

resource.

1499

1499

1490 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

How to define global resources is described in detail in the section, Defining Global Resources .

Note: The Altova Global Resources dialog can also be accessed via the Global Resources toolbar (Tools
| Customize | Toolbars | Global Resources).

29.17.8 Active Configuration

Mousing over the Active Configuration menu item rolls out a submenu containing all the configurations
defined in the currently active Global Resources XML File (screenshot below).

 The currently active configuration is indicated with a bullet. In the screenshot above the currently active
configuration is Default. To change the active configuration, select the configuration you wish to make active.

Note: The active configuration can also be selected via the Global Resources toolbar (Tools | Customize
| Toolbars | Global Resources).

991

1497

1489

1497

© 2018-2024 Altova GmbH

Tools Menu 1491Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.9 Manage Raptor Servers

The Manage Raptor Servers command enables you to add multiple Raptor Servers to the pool of available
Raptor Servers and to then define multiple configurations for each server. For an overview of how to use
RaptorXML Server for validating XML and XBRL documents, see the topic Validating with RaptorXML Server .

Adding a Raptor Server
In the dialog's Servers pane (screenshot below), click the Add Server icon, then enter the name by which you
wish to identify the Raptor server, the network name of the machine on which Raptor is installed (host name),
and the port of the Raptor Server. Click OK to save the settings.

1016

1492 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Name: Any string you choose. It is used in XMLSpy to identify a particular RaptorXML Server.
· Host name: The name or IP address of the network machine on which the Raptor server is installed.

Processing will be faster if you use an IP address rather than a host name. The IP address
corresponding to localhost (the local machine) is 127.0.0.1.

· Port: The port via which the Raptor server is accessed. This port is specified in Raptor's configuration
file (called server_config.xml). The port must be fixed and known so that requests can be correctly
addressed to the service. For more information about the Raptor configuration file, see the user
manuals: RaptorXML Server and RaptorXML+XBRL Server.

After entering the server information, click OK. The server name you entered appears in the server list (in the
left of the pane). A green icon appears next to the server's name, indicating that the Raptor server has been
started and is running. The details of the server are displayed in the pane (see screenshot above). A red icon
indicates that the server is offline. If the server cannot be found, an error message is displayed.

Note: The Raptor server must be running when the server is added. This is necessary so that XMLSpy can
obtain information about the server and store it. If, after the server has been added, the server is offline
or cannot be found, then these situations are indicated, respectively, by a red icon or an error
message.

To edit a server's name, host name, or port, select the server in the left-hand pane, click the Edit button, and,
in the dialog that appears, edit the information you want to change. To remove a server from the pool, select the
server and click the Remove Selected Server icon.

Server Configurations
A configuration is a set of RaptorXML validation options. When a server is added, it will have a configuration
named default. This is a set of RaptorXML options set to their default values. You can add new configurations
that contain other option values. After you have defined multiple server configurations, you can select one
configuration to be the active configuration. This is the configuration that will be used when the Validate on
Server command is executed.

The Configurations pane has two parts: (i) a left-hand pane, which shows the configurations, each containing a
list of document-types that can be validated; (ii) a right-hand pane, which displays the validation options for the
document-type selected in the left-hand pane; at the bottom of the right-hand pane is a description of the
selected option (see screenshot above).

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxhttp_server_config.htm
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/rxhttp_server_config.htm

© 2018-2024 Altova GmbH

Tools Menu 1493Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Adding a configuration
In the Configurations pane of the RaptorXML Server Options dialog (screenshot above), click Add a
Configuration. A new configuration is added with default option values. You can also create a new
configuration by clicking Copy Selected Configuration. This creates a new configuration with option values
that are the same as that of the copied configuration. New configurations are created with default names of the
type config<X>; you can edit the name of a configuration by double-clicking it and entering the new name. You
can then edit any of the configuration's option values.

Editing a configuration's option values
First, select the document-type in the left-hand pane. This displays the validation options of the selected
document-type in the right-hand pane. To edit the value of an option, do one of the following (depending on the
type of option value):

· If the value can be one of a set of predefined values, select the value you want from the combo box of
that option's value column.

· If the value is not constrained, click in the option's value filed and enter the value you want.
· If the value is a file path, in addition to being able to enter the value, you can also browse for the file

you want by using the Browse button in the option's value column.

If you select an option, its description is displayed in a box at the bottom of the right-hand pane. For more

1494 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

detailed descriptions of each option, see the command line interface chapters of the RaptorXML Server and
RaptorXML(+XBRL) Server user manuals.

Removing a configuration
In the left-hand pane, select the configuration to be removed and click Remove Selected Configuration.

29.17.10 Raptor Servers and Configurations

If you have defined multiple configurations on multiple servers, you can select a server and one of its
configurations as the active configuration. The active configuration will be used for subsequent validations. On
placing the cursor over the Tools | Raptor Servers and Configurations command (see screenshot below), a
submenu appears that contains all the added servers, together with the configuration of each. Select the server
configuration you want to make the active configuration. In the screenshot below, the xbrl configuration of the
server named Raptor-01 has been selected as the active configuration (indicated by the green arrow).

See the section RaptorXML(+XBRL) Server for an overview of how to use Raptor from within XMLSpy.

29.17.11 XBRL Taxonomy Manager

This command opens the Taxonomy Manager dialog, which enables you to manage your XBRL taxonomy
packages.

To install an XBRL taxonomy, select the check box next to the taxonomy you want to install and click Apply.
You can also uninstall taxonomies, upgrade taxonomies, check for new taxonomies, and generally manage all
your taxonomies in one central location.

For more information, see Taxonomy Manager .

29.17.12 XML Schema Manager

This command opens the Schema Manager dialog, which enables you to manage your XML Schema
packages.

1016

774

https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/index.html
https://www.altova.com/manual/en/raptorxmlxbrlserver/2024.2/

© 2018-2024 Altova GmbH

Tools Menu 1495Menu Commands

Altova XMLSpy 2024 Enterprise Edition

To install an XML schema, select the check box next to the schema you want to install and click Apply. You
can also uninstall schemas, upgrade schemas, check for new schemas, and generally manage all your
schemas in one central location.

For more information, see Schema Manager .

29.17.13 Customize

The Customize command lets you customize application menus and toolbars to suit your personal needs.
Clicking the command pops up the Customize dialog, which has the following tabs:

· Commands : All application and macro commands can be dragged from this tab into menu bars,
menus and toolbars.

· Toolbars : Toolbars can be activated, deactivated, and reset individually.
· Tools : Commands that open external programs from within the interface can be added to the

interface.
· Keyboard : Keyboard shortcuts can be created for individual application and macro commands.
· Menu : Menu bars and context menus to be customized are selected and made active in this tab.

Works together with the Commands tab.
· Macros : Macros can have new commands associated with them.
· Plug-ins : Plug-ins can be activated and integrated in the interface.
· Options : Display options for toolbars are set in this tab.

This section also describes the context menu that appears when the Customize dialog is open and menu
bar, menu, or tool bar items are right-clicked.

29.17.13.1 Commands

The Commands tab allows you customize your menus and toolbars. You can add application commands to
menus and toolbars according to your preference. Note, however, that you cannot create new application
commands or menus yourself.

420

1495

1497

1470

1500

1504

1506

1507

1513

1509

1496 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To add a command to a toolbar or menu:

1. Select the menu item Tools | Customize. The Customize dialog appears.
2. Select the All Commands category in the Categories list box. The available commands appear in the

Commands list box.
3. Click on a command in the Commands list box and drag it to an to an existing menu or toolbar. An I-

beam appears when you place the cursor over a valid position to drop the command.
4. Release the mouse button at the position you want to insert the command.

Note the following points:

· When you drag a command, a small button appears at the tip of mouse pointer: This indicates that the
command is currently being dragged.

· An "x" below the pointer indicates that the command cannot be dropped at the current cursor position.
· If the cursor is moved to a position at which the command can be dropped (a toolbar or menu), the "x"

disappears and an I-beam indicates the valid position.
· Commands can be placed in menus or toolbars. If you have created you own toolbar , you can use

this customization mechanism to populate it.
· Moving the cursor over a closed menu, opens that menu, allowing you to insert the command

anywhere in that menu.

Adding commands to context menus
You can also add commands to context menus by dragging commands from the Commands list box into the
context menu. The procedure is as follows:

1. In the Customize dialog, click the Menu tab .

1497

1504 1504

© 2018-2024 Altova GmbH

Tools Menu 1497Menu Commands

Altova XMLSpy 2024 Enterprise Edition

2. In the Context Menu pane, select a context menu from the combo box. The selected context menu
pops up.

3. In the Customize dialog,, switch back to the Commands tab.
4. Drag the command you wish to create from the Commands list box and drop it into the desired location

in the context menu.

Deleting a command or menu
To delete a command from a menu, context menu (see above for details of accessing context menus), or
toolbar, or to delete an entire menu, do the following.

1. Open the Customize dialog (Tools | Customize). The Customize dialog appears.
2. With the Customize dialog open (and any tab selected), right-click a menu or a menu command, and

then select Delete from the context menu that pops up. Alternatively, drag the menu or menu
command till an "x" icon appears below the mouse pointer, and then drop the menu or menu
command. The menu or menu command will be deleted.

To re-instate deleted menu commands, use the mechanisms described in this section. To re-instate a deleted
menu, go to Tools | Customize | Menu, and click the Reset button in the Application Frame Menus pane.
Alternatively, go to Tools | Customize | Toolbars, select Menu Bar, and click the Reset button.

29.17.13.2 Toolbars

The Toolbars tab allows you: (i) to activate or deactivate specific toolbars (that is, to decide which ones to
display in the interface); (ii) to set what icons are displayed in each toolbar; and (iii) to create your own
specialized toolbars.

The toolbars contain icons for the most frequently used menu commands. Information about each icon is
displayed in a tooltip and in the Status Bar when the cursor is placed over the icon. You can drag a toolbar to
any location on the screen, where it will appear as a floating window.

Note: To add a command to a toolbar, drag the command you want from the Commands list box in the
Commands tab to the toolbar. To delete a command from a toolbar, open the Customize dialog,
and with any tab selected, drag the command out of the toolbar (see Commands for more details).

Note: Toolbar settings defined in a particular view are, by default, valid for that view only. To make the
settings apply to all views, click the check box at the bottom of the dialog.

1495

1495

1498 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The following functionality is available:

· To activate or deactivate a toolbar: Click its check box in the Toolbars list box.

· To apply changes to all views: Click the check box at the bottom of the dialog. Otherwise, changes are
applied only to the active view. Note that only changes made after clicking the All Views check box
will apply to all views.

· To add a new toolbar: Click the New button and give the toolbar a name in the Toolbar Name dialog
that pops up. From the Commands tab drag commands into the new toolbar.

· To change the name of an added toolbar: Select the added toolbar in the Toolbars pane, click the
Rename button, and edit the name in the Toolbar Name dialog that pops up.

· To reset the Menu bar: Select the Menu Bar item in the Toolbars pane, and then click Reset. This
resets the Menu bar to the state it was in when the application was installed.

· To reset all toolbar and menu commands: Click the Reset All button. This resets all toolbars and
menus to the states they were in when the application was installed.

· To delete a toolbar: Select the toolbar you wish to delete in the Toolbars pane and click Delete.

· To show text labels of commands in a particular toolbar: Select that toolbar and click the Show Text
Labels check box. Note that text labels have to be activated for each toolbar separately.

1495

© 2018-2024 Altova GmbH

Tools Menu 1499Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.13.3 Tools

The Tools tab allows you to set up commands to use external applications from within XMLSpy. These
commands will be added to the Tools | User-defined Tools menu. For example, the active file in the main
window of XMLSpy can be opened in an external application, such as Notepad, by clicking a command in the
Tools | User-defined Tools menu that you created.

To set up a command to use an external application, do the following:

1. In the Menu Contents pane (see screenshot above), click the New icon in the title bar of the pane and,
in the item line that is created, enter the name of the menu command you want. In the screenshot
above, we have entered a single menu command, Open in Notepad. We plan to use this command to
open the active document in the external Notepad application. More commands can be added to the
command list by clicking the New icon. A command can be moved up or down the list relative to other
commands by using the Move Item Up and Move Item Down icons. To delete a command, select it
and click the Delete icon.

2. To associate an external application with a command, select the command in the Menu Contents
pane. Then, in the Command field, enter the path to, or browse for, the executable file of the external
application. In the screenshot above, the path to the Notepad application has been entered in the
Command field.

3. The actions available to be performed with the external application are displayed when you click the
flyout button of the Arguments field (see screenshot above). These actions are described in the list
below. When you select an action, a code string for the action is entered in the Arguments field.

4. If you wish to specify a current working directory, enter it in the Initial Directory field.
5. Click Close to finish.

1500 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The command/s you created will appear in the Tools | User-defined Tools menu, and in the context menu of
Project window files and folders—in the User-defined Tools submenu.

When you click the command (in the Tools | User-defined Tools menu) that you created, the action you
associated with the command will be executed. The command example shown in the screenshot above does
the following: It opens, in Notepad, the document that is active in the Main Window of XMLSpy. The external
application command is also available in the context menu of files in the Project window (right-click a file in the
Project window to display that file's context menu). Via the Project Window you can also open multiple files (for
applications that allow this) by making a multi-selection and then selecting the command from the context
menu.

Arguments
The Arguments field specifies the action to be executed by the external application command. The following
arguments are available.

· Active Document File Path: The command in the Tools | User-defined Tools menu opens the
document that is active in XMLSpy in the external application. The command in the context menu of a
file in the Project window opens the selected file in the external application.

· Project File Path: Opens the XMLSpy project file (the .spp file) in the external application.

Initial directory
The Initial Directory entry is optional and is a path that will be used as the current directory.

29.17.13.4 Keyboard

The Keyboard tab allows you to create new keyboard shortcuts, or change existing shortcuts, for any
application command.

© 2018-2024 Altova GmbH

Tools Menu 1501Menu Commands

Altova XMLSpy 2024 Enterprise Edition

To assign a new shortcut to a command, or to change an existing shortcut, do the following.

1. Select the All Commands category in the Category combo box. Note that if a macro has been selected
as an Associated Command , then macros are also available for selection in the Category combo
box and a shortcut for the macro can be set.

2. In the Commands list box, select the command to which you wish to assign a new shortcut or select
the command the shortcut of which you wish to change.

3. Click in the Press New Shortcut Key text box, and press the shortcut you wish to assign to that
command. The shortcut appears in the Press New Shortcut Key text box. If the shortcut has not yet
been assigned to any command, the Assign button is enabled. If the shortcut has already been
assigned to a command, then that command is displayed below the text box and the Assign button is
disabled. (To clear the Press New Shortcut Key text box, press any of the control keys, Ctrl, Alt or
Shift).

4. Click the Assign button to assign the shortcut. The shortcut now appears in the Current Keys list box.
You can assign multiple shortcuts to a single command.

5. Click the Close button to confirm.

Deleting a shortcut
A shortcut cannot be assigned to multiple commands. If you wish to delete a shortcut, click it in the Current
Keys list box and then click the Remove button.

Set accelerator for
Currently, accelerators can be set only as default. No other mode is available.

1506

1502 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Default keyboard shortcuts
The default shortcuts of commonly used commands are listed below. An overview of all the application's menu
commands is available in the Keyboard Map (Help | Keyboard Map).

Function-key shortcuts (incl. for validation and transformation)

F1 Help Menu

F1 + Alt Open Last File

F3 Find Next

F4 + CTRL Close Active Window

F4 + Alt Close XMLSpy

F5 Refresh

F6 + CTRL Cycle through Open Windows

F7 Check Well-formedness

F8 Validate

F10 XSL Transformation

F10 + CTRL XSL:FO Transformation

File and Application commands

Alt + F1 Open Last File

CTRL + O File Open

CTRL + N File New

CTRL + P File Print

CTRL + S File Save

CTRL + F4 Close Active Window

CTRL + F6 Cycle through Open Windows

CTRL + TAB Switch between Open Documents

Alt + F4 Close XMLSpy

Miscellaneous keys

Up/Down Arrow Keys Move Cursor or Selection Bar

Esc Abandon Edits or Close Dialog Box

Return Confirm Selection

Del Delete Character or Selected

Shift + Del Cut

Editing commands

CTRL + A Select All

1565

© 2018-2024 Altova GmbH

Tools Menu 1503Menu Commands

Altova XMLSpy 2024 Enterprise Edition

CTRL + F Find

CTRL + G Go to Line/Char

CTRL + H Replace

CTRL + V Paste

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

Text View commands

CTRL + E Jump between Start/End Tags

CTRL + Shift + E Select Element that Contains Cursor

CTRL + Alt + E Go to Parent Element

CTRL + "+" Zoom In

CTRL + "-" Zoom Out

CTRL + 0 Reset Zoom

CTRL + mousewheel forwd Zoom In

CTRL + mousewheel back Zoom Out

Grid View commands

CTRL + D Append CDATA

CTRL + E Append Element

CTRL + I Append Attribute

CTRL + M Append Comment

CTRL + T Append Text

CTRL + Shift + D Insert CDATA

CTRL + Shift + E Insert Element

CTRL + Shift + I Insert Attribute

CTRL + Shift + M Insert Comment

CTRL + Shift + T Insert Text

CTRL + Alt + D Add Child CDATA

CTRL + Alt + E Add Child Element

CTRL + Alt + I Add Child Attribute

CTRL + Alt + M Add Child Comment

CTRL + Alt + T Add Child Text

1504 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Schema View commands

CTRL + Dbl-click Element Display Element Definition

Debugger shortcuts

F9 Insert/Remove Breakpoint

F9 + Shift Insert/Remove Tracepoint

F9 + CTRL Enable/Disable Breakpoint

F9 + Shift + CTRL Enable/Disable Tracepoint

F11 Step Into

F11 + Shift Step Out

F11 + CTRL Step Over

F11 + Alt Start Debugger/Go

29.17.13.5 Menu

The Menu tab allows you to customize the two main menu bars (default and application menu bars) as well as
the application's context menus.

© 2018-2024 Altova GmbH

Tools Menu 1505Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Customizing the default menu bar and application menu bar
The default menu bar is the menu bar that is displayed when no document is open in the main window. The
application menu bar is the menu bar that is displayed when one or more documents are open in the main
window. Each menu bar can be customized separately, and customization changes made to one do not affect
the other.

To customize a menu bar, select it in the Show Menus For combo box (see screenshot above). Then switch to
the Commands tab of the Customize dialog and drag commands from the Commands list box to the menu
bar or into any of the menus.

Deleting commands from menus and resetting the menu bars
To delete an entire menu or a command inside a menu, do the following:

1. In the Application Frame Menus pane, select either Default (which shows available menus when no
document is open) or XMLSpy (which shows available menus when one or more documents are open).

2. With the Customize dialog open, select (i) the menu you want to delete from the application's menu
bar, or (ii) the command you want to delete from one of these menus.

3. Either (i) drag the menu from the menu bar or the menu command from the menu, or (ii) right-click the
menu or menu command and select Delete.

You can reset each of these two menu bars (default and application menu bars) to its original installation state
by selecting the menu in the Show Menus For combo box and then clicking the Reset button below the combo
box.

Customizing the application's context menus
Context menus are the menus that appear when you right-click certain objects in the application's interface.
Each of these context menus can be customized by doing the following:

1. Select the context menu you want in the Select Context Menu combo box. This pops up the context
menu.

2. Switching to the Commands tab of the Customize dialog .
3. Drag a command from the Commands list box into the context menu.
4. If you wish to delete a command from the context menu, right-click that command in the context

menu, and click Delete. Alternatively, you can drag the command you want to delete out of the
context menu.

You can reset any context menu to its original installation state by selecting it in the Select Context Menu
combo box and then clicking the Reset button below the combo box.

Menu shadows
Click the Menu shadows check box to give all menus shadows.

1495

1495

1506 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.17.13.6 Macros

The Macros tab allows you to create application commands for macros that were created using XMLSpy's
Scripting Editor. These application commands (which run the macros associated with them) can subsequently
be made available in menus and toolbars, either from the Macros tab directly or by using the mechanisms
available in the Commands tab of the Customize dialog . As application commands, they can also be
assigned shortcuts in the Keyboard tab of the Customize dialog .

How macros work in XMLSpy
Macros in XMLSpy work as follows:

· Altova scripting projects (.asprj files) are created in XMLSpy's Scripting Editor . It is these scripting
projects that can contain the macros used in XMLSpy.

· Two scripting projects can be active at a time in XMLSpy: (i) An application scripting project, which is
specified in the Scripting section of the Options dialog , and (ii) The scripting project of the active
XMLSpy project , which is specified in the Script Settings dialog (Project | Script Settings).

· The macros in these two scripting projects are available in the application: in the Tools | Macros menu
(from where the macros can be run), and in the Macros tab of the Customize dialog (screenshot
below), in which they can be set as application commands. After a macro has been set as an
application command, the command can be placed in a menu and/or toolbar.

Creating an application command for a macro
In Scripting Editor (Tools | Scripting Editor) create the macro you wish and save it to a scripting
project. Specify this file to be either the application scripting project (via the Scripting section of the Options
dialog) or the active application project's scripting project (via the application project's Script Settings
dialog (Project | Script Settings)). The macros in the scripting project will now appear in the Macros
pane of the Macros tab (see screenshot below).

To create an application command for a macro, select the macro in the Macros pane, set the text of the
command in the Display Text text box, and click Add Command (see screenshot below). A command
associated with the selected macro will be added to the Associated Commands list box.

1495

1500

1574

1556

1009 1260 1260

1574 1574

1556

1260 1260

© 2018-2024 Altova GmbH

Tools Menu 1507Menu Commands

Altova XMLSpy 2024 Enterprise Edition

To edit the icon of an associated command, select the command and click Edit Icon. To delete an associated
command, click Remove.

Placing a macro-associated command in a menu or toolbar
There are two ways to place a macro-associated command in a menu or toolbar:

· Drag the command from the Associated Commands list box to the desired location in the menu or
toolbar.

· Use the mechanisms available in the Commands tab of the Customize dialog .

In either case, the command will be created at the desired location. Clicking on the command in the menu or
toolbar will execute the macro.

Note: If a macro has been set as an associated command, you can set a keyboard shortcut for it . In the
Keyboard tab of the Customize dialog , select Macros in the Category combo box, then select the
required macro, and set the shortcut. You must set a macro as an associated command in order for it
to be available to be created as a keyboard shortcut.

29.17.13.7 Plug-Ins

The Plug-Ins tab allows you to integrate plug-ins and to place commands, where these have been so
programmed, in an application menu and/or toolbar. In the Plug-In tab (screenshot below), click Add Plug-In,
and browse for the plug-in's DLL file (see 'Creating plug-ins' below). Click OK to add the plug-in. Multiple plug-
ins can be added.

1495

1500

1500

1508 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

After a plug-in has been added successfully, a description of the plug-in appears in the dialog and the Remove
Plug-In button becomes enabled. If the plug-in code creates toolbars and menus, these will be immediately
visible in the application interface. To remove a plug-in select it and click Remove Plug-In.

Creating plug-ins
Source code for sample plug-ins has been provided in the application's (My) Documents folder :
Examples\IDEPlugin folder. To build a plug-in from such source code, do the following:

1. Open the solution you want to build as a plug-in in Visual Studio.
2. Build the plug-in with the command in the Build menu.
3. The plug-in's DLL file will be created in the Bin or Debug folder. This DLL file is the file that must be

added as a plug-in (see above).

For more information about plug-ins, see the section IDE Plugins .

34

1601

© 2018-2024 Altova GmbH

Tools Menu 1509Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.13.8 Options

The Options tab allows you to define general environment settings.

Click the check boxes to toggle on the following options:

· Show ScreenTips on toolbar: Displays a popup when the mouse pointer is placed over an icon in any
toolbar. The popup contains a short description of the icon function, as well as the associated
keyboard shortcut, if one has been assigned and if the Show shortcut keys option has been checked .

· Show shortcut keys in Screen Tips: Defines whether shortcut information will be shown in screen tips.
· Large icons: Toggles the size of toolbar icons between standard and large.

29.17.13.9 Customize Context Menu

The Customize context menu (screenshot below) is the menu that appears when you have the Customize
dialog open and then right-click an application menu, a menu command, or a toolbar icon.

1510 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The following functionality is available:

· Reset to Default: Currently no function.
· Copy Button Image: Copies the icon you right-click to the clipboard.
· Delete: Deletes the selected menu, menu command, or toolbar icon. For information about how to

restore deleted items, see below.
· Button Appearance: Pops up the Button Appearance dialog (see screenshot below), in which you can

set properties that define the appearance of the selected toolbar icon. See the description below for
details.

· Image, Text, Image and Text: Mutually exclusive options that determine whether the selected toolbar
icon will be an icon only, text only, or both icon and text. You can select one of these options to make
the change. Alternatively, you can make this change in the Button Appearance dialog.

· Start Group: Inserts a vertical group-divider to the left of the selected toolbar icon. This makes the
selected toolbar icon the first of a group of icons.

The Button Appearance dialog
Right-click a toolbar icon and click Button Appearance to get the Button Appearance dialog (screenshot
below). Via this dialog you can edit the toolbar icon image, as well as its text. Currently only toolbar icons for
macros and from plug-ins can be edited using this dialog.

© 2018-2024 Altova GmbH

Tools Menu 1511Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The following editing functionality is available for the selected toolbar icon (the one that was right-clicked to get
the Customize context menu):

· Image only, Text only, Image and text: Select the desired radio button to specify what form the toolbar
icon will take.

· Image editing: When Image only or Image and text is selected, then the image editing options are
enabled. Click New to create a new image that will be added to the user-defined images in the images
pane. Select an image and click Edit to edit it.

1512 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Image selection: Select an image from the Images pane and click OK to use the selected image as
the toolbar icon.

· Text editing and selection: When Text only or Image and text is selected, then the Button Text text
box is enabled. Enter or edit the text and click OK to make this the text of the toolbar icon.

Note: The Button Appearance dialog can also be used to edit the text of menu commands. Right-click the
menu command (with the Customize dialog open), click Button Appearance, and then edit the menu
command text in the Button Text text box.

Restoring deleted menus, menu commands, and toolbar icons
If a menu, menu command, or toolbar icon has been deleted by using the Delete command in the Customize
context menu, these can be restored as follows:

· Menus: Go to Tools | Customize | Menu , and click the Reset button in the Application Frame
Menus pane. Alternatively, go to Tools | Customize | Toolbars , select Menu Bar, and click the
Reset button.

· Menu commands: Go to Tools | Customize | Commands , and drag the command from the
Commands list box into the menu.

· Toolbar icons: Go to Tools | Customize | Commands , and drag the command from the
Commands list box into the toolbar.

1504

1497

1495

1495

© 2018-2024 Altova GmbH

Tools Menu 1513Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.14 Restore Toolbars and Windows

The Restore Toolbars and Windows command closes down XMLSpy and re-starts it with the default
settings. Before it closes down a dialog pops up asking for confirmation about whether XMLSpy should be
closed (screenshot below).

This command is useful if you have been resizing, moving, or hiding toolbars or windows, and would now like to
have all the toolbars and windows as they originally were.

29.17.15 Options

The Tools | Options command enables you to define global application settings. These settings are organized
in sections (see left pane in screenshot below). For example, the File section (shown in the screenshot
below) contains options that specify how you want XMLSpy to open and save files. To specify options of a
particular section, select that section in the left pane and specify the property values you want. The OK button
saves changes to the registry and closes the dialog. The Apply button causes changes to be displayed in
currently open documents.

1514

1514 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Each section of the Options dialog is described in detail in its sub-section of this section.

29.17.15.1 File

The File section defines the way XMLSpy opens and saves documents. Related settings are in the Encoding
section .1519

© 2018-2024 Altova GmbH

Tools Menu 1515Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Automatic backup
Files that you are currently editing will be automatically backed up if this option is enabled. You can select a
backup frequency from between 5 seconds to 60 seconds in the combo box or enter a custom value up to 300
seconds. For more information, see the section Automatic Backup of Files .

Automatic reload of changed files
If you are working in a multi-user environment, or if you are working on files that are dynamically generated on a
server, you can watch for changes to files that are currently open in the interface. Each time XMLSpy detects a
change in an open document, it will prompt you about whether you want to reload the changed file.

Automatic Validation
If you are using DTDs or XML Schemas to define the structure of your XML documents, you can automatically
validate your instance documents in the following situations:

· On opening the file if the file has a size below a size you specify in MB
· On saving the file
· While editing the file. If this option is selected, validation will be carried out as you type in Text

View or Grid View . For more information, also see XML validation in Text View .

If the document is not valid, an error message will be displayed. If it is valid, no message will be displayed and
the operation will proceed without any notification.

Project
When you start XMLSpy, you can open the last-used project automatically.

137

139 168 334

1516 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Save File
When saving an XML document, XMLSpy includes a short comment <!-- Edited with XMLSpy
http://www.altova.com --> near the top of the file. This option can only be deactivated by licensed users,
and takes effect when editing or saving files in the Enhanced Grid or Schema Design View.

When saving a content model diagram (using the menu option Schema design | Generate Documentation),
XMLSpy includes the XMLSpy logo. This option can only be deactivated by licensed users.

If a StyleVision Power Stylesheet is associated with an XML file, the 'Authentic: save link to design file' option
will cause the link to the StyleVision Power Stylesheet to be saved with the XML file.

Line breaks
When you open a file, the character coding for line breaks in it are preserved if Preserve old is selected.
Alternatively, you can choose to code line breaks in any of three codings: CR&LF (for PC), CR (for MacOS), or
LF (for Unix).

Exit mode
These options determine how to handle files that are open when XMLSpy is exited. The following options are
available:

· Show save prompt for modified files: If an open file contains unsaved modifications, a prompt will
appear asking whether you want to save the file modifications. Depending on your response, the file is
saved or not saved, and the program is subsequently exited.

· Show save prompt for modified files. Open last files on the next launch: The Save dialog appears for
open files that contain unsaved modifications. The user can save one or more modified files or not.
When the program is relaunched after the exit, all the files that were open on exit will be opened on the
relaunch. (If modifications had not been saved, then they would be lost.)

· Do not save, but preserve modifications. Open last files with modifications applied on the next launch:
The program exits directly without saving unsaved modifications. On relaunch of the program, all files
that were open on exit will be opened on relaunch, and they will contain the unsaved modifications. It
would be as if you were continuing where you left off.

When you exit the program for the first time, the Exit Mode options are presented so that you can choose the
exit behavior you want. Thereafter, the options are available in the File section of the Options dialog.

Save and exit
After making the settings, click OK to finish.

29.17.15.2 File Types

The File Types section (screenshot below) allows you to customize the behavior of XMLSpy on a per-file-type
basis.

© 2018-2024 Altova GmbH

Tools Menu 1517Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Choose a file type from the File Types list box, and then customize the functions for that particular file type as
described below. Note that there are two special entries in the File Types list:

· <default> can be used to specify the treatment of files which have any extension that is not in the file-
type list.

· <none> can be used to specify the treatment of files that have no extension at all.

Windows Explorer settings
You can define the file type description and MIME-compliant content type used by Windows Explorer and
whether XMLSpy is to be the default editor for documents of this file type.

Conformance
XMLSpy provides specific intelligent editing features, as well as other features, for different file types. XMLSpy
sets the features for a particular file type on the basis of the conformance you set in this option. For example,
in the screenshot above, files with the .xqu file extension are set to be conformant to XQuery Update. XMLSpy

will therefore open .xqu files with XQuery Update editing support. XMLSpy lets you set the following

conformance options: XML, XQuery , ZIP , JSON , Avro , other formats. XML conformance is further
differentiated between XML, DTD, and XML Entity file types. JSON conformant files are differentiated according
to whether they are plain JSON or Avro Schema. The Avro conformant option invokes support for Avro binary

497 896 646 714

1518 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

files. A large number of file types are defined with a default conformance that is appropriate for the file type. We
recommend that you do not modify these settings unless you are adding a new file type or deliberately wish to
set a file type to another kind of conformance.

Default view
This group lets you define the default view to be used for each file type. If a particular conformance can be
viewed in one view only, then that view is selected by default and view selection is disabled. For example,
XQuery Update documents can only be viewed in Text View, so this view is selected by default and view
selection is disabled; similarly, Avro conformant documents (Avro binaries) can be viewed only in Grid View.

Grid View
This check box lets you define whether the Grid View should automatically build tables.

Text View
This check box lets you set syntax-coloring for particular file types.

Disable automatic validation
This option enables you to disable automatic validation per file type. Automatic validation typically takes place
when a file is opened or saved, or when a view is changed.

Use RaptorXML Server to validate on Open/Save
Specifies whether RaptorXML Server should be used to validate files of the selected file type when the file is
opened and saved. For this to work, a RaptorXML Server must be set up and configured .

Add new file extension
Adds a new file type to the File types list. You must then define the settings for this new file type using the
other options in this tab.

Delete selected file extension
Deletes the currently selected file type and all its associated settings.

Save and exit
After making the settings, click OK to finish.

1491

© 2018-2024 Altova GmbH

Tools Menu 1519Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.15.3 Encoding

The Encoding section specifies options for file encodings.

Default encoding for new XML files
The default encoding for new XML files can be set by selecting an option from the dropdown list. A new
document is created with an XML declaration containing the encoding value you specify here. If a two- or four-
byte encoding is selected as the default encoding (i.e. UTF-16, UCS-2, or UCS-4) you can also choose
between little-endian and big-endian byte-ordering.

The encoding of existing XML files will be retained and can only be changed with the File | Encoding
command.

Open XML files with unknown encoding as
If the encoding of an XML file cannot be determined or if the XML document has no encoding specification, the
file will be opened with the encoding you select in this combo box.

Open non-XML files in
Existing and new non-XML files are opened with the encoding you select in this combo box. You can change
the encoding of the document by using the File | Encoding command.

BOM (Byte Order Mark)
When a document with two-byte or four-byte character encoding is saved, the document can be saved either
with (i) little-endian byte-ordering and a little-endian BOM (Always create BOM if not UTF-8); or (ii) the detected
byte-ordering and the detected BOM (Preserve detected BOM on saving).

1204

1204

1520 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Save and exit
After making the settings, click OK to finish.

29.17.15.4 Editing

The Editing section enables you to specify editing behavior in XMLSpy.

Entry helpers
While editing documents, XMLSpy provides intelligent editing based on these settings. You can customize
various aspects of entry helper behavior in this pane, including the order in which items appear in the entry
helpers. The customization settings made here will be applied when relevant to the file type being edited. For
example, the option to load entry helpers on opening the file and sorting attributes will not be applicable to DTD
or XQuery documents.

Creating XML structure from XML Schema
When you create a new XML document that is bases on an XML Schema, the document will be generated with
a structure that is derived from the definitions in the schema. The settings described below determine some
ambiguous aspects related to teh creation of this structure.

© 2018-2024 Altova GmbH

Tools Menu 1521Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Auto-append mandatory children
Mandatory child elements of choice groups in the schema are auto-appended on the basis of the setting made
in this pane. You can select whether (i) the first branch (element) of the choice group, (ii) all branches, or (iii)
the branch with the smallest number of descendant elements is generated. Note that the All branches
selection could generate an invalid document since only one branch from a choice group is allowed.

Non-mandatory nodes and elements of an abstract type
To add non-mandatory elements or attributes, select the respective option. If these options are not selected,
then only mandatory nodes will be added. You can also (i) set element content of nillable elements to be non-
mandatory, and (ii) try to use a non-abstract type as the xsi:type of an element of an abstract type.

Text View
The Auto-complete option automatically adds unambiguous structural components. For example, when the
closing angular bracket of the start tag of an element is entered, then the end tag of that element is
automatically added if this option is enabled.

In Text View, Auto-completion and entry helpers can be disabled if a file is bigger than the size specified in the
Disable Auto-completion combo box. This is useful if you wish to speed up the editing of large files and can do
without the auto-completion feature and entry helpers. If the file size is bigger than that specified for this option,
then the Text View context menu contains a toggle command for switching on and off Auto-completion and
entry helper use. So you can always switch these editing aids on and off at any time during editing (in the event
of files having a size greater than the size specified for this option). If the value specified for this option is
smaller than the size of the opened file, locations indicated in error messages will not correctly correspond to
the location in Text View.

Save and exit
After making the settings, click OK to finish.

29.17.15.5 Pretty Printing

The Pretty Printing section (see screenshots below) enables you to specify how text is displayed in Text
View. The definitions in this section are grouped into the following categories:

· XML settings (select the XML tab)
· JSON settings (select the JSON tab)
· YAML settings (select the YAML tab)
· Text View Settings (click the button to access the settings dialog)

The Use indentation check box switches pretty-printing on/off. The Automatically pretty-print in Text View
check box can be selected to automatically apply pretty-printing when a document is loaded.

XML settings
The XML settings are in the XML tab and are described below the screenshot.

140

1522 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

When you select an option, its effect is displayed in the preview pane at the bottom of the dialog, which allows
you to see the effect before you confirm with OK. You can specify via the check box above the XML tab
whether to use the indentation specified in the Text View Settings dialog or whether to use no indentation at
all.

· How empty elements are written and displayed in the document: with one tag (Self-closing) or two tags
(End tag).

· Whether attributes are displayed inline (on the same line as its parent element) or not. Attributes are
displayed inline if Always is selected, or if Up to X attributes is selected and the number of attributes
does not exceed X. Attributes are shown on new lines if Never is selected or if Up to X attributes is
selected and the number of attributes does not exceeds X.

· How attribute values are written: (i) with spaces on either side of the equals sign or not; (ii) whether
values are enclosed in single quotes or double quotes; (iii) whether quotes in the source text are
preserved as entered by you, or whether they are overridden by other options (such as Single-quotes
Preferred); note that, if selected, Keep quotes is applied only as far as it is possible to do so without
invalidating the document.

1420

© 2018-2024 Altova GmbH

Tools Menu 1523Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· Whether to preserve or collapse whitespace. Whitespace characters are: space, tab, carriage return,
and line feed. See the section Whitespace for details.

· If elements in a document contain the xml:space="preseve" attribute-value pair, then you can

specify, with the Allow use of xml:space setting, how this attribute-value pair should be treated when
pretty-printing. The Always option specifies that the attribute's intention is to be followed during pretty-
printng of any document: whitespace in the respective elements will be preserved and these elements
will not be pretty-printed. The Never option causes the xml:space attribute to be ignored and the
respective elements to be pretty-printed. The Ask option causes XMLSpy to ask what should be done
every time a document containing xml:space="preseve" is pretty-printed.

· Set which elements will preserve whitespace.
· Whether the indentation specified in the Text View Settings dialog is used or whether no

indentation is used (specified via the check box above the pane).

JSON settings
The JSON settings are in the JSON tab and are described below the screenshot.

336

1420

1524 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For every option you select, the effect is shown immediately in the preview pane at the bottom of the dialog.
You can specify via the check box above the JSON tab whether to use the indentation specified in the Text
View Settings dialog or whether to use no indentation at all.

· Inline Array: Displays the items of an array in a single line (or inline). You can choose to (i) never apply
inline formatting, (ii) apply inline formatting to empty arrays only, (iii) apply inline formatting to arrays up
to a specific size. If the size of an array is greater than the size you select, then the items are each
displayed on a separate line.

· Inline Object: Displays the properties of an object in a single line (or inline). You can choose to (i)
never apply inline formatting, (ii) to apply inline formatting to empty objects, or (iii) apply inline
formatting to objects that have up to a specified number of properties. If the size of an object is greater
than the size you select, then the properties of the object are each displayed on a separate line.

· Inline Padding: If selected, adds space between the elements of non-empty inline arrays and non-
empty inline objects. The option is enabled only if either the non-empty Inline Array or non-empty Inline
Object option has been selected.

· Inline Padding Empty: If selected, adds space inside the delimiters of empty inline arrays and empty
inline objects. The option is enabled only if either an array or object is set to be inline (empty or non-
empty).

· Single Quoted Strings (JSON5): If selected, converts all quotes in JSON5 documents to single quotes.
· Unquoted Strings (JSON5): If selected, removes, in JSON5 documents, quotes from around all keys (of

key:value pairs).

YAML settings
The YAML settings are in the YAML tab and are described below the screenshot.

1420

© 2018-2024 Altova GmbH

Tools Menu 1525Menu Commands

Altova XMLSpy 2024 Enterprise Edition

For every option you select, the effect is shown immediately in the preview pane at the bottom of the dialog.
You can specify via the check box above the YAML tab whether to use the indentation specified in the Text
View Settings dialog or whether to use no indentation at all.

· Inline Sequence: Displays the items of a sequence in a single line (or inline) if the sequence either (i)
is empty or (ii) has up to the number of items you specify. Sequences with more items than the
number corresponding to the option you select will have each item on a separate line.

· Inline Mappings: Displays the mappings of an object in a single line (or inline) if the object either (i) is
empty or (ii) has up to the number of items you specify. Objects with more mappings than the number
corresponding to the option you select will have each mapping on a separate line.

· Inline Padding: If selected, adds space between the items of non-empty inline sequences and non-
empty inline mappings. The option is enabled only if either the non-empty Inline Sequence or non-
empty Inline Mapping option has been selected.

· Inline Padding Empty: If selected, adds space inside the delimiters of empty inline sequences and
empty inline mappings.

· Quoted Strings: If selected, adds quotes around all strings.
· Use Single Quotes: If selected, converts all quotes to single quotes.

1420

1526 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Text View settings
Click Text View Settings to open the Text View Settings dialog, where you can enable properties of Text View
such as indentation, bookmark margins, and auto-highlighting. The Text View Settings dialog can also be
accessed via the menu command View | Text View Settings . The dialog is described there.

Save and exit
After making the settings, click OK to finish.

29.17.15.6 Validation

The Validation section enables you to specify options for validating XML and JSON documents.

XML
XMLSpy can cache DTD and XML Schema files in memory to save unnecessary reloading (for example, when
the schema is not local but is accessed via a URL). Note, however, that if you use cached versions of
schemas, changes you make to your schema will not be immediately reflected when you validate; in this case,
you would need to reload the XML file or restart XMLSpy.

Schema Version
The XSD mode that is enabled in Schema View depends on both (i) the presence/absence—and, if present, the
value—of the /xs:schema/@vc:minVersion attribute of the XSD document, and (ii) the XML Schema Version
option selected in the File section of the Options dialog (Tools | Options, screenshot below).

1420

© 2018-2024 Altova GmbH

Tools Menu 1527Menu Commands

Altova XMLSpy 2024 Enterprise Edition

The following situations are possible. XML Schema Version in the table below refers to the selection in the XML
Schema Version pane shown above. The vc:minVersion values in the table refer to the value of the
xs:schema/@vc:minVersion attribute in the XML Schema document. For more details, see the section Editing
Views | Schema View | XSDMode .

XML Schema Version vc:minVersion attribute XSD mode

Always v1.0 Is absent, or is present with any value 1.0

Always v1.1 Is absent, or is present with any value 1.1

Value of @vc:minVersion Attribute has value of 1.1 1.1

Value of @vc:minVersion Attribute is absent, or attribute is
present with a value other than 1.1

1.0

Message limits
These options enable you to set separate limits for the number of errors, XBRL inconsistencies, and warnings
that are displayed. The default number for each category is 100. Change it to the number you want.

JSON
The following validation options are available for JSON document validation:

· Validate format: The format of string types in JSON instance documents is validated.
· Strict integer check: There are two JSON numeric types: number and integer. This option check that

integers are of an integer type (and not, for example, floating point numbers (for example, 7.0), or
signed (for example, +7), or strings (for example, "7").

Save and exit
After making the settings, click OK to finish.

215

686

1528 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.17.15.7 View

The View section enables you to customize the XML documents presentation in XMLSpy.

Program logo
You can turn off the splash screen on program startup to speed up the application. Also, if you have a
purchased license (as opposed to, say, a trial license), you will have the option of turning off the program logo,
copyright notice, and registration details when printing a document from XMLSpy.

Window title
The window title for each document window can contain either the file name only or the full path name.

© 2018-2024 Altova GmbH

Tools Menu 1529Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Text View settings
Click Text View Settings to open the Text View Settings dialog, where you can enable properties of Text View
such as indentation, bookmark margins, and auto-highlighting. The Text View Settings dialog can also be
accessed via the menu command View | Text View Settings . The dialog is described there.

Grid View settings
Click Grid View Settings to open the Grid View Settings dialog. The following options for Grid View can be
set:
Grid View settings are described below. Note that these settings apply to the Grid View of all documents (XML,
JSON, DTD).

1420

1530 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

© 2018-2024 Altova GmbH

Tools Menu 1531Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Display
The check boxes in the Display section are fairly self-explanatory. Given below are a few notes for clarification.

· If all cells are not expanded on loading, then the root node and all its descendants are collapsed. You
will need to expand each node as you go deeper into the document.

· If Convert XML entities to raw text on loading is selected, then XML entities will be loaded in Grid View
as the raw text of the respective entity; they will not be resolved to their respective glyph
representations.

· If Show inline previews is not checked, then, instead of a preview of the cell being shown, only the
index number of the element in the cell will be shown. If inline previews are enabled, then you can opt
to show a preview that contains (i) both element content and attributes, or (ii) attributes only. To opt for
the latter, check For attributes only; to opt for the former, uncheck For attributes only. Note that only
the first part of the inline content of a cell will be shown; you can hover over an element's start tag to
see all of its content.

· When optimal widths are switched on, the entire width of the grid is displayed. To achieve this, text in
some cells will wrap.

· When text overflows a cell, the overflow can be shown either as text that fades or be indicated by an
ellipsis.

· You can switch the display of whitespace in grid cells on or off. A space character is shown as a
vertically centered dot and a tabs is displayed as an arrow. An end-of-line is indicated with a new
linefeed inside the cell.

· Sibling nodes can be organized into sibling groups of 100, 1k, or 10k nodes (see screenshot below).
This is useful for two reasons: (i) saving space in the display and aiding navigation; (ii) avoiding a delay
in rendering that loading a large number of records would entail. At any time, one sibling group is
shown expanded. This group can be collapsed only by expanding another group. If you do not want to
group siblings, then select Unlimited.

Navigation
Basically, you can use the arrow keys to navigate the grid. These setting provide smart options for using the
keys.

· Expand on Right Arrow key: If a cell item is collapsed, then pressing the Right Arrow key expands the
item in the cell. If the cell item is not collapsed, the Right Arrow key takes you to the next cell on the
right (including to the child if the next cell on the right is a child). If the option is not selected, the Right
Arrow key stops at a collapsed cell. Note that the Expand on Right Arrow key feature does not apply to
cells within tables; in table cells, the action takes you to the next cell on the right.

· Collapse on Left Arrow key: When you move left with the Left Arrow key, then, at some points, you

1532 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

must also move up the document hierarchy. If this option is selected, then items that can be collapsed
will be collapsed when the Left Arrow key is pressed; otherwise such items will not be collapsed
although the focus will shift to the parent item. Note that the Collapse on Left Arrow key feature does
not apply to cells within tables; in table cells, the action takes you to the next cell on the left.

· Expand/Collapse on Spacebar: The spacebar functions as a toggle to expand/collapse an item. It can
therefore be used as an additional key for navigating the grid.

· Keep Column Position on Up/Down Arrow keys: The Up and Down Arrow keys take you, respectively,
up and down through cells of the grid, including through parent and children items—which are
hierarchically at different levels, and so in different columns. If this option is selected, levels that are
represented in columns other than the current column are skipped. This works, for example, like this.
Say the cursor is in the column for the element subject/course/books/book/title. With the Keep

Column Position option selected, you can use the Up and Down arrow keys to navigate only through
titles of books (without going into the book, books, course, or subject columns, or any columns for

descendant items of Title.)

Editing
The check boxes in the Display section are fairly self-explanatory. Given below are a few notes for clarification.

· When changing the type of multiple selected cells, you are given the following options about whether to
go ahead with the action of the setting: Always, Never, or Ask (for user decision).

· When changing a JSON type to from an atomic type to object or array, you are given the following
options about whether to go ahead with the action of the setting: (i) Ask (whether the value of the
atomic type should be retained as the value of an unnamed child key:value pair, or discarded), (ii)

Always (retain the value in an unnamed child key:value pair), (iii) Never (retain the value, that is,

discard the value).
· The Paste direction option determines whether a selection in the clipboard is pasted above or below

the selected cell.

Persistence
Formula expressions and formula results are always stored in the application metadata file for filters and
formulas. However, if the Persistence option is selected, then formulas can also be saved in the document
itself.

· In XML documents, formula expressions are stored as processing instructions and formula results are
stored as element content.

· In JSON5 and JSONC documents, formula expressions are stored as comments and formula results
are stored as JSON properties.

 The if possible terminology of the option refers to the fact that comments are allowed only in JSON5 and
JSONC documents—not in other JSON documents.

JSON Tables, XML Tables
If the setting to detect Grid View tables automatically on loading is selected, then you can select the minimum
percentage of filled table cells that qualify tables to be detected as tables. If the number of filled table cells
does not exceed this level, then the structure is displayed as a normal grid with the repeating elements listed
one below the other.

© 2018-2024 Altova GmbH

Tools Menu 1533Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Clipboard
You can also choose whether clipboard contents should be stored as tab-separated values (TSV), or as
XML/JSON (depending on the document type). This is a very useful feature: If you want to paste a table from
the clipboard to another document, this setting enables you to choose whether the copied table is stored as
TSV or with markup. (To see the difference, try pasting a table to a text editor after copying the table to the
clipboard in each of the formats.)

Schema view
An XML Schema datatype can be derived from another datatype. For example, a datatype for E-mail elements
can be derived from a base datatype of xs:string (for example, by restricting the xs:string datatype to a
specific set of characters). If the base datatype is subsequently changed, you can set the following options:

· Preserve content: If the definitions used to define the derived type can be used with the new base type,
checking this option will automatically preserve the definitions.

· Confirm on every modification: After changing the base type, a dialog (see screenshot below) will pop
up asking whether the old definitions should be preserved and used with the new base type.

Authentic View
XML files based on a StyleVision Power Stylesheet are automatically opened in Authentic View when this
option is active.

Browser View
You can choose to see the browser view in a separate window, enabling side-by-side placement of the edit and
browser views.

Browser engine
The browser engine that is used in Authentic View and Browser View is currently Internet Explorer (IE), and IE
is therefore the default browser engine for these two views. Alternatively, you can use Microsoft Edge Web
View 2 as the engine for Browser View. If Edge is not installed on your machine, go to the WebView2 download
page, from where you can install the Evergreen Bootstrapper. This will enable you to use Microsoft Edge
WebView2 as the engine for Browser View.

See the topic Browser View for more information.
316

https://developer.microsoft.com/en-us/microsoft-edge/webview2/#download-section
https://developer.microsoft.com/en-us/microsoft-edge/webview2/#download-section

1534 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Save and exit
After making the settings, click OK to finish.

29.17.15.8 Fonts and Colors

The Fonts and Colors section provides customization options for the appearance of text items in the various
views of XMLSpy.

Note: The Fonts and Colors options apply to the currently active theme. To modify fonts and colors in another
theme, make it the active theme before changing these options.

Options for the following views are available:

· Text View
· Grid View
· Schema Design View
· WSDL Design View
· XBRL Taxonomy View

In the left-hand pane of the dialog, select the view what you want to customize. The text item types that can be
formatted are displayed in the right-hand pane (screenshot above). Select the text item type that you want to
format, and then assign to it the desired formatting property values.

1535

1537

1539

1542

1543

© 2018-2024 Altova GmbH

Tools Menu 1535Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.15.8.1 Text View

The Text View section enables you to customize, for the currently active theme, the appearance of individual
text-item types in various types of documents (see screenshot below and list of documents in Document Types
section below). For example, you can specify different formatting for the display of element names and attribute
names in XML documents, or for the display of keywords and variables in XQuery documents.

Note: Formatting will be set for the currently active theme . To set the formatting of another theme, make
the other theme the active theme.

Document types
You can select a specific document type in the combo box at top left of the dialog and then define the
formatting of this document type's text items.

Text items of he following types of documents can be formatted:

· XML generic
· XQuery
· CSS
· JSON
· C-family
· Python

1562

1536 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Markdown
· YAML
· XULE
· Miscellaneous
· Output

How to customize
To customize individual text item types of a particular document type, do the following:

1. In the combo box at top left, select the type of document for which you wish to customize text. On
doing this, the text item types of that document type appear in the box below the combo box. (In the
screenshot above, XML generic has been selected as the document type.)

2. Select the text item type you wish to customize by clicking it. (In the screenshot above, Element
names has been selected.)

3. Set the font properties of the selected text item type by using the options in the panes on the right-
hand side. The Text View Background option enables the selection of a background color for the entire
Text View.

Note the following points:

· The same font face, size, and style are used for all text item types of a particular document type
(such as the XML generic document type). Within a document type, only the text color and
background color of individual text types can be changed. This enables the syntax coloring feature.

· In the Generic XML category, the Element names text type consists of three subtypes: (i) Element
names applies to element names that are not selected; (ii) Element names - match applies to those
element names that are selected (names in which the cursor is placed) and where the start tag name
matches the end tag name; (iii) Element names - match error applies to those element names that are
selected, but where the start tag name does not match the end tag name. Element names that are
being edited will therefore be highlighted with different background colors according to whether the start
tag names match the end tag names or not. These highlight colors can be changed by changing the
respective background colors. Highlighting is turned on by default, and can be turned off by deselecting
the Highlight elements option in the Text View Settings dialog.

· The settings in the XULE category apply: (i) to the XULE document in the main window, and (ii) to
XULE rules that are entered in the XULE window .

· In the Miscellaneous category: (i) Selection refers to the currently selected text content; inactive
selection refers to other occurrences in the document of the same text content; (ii) Find active marker
refers to the currently selected occurrence of a search result, whereas Find marker refers to other
(inactive) occurrences of the search result; (iii) Debug/Call marker refers to the currently selected step
in a debug session; (iv) Visible Whitespace refers to the whitespace markers in a document. The
whitespace in a document can be made visible by switching on whitespace markers . (v) Back-
mapping active refers to the currently selected content in the back-mapping document-trio (XML—

XSLT/XQuery—Result); Back-mapping inactive refers to back-mapped content in the other two

documents.

Set defaults
The Set Defaults button resets fonts to the original installation settings.

1420

877

1420

1333

© 2018-2024 Altova GmbH

Tools Menu 1537Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Save and exit
After making the settings, click OK to finish.

29.17.15.8.2 Grid View

The Grid View section (screenshot below) allows you to customize the appearance of text in the XML Grid
View , JSON Grid View and the Avro Grid View . The Cell Colors option (see screenshot) enables you
to set the colors of cells when grid components are displayed as tables. In the combo box, select the
document display for which you want to configure Grid View. Then select the text item type you want to format
and assign to it the desired formatting properties (listed below).

Note: Formatting will be set for the currently active theme . To set the formatting of another theme, make
the other theme the active theme.

XML Grid, JSON Grid, Avro Grid
You can set the following properties for the selected text item type:

· Font face and size: The selected font will also be used in printouts of Grid View. If you want to use the
same font face or size for all text item types, check the respective Use the same for all check box.

155 660 720

1562

1538 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Text style, text color, text background: Sets the style, color, and background of individual text item
types. The current settings are immediately reflected in the list in the left-hand pane, so you can
preview how the text item will look.

Cell Colors (of Table Displays in all Grids)
Table displays in all grids (XML, JSON, Avro) can be configured not only on the basis of their language-related
semantics (for example, an XML element can be formatted differently than an XML comment). You can also
format Grid View on the basis of cell function: for example, to differentiate between the selected/unselected
state of different table components. Such differentiation is best achieved by assigning different background
colors to each item (see screenshot below), but you can also use other/additional formatting properties for
different types of cell.

Settings for the following components are available:

· Table Header (unselected) and Table Header Selection: These refer to column and row headers. The
screenshot below shows headers unselected; its background color is as set in the dialog above. The
Header Selected color is activated when all headers are selected—not when an individual header is
selected. All headers can be selected by clicking the cell that intersects the column and row headers,
or by selecting the element created as the table—or any of its ancestors.

© 2018-2024 Altova GmbH

Tools Menu 1539Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· Missing Table Entry: Refers to non-existent elements or attributes in the document (see screenshot
below).

· Selection and Focus: Refers to the cells that are selected and the cells that have the focus. For
example, in the screenshot below, the entire Person table is selected, and the cell at bottom right has
the focus.

· Inactive Selection, Inactive Focus: If a block of cells has been selected and one or more cells in that
block has been made the focus, then both the selection and focus are active as long as Grid View is
active. If, however, some other dialog or window is made active without having removed the selection or
focus in Grid View, then the selection and focus in Grid View are inactive. If Grid View is made active
again, then the selection and focus become active again.

Note: In addition to the colors you define here, XMLSpy uses the regular selection and menu color
preferences set in the Display Settings in the Control Panel of your Windows installation.

Set Defaults
The Set Defaults button resets fonts to the original installation settings.

Save and exit
After making the settings, click OK to finish.

29.17.15.8.3 Schema Design View

The Schema Design View section enables you to customize the appearance of the Schema View display
of XML Schema and JSON Schema documents. Formatting will be set for the currently active theme .
To set the formatting of another theme, make the other theme the active theme.

213

439 652 1562

1540 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

How to customize
To customize individual text item types of the selected document type, do the following:

1. In the combo box at top left, select XML Schema or JSON Schema. The text item types of the
selected document type appear in the box below the combo box.

2. Select the text item type you wish to format by clicking it.
3. Set the font properties of the selected text item type by using the options in the panes on the right-

hand side.
Note:
The Doc.Schema Header(2) and Doc.Element Header(2) text item types refer, respectively, to the schema
header and to the element headers in the generated documentation of the schema . Compare the colors of
these properties in the dialog above with the colors of the schema header and element header of the generated
documentation in the screenshot below.

1306

© 2018-2024 Altova GmbH

Tools Menu 1541Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Set defaults
The Set Defaults button resets fonts to the original installation settings.

Save and exit
After making the settings, click OK to finish.

1542 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.17.15.8.4 WSDL Design View

The WSDL Design View section provides customization options for the appearance of text items in WSDL
View (see screenshot below). Formatting will be set for the currently active theme . To set the formatting
of another theme, make the other theme the active theme.

You can set the following properties for the selected text item type:

· Font face and size: The selected font will also be used in printouts of WSDL Design View. If you want
to use the same font face or size for all text item types, check the respective Use the same for all
check box.

· Text style, text color, text background: Sets the style, color, and background of individual text item
types. The current settings are immediately reflected in the list in the left-hand pane, so you can
preview how the text item will look.

Note:
The formatting of the WSDL header and service names in the generated documentation of the WSDL
document is taken from the formatting of, respectively, the Doc.Schema Header(2) and Doc.Element
Header(2) text item types of Schema Design View .

Set Defaults
The Set Defaults button resets fonts to the original installation settings.

Save and exit
After making the settings, click OK to finish.

290 1562

1431

1539

© 2018-2024 Altova GmbH

Tools Menu 1543Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.15.8.5 XBRL Taxonomy View

The XBRL Taxonomy View section provides customization options for the appearance of text items in XBRL
View (see screenshot below). Formatting will be set for the currently active theme . To set the formatting
of another theme, make the other theme the active theme.

You can set the following properties for the selected text item type:

· Font face and size: The selected font will also be used in printouts of XBRL Taxonomy View. If you
want to use the same font face or size for all text item types, check the respective Use the same for
all check box.

· Text style, text color, text background: Sets the style, color, and background of individual text item
types. The current settings are immediately reflected in the list in the left-hand pane, so you can
preview how the text item will look.

· The XBRL Table Preview options enable settings for components of XBRL tables, which can be viewed
as tables in the Table tab of XBRL View.

Set Defaults
The Set Defaults button resets fonts to the original installation settings.

302 1562

1544 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Save and exit
After making the settings, click OK to finish.

29.17.15.9 XSL

The XSL section (screenshot below) enables you to define options for XSLT transformations and XSL-FO
transformations carried out from within the application. You can choose a preferred XSLT engine for
transformations in XMLSpy. The relevant options for each engine are displayed in the Engine settings section
when you select an engine. The Output File settings and XSL-FO Transformation settings that are available are
the same for all engines. The screenshot below shows the settings when the built-in Altova RaptorXML XSLT
engine is used.

Engine settings
You can set up an XSLT processor to carry out XSLT transformations when the XSLT Transformation
command is invoked.

You can select one of the following XSLT engine options:

· Built-in RaptorXML XSLT engine
· Microsoft XML Parser (MSXML)
· External XSLT engine

Note: For XSLT debugging in XMLSpy, the built-in RaptorXML XSLT engine is always used—even if another
XSLT engine is selected here for transformations.

1327

© 2018-2024 Altova GmbH

Tools Menu 1545Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Altova RaptorXML XSLT Engine
XMLSpy contains the Altova RaptorXML XSLT 1.0, XSLT 2.0, and XSLT 3.0 engines, which you can use for
XSLT transformations. The appropriate XSLT engine (1.0, 2.0, or 3.0) is used (according to the value of the
version attribute of the xsl:stylesheet or xsl:transform element). This applies both for XSLT
transformations as well as for XSLT debugging using XMLSpy's XSLT/XQuery Debugger.

If you wish to validate the XML files used in transformations, select the Validate option (see screenshot above).

Microsoft XML Parser (MSXML)
One or more of the MSXML 3.0, 4.0, or 6.0 parsers will be pre-installed on your machine. If you know which
installed version you want to sue, you could select it. Otherwise, you should let XMLSpy select the version
automatically. (The Choose version automatically option is active by default.) In this case, XMLSpy tries to
select the most recent available version.

External XSLT engine
Choose an external XSLT processor of your choice by entering the path to its executable file.

You must specify the command line string that the external XSLT processor uses to run a transformation. You
can build the command line string with the following components:

%1 = XML document to process
%2 = Output file to generate
%3 = XSLT stylesheet to use (if the XML document does not contain a reference to a stylesheet)

For example, say you have a processor that uses the following command pattern to run an XSLT
transformation:

myxsltengine.exe -o <output.xml> <input.xml> <stylesheet.xslt> <param-name>=<param-

value>?

Then, in XMLSpy, build the command line using the corresponding variables in the correct locations.
For example:

1546 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

c:\MyEngine.exe -o %2 %1 %3 date=2023

XMLSpy will send the correct input files to the external engine for processing and return the output
file/s to an output location if one is specified and/or to an application window.

Check the respective check boxes to show the output and error messages of the external program in the
Messages Window of XMLSpy.

Note: The parameters set in XMLSpy's XSLT Input Parameters dialog are passed to the internal Altova
XSLT Engines only. They are not passed to any other XSLT Engine that is set up as the default XSLT
processor.

Output File settings
The following options are available:

· Default file extension: Sets a default file extension for output files, which can be overridden by the file
extension named in the XSLT element xsl:output (see last list item).

· Reuse output window: Causes subsequent transformations to display the result document in the same
output window. If the input XML file belongs to a project and Reuse output window option is disabled,
the setting only takes effect if the Save in folder output file path (screenshot below) in the relevant
project properties is also disabled.

· Use file extension of xsl:output element: Selects whether the file extension specified in the
xsl:output element of the XSLT stylesheet would override the default extension specified in the first

option of this list.

XSL-FO Transformation settings
FO documents are processed using an FO processor, and the path to the executable of the FO processor
must be specified in the text box for the XSL-FO transformation engine. The transformation is carried out using
the XSL/XQuery | XSL-FO Transformation menu command. If the source file (the active document when
the command is executed in the IDE) is an XSL-FO document, the FO processor is invoked for the
transformation. If the source document is an XML document, an XSLT transformation is required to first convert
the XML document to an XSL-FO document. This XSLT transformation can be carried out either by the XSLT
engine you have specified as the default engine for the application (see above), or by the XSLT engine that
might be built into the FO processor you have specified as the default FO processor for the application. To
select between these two options, click the appropriate radio button.

Note: Unless you deselected the option to install the FOP processor of the Apache XML Project, it will have
been installed in the folder C:\ProgramData\Altova\SharedBetweenVersions. If installed, the path to
it will have been entered automatically in the XSL-FO Engine input box. You can set the path to any
FO processor you wish to use. Note, however, that the same path will be used by other Altova
products that use FO processors and have settings to select the FO processor (StyleVision and
Authentic Desktop).

1329

1261

1328

1544

http://xmlgraphics.apache.org/fop/

© 2018-2024 Altova GmbH

Tools Menu 1547Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Save and exit
After making the settings, click OK to finish.

29.17.15.9.1 Speed Optimizer

The XSL: Speed Optimizer section (screenshot below) enables you to define options for XSL Speed
Optimizer .

A time threshold for single XSLT instructions in an XSLT stylesheet can be specified for the Optimizer. Values
range from 0.1% of total transformation time to 99% of total time. If an instruction takes more time to execute
than that specified as the threshold, then optimization analysis is invoked. Otherwise no analysis is carried out.
If optimization analysis is unsuccessful, the reason might be that the time threshold is too high. Consider
lowering it.

Save and exit
After making the settings, click OK to finish.

29.17.15.10 XQuery

The XQuery section (screenshot below) defines options related to the editing and execution of XQuery and
XQuery Update documents.

495

1548 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

General XQuery options
The following options are available:

· Serialization: Serialization refers to the way in which text is written to the output document. You can
choose the serialization method (adaptive*, HTML, JSON, text, XHTML, or XML) and serialization
encoding of the output for different types of input. Output serialization can be selected separately for
XML input and JSON input. (Note: The adaptive method enables an instance document to be
processed without error; It automatically determines the serialization method on the basis of the input
document.)

· Omit XML declaration: Omits the XML declaration in the serialized (output) document.
· Indent output: Indents the output document to show the document hierarchy.
· Always sk ip XML source: When an XQuery document is executed, XMLSpy can prompt for an XML

source on which to execute the XQuery document. The prompt is a dialog that enables you to browse
for the XML file. Select this option to skip this dialog and directly execute the XQuery document. If this
option is selected, then the XQuery document should be able to execute correctly without being
passed an XML document. This could be either because no XML document is required, or because
XML data is accessed via functions within the XQuery document.

· Validate XML files: Validates XML files that are used in the execution of XQuery documents. Invalid
XML files are flagged, and the XQuery document is not processed.

· DB2 row retrieval: In displays that show DB data, you can specify the maximum number of rows to be
retrieved. XMLSpy recognizes .xqr file extensions as XQuery-for-DB files.1516

© 2018-2024 Altova GmbH

Tools Menu 1549Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· XQuery default version: Specifies the XQuery engine version to use for execution of XQuery documents
that do not have a version keyword. This applies to both XQuery and XQuery Update documents, and
selects the default XQUery Engine to use.

XQuery Update options
The following XQuery Update options are available:

· Updating: When an XQuery Update file is executed, target XML files can either be updated directly on
disk, or be opened in XMLSpy and updated in memory. The Open Files on Updating option enables
you to review the updates and save the file to disk or reject the updates (by closing the file without
saving).

· Preserve original formatting: Preserves the original formatting of the updated document as much as
possible.

Save and exit
After making the settings, click OK to finish.

29.17.15.11 Java

In the Java section (see screenshot below), you can optionally enter the path to a Java VM (Virtual Machine)
on your file system. Note that adding a custom Java VM path is not always necessary. By default, XMLSpy
attempts to detect the Java VM path automatically by reading (in this order) the Windows registry and the
JAVA_HOME environment variable. The custom path added in this dialog box will take priority over any other
Java VM path detected automatically.

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which does
not have an installer and does not create registry entries (e.g., Oracle's OpenJDK). You might also want to set
this path if you need to override, for whatever reason, any Java VM path detected automatically by XMLSpy.

Note the following:

1550 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The Java VM path is shared between Altova desktop (not server) applications. Consequently, if you
change it in one application, it will automatically apply to all other Altova applications.

· The path must point to the jvm.dll file from the \bin\server or \bin\client directory, relative to the

directory where the JDK was installed.
· The XMLSpy platform (32-bit, 64-bit) must be the same as that of the JDK.
· After changing the Java VM path, you may need to restart XMLSpy for the new settings to take effect.

Changing the Java VM path affects the following areas:

· JDBC connectivity
· Java extension functions for XSLT/XPath

29.17.15.12 XBRL

The XBRL section provides options for the validation and processing of XBRL and XULE instance documents,
inline XBRL, and the adding and managing of XBRL taxonomy packages .

XBRL validation
On the top-level tab of the XBRL options (screenshot above), you can specify the following validation options:

1552

© 2018-2024 Altova GmbH

Tools Menu 1551Menu Commands

Altova XMLSpy 2024 Enterprise Edition

· Conformance: Implementation of checks for conformance with Dimensions 1.0 and Units Registry 1.0.
There are also options (i) to report as warnings the invalid use of standard roles and (ii) whether
additional EBA-related filing should be used; the options are no additional rules, additional EBA,
EIOPA, or SRB rules, or to auto-detect which set of additional rules the XBRL document uses.

· Duplicate Facts: Reports of duplicates. For more information about how duplicates are classified, see
the Handling Duplicate Facts in XBRL and Inline XBRL 1.0 specification.

· Preload additional schemas: Whether to preload the standard schemas for formulas and/or tables.

29.17.15.12.1 Calculations

The Calculations tab (screenshot below) offers options about how to report calculations.

You can select the following options for reporting calculations:

· When reporting summation-item inconsistencies, select which Calculations specification (1.0 and/or
1.1) to use for determining inconsistencies.

· If you want to check inconsistencies against the Calculations 1.1 specification, select whether
rounding to nearest or truncated is to be considered as consistent.

· Choose whether unsatisfied assertions should be reported or not.
· Consistent duplicates are numeric facts (numbers) that have the same value after rounding as a

number with a lower precision. For example, 3.811 and 3.83 are consistent duplicates of 3.8. You can
choose whether to ignore consistent duplicates in reports.

29.17.15.12.2 Inline XBRL

The Inline XBRL tab (screenshot below) offers options for the normalization of whitespace (space characters,
tabs, line feeds, and carriage returns) in Inline XBRL.

http://www.xbrl.org/WGN/xbrl-duplicates/WGN-2018-04-19/xbrl-duplicates-WGN-2018-04-19.html

1552 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The options are as follows:

· If Extended whitespace normalization is selected, then non-breaking spaces are also considered to be
whitespace.

· Preserve leaves whitespace unchanged.
· Trim removes whitespace on both sides of strings.
· Replace all occurrences of tab, linefeed, and carriage return are replaced by a space.
· Collapse is an extension of Replace in that a replace is carried out, and then all contiguous spaces are

collapsed to a single space.
· Perform ESEF Reporting Manual checks: Enables checks for conformance with the ESEF Reporting

Manual when an Inline XBRL document is validated. For more information about ESEF, see the
European Single Electronic Format (ESEF) web page.

29.17.15.12.3 Taxonomy Packages

An XBRL Taxonomy Package is a zipped archive that contains an offline copy of a taxonomy. The package
contains a catalog XML file that maps URIs to the taxonomy's file locations, and so makes the taxonomy
available offline to applications. The rules that specify how taxonomy packages are to be structured and built
are laid out in the Taxonomy Packages Recommendation of XBRL.org.

After you have downloaded a taxonomy package, you can set up XMLSpy to automatically identify and use the
entry point catalog file of the package. Do this by adding the package to the list of active taxonomy packages.
The catalog files of active packages will then be used to locate resources for operations such as XBRL
validation. There are two types of Taxonomy Packages that you can add:

· Standard packages, which can easily and conveniently be managed for all Altova products by using
Altova's XBRL Taxonomy Manager (description here).

· Custom packages, which you add and manage via this dialog.

Note: A resource pointed to by an active package's catalog file will be used for all XMLSpy operations that
require that resource. If such a resource is different in some way than the resource that was previously
used by XMLSpy, then errors might result when operations are run. For more information, see the
caution at the bottom of this topic.

774 774

https://www.esma.europa.eu/sites/default/files/library/esma32-60-254_esef_reporting_manual.pdf
https://www.esma.europa.eu/sites/default/files/library/esma32-60-254_esef_reporting_manual.pdf
https://www.esma.europa.eu/policy-activities/corporate-disclosure/european-single-electronic-format
https://www.xbrl.org/Specification/taxonomy-package/REC-2016-04-19/taxonomy-package-REC-2016-04-19.html

© 2018-2024 Altova GmbH

Tools Menu 1553Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Adding and managing taxonomy packages
Select Tools | Options | Taxonomy Packages to display the Taxonomy Packages pane (screenshot below).

To add a standard taxonomy package, click XBRL Taxonomy Manager. For instructions about how to use
Altova's XBRL Taxonomy Manager , see its description here .

To add a custom package, follow the steps below.

1. Click Edit (see screenshot above) to display the XBRL Taxonomy Packages dialog (screenshot
below).

774 774

1554 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Click Add Taxonomy, then browse to the location of the taxonomy package, select it, and click
Open. (You can also select multiple packages to add at one time.) The package will be added to the
taxonomy package list in the dialog. The list is displayed as a tree of two levels. The first level
indicates the taxonomy; the second level shows the packages of that taxonomy. The check box to the
left of a taxonomy entry indicates whether that taxonomy is active or not. A newly added taxonomy will
be active by default.

3. Click OK to finish. The newly added packages will be displayed in the Taxonomy Packages pane of
the Options dialog (first screenshot above).

Note the following points:

· If you wish to add an additional package to a taxonomy, do this: Select the taxonomy in the XBRL
Taxonomy Packages dialog (screenshot above), then add the additional package/s via the Add
Packages button. The added package/s will be displayed at the second level of that taxonomy.

· When a taxonomy package is selected in the list in the upper pane of the XBRL Taxonomy Packages
dialog, its details (including its offline location) are displayed in the dialog's lower pane (see screenshot
above).

· To deactivate a taxonomy, uncheck its check box. If you deactivate a taxonomy, its catalog file/s will
not be used. Deactivation is useful if, say, you wish to switch between two versions of a taxonomy.

· You can remove a package by selecting it and clicking Remove.
· The following Altova applications support Taxonomy Package Registration: XMLSpy, MapForce, and

StyleVision. The taxonomy package list is common to all these applications. If you edit the list in one
application, then the modified list will be displayed in the other applications as well. If you edit the
package list in one application, and another application is open at the same time, then the other
application will display an alert asking whether you wish to reload the package list to reflect the
modification.

© 2018-2024 Altova GmbH

Tools Menu 1555Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Caution: Package catalogs might redirect to incompatible resources
A resource pointed to by an active package's catalog file/s will be used for all XMLSpy operations that
require that resource. An example of such a resource would be XML Schema, which is used for for both
XML validation as well as XBRL validation. If the offline resource located by the package's catalog file is
incompatible with your existing environment, then errors might result. In this case, deactivate the taxonomy
package and contact the creators of the package with the error information.

29.17.15.12.4 XULE

The XBRL XULE tab (screenshot below) offers options for XULE processing.

· Ignore Duplicate Facts: A duplicate fact occurs—most commonly in Inline XBRL—when the same fact
is noted more than once in the HTML code. This option specifies that the duplicated fact is output only
once.

· Output: When a XULE document is processed with the XBRL | Execute XULE command, the output
can be generated to: (i) the Messages window, or (ii) a new document that is displayed in XMLSpy and
stored temporarily in memory; this document can be stored to file with the File | Save As
command.

29.17.15.12.5 Report Packages

An XBRL Report Package is a single ZIP file that contains an XBRL or iXBRL report together with its supporting
documents. The options for report packages enable you to set the following:

· Report or Package: When a report package is opened, the option of whether to open the report file or
the package file can be taken at the application level (by choosing Always or Never) or at the document
level (Ask). In the latter case, each time a report package is opened, you will be asked whether to
open the report file or the package file.

· Exclude ZIP files from check: A report package file can have one of the following
extensions: .xbri, .xbr, .zip. Since the .zip format is also used for ZIP files other than report

1205

1556 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

packages, you can save processing time by not checking .zip files. It is a useful option if your report

packages are going to be only .xbri or .xbr files.

For more information about report packages see the XBRL specification Report Package 1.0.

29.17.15.13 Scripting

The Scripting section (screenshot below) allows you to enable the Scripting Environment on application
startup. Check the Activate Scripting check box to do this. You can then specify the Global Scripting Project
file (see screenshot below).

To set a global scripting project for XMLSpy, check the Activate Scripting check box and then browse for the
Altova Scripting Project (.asprj) file you want. You can also specify: (i) whether Auto-Macros in the scripting
project should be automatically executed when XMLSpy starts, and (ii) whether application event handler
scripts in the project should be automatically executed or not; check or uncheck the respective check boxes
accordingly.

Save and exit
After making the settings, click OK to finish. Macros in the Global Scripting Project will then be displayed in
the submenu of the Macros command.

29.17.15.14 Source Control

The Source Control section (screenshot below) enables you to specify the source control provider, and the
settings and default logon ID for each source control provider.

1470

https://www.xbrl.org/Specification/report-package/REC-2023-09-22/report-package-REC-2023-09-22.html

© 2018-2024 Altova GmbH

Tools Menu 1557Menu Commands

Altova XMLSpy 2024 Enterprise Edition

Source Control Plugin
The current source control plugin can be selected from among the currently installed source control systems.
These systems are listed in the dropdown list of the combo box. After selecting the required source control,
specify the login ID for it in the next text box. The Advanced button pops up a dialog specific to the selected
source control plugin, in which you can define settings for that source control plugin. These settings are
different for different source control plugins.

User preferences
A range of user preferences is available, including the following:

· Status updates can be performed in the background after a user-defined interval of time, or they can be
switched off entirely. Very large source control databases could consume considerable CPU and
network resources. The system can be speeded up, however, by disabling background status updates
or increasing the interval between them..

· When opening and closing projects, files can be automatically checked out and checked in,
respectively.

· The display of the Check Out and Check In dialogs can be suppressed.
· The Reset button is enabled if you have checked/activated the Don't show this again option in one of

the dialog boxes. On clicking the Reset button, the Don't show this again prompt is re-enabled.

Save and exit
After making the settings, click OK to finish.

1558 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.17.15.15 Network

The Network section (screenshot below) enables you to configure important network settings.

IP addresses
When host names resolve to more than one address in mixed IPv4/IPv6 networks, selecting this option causes
the IPv6 addresses to be used. If the option is not selected in such environments and IPv4 addresses are
available, then IPv4 addresses are used.

Timeout
· Transfer timeout: If this limit is reached for the transfer of any two consecutive data packages of a

transfer (sent or received), then the entire transfer is aborted. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 40 seconds. If the option is not selected, then there is no time
limit for aborting a transfer.

· Connection phase timeout: This is the time limit within which the connection has to be established,
including the time taken for security handshakes. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 300 seconds. This timeout cannot be disabled.

Certificate
· Verify TLS/SSL server certificate: If selected, then the authenticity of the server's certificate is checked

by verifying the chain of digital signatures until a trusted root certificate is reached. This option is
enabled by default. If this option is not selected, then the communication is insecure, and attacks (for
example, a man-in-the-middle attack) would not be detected. Note that this option does not verify that
the certificate is actually for the server that is communicated with. To enable full security, both the
certificate and the identity must be checked (see next option).

· Verify TLS/SSL server identity: If selected, then the server's certificate is verified to belong to the server
we intend to communicate with. This is done by checking that the server name in the URL is the same
as the name in the certificate. This option is enabled by default. If this option is not selected, then the
server's identify is not checked. Note that this option does not enable verification of the server's
certificate. To enable full security, both the certificate as well as the identity must be checked (see

© 2018-2024 Altova GmbH

Tools Menu 1559Menu Commands

Altova XMLSpy 2024 Enterprise Edition

previous option).

Save and exit
After making the settings, click OK to finish.

29.17.15.16 Network Proxy

The Network Proxy section enables you to configure custom proxy settings. These settings affect how the
application connects to the Internet (for XML validation purposes, for example). By default, the application uses
the system's proxy settings, so you should not need to change the proxy settings in most cases. If necessary,
however, you can set an alternative network proxy by selecting, in the Proxy Configuration combo box, either
Automatic or Manual to configure the settings accordingly.

Note: The network proxy settings are shared among all Altova MissionKit applications. So, if you change the
settings in one application, all MissionKit applications will be affected.

Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries the settings
configured with netsh.exe winhttp.

Automatic proxy configuration
The following options are provided:

· Auto-detect settings: Looks up a WPAD script (http://wpad.LOCALDOMAIN/wpad.dat) via DHCP or

DNS, and uses this script for proxy setup.
· Script URL: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be used for

proxy setup.
· Reload: Resets and reloads the current auto-proxy-configuration. This action requires Windows 8 or

newer, and may need up to 30s to take effect.

Manual proxy configuration
Manually specify the fully qualified host name and port for the proxies of the respective protocols. A supported

1560 Menu Commands Tools Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

scheme may be included in the host name (for example: http://hostname). It is not required that the scheme

is the same as the respective protocol if the proxy supports the scheme.

The following options are provided:

· HTTP Proxy: Uses the specified host name and port for the HTTP protocol. If Use this proxy server for
all protocols is selected, then the specified HTTP proxy is used for all protocols.

· SSL Proxy: Uses the specified host name and port for the SSL protocol.
· No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names, or IP

addresses for hosts that should be used without a proxy. IP addresses may not be truncated and IPv6
addresses have to be enclosed by square brackets (for example:
[2606:2800:220:1:248:1893:25c8:1946]). Domain names must start with a leading dot (for

example: .example.com).

· Do not use the proxy server for local addresses: If checked, adds <local> to the No Proxy for list. If

this option is selected, then the following will not use the proxy: (i) 127.0.0.1, (ii) [::1], (iii) all host

names not containing a dot character (.).

Current proxy settings
Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the right of the
Test URL field (for example, when changing the test URL, or when the proxy settings have been changed).

· Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/O is done
with this URL. This field must not be empty if proxy-auto-configuration is used (either through Use
system proxy settings or Authomatic proxy configuration).

© 2018-2024 Altova GmbH

Tools Menu 1561Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.17.15.17 AI-Assistant

Enter your OpenAI API key in the AI-Assistant options section. This enables you to use XMLSpy's AI-Assistant
(accessible via the Window menu) directly—that is, without having to enter your OpenAI API key each time you
open the assistant or make an OpenAI request.

In order to create an OpenAI API key, you will need to first open an OpenAI account and then generate the key.
Instructions for how to do this are given in the Options dialog.

29.17.15.18 Help

XMLSpy provides Help (the user manual) in two formats:

· Online Help, in HTML format, which is available at the Altova website. In order to access the Online
Help you will need Internet access.

· A Help file in PDF format, which is installed on your machine when you install XMLSpy. It is named
XMLSpy.pdf and is located in the application folder (in the Program Files folder). If you do not have

Internet access, you can always open this locally saved Help fie.

The Help option (screenshot below) enables you to select which of the two formats is opened when you click
the Help (F1) command in the Help menu.

You can change this option at any time for the new selection to take effect. The links in this section (see
screenshot above) open the respective Help format.

1562 Menu Commands Window Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

29.18 Window Menu

The Window menu contains commands that let you organize individual application and document windows
within the GUI. You can cascade or tile open document windows, and you can arrange entry helper and output
windows as well as hide them.

Cascade, Tile Horizontally/Vertically
The Cascade command arranges document windows so that they are staggered in a sequence from back to
forward.

The Tile Horizontally and Tile Vertically arranges the windows of open and non-minimized documents so
that they are re-sized as tiles that are all visible within the application window.

Project Window, Info Window, Entry Helpers, Output Windows
These commands switch the display of, respectively, the Project Window , Info Window , Entry
Helpers , and Output Windows on or off.

Each of these windows is a dockable window. Dragging on the window's title bar detaches it from its current
position and makes it a floating window. Click right on the title bar, to allow docking or hide the window.

AI-Assistant
The AI-Assistant command opens the AI-Assistant dialog, in which you can ask for assistance from ChatGPT

116 118

118 119

© 2018-2024 Altova GmbH

Window Menu 1563Menu Commands

Altova XMLSpy 2024 Enterprise Edition

for your work in XMLSpy. Note that, in order to use the AI-Assistant, you must create an OpenAI account,
generate an OpenAI API key, and register the key in XMLSpy in the AI-Assistant section of XMLSpy's Options
dialog.

The AI-Assistant works as follows:

· Type your request in the input field at the bottom of the dialog and click Send. (Alternatively, you can
select a sample request in the combo box. This request will be entered in the input field, where you
can modify it before sending.)

· The response from ChatGPT will be displayed in the dialog's main pane.
· You can send additional requests, and these, followed by the respective responses from ChatGPT, will

be appended to the chat history in the main pane.
· You can start an additional chat by clicking the + icon to the right of the chat tab/s at the top of the

main pane. The new chat will be opened in its own tab.
· You can copy a response (by clicking it in its tab) or a part of a response (by selecting the part you

want) either to the clipboard or to a new file. Click the respective command icon (Copy to clipboard or
Create new file) in the toolbar of the dialog. You can also use regular Windows command shortcuts,
such as Ctrl+C to copy to clipboard. You can also copy a selection to the XPath/XQuery Window by
clicking the corresponding toolbar command icon.

· To close a chat, click the X icon in the chat's tab header.

Project and Entry Helpers
This command toggles on and off the display of the Project Window and the Entry Helpers together. It
saves you the trouble of switching on/off the display of these windows individually.

All On/Off
This command lets you switch all dockable windows (listed below) on or off.

· Project Window
· Info Window
· Entry Helpers
· Output Windows

This is useful if you want to hide all non-document windows quickly, to get the maximum viewing area for the
document/s you are working on.

Themes
XMLSpy offers you a choice of the three themes listed below. When you select a theme, it is applied
immediately.

· Classic (the default)
· Light
· Dark

For the currently active theme, you can customize the formatting of a document type's individual text
components. Do this in the Fonts and Colors tabs of the Options dialog (Tools | Options).

Currently open window list
This list shows all currently open windows, and lets you quickly switch between them.

116 118

116

118

118

119

1534 1513

1564 Menu Commands Window Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You can also use CTRL+F6 keyboard shortcuts to cycle through the open windows.

© 2018-2024 Altova GmbH

Help Menu 1565Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.19 Help Menu

The Help menu contains commands required to get help or more information about XMLSpy, as well as links to
information and support pages on the Altova web server.

The Help menu also contains the Registration dialog , which lets you enter your license key-code once you
have purchased the product.

29.19.1 Help

The Help (F1) command opens the application's Help documentation (its user manual). By default, the Online
Help in HTML format at the Altova website will be opened.

If you do not have Internet access or do not want, for some other reason, to access the Online Help, you can
use the locally stored version of the user manual. The local version is a PDF file named XMLSpy.pdf that is

stored in the application folder (in the Program Files folder).

If you want to change the default format to open (Online Help or local PDF), do this in the Help section of the
Options dialog (menu command Tools | Options).

29.19.2 Keyboard Map

The Help | Keyboard Map command causes an information box to be displayed that contains a menu-by-
menu listing of all commands in XMLSpy. Menu commands are listed with a description and shortcut
keystrokes for the command.

1566

1566 Menu Commands Help Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To view commands in a particular menu, select the menu name in the Category combo box. You can print the
command by clicking the printer icon.

You should note the following points about shortcuts:

· Certain commands (and their shortcuts) are applicable only within a certain view. For example, most of
the commands in the XML menu are applicable only in Grid View. Other commands (such as File |
Save or XML | Check Well-Formedness) are available in multiple views.

· Other cool shortcuts: For example, Shift+F10 brings up the context menu in Text View and Schema
View; Ctrl+E when the cursor is inside an element start or end tag in Text View moves the cursor to
the end or start tag, respectively.

· In the Keyboard tab of the Customize dialog, you can also set your own shortcuts for various menu
commands.

29.19.3 Activation, Order Form, Registration, Updates

Software Activation

License your product
After you download your Altova product software, you can license—or activate—it using either a free
evaluation key or a purchased permanent license key.

· Free evaluation license. When you first start the software after downloading and installing it, the
Software Activation dialog will pop up. In it is a button to request a free evaluation license. Click

1500

© 2018-2024 Altova GmbH

Help Menu 1567Menu Commands

Altova XMLSpy 2024 Enterprise Edition

it to get your license. When you click this button, your machine-ID will be hashed and sent to
Altova via HTTPS. The license information will be sent back to the machine via an HTTP response.
If the license is created successfully, a dialog to this effect will appear in your Altova application.
On clicking OK in this dialog, the software will be activated for a period of 30 days on this
particular machine.

· Permanent license key. The Software Activation dialog allows you to purchase a permanent
license key. Clicking this button takes you to Altova's online shop, where you can purchase a
permanent license key for your product. Your license will be sent to you by e-mail in the form of a
license file, which contains your license-data.

There are three types of permanent license: installed, concurrent user, and named user. An
installed license unlocks the software on a single computer. If you buy an installed license for N
computers, then the license allows use of the software on up to N computers. A concurrent-user
license for N concurrent users allows N users to run the software concurrently. (The software may
be installed on 10N computers.) A named-user license authorizes a specific user to use the
software on up to 5 different computers. To activate your software, click Upload a New License,
and, in the dialog that appears, enter the path to the license file, and click OK.

Note: For multi-user licenses, each user will be prompted to enter his or her own name.

Your license email and the different ways to license (activate) your Altova product
The license email that you receive from Altova will contain your license file as an attachment.
The license file has a .altova_licenses file extension.

To activate your Altova product, you can do one of the following:

· Save the license file (.altova_licenses) to a suitable location, double-click the

license file, enter any requested details in the dialog that appears, and finish by
clicking Apply Keys.

· Save the license file (.altova_licenses) to a suitable location. In your Altova

product, select the menu command Help | Software Activation, and then Upload a
New License. Browse for or enter the path to the license file, and click OK.

· Save the license file (.altova_licenses) to any suitable location, and upload it from

this location to the license pool of your Altova LicenseServer. You can then either: (i)
acquire the license from your Altova product via the product's Software Activation
dialog (see below) or (ii) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the rest of this topic.

You can access the Software Activation dialog (screenshot below) at any time by clicking the Help |
Software Activation command.

Activate your software
You can activate the software by registering the license in the Software Activation dialog or by licensing via
Altova LicenseServer (see details below).

· Registering the license in the Software Activation dialog. In the dialog, click Upload a New
License and browse for the license file. Click OK to confirm the path to the license file and to
confirm any data you entered (your name in the case of multi-user licenses). Finish by clicking

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

1568 Menu Commands Help Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Save.

· Licensing via Altova LicenseServer on your network : To acquire a license via an Altova
LicenseServer on your network, click Use Altova LicenseServer, located at the bottom of the
Software Activation dialog. Select the machine on which the LicenseServer you want to use has
been installed. Note that the auto-discovery of License Servers works by means of a broadcast
sent out on the LAN. As these broadcasts are limited to a subnet, License Server must be on the
same subnet as the client machine for auto-discovery to work. If auto-discovery does not work,
then type in the name of the server. The Altova LicenseServer must have a license for your Altova
product in its license pool. If a license is available in the LicenseServer pool, this is indicated in
the Software Activation dialog (see screenshot below showing the dialog in Altova XMLSpy).
Click Save to acquire the license.

After a machine-specific (aka installed) license has been acquired from LicenseServer, it cannot
be returned to LicenseServer for a period of seven days. After that time, you can return the
machine license to LicenseServer (click Return License) so that this license can be acquired
from LicenseServer by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time via the administrator's Web UI of LicenseServer.) Note that the
returning of licenses applies only to machine-specific licenses, not to concurrent licenses.

Check out license
You can check out a license from the license pool for a period of up to 30 days so that the license
is stored on the product machine. This enables you to work offline, which is useful, for example, if
you wish to work in an environment where there is no access to your Altova LicenseServer (such
as when your Altova product is installed on a laptop and you are traveling). While the license is
checked out, LicenseServer displays the license as being in use, and the license cannot be used
by any other machine. The license automatically reverts to the checked-in state when the check-
out period ends. Alternatively, a checked-out license can be checked in at any time via the Check

© 2018-2024 Altova GmbH

Help Menu 1569Menu Commands

Altova XMLSpy 2024 Enterprise Edition

in button of the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog, click Check out
License (see screenshot above); (ii) In the License Check-out dialog that appears, select the
check-out period you want and click Check out. The license will be checked out. After checking
out a license, two things happen: (i) The Software Activation dialog will display the check-out
information, including the time when the check-out period ends; (ii) The Check out License
button in the dialog changes to a Check In button. You can check the license in again at any
time by clicking Check In. Because the license automatically reverts to the checked-in status
after the check-out period elapses, make sure that the check-out period you select adequately
covers the period during which you will be working offline.

If the license being checked out is a Installed User license or Concurrent User license, then the
license is checked out to the machine and is available to the user who checked out the license. If
the license being checked out is a Named User license, then the license is checked out to the
Windows account of the named user. License check-out will work for virtual machines, but not for
virtual desktop (in a VDI). Note that, when a Named User license is checked out, the data to
identify that license check-out is stored in the user's profile. For license check-out to work, the
user's profile must be stored on the local machine that will be used for offline work. If the user's
profile is stored at a non-local location (such as a file-share), then the checkout will be reported as
invalid when the user tries to start the Altova application.

License check-ins must be to the same major version of the Altova product from which the license
was checked out. So make sure to check in a license before you upgrade your Altova product to
the next major version.

Note: For license check-outs to be possible, the check-out functionality must be enabled on
LicenseServer. If this functionality has not been enabled, you will get an error message to this
effect when you try to check out. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the data that you will
need to provide when requesting support via the online support form.

Altova LicenseServer provides IT administrators with a real-time overview of all Altova licenses on a
network, together with the details of each license as well as client assignments and client usage of
licenses. The advantage of using LicenseServer therefore lies in administrative features it offers for large-
volume Altova license management. Altova LicenseServer is available free of cost from the Altova website.
For more information about Altova LicenseServer and licensing via Altova LicenseServer, see the Altova
LicenseServer documentation.

Order Form

When you are ready to order a licensed version of the software product, you can use either the Purchase
a Permanent License Key button in the Software Activation dialog (see previous section) or the Order
Form command to proceed to the secure Altova Online Shop.

Registration

Opens the Altova Product Registration page in a tab of your browser. Registering your Altova software will
help ensure that you are always kept up to date with the latest product information.

Check for Updates

https://www.altova.com/support
https://www.altova.com/
https://www.altova.com/manual/en/licenseserver/3.14/
https://www.altova.com/manual/en/licenseserver/3.14/

1570 Menu Commands Help Menu

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Checks with the Altova server whether a newer version than yours is currently available and displays a
message accordingly.

29.19.4 Other Commands

Support Center

A link to the Altova Support Center on the Internet. The Support Center provides FAQs, discussion forums
where problems are discussed, and access to Altova's technical support staff.

Download Components and Free Tools

A link to Altova's Component Download Center on the Internet. From here you can download a variety of
companion software to use with Altova products. Such software ranges from XSLT and XSL-FO processors
to Application Server Platforms. The software available at the Component Download Center is typically free
of charge.

XMLSpy on the Internet

A link to the Altova website on the Internet. You can learn more about XMLSpy, related technologies and
products on the Altova website.

XMLSpy Training

A link to the Online Training page on the Altova website. Here you can select from online courses
conducted by Altova's expert trainers.

About XMLSpy

Displays the splash window and version number of your product. If you are using the 64-bit version of
XMLSpy, this is indicated with the suffix (x64) after the application name. There is no suffix for the 32-bit
version.

https://www.altova.com/
https://www.altova.com/
https://www.altova.com/

© 2018-2024 Altova GmbH

Command Line 1571Menu Commands

Altova XMLSpy 2024 Enterprise Edition

29.20 Command Line

Certain XMLSpy actions can be carried out from the command line. These commands are listed below:

Open a file
xmlspy.exe file.xml

Opens the file, file.xml, in XMLSpy

Open multiple files
xmlspy.exe file1.xml file2.xml

Opens the files, file1.xml and file2.xml, in XMLSpy

Assign an SPS file to an XML file for Authentic View editing
xmlspy.exe myxml.xml /sps mysps.sps

Opens the file, myxml.xml in Authentic View with mysps.sps as its SPS file. The /sps flag specifies that the
SPS file that follows is to be used with the XML file that precedes the /sps flag (for Authentic View editing).

Open a new XML template file via an SPS file
xmlspy.exe mysps.sps

Opens a new XML file in Authentic View. The display will be based on the SPS and the new XML file will have a
skeletal structure based on the SPS schema. The name of the newly created XML file must be assigned when
saving the XML file.

Open an SPS file as an XML document in Text View
xmlspy.exe /raw mysps.sps

Opens the file mysps.sps as an XML document in Text View. The /raw flag specifies that the SPS file that
follows is to be edited as an XML file.

1572 Programmers' Reference

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30 Programmers' Reference

XMLSpy is an Automation Server: It exposes programmable objects to other applications called Automation
Clients. An Automation Client can directly access the objects and functionality that the Automation Server
makes available. So, an Automation Client of XMLSpy can use, for example, the XML validation functionality of
XMLSpy. As a consequence, developers can enhance their applications with the ready-made functionality of
XMLSpy.

The programmable objects of XMLSpy are made available to Automation Clients via the Application API of
XMLSpy, which is a COM API. The Application API of XMLSpy will also be called Application API for short from
now onwards. The object model of the Application API and a complete description of all the available objects
are provided in this documentation (see the section Application API).

Execution environments
The Application API can be accessed from within the following environments:

· Scripting Editor
· IDE Plug-ins
· External programs
· ActiveX Integration

Each of these environments is described briefly below.

Scripting Editor: Customizing and modifying XMLSpy functionality
You can customize your installation of XMLSpy by modifying and adding functionality to it. You can also create
Forms for user input and modify the user interface so that it contains new menu commands and toolbar
shortcuts. All these features are achieved by writing scripts that interact with objects of the Application API. To
aid you in carrying out these tasks efficiently, XMLSpy offers you an in-built Scripting Editor. A complete
description of the functionality available in the Scripting Editor and how it is to be used is given in the Scripting
Editor section of this documentation. The supported programming languages are JScript and VBScript.

IDE Plug-ins: Creating plug-ins for XMLSpy
XMLSpy enables you to create your own plug-ins and integrate them into XMLSpy. You can do this using
XMLSpy's special interface for plug-ins. A description of how to create plug-ins is given in the section XMLSpy
IDE Plug-ins . An application object gets passed to most methods that must be implemented by an IDE
plug-in and gets called by the application. Typical languages used to implement an IDE plug-in are C# and C+
+. For more information, see the section XMLSpy IDE Plugins .

External programs
Additionally, you can manipulate XMLSpy with external scripts. For example, you could write a script to open
XMLSpy at a given time, then open an XML file in XMLSpy, validate the file, and print it out. External scripts
would again make use of the Application API to carry out these tasks. For a description of the Application API,
see the section Application API .

Using the Application API from outside XMLSpy requires an instance of XMLSpy to be started first. How this is
done depends on the programming language used. See the section, Programming Languages , for
information about individual languages.

1616

1574

1601

1616

2007

1574

1601

1601

1616

1618

© 2018-2024 Altova GmbH

 1573Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Essentially, XMLSpy will be started via its COM registration. Then the Application object associated with the
XMLSpy instance is returned. Depending on the COM settings, an object associated with an already running
XMLSpy can be returned. Any programming language that supports creation and invocation of COM objects
can be used. The most common of these are listed below.

· JScript and VBScript script files have a simple syntax and are designed to access COM
objects. They can be run directly from a DOS command line or with a double click on Windows
Explorer. They are best used for simple automation tasks.

· C# is a full-fledged programming language that has a wide range of existing functionality. Access to
COM objects can be automatically wrapped using C#..

· C++ provides direct control over COM access but requires relatively larger amounts of code than the
other languages.

· Java : Altova products come with native Java classes that wrap the Application API and provide a full
Java look-and-feel.

· Other programming languages that make useful alternatives are: Visual Basic for Applications, Perl,
and Python.

ActiveX Integration
A special case of accessing the Application API is via the XMLSpy ActiveX control. This feature is only
available if the XMLSpy integration package is installed. Every ActiveX Control has a property that returns a
corresponding COM object for its underlying functionality. The manager control provides an Application
object, the document control a Document object, and the placeholder object, in cases where it contains the
project tree, returns the Project object. The methods supported by these objects are exactly as described in
the Interfaces section of the Application API . Care must be taken not to use methods that do not make
sense in the context of ActiveX control integration. For details see ActiveX Integration .

About Programmers' Reference
The documentation contained in the Programmers' Reference for XMLSpy consists of the following sections:

· Scripting Editor : a user reference for the Scripting Environment available in XMLSpy
· IDE Plug-ins : a description of how to create plug-ins for XMLSpy
· Application API : a reference for the Application API
· ActiveX Integration : a guide and reference for how to integrate the XMLSpy GUI and XMLSpy

functionality using an ActiveX control

1641 1628

1631

1641

2007

1653

2007

1574

1601

1616

2007

1574 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.1 Scripting Editor

Scripting Editor is a development environment built into XMLSpy from where you can customize the
functionality of XMLSpy with the help of JScript or VBScript scripts. For example, you can add a new menu
item to perform a custom project task, or you can have XMLSpy trigger some behavior each time when a
document is opened or closed. To make this possible, you create scripting projects—files with .asprj extension
(Altova Scripting Project).

Scripting Editor

Scripting projects typically include one or several macros—these are programs that perform miscellaneous
custom tasks when invoked. You can run macros either explicitly from a menu item (or a toolbar button, if
configured), or you can set up a macro to run automatically whenever XMLSpy starts. The scripting environment
also integrates with the XMLSpy COM API. For example, your VBScript or JScript scripts can handle
application or document events such as starting or shutting down XMLSpy, opening or closing a project, and so
on. Scripting projects can include Windows Forms that you can design visually, in a way similar to Visual
Studio. In addition, several built-in commands are available that help you instantiate and use .NET classes from
VBScript or JScript code.

Once your scripting project is complete, you can enable it either globally in XMLSpy, or only for specific
projects.

© 2018-2024 Altova GmbH

Scripting Editor 1575Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Scripting Editor requires .NET Framework 2.0 or later to be installed before XMLSpy is installed.

30.1.1 Creating a Scripting Project

All scripts and scripting information created in the Scripting Editor are stored in Altova Scripting Projects (.asprj
files). A scripting project may contain macros, application event handlers, and forms (which can have their own
event handlers). In addition, you can add global variables and functions to a "Global Declarations" script—this
makes such variables and functions accessible across the entire project.

To start a new project, run the menu command Tools | Scripting Editor.

The languages supported for use in a scripting project are JScript and VBScript (not to be confused with Visual
Basic, which is not supported). These scripting engines are available by default on Windows and have no
special requirements to run. You can select a scripting language as follows:

1. Right-click the Project item in the upper-left pane, and select Project settings from the context menu.
2. Select a language (JScript or VBScript), and click OK.

From the Project settings dialog box above, you can also change the target .NET Framework version. This is
typically necessary if your scripting project requires features available in a newer .NET Framework version.
Note that any clients using your scripting project will need to have the same .NET Framework version installed
(or a later compatible version).

By default, a scripting project references several .NET assemblies, like System, System.Data,
System.Windows.Forms, and others. If necessary, you can import additional .NET assemblies, including
assemblies from .NET Global Assembly Cache (GAC) or custom .dll files. You can import assemblies as
follows:

1. Statically, by adding them manually to the project. Right-click Project in the top-left pane, and select
Add .NET Assembly from the context menu.

1576 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. Dynamically, at runtime, by calling the CLR.LoadAssembly command from the code.

You can create multiple scripting projects if necessary. You can save a scripting project to the disk, and then
load it back into the Scripting Editor later. To do this, use the standard Windows buttons available in the
toolbar: New, Open, Save, Save As. Once the scripting project has been tested and is ready for deployment,
you can load it into XMLSpy and run any of its macros or event handlers. For more information, see Enabling
Scripts and Macros .

You can also find an example scripting project at the following path: C:
\Users\<user>\Documents\Altova\XMLSpy2024\Examples\SampleScripts.asprj.

The next sections focus on the parts that your scripting project may need: global declarations, macros, forms,
and events.

30.1.1.1 Overview of the Environment

The Scripting Editor consists of the following parts:

· Toolbar
· Project pane
· Properties pane
· Main window
· Toolbox

1591

1598

© 2018-2024 Altova GmbH

Scripting Editor 1577Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Toolbar
The toolbar includes standard Windows file management commands (New, Open, Save, Save As) and editor
commands (Copy, Cut, Delete, Paste). When editing source code, the Find and Replace commands are
additionally available, as well as the Print command.

Project pane
The project pane helps you view and manage the structure of the project. A scripting project consists of several
components that can work together and may be created in any order:

· A "Global Declarations" script. As the name suggests, this script stores information available globally
across the project. You can declare in this script any variables or functions that you need to be
available in all forms, event handler scripts, and macros.

· Forms. Forms are typically necessary to collect user input, or provide some informative dialog boxes.
A form is invoked by a call to it either within a function (in the Global Declarations script) or directly in a
macro.

· Events. The "Events" folder displays XMLSpy application events provided by the COM API. To write a
script that will be executed when an event occurs, double-click any event, and then type the handling
code in the editor. The application events should not be confused with form events; the latter are
handled at form level, as further detailed below.

· Macros. A macro is a script that can be invoked either on demand from a context menu or be executed
automatically when XMLSpy starts. Macros do not have parameters or return values. A macro can
access all variables and functions declared in the Global Declarations script and it can also display
forms.

Right-click any of the components to see the available context menu commands and their shortcuts. Double-
click any file (such as a form or a script) to open it in the main window.

The toolbar buttons provide the following quick commands:

New macro Adds a new macro to the project, in the Macros directory.

New form Adds a new form to the project, in the Forms directory.

Run macro Runs the selected macro.

Debug macro Runs the selected macro in debug mode.

Properties pane
The Properties pane is very similar to the one in Visual Studio. It displays the following:

· Form properties, when a form is selected
· Object properties, when an object in a form is selected
· Form events, when a form is selected
· Object events, when an object in a form is selected

To switch between the properties and events of the selected component, click the Properties or Events
 buttons, respectively.

1578 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The Categorized and Alphabetical icons display the properties or events either organized by
category or organized in ascending alphabetical order.

When a property or event is selected, a short description of it is displayed at the bottom of the Properties pane.

Main window
The main window is the working area where you can enter source code or modify the design of the form. When
editing forms, you can work in two tabs: the Design tab and the Source tab. The Design tab shows the layout
of the form, while the Source tab contains the source code such as handler methods for the form events.

The source code editor provides code editing aids such as syntax coloring, source code folding, highlighting of
starting and ending braces, zooming, autocompletion suggestions, bookmarks.

Autocompletion suggestions
JScript and VBScript are untyped languages, so autocompletion is limited to COM API names and XMLSpy
built-in commands . The full method or property signature is shown next to the autocompletion entry helper.

 If names start with objDocument, objProject, objXMLData, or objAuthenticRange, members of the
corresponding interface will be shown.

Placing the mouse over a known method or property displays its signature (and documentation if available), for
example:

The auto-completion entry helper is normally shown automatically during editing, but it can also be obtained on
demand by pressing Ctrl+Space.

Bookmarks
· To set or remove a bookmark, click inside a line, and then press Ctrl+F2
· To navigate to the next bookmark, press F2
· To navigate to the previous bookmark, press Shift+F2
· To delete all bookmarks, press Ctrl+Shift+F2

1588

© 2018-2024 Altova GmbH

Scripting Editor 1579Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Zooming in/out
· To zoom in or out, hold the Ctrl key pressed and then press the "+" or "-" keys or rotate the mouse

wheel.

Text view settings
To trigger text settings, right-click inside the editor, and select Text View Settings from the context menu.

Font settings
To change the font, right-click inside the editor, and select Text View Font from the context menu.

Toolbox
The Toolbox contains all the objects that are available for designing forms, such as buttons, text boxes, combo
boxes, and so on.

To add a Toolbox item to a form:

1. Create or open a form and make sure that the Design tab is selected.
2. Click the Toolbox object (for example, Button), and then click at the location in the form where you

wish to insert it. Alternatively, drag the object directly onto the form.

Some objects such as Timer are not added to the Form but are created in a tray at the bottom of the main
window. You can select the object in the tray and set properties and event handlers for the object from the
Properties pane. For an example of handling tray components from the code, see Handling form events .

You can also add registered ActiveX controls to the form. To do this, right-click the Toolbox area and select
Add ActiveX Control from the context menu.

30.1.1.2 Global Declarations

The "Global Declarations" script is present by default in any scripting project; you do not need to create it
explicitly. Any variables or functions that you add to this script are considered global across the entire project.
Consequently, you can refer to such variables and functions from any of the project's macros and events. The
following is an example of a global declarations script that imports the System.Windows.Forms namespace into
the project. To achieve that, the code below invokes the CLR.Import command built into Scripting Editor.

// import System.Windows.Forms namespace for all macros, forms and events:
CLR.Import("System.Windows.Forms");

Note: Every time a macro is executed or an event handler is called, the global declarations are re-initialized.

30.1.1.3 Macros

Macros are scripts that contain JScript (or VBScript, depending on your project's language) statements, such
as variable declarations and functions.

1581

1580 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If your projects should use macros, you can add them as follows: right-click inside the Project pane, select
Add Macro from the context menu, and then enter the macro's code in the main form. The code of a macro
could be as simple as an alert, for example:

alert("Hello, I'm a macro!");

More advanced macros can contain variables and local functions. Macros can also contain code that invokes
forms from the project. The listing below illustrates an example of a macro that shows a form. It is assumed
that this form has already been created in the "Forms" folder and has the name "SampleForm", see also
Forms .

// display a form
ShowForm("SampleForm");

In the code listing above, ShowForm is a command built into Scripting Editor. For reference to other similar
commands that you can use to work with forms and .NET objects, see the Built-in Commands .

You can add multiple macros to the same project, and you can designate any macro as "auto-macro". When a
macro is designated as "auto-macro", it runs automatically when XMLSpy starts. To designate a macro as
auto-macro, right-click it, and select Set as Auto-Macro from the context menu.

Only one macro can be run at a time. After a macro (or event) is executed, the script is closed and global
variables lose their values.

To run a macro directly in Script Editor, click Run Macro . To debug a macro using the Visual Studio

debugger, click Debug Macro . For information about enabling and running macros in XMLSpy, see
Enabling Scripts and Macros .

30.1.1.4 Forms

Forms are particularly useful if you need to collect input data from users or display data to users. A form can
contain miscellaneous controls to facilitate this, such as buttons, check boxes, combo boxes, and so on.

To add a form, right-click inside the Project pane, and then select Add Form from the context menu. To add a
control to a form, drag it from the Toolbox available to the right side of Scripting Editor and drop it onto the
form.

You can change the position and size of the controls directly on the form, by using the handles that appear
when you click any control, for example:

1580

1588

1598

© 2018-2024 Altova GmbH

Scripting Editor 1581Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

All form controls have properties that you can easily adjust in the Properties pane. To do this, first select the
control on the form, and then edit the required properties in the Properties pane.

Handling form events
Each form control also exposes various events to which your scripting project can bind. For example, you
might want to invoke some XMLSpy COM API method whenever a button is clicked. To create a function that
binds to a form event, do the following:

1. In the Properties pane, click Events .
2. In the Action column, double-click the event where you need the method (for example, in the image

below, the handled event is "Click").

1582 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You can also add handler methods by double-clicking a control on the form. For example, double-clicking a
button in the form design generates a handler method for the "Click" event of that button.

Once the body of the handler method is generated, you can type code that handles this event, for example:

//Occurs when the component is clicked.
function MyForm_ButtonClick(objSender, e_EventArgs)

{
 alert("A button was clicked");
}

To display a work-in-progress form detached from the Scripting Editor, right-click the form in the Project
window, and select Test Form from the context menu. Note that the Test Form command just displays the
form; the form's events (such as button clicks) are still disabled. To have the form react to events, call it from a
macro, for example:

// Instantiate and display a form
ShowForm("SampleForm");

Accessing form controls
You can access any components on a form from your code by using field access syntax. For example,
suppose there is a form designed as follows:

// MyForm
// ButtonPanel
// OkButton
// CancelButton
// TextEditor
// AxMediaPlayer1
// TrayComponents
// MyTimer

The code below shows how to instantiate the form, access some of its controls using field access syntax, and
then display the form:

// Instantiate the form
var objForm = CreateForm("MyForm");

// Disable the OK button
objForm.ButtonPanel.OkButton.Enabled = false;

// Change the text of TextEditor
objForm.TextEditor.Text = "Hello";
// Show the form
objForm.ShowDialog();

When you add certain controls such as timers to the form, they are not displayed on the form; instead, they
are shown as tray components at the base of the form design, for example:

© 2018-2024 Altova GmbH

Scripting Editor 1583Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

To access controls from the tray, use the GetTrayComponent method on the form object, and supply the name
of the control as argument. In this example, to get a reference to MyTimer and enable it, use the following code:

var objTimer = objForm.GetTrayComponent("MyTimer");

objTimer.Enabled = true;

For ActiveX Controls, you can access the underlying COM object via the OCX property:

var ocx = lastform.AxMediaPlayer1.OCX; // get underlying COM object

ocx.enableContextMenu = true;

ocx.URL = "mms://apasf.apa.at/fm4_live_worldwide";

30.1.1.5 Events

Your scripting project may optionally include scripts that handle XMLSpy events such as opening, closing, or
saving a document, starting or closing XMLSpy, adding an element to a diagram, and others. These events are
provided by the XMLSpy COM API, and you can find them in the "Events" folder of your scripting project. Note
that these events are XMLSpy-specific, as opposed to form events. Events are organized into folders as follows:

· Application Events
· Document Events
· AuthenticView Events
· GridView Events
· TextView Events

1584 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

To create an event handler script, right-click an event, and select Open from the context menu (or double-click
the event). The event handler script is displayed in the main window, where you can start editing it. For
example, the event handler illustrated below displays an alert each time XMLSpy starts:

Note the following:

· The alert command is applicable to JScript. The VBScript equivalent is MsgBox. See also alert .
· The name of the event handler function must not be changed; otherwise, the event handler script will

not be called.
· In order for events to be processed, the Process Events check box must be selected when you enable

the scripting project in XMLSpy. For more information, see Enabling Scripts and Macros .

You can optionally define local variables and helper functions within event handler scripts, for example:

var local;

function OnInitialize(objApplication)

{
 local = "OnInitialize";
 Helper();
}

function Helper()

{
 alert("I'm a helper function for " + local);
}

30.1.1.6 JScript Programming Tips

Below are a few JScript programming tips that you may find useful while developing a scripting project in
XMLSpy Scripting Editor.

1589

1598

© 2018-2024 Altova GmbH

Scripting Editor 1585Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Out parameters
Out parameters from methods of the.NET Framework require special variables in JScript. For example:

var dictionary =

CLR.Create("System.Collections.Generic.Dictionary<System.String,System.String>");
dictionary.Add("1", "A");
dictionary.Add("2", "B");

// use JScript method to access out-parameters
var strOut = new Array(1);

if (dictionary.TryGetValue("1", strOut)) // TryGetValue will set the out parameter

 alert(strOut[0]); // use out parameter

Integer arguments
.NET Methods that require integer arguments should not be called directly with JScript number objects which
are floating point values. For example, instead of:

var objCustomColor = CLR.Static("System.Drawing.Color").FromArgb(128,128,128);

use:

var objCustomColor =

CLR.Static("System.Drawing.Color").FromArgb(Math.floor(128),Math.floor(128),Math.floor(12
8));

Iterating .NET collections
To iterate .NET collections, the JScript Enumerator as well as the .NET iterator technologies can be used, for
example:

// iterate using the JScript iterator
var itr = new Enumerator(coll);

for (; !itr.atEnd(); itr.moveNext())

 alert(itr.item());

// iterate using the .NET iterator
var itrNET = coll.GetEnumerator();

while(itrNET.MoveNext())

 alert(itrNET.Current);

.NET templates

.NET templates can be instantiated as shown below:

var coll = CLR.Create("System.Collections.Generic.List<System.String>");

1586 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

or

CLR.Import("System");
CLR.Import("System.Collections.Generic");
var dictionary = CLR.Create("Dictionary<String,Dictionary<String,String>>");

.NET enumeration values
 .NET enumeration values are accessed as shown below:

var enumValStretch = CLR.Static("System.Windows.Forms.ImageLayout").Stretch;

Enumeration literals
The enumeration literals from the XMLSpy API can be accessed as shown below (there is no need to know
their numerical value).

objExportXMIFileDlg.XMIType = eXMI21ForUML23;

30.1.1.7 Example Scripting Project

A demo project that illustrates scripting with XMLSpy is available at the following path: C:
\Users\<user>\Documents\Altova\XMLSpy2024\Examples\SampleScripts.asprj. This scripting project
consists of a few macros and a Windows form.

To load the scripting project into Scripting Editor:

1. On the Tools menu, click Scripting Editor.
2. Click Open and browse for the SampleScripts.asprj file from the path above.

The project contains several macros in the "Macros" directory.

Macro Description

AddMacroMenu This macro adds a new menu item to XMLSpy, by invoking the
Application.AddMacroMenuItem method of the COM API. The first
argument of the AddMacroMenuItem method is the name of the macro to be
added (in this example, "CloseAllButActiveDoc") and the second argument
is the display text for the menu item.

Whenever this macro is run, a new menu command called
"CloseAllButActiveDoc") is added under the Tools menu. To clear macro
menu items created previously, either restart XMLSpy or create a macro
that calls the Application.ClearMacroMenu API method.

CloseAllButActiveDocument When executed, the macro iterates though the currently open documents
in XMLSpy and closes all of them, except for the active document.

© 2018-2024 Altova GmbH

Scripting Editor 1587Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

SearchPath This macro displays a form that lets users perform search for files within
the current project. The form is available in the "Forms" directory, where
you can view its design and the associated event handlers.

The GetAllPathsFromProject() method returns all the file paths that
belong to the currently opened project, as an array. The definition of this
method is in the GlobalDeclarations script of the project. The
InsertStringInArrayUnique method ensures that only unique paths are
added to the array. Next, the form is initialized with CreateForm .
Finally, the array is converted to a .NET type with the help of the
CLR.Create method and the form is populated with the resulting
ArrayList collection.

The Open button of the form has a handler that calls the
Application.Documents.OpenFile API method to open the currently
selected file.

To enable the scripting project as global XMLSpy scripting project:

1. On the Tools menu, click Options.
2. Click the Scripting tab.
3. Under "Global scripting project file", click Browse and select the SampleScripts.asprj file from the

path above.
4. This scripting project does not have auto-macros and application event handlers; therefore, you don't

need to select either the Run auto-macros... or Process events check boxes.
5. Click Apply.

At this stage, several new menu items (one for each macro) become available under the Tools | Macros
menu.

To run the "SearchPath" macro:

1. Open an XMLSpy project that contains several files (in this example, C:
\Users\<user>\Documents\Altova\XMLSpy2024\Examples\Examples.spp).

2. On the Tools menu, click Macros, and then click Search Path.
3. Type the search term (in this example, ".xml").

1594

1590

1588 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

As shown above, all file names that contain the search term are now listed. You can click any element in the
list, and then click Open to display it in the main editor.

30.1.2 Built-in Commands

This section provides reference to all the commands you can use in the XMLSpy Scripting Editor.

· alert
· confirm
· CLR.Create
· CLR.Import
· CLR.LoadAssembly
· CLR.ShowImports
· CLR.ShowLoadedAssemblies
· CLR.Static
· CreateForm
· doevents
· lastform
· prompt
· ShowForm
· watchdog

1589

1589

1590

1591

1591

1592

1593

1593

1594

1595

1595

1596

1597

1597

© 2018-2024 Altova GmbH

Scripting Editor 1589Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.1.2.1 alert

Displays a message box that shows a given message and the "OK" button. To proceed, the user will have to
click "OK".

Signature
For JScript, the signature is:

alert(strMessage : String) -> void

For VBScript, the signature is:

MsgBox(strMessage : String) -> void

Example
The following JScript code displays a message box with the text "Hello World".

alert("Hello World");

30.1.2.2 confirm

Opens a dialog box that shows a given message, a confirmation button, and a cancel button. The user will have
to click either "OK" or "Cancel" to proceed. Returns a Boolean that represents the user's answer. If the user
clicked "OK", the function returns true; if the user clicked "Cancel", the function returns false.

1590 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Signature

confirm(strMessage : String) -> result : Boolean

Example (JScript)

if (confirm("Continue processing?") == false)

 alert("You have cancelled this action");

Example (VBScript)

If (confirm("Continue processing?") = false) Then

 MsgBox("You have cancelled this action")

End If

30.1.2.3 CLR.Create

Creates a new .NET object instance of the type name supplied as argument. If more than one argument is
passed, the successive arguments are interpreted as the arguments for the constructor of the .NET object. The
return value is a reference to the created .NET object

Signature

CLR.Create(strTypeNameCLR : String, constructor arguments ...) -> object

Example
The following JScript code illustrates how to create instances of various .NET classes.

// Create an ArrayList
var objArray = CLR.Create("System.Collections.ArrayList");

// Create a ListViewItem
var newItem = CLR.Create("System.Windows.Forms.ListViewItem", "NewItemText");

// Create a List<string>

© 2018-2024 Altova GmbH

Scripting Editor 1591Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

var coll = CLR.Create("System.Collections.Generic.List<System.String>");

// Import required namespaces and create a Dictionary object
CLR.Import("System");
CLR.Import("System.Collections.Generic");
var dictionary = CLR.Create("Dictionary< String, Dictionary< String, String > >");

30.1.2.4 CLR.Import

Imports a namespace. This is the scripting equivalent of C# using and VB.Net imports keyword. Calling
CLR.Import makes it possible to leave out the namespace part in subsequent calls like CLR.Create() and
CLR.Static().

Note: Importing a namespace does not add or load the corresponding assembly to the scripting project. You
can add assemblies to the scripting project dynamically (at runtime) in the source code by calling
CLR.LoadAssembly .

Signature

CLR.Import(strNamespaceCLR : String) -> void

Example
Instead of having to use fully qualified namespaces like:

if (ShowForm("FormName") == CLR.Static("System.Windows.Forms.DialogResult").OK)

{
 var sName = lastform.textboxFirstName.Text + " " + lastform.textboxLastName.Text;

 CLR.Static("System.Windows.Forms.MessageBox").Show("Hello " + sName);
}

One can import namespaces first and subsequently use the short form:

CLR.Import("System.Windows.Forms");

if (ShowForm("FormName") == CLR.Static("DialogResult").OK)

{
 var sName = lastform.textboxFirstName.Text + " " + lastform.textboxLastName.Text;

 CLR.Static("MessageBox").Show("Hello " + sName);
}

30.1.2.5 CLR.LoadAssembly

Loads the .NET assembly with the given long assembly name or file path. Returns Boolean true if the
assembly could be loaded; false otherwise.

1591

1592 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Signature

CLR.LoadAssembly(strAssemblyNameCLR : String, showLoadErrors : Boolean) -> result :
Boolean

Example
The following JScript code attempts to set the clipboard text by loading the required assembly dynamically.

// set clipboard text (if possible)
// System.Windows.Clipboard is part of the PresentationCore assembly, so load this
assembly first:
if (CLR.LoadAssembly("PresentationCore, Version=3.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35", true))

{
 var clipboard = CLR.Static("System.Windows.Clipboard");

 if (clipboard != null)

 clipboard.SetText("HelloClipboard");
}

30.1.2.6 CLR.ShowImports

Opens a message box that shows the currently imported namespaces. The user will have to click "OK" to
proceed.

Signature

CLR.ShowImports() -> void

Example
The following JScript code first imports a namespace, and then displays the list of imported namespaces:

CLR.Import("System.Windows.Forms");
CLR.ShowImports();

© 2018-2024 Altova GmbH

Scripting Editor 1593Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.1.2.7 CLR.ShowLoadedAssemblies

Opens a message box that shows the currently loaded assemblies. The user will have to click "OK" to
proceed.

Signature

CLR.ShowLoadedAssemblies() -> void

Example

CLR.ShowLoadedAssemblies();

30.1.2.8 CLR.Static

Returns a reference to a static .NET object. You can use this function to get access to .NET types that have
no instances and contain only static members.

Signature

CLR.Static(strTypeNameCLR : String) -> object

1594 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Example (JScript)

// Get the value of a .NET Enum into a variable
var enumValStretch = CLR.Static("System.Windows.Forms.ImageLayout").Stretch

// Set the value of the Windows clipboard
var clipboard = CLR.Static("System.Windows.Clipboard");

clipboard.SetText("HelloClipboard");

// Check the buttons pressed by the user on a dialog box
if (ShowForm("FormName") == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

30.1.2.9 CreateForm

Instantiates the Form object identified by the name supplied as argument. The form must exist in the "Forms"
folder of the scripting project. Returns the form object (System.Windows.Forms.Form) corresponding to the
given name, or null if no form with such name exists.

Signature

CreateForm (strFormName : String) -> System.Windows.Forms.Form | null

Example
Let's assume that a form called "FormName" exists in the scripting project.

The following JScript code instantiates the form with some default values and displays it to the user.

var myForm = CreateForm("FormName");

if (myForm != null)

{
 myForm.textboxFirstName.Text = "Daniela";
 myForm.textboxLastName.Text = "Heidegger";

© 2018-2024 Altova GmbH

Scripting Editor 1595Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 var dialogResult = myForm.ShowDialog();

}

The dialogResult can subsequently be evaluated as follows:

if (dialogResult == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

Note: The code above will work only if the DialogResult property of the "OK" and "Cancel" buttons is set
correctly from the Properties pane (for example, it must be OK for the "OK" button).

30.1.2.10 doevents

Processes all Windows messages currently in the message queue.

Signature

doevents() -> void

Example (JScript)

for (i=0; i < nLongLastingProcess; ++i)

{
 // do long lasting process

 doevents(); // process Windows messages; give UI a chance to update
}

30.1.2.11 lastform

This is a global field that returns a reference to the last form object that was created via CreateForm() or
ShowForm().

Signature

lastform -> formObj : System.Windows.Forms.Form

Example
The following JScript code shows the form "FormName" as a dialog box.

CreateForm("FormName");
if (lastform != null)

1596 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

{
 lastform.textboxFirstName.Text = "Daniela";
 lastform.textboxLastName.Text = "Heidegger";
 var dialogResult = lastform.ShowDialog();

}

The values of both textbox controls are initialized with the help of lastform.

30.1.2.12 prompt

Opens a dialog box that shows a message and a textbox control with a default answer. This can be used to let
the user input a simple string value. The return value is a string that contains the textbox value or null if the user
selected "Cancel".

Signature

prompt(strMessage : String, strDefault : String) -> val : String

Example

var name = prompt("Please enter your name", "Daniel Smith");

if (name != null)

 alert("Hello " + name + "!");

© 2018-2024 Altova GmbH

Scripting Editor 1597Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.1.2.13 ShowForm

Instantiates a new form object from the given form name and immediately shows it as dialog box. The return
value is an integer that represents the generated DialogResult (System.Windows.Forms.DialogResult). For
the list of possible values, refer to the documentation of the DialogResult Enum
(https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dialogresult?view=netframework-4.8).

Signature

ShowForm(strFormName : String) -> result : Integer

Example
The following JScript code

var dialogResult = ShowForm("FormName");

Shows the form "FormName" as a dialog box:

The DialogResult can subsequently be evaluated, for example:

if (dialogResult == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

Note: The code above will work only if the DialogResult property of the "OK" and "Cancel" buttons is set
correctly from the Properties pane (for example, it must be OK for the "OK" button).

30.1.2.14 watchdog

Long running CPU-intensive scripts may ask the user if the script should be terminated. The watchdog()
method is used to disable or enable this behavior. By default, the watchdog is enabled.

Calling watchdog(true) can also be used to reset the watchdog. This can be useful before executing long
running CPU-intensive tasks to ensure they have the maximum allowed script processing quota.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dialogresult?view=netframework-4.8

1598 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Signature

watchdog(bEnable : boolean) -> void

Example

watchdog(false); // disable watchdog - we know the next statement is CPU intensive but

it will terminate for sure
doCPUIntensiveScript();
watchdog(true); // re-enable watchdog

30.1.3 Enabling Scripts and Macros

Once a scripting project is complete and tested, you can use it in the following ways:

1. As the global scripting project for XMLSpy. This means that all the scripts and macros from the
scripting project are available to XMLSpy.

2. At XMLSpy project level. This means that a reference to the .asprj file is saved together with the
XMLSpy project. When the XMLSpy project is opened, its associated scripts and macros can be
called.

To set a scripting project as global:

1. On the Tools menu, click Options.
2. Click the Scripting tab.
3. Select the Activate scripting check box and browse for the .asprj file to be used as global scripting

project.

You can optionally enable the following additional script processing options:

Run auto-macros when XMLSpy starts If you select this check box, any macros that were set as
"Auto-macro" in the project will be triggerred

© 2018-2024 Altova GmbH

Scripting Editor 1599Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

automatically when XMLSpy starts.

Process events Select this check box if your scripts bind to any
application events. Clear the check box to prevent the
scripts from reacting to events.

To enable a scripting project at project level:

1. Open the project.
2. On the Project menu, click Script Settings.
3. Select the Activate project scripts check box and browse for the .asprj file.

The Run-auto macros... check box has the same meaning as already described above.

30.1.3.1 Running Macros

When a scripting project is active in XMLSpy, any macros available in that project are displayed in the Tools |
Macros menu. Therefore, you can run a macro at any time, by triggering the respective menu command, for
example Tools | Macros | <SomeMacro>.

Macros that were configured as auto-macros will run automatically whenever XMLSpy starts, provided that this
behavior is enabled from options, as described in Enabling Scripts and Macros .

For convenience, you can create toolbar buttons for macros, as follows:

1. On the Tools menu, click Customize.
2. Click the Macros tab. Any macros that are available at application level (in the global scripting project)

are listed.
3. Click Add Command.

1598

1600 Programmers' Reference Scripting Editor

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4. Optionally, click Edit icon and draw a new icon for the new macro. You can also assign a shortcut to
the macro, from the Keyboard tab.

5. Drag the macro from the Associated commands pane onto the toolbar where you would like it to
appear.

To remove a macro from a toolbar:

1. On the Tools menu, click Customize.
2. Click the Macros tab.
3. Drag the macro from the toolbar where it appears back into the Associated commands pane.

© 2018-2024 Altova GmbH

IDE Plugins 1601Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.2 IDE Plugins

XMLSpy allows you to create your own IDE plug-ins and integrate them into XMLSpy.

Use plug-ins to:

· Configure your version of XMLSpy, add commands through menus, icons, buttons etc.
· React to events from XMLSpy.
· Run your specific code within XMLSpy with access to the complete XMLSpy API

XMLSpy expects your plug-in to implement the IXMLSpyPlugIn interface. C# and C++ are the currently
supported languages, and examples using these languages are included with your installation package and are
located in the XMLSpy2024\Examples\IDEPlugin folder of your XMLSpy installation.

Windows 7, 8, 10, 11 C:/Users/<username>/Documents

See ATL sample files for an example using C++.

30.2.1 Registration of IDE PlugIns

XMLSpy maintains a specific key in the Registry where it stores all registered IDE plug-ins:

HKEY_CURRENT_USER\Software\Altova\XML Spy\PlugIns

All values of this key are treated as references to registered plug-ins and must conform to the following format:

Value name: ProgID of the plug-in

Value type: must be REG_SZ

Value data: CLSID of the component

Each time the application starts the values of the PlugIns key is scanned, and the registered plug-ins are

loaded.

Register plug-in manually
To register a plug-in manually, use the Customize dialog box of XMLSpy's Tools menu. Use the Add Plug-In
button to specify the DLL that implements your plug-in. XMLSpy registers the DLL as a COM server and adds
the corresponding entry in its PlugIns key.

If you experience problems with manual registration, check whether the CLSID of your plug-in is correctly
registered in the PlugIns key. If the registration is incorrect, then the name of your plug-in DLL was probably

not sufficiently unique. Use a different name or perform direct registration.

1610

1605

1602 Programmers' Reference IDE Plugins

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Register plug-in directly
A plug-in can be directly registered as an IDE plug-in by first registering the DLL and then adding the
appropriate value to the PlugIns key of XMLSpy. (This can be done, for example, during plug-in setup.) The

new plug-in will be activated the next time XMLSpy is launched.

Creating plug-ins
Source code for sample plug-ins has been provided in the application's (My) Documents folder :
Examples\IDEPlugin folder. To build a plug-in from such source code, do the following:

1. Open the solution you want to build as a plug-in in Visual Studio.
2. Build the plug-in with the command in the Build menu.
3. The plug-in's DLL file will be created in the Bin or Debug folder. This DLL file is the file that must be

added as a plug-in (see above).

Note: C# and C++ are the currently supported languages.

30.2.2 ActiveX Controls

ActiveX controls are supported. Any IDE PlugIn which is also an ActiveX control will be displayed in a Dialog
Control Bar. A sample PlugIn that is also an ActiveX control is included in the IDEPlugin folder in the
Examples folder of your application folder.

30.2.3 Configuration XML

The IDE plug-in allows you to change the user interface (UI) of XMLSpy. This is done by describing each
separate modification using an XML data stream. The XML configuration is passed to XMLSpy using the
GetUIModifications method of the IXMLSpyPlugIn interface.

The XML file containing the UI modifications for the IDE PlugIn, must have the following structure:

<ConfigurationData>
 <ImageFile>Path to image file</ImageFile>
 <Modifications>
 <Modification>
 ...
 </Modification>
 ...
 </Modifications>
</ConfigurationData>

You can define icons or toolbar buttons for new menu items that are added to the UI of XMLSpy by the plug-in.
The path to the file containing the images is set using the ImageFile element. Each image must be 16x16
pixels using maximum 256 colors. The image references must be arranged from left to right in a single
<ImageFile> element. The rightmost image index value is zero.

34

1614

© 2018-2024 Altova GmbH

IDE Plugins 1603Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

The Modifications element can have any number of Modification child elements. Each Modification

element defines a specific change to the standard UI of XMLSpy. The modifications you can carry out are
described in the next section below.

Structure of Modification elements
A Modification element has two child elements:

<Modification>
 <Action>Type of action</Action>
 <UIElement Type="Type of UI element" />
</Modification>

Valid values for the Action element are:

Add: to add the following UI element to XMLSpy

Hide: to hide the following UI element in XMLSpy

Remove: to remove the UI element from the "Commands" list box, in the customize dialog

Multiple modifications can be combined in an Action element, like this: "Add Hide"

The UIElement element defines any new or existing UI element and may be one of the the following types:

toolbars, buttons, menus, or menu items. The type attribute specifies which of these types the UI element

belongs to. The structure of UIElement is described in the sections below.

Common UIElement children
The ID and Name elements are defined for all types of UI element. In the case of some types, however, one of
these elements is ignored. For example, Name is ignored for a separator.

<ID></ID>
<Name></Name>

If UIElement describes an existing element of the UI, the value of the ID element is predefined by XMLSpy.

Normally these ID values are not known to the public. If the XML fragment describes a new part of the UI, then
the ID is arbitrary and the value should be less than 1000. The Name element sets the textual value. Existing UI

elements can be identified just by name; for example, menus and menu items that have sub menus. For new
UI elements, the Name element sets the caption (for example, the title of a toolbar) or the text of a menu item.

Toolbars and Menus
To define a toolbar it is necessary to specify the ID and/or the name of the toolbar. An existing toolbar can be
specified using only the name or ID (if the latter is known). To create a new toolbar, both values must be set.
The type attribute must have a value of ToolBar.

<UIElement Type="ToolBar">
 <ID>1</ID>
 <Name>TestPlugIn</Name>
</UIElement>

To specify an XMLSpy menu you need two parameters:

1604 Programmers' Reference IDE Plugins

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· The ID of the menu bar which contains the menu. If no XML documents are open in the main window,
the menu bar ID is 128. If one or more XML documents are open, the menu bar ID is 129.

· The menu name. Menus do not have an associated ID value. The following example defines the "Edit"
menu of the menu bar which is active, when at least one XML document is open:

<UIElement Type="Menu">
 <ID>129</ID>
 <Name>Edit</Name>
</UIElement>

An additional element is used if you want to create a new menu. The Place element defines the position of the

new menu in the menu bar:

<UIElement Type="Menu">
 <ID>129</ID>
 <Name>PlugIn Menu</Name>
 <Place>12</Place>
</UIElement>

A value of -1 for the Place element sets the new button or menu item at the end of the menu or toolbar.

Commands
If you add a new command (through a toolbar button or a menu item), the UIElement fragment can contain any

of these sub elements:

<MacroName></MacroName>
<Info></Info>
<ImageID></ImageID>

If MacroName is specified, XMLSpy searches for a macro with the same name in the scripting environment and

executes it each time this command is processed. The Info element contains a description string that is

displayed in the status bar when the mouse pointer is over the associated command (button or menu item).
ImageID defines the index of the icon in the image file. Note that all icons are stored in one image file.

To define a toolbar button, create an UIElement with this structure:

<UIElement Type="ToolBarItem">
 <!--don't reuse local IDs even the commands do the same-->

 <ID>5</ID>
 <Name>Open file from repository...</Name>
 <!--Set Place To -1 If this is the first button To be inserted-->

 <Place>-1</Place>
 <ImageID>0</ImageID>
 <ToolBarID>1</ToolBarID>
 <!--instead of the toolbar ID the toolbar name could be used-->

 <ToolBarName>TestPlugIn</ToolBarName>
</UIElement>

Additional elements to declare a toolbar button are Place, ToolBarID and ToolBarName. The ToolBarID and

ToolBarName elements are used to identify the toolbar which contains the new or existing button. The textual
value of ToolBarName is case-sensitive. The (UIElement) type attribute must be ToolBarItem.

© 2018-2024 Altova GmbH

IDE Plugins 1605Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

To define a menu item, the elements MenuID, Place and Parent are available in addition to the standard

elements used to declare a command. The content of the MenuID element can be either 128 or 129. See the

section "Toolbars and Menus" above for more information.

The Parent element is used to identify the menu where the new menu entry should be inserted. As sub menu

items have no unique Windows ID, we need some other way to identify the parent of the menu item. We do this
by setting the content of the Parent element to be the path to the menu item. The steps in the path are

indicated by a colon. The pattern would be ParentMenu:SubMenu. If the menu has no parent (because it is not

a submenu), add a colon to the beginning of the name (see example below). The type attribute must be set to

MenuItem.

The example below defines a menu item, where the containing menu is not a sub menu:

<UIElement Type="MenuItem">
 <!--the following element is a Local command ID-->

 <ID>3</ID>
 <Name>Open file from repository...</Name>
 <Place>-1</Place>
 <MenuID>129</MenuID>
 <Parent>:PlugIn Menu</Parent>
 <ImageID>0</ImageID>
</UIElement>

You can add toolbar separators and menus if the value of the ID element is set to 0.

30.2.4 ATL Sample Files

This section shows how to create a simple XMLSpy IDE plug-in DLL using ATL. You must know how to work
with MS VisualStudio, ATL, and the wizards that generate new ATL objects. To access the API, the
implementation imports the Type Library of XMLSpy. The code reads various properties and calls methods
using the smart pointers provided by the #import statement of the code. In addition, the sample code uses the

MFC class CString and ATL conversion macros such as W2T.

The broad steps to create an ATL DLL are as follows:

1. Open VisualStudio and select File | New.
2. Select the Projects tab.
3. Select ATL COM AppWizard, and type in a project name.
4. Select Support for MFC if you want to use MFC classes or if you want to create a project for the

sample code.

Having created the project files you can add an ATL object to implement the IXMLSpyPlugIn interface:

1. Select Insert | New ATL Object.
2. Select Simple Object from the wizard. and click Next.
3. Type in a name for the object.
4. On the Attributes tab, select Custom for the type of interface and disable Aggregation.

These steps produce the skeleton code for the implementation of the IDE plug-in interface. See the following
pages for information about how to modify the code and specify some basic functionality.

1606 Programmers' Reference IDE Plugins

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.2.4.1 Interface description (IDL)

The IDL of the newly created ATL object contains a declaration for one COM interface.

· This interface declaration must be replaced by the declaration of IXMLSpyPlugIn as shown below.
· The IDL must also contain the definition of the SPYUpdateAction enumeration.
· Replace the generated default interface name (created by the wizard) with IXMLSpyPlugIn in the

coclass declaration.

The IDL should then look something like the example code below. After creating the ATL object, you need to
implement the IDE plug-in interface of XMLSpy.

import "oaidl.idl";
import "ocidl.idl";

// ----- please insert the following block into your IDL file -----
typedef enum {
 spyEnable = 1,
 spyDisable = 2,
 spyCheck = 4,
 spyUncheck = 8
} SPYUpdateAction;

// ----- end insert block ----

// ----- E.g. Interface entry automatically generated by the ATL wizard -----
// [
// object,
// uuid(AB7CD86A-8145-429A-A1F3-270692EO8AFC),

// helpstring("IXMLSpyPlugIn Interface")
// pointer_default(unique)
//]
// interface IXMLSpyPlugIn : IUnknown
// {
// };
// ----- end automatically generated Interface Entry

// ----- replace the Interface Entry (shown above) generated for you by the ATL wizard,
with the following block -----

 [
 odl,
 uuid(88F2A622-4B7E-42CD-8D04-3C0E5389DD85),
 helpstring("IXMLSpyPlugIn Interface")
]
 interface IXMLSpyPlugIn : IUnknown
 {
 HRESULT _stdcall OnCommand([in] long nID, [in] IDispatch* pXMLSpy);

© 2018-2024 Altova GmbH

IDE Plugins 1607Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 HRESULT _stdcall OnUpdateCommand([in] long nID, [in] IDispatch* pXMLSpy, [out,
retval] SPYUpdateAction* pAction);
 HRESULT _stdcall OnEvent([in] long nEventID, [in] SAFEARRAY(VARIANT)*
arrayParameters, [in] IDispatch* pXMLSpy, [out, retval] VARIANT* pReturnValue);
 HRESULT _stdcall GetUIModifications([out, retval] BSTR* pModificationsXML);
 HRESULT _stdcall GetDescription([out, retval] BSTR* pDescription);
 };

// ----- end replace block -----

// ----- The code below is automatically generated by the ATL wizard and will look slightly
different in your case -----

 [
 uuid(24FE0D1B-3FC0-494E-B36E-1D4CE412B014),
 version(1.0),
 helpstring("XMLSpyIDEPlugInDLL 1.0 Type Library")
]
 library XMLSPYIDEPLUGINDLLLib
 {
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 [
 uuid(3800E791-7F6B-4ACD-9E32-2AC184444501),
 helpstring("XMLSpyIDEPlugIn Class")
]
 coclass XMLSpyIDEPlugIn
 {
 [default] interface IXMLSpyPlugIn; // ----- define IXMLSpyPlugIn as the default
interface -----
 };
};

30.2.4.2 Class definition

In the class definition of the ATL object, the following changes must be made:

· The class has to derive from IXMLSpyPlugIn
· The "Interface Map" needs an entry for IXMLSpyPlugIn
· The methods of the IDE plug-in interface must be declared

These changes can be made as shown below:

#ifndef __XMLSPYIDEPLUGIN_H_
#define __XMLSPYIDEPLUGIN_H_

#include "resource.h" // main symbols

///

// CXMLSpyIDEPlugIn

1608 Programmers' Reference IDE Plugins

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

class ATL_NO_VTABLE CXMLSpyIDEPlugIn :

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CXMLSpyIDEPlugIn, &CLSID_XMLSpyIDEPlugIn>,

 public IXMLSpyPlugIn

{
public:

 CXMLSpyIDEPlugIn()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_XMLSPYIDEPLUGIN)
DECLARE_NOT_AGGREGATABLE(CXMLSpyIDEPlugIn)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CXMLSpyIDEPlugIn)
 COM_INTERFACE_ENTRY(IXMLSpyPlugIn)
END_COM_MAP()

// IXMLSpyIDEPlugIn

public:

 virtual HRESULT _stdcall OnCommand(long nID, IDispatch* pXMLSpy);

 virtual HRESULT _stdcall OnUpdateCommand(long nID, IDispatch* pXMLSpy, SPYUpdateAction*

pAction);
 virtual HRESULT _stdcall OnEvent(long nEventID, SAFEARRAY **arrayParameters, IDispatch*

pXMLSpy, VARIANT* pReturnValue);
 virtual HRESULT _stdcall GetUIModifications(BSTR* pModificationsXML);

 virtual HRESULT _stdcall GetDescription(BSTR* pDescription);

};

#endif //__XMLSPYIDEPLUGIN_H_

30.2.4.3 Implementation

The code below shows a simple implementation of an XMLSpy IDE plug-in. It adds a menu item and a
separator (available with XMLSpy) to the Tools menu. Inside the OnUpdateCommand() method, the new
command is only enabled when the active document is displayed using the Grid View. The command searches
for the XML element which has the current focus, and opens any URL starting with "http://", from the textual
value of the element.

///

// CXMLSpyIDEPlugIn

#import "XMLSpy.tlb"
using namespace XMLSpyLib;

HRESULT CXMLSpyIDEPlugIn::OnCommand(long nID, IDispatch* pXMLSpy)
{
 USES_CONVERSION;

 if(nID == 1) {

© 2018-2024 Altova GmbH

IDE Plugins 1609Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 IApplicationPtr ipSpyApp;

 if(pXMLSpy) {
 if(SUCCEEDED(pXMLSpy->QueryInterface(__uuidof(IApplication),(void **)&ipSpyApp)))
{
 IDocumentPtr ipDocPtr = ipSpyApp->ActiveDocument;

 // we assume that grid view is active

 if(ipDocPtr) {
 IGridViewPtr ipGridPtr = ipDocPtr->GridView;

 if(ipGridPtr) {
 IXMLDataPtr ipXMLData = ipGridPtr->CurrentFocus;

 CString strValue = W2T(ipXMLData->TextValue);

 if(!strValue.IsEmpty() && (strValue.Left(7) == _T("http://")))
 ::ShellExecute(NULL,_T("open"),W2T(ipXMLData-
>TextValue),NULL,NULL,SW_SHOWNORMAL);
 }
 }
 }
 }
 }

 return S_OK;
}

HRESULT CXMLSpyIDEPlugIn::OnUpdateCommand(long nID, IDispatch* pXMLSpy, SPYUpdateAction*
pAction)
{
 *pAction = spyDisable;

 if(nID == 1) {
 IApplicationPtr ipSpyApp;

 if(pXMLSpy) {
 if(SUCCEEDED(pXMLSpy->QueryInterface(__uuidof(IApplication),(void **)&ipSpyApp)))

{
 IDocumentPtr ipDocPtr = ipSpyApp->ActiveDocument;

 // only enable if grid view is active

 if((ipDocPtr != NULL) && (ipDocPtr->CurrentViewMode == spyViewGrid))
 *pAction = spyEnable;
 }
 }
 }

 return S_OK;
}

HRESULT CXMLSpyIDEPlugIn::OnEvent(long nEventID, SAFEARRAY **arrayParameters, IDispatch*
pXMLSpy, VARIANT* pReturnValue)
{

1610 Programmers' Reference IDE Plugins

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 return S_OK;
}

HRESULT CXMLSpyIDEPlugIn::GetUIModifications(BSTR* pModificationsXML)
{
 CComBSTR bstrMods = _T(" \
 <ConfigurationData> \
 <Modifications> ");
 // add "Open URL..." to Tools menu

 bstrMods.Append (_T(" \
 <Modification> \
 <Action>Add</Action> \
 <UIElement type=\"MenuItem\"> \
 <ID>1</ID> \
 <Name>Open URL...</Name> \
 <Place>0</Place> \
 <MenuID>129</MenuID> \
 <Parent>:Tools</Parent> \
 </UIElement> \
 </Modification> "));
 // add Seperator to Tools menu

 bstrMods.Append (_T(" \
 <Modification> \
 <Action>Add</Action> \
 <UIElement type=\"MenuItem\"> \
 <ID>0</ID> \
 <Place>1</Place> \
 <MenuID>129</MenuID> \
 <Parent>:Tools</Parent> \
 </UIElement> \
 </Modification> "));
 // finish modification description

 bstrMods.Append (_T(" \
 </Modifications> \
 </ConfigurationData>"));

 return bstrMods.CopyTo(pModificationsXML);
}

HRESULT CXMLSpyIDEPlugIn::GetDescription(BSTR* pDescription)
{
 CComBSTR bstrDescr = _T("ATL C++ XMLSpy IDE PlugIn;This PlugIn demonstrates the
implementation of a simple ATL DLL as a IDE PlugIn for XMLSpy.");
 return bstrDescr.CopyTo(pDescription);
}

30.2.5 IXMLSpyPlugIn

Methods
OnCommand
OnUpdateCommand
OnEvent
GetUIModifications

1611

1612

1613

1614

© 2018-2024 Altova GmbH

IDE Plugins 1611Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

GetDescription

Description
If a DLL is added to XMLSpy as an IDE plug-in, it is necessary that it registers a COM component that answers
to an IXMLSpyPlugIn interface with the reserved uuid(88F2A622-4B7E-42CD-8D04-3C0E5389DD85). This is
required for it to be recognized as a plug-in.

30.2.5.1 OnCommand

Declaration
OnCommand(nID as long, pXMLSpy as IDispatch)

Description
The OnCommand() method of the interface implementation is called each time a command added by the IDE
plug-in (menu item or toolbar button) is processed. nID stores the command ID defined by the ID element of
the respective UIElement. pXMLSpy holds a reference to the dispatch interface of the Application object of
XMLSpy.

Example
Public Sub IXMLSpyPlugIn_OnCommand(ByVal nID As Long, ByVal pXMLSpy As Object)
 If (Not (pXMLSpy Is Nothing)) Then
 Dim objDlg
 Dim objDoc As XMLSpyLib.Document
 Dim objSpy As XMLSpyLib.Application
 Set objSpy = pXMLSpy

 If nID = 3 Or nID = 5 Then
 Set objDlg = CreateObject("MSComDlg.CommonDialog")
 objDlg.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*||"
 objDlg.FilterIndex = 1
 objDlg.ShowOpen

 If Len(objDlg.FileName) > 0 Then
 Set objDoc = objSpy.Documents.OpenFile(objDlg.FileName, False)
 Set objDoc = Nothing
 End If
 End If

 If nID = 4 Or nID = 6 Then
 Set objDlg = CreateObject("MSComDlg.CommonDialog")
 objDlg.Filter = "All Files (*.*)|*.*||"
 objDlg.Flags = cdlOFNPathMustExist
 objDlg.ShowSave

 If Len(objDlg.FileName) > 0 Then
 Set objDoc = objSpy.ActiveDocument

 If Not (objDoc Is Nothing) Then
 objDoc.SetPathName objDlg.FileName
 objDoc.Save
 Set objDoc = Nothing

1615

1612 Programmers' Reference IDE Plugins

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 End If
 End If
 End If

 Set objSpy = Nothing
 End If
End Sub

30.2.5.2 OnUpdateCommand

Declaration
OnUpdateCommand(nID as long, pXMLSpy as IDispatch) as SPYUpdateAction

Description
The OnUpdateCommand() method is called each time the visible state of a button or menu item needs to be set.
nID stores the command ID defined by the ID element of the respective UIElement. pXMLSpy holds a reference
to the dispatch interface of the Application object.

Possible return values to set the update state are:
spyEnable = 1
spyDisable = 2
spyCheck = 4
spyUncheck = 8

Example
Public Function IXMLSpyPlugIn_OnUpdateCommand(ByVal nID As Long, ByVal pXMLSpy As Object)
As SPYUpdateAction
 IXMLSpyPlugIn_OnUpdateCommand = spyDisable

 If (Not (pXMLSpy Is Nothing)) Then
 Dim objSpy As XMLSpyLib.Application
 Set objSpy = pXMLSpy

 If nID = 3 Or nID = 5 Then
 IXMLSpyPlugIn_OnUpdateCommand = spyEnable
 End If
 If nID = 4 Or nID = 6 Then
 If objSpy.Documents.Count > 0 Then
 IXMLSpyPlugIn_OnUpdateCommand = spyEnable
 Else
 IXMLSpyPlugIn_OnUpdateCommand = spyDisable
 End If
 End If
 End If
End Function

© 2018-2024 Altova GmbH

IDE Plugins 1613Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.2.5.3 OnEvent

Declaration
OnEvent(nEventID as long, arrayParameters as SAFEARRAY(VARIANT), pXMLSpy as IDispatch) as
VARIANT

Description
OnEvent() is called each time an event is raised from XMLSpy.

Possible values for nEventID are:

On_BeforeStartEditing = 1

On_EditingFinished = 2

On_FocusChanged = 3

On_Beforedrag = 4

On_BeforeDrop = 5

On_OpenProject = 6

On_OpenDocument = 7

On_CloseDocument = 8

On_SaveDocument = 9

On_DocEditDragOver = 10

On_DocEditDrop = 11

On_DocEditKeyDown = 12

On_DocEditKeyUp = 13

On_DocEditKeyPressed = 14

On_DocEditMouseMove = 15

On_DocEditButtonUp = 16

On_DocEditButtonDown = 17

On_DocEditContextMenu = 18

On_DocEditPaste = 19

On_DocEditCut = 20

On_DocEditCopy = 21

On_DocEditClear = 22

On_DocEditSelectionChanged = 23

On_DocEditDragOver = 10

On_BeforeOpenProject = 25

On_BeforeOpenDocument = 26

On_BeforeSaveDocument = 27

On_BeforeCloseDocument = 28

On_ViewActivation = 29

1614 Programmers' Reference IDE Plugins

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

On_DocEditKeyboardEvent = 30

On_DocEditMouseEvent = 31

On_BeforeValidate = 32

On_BeforeShowSuggestions = 33

On_ProjectOpened = 34

On_Char = 35

On_Initialize = 36

On_Running = 37

On_Shutdown = 38

On_AuthenticBeforeSave = 39

On_AuthenticContextMenuActivated = 40

On_AuthenticLoad = 41

On_AuthenticToolbarButtonClicked = 42

On_AuthenticToolbarButtonExecuted = 43

On_AuthenticUserAddedXMLNode = 44

The names of the events are the same as they appear in the Scripting Environment of XMLSpy. For IDE plug-
ins the names used are immaterial. The events are identified using the ID value.

arrayParameters is an array which is filled with the parameters of the currently raised event. Order, type, and
meaning of the single parameters are available through the scripting environment of XMLSpy. The events
module of a scripting project contains predefined functions for all events prior to version 4.4. The parameters
passed to the predefined functions are identical to the array elements of the arrayParameters parameter.

Events raised from the Authentic View of XMLSpy do not pass any parameters directly. An "event" object is
used instead. The event object can be accessed through the Document object of the active document.

pXMLSpy holds a reference to the dispatch interface of the Application object of XMLSpy.

If the return value of OnEvent() is set, then neither the IDE plug-in nor an event handler inside of the scripting
environment will get this event afterwards. Please note that all IDE plug-ins get/process the event before the
Scripting Environment does.

30.2.5.4 GetUIModifications

Declaration
GetUIModifications() as String

Description
The GetUIModifications() method is called during initialization of the plug-in, to get the configuration XML
data that defines the changes to the UI of XMLSpy. The method is called when the plug-in is loaded for the first
time, and at every start of XMLSpy. See also Configuration XML for a detailed description how to change
the UI.

1602

© 2018-2024 Altova GmbH

IDE Plugins 1615Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Example
Public Function IXMLSpyPlugIn_GetUIModifications() As String
 ' GetUIModifications() gets the XML file with the specified modifications of
 ' the UI from the config.xml file in the plug-in folder
 Dim strPath As String
 strPath = App.Path

 If Len(strPath) > 0 Then
 Dim fso As New FileSystemObject
 Dim file As file
 Set file = fso.GetFile(strPath & "\config.xml")

 If (Not (file Is Nothing)) Then
 Dim stream As TextStream
 Set stream = file.OpenAsTextStream(ForReading)

 ' this replaces the token '**path**' from the XML file with
 ' the actual installation path of the plug-in to get the image file
 Dim strMods As String
 strMods = stream.ReadAll
 strMods = Replace(strMods, "**path**", strPath)

 IXMLSpyPlugIn_GetUIModifications = strMods
 Else
 IXMLSpyPlugIn_GetUIModifications = ""
 End If
 End If
End Function

30.2.5.5 GetDescription

Declaration
GetDescription() as String

Description
GetDescription() is used to define the description string for the plug-in entries visible in the Customize dialog
box.

Example
Public Function IXMLSpyPlugIn_GetDescription() As String
 IXMLSpyPlugIn_GetDescription = "Sample Plug-in for XMLSpy;This Plug-in demonstrates the
implementation of a simple VisualBasic DLL as a Plug-in for XMLSpy."
End Function

1616 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3 Application API

The COM-based API of XMLSpy (also called the Application API from now on) enables other applications to
use the functionality of XMLSpy. As a result, it is possible to automate a wide range of tasks, from validating an
XML file to modifying complex XML content (with the XMLData interface).

XMLSpy and its Application API follow the common specifications for automation servers set out by Microsoft.
It is possible to access the methods and properties of the Application API from common development
environments, such as those using C#, C++, VisualBasic, and Delphi, and with scripting languages like JScript
and VBScript.

Execution environments for the Application API
The Application API can be accessed from the following execution environments:

· External programs (described below and in the Overview part of this section)
· From within the built-in Scripting Editor of XMLSpy. For a description of the scripting environment, see

the section, Scripting Editor .
· XMLSpy allows you to create and integrate your own plug-ins into the application using a special

interface for plug-ins. A description of how to create plug-ins is given in the section IDE Plug-ins .
· Via an ActiveX Control, which is available if the integration package is installed. For more

information, see the section ActiveX Integration .

External programs
In the Overview part of this section, we describe how the functionality of XMLSpy can be accessed and
automated from external programs.

Using the Application API from outside XMLSpy requires an instance of XMLSpy to be started first. How this is
done depends on the programming language used. See the section, Programming Languages , for
information about individual languages.

Essentially, XMLSpy will be started via its COM registration. Then the Application object associated with the
XMLSpy instance is returned. Depending on the COM settings, an object associated with an already running
XMLSpy can be returned. Any programming language that supports creation and invocation of COM objects
can be used. The most common of these are listed below.

· JScript and VBScript script files have a simple syntax and are designed to access COM objects.
They can be run directly from a DOS command line or with a double click on Windows Explorer. They
are best used for simple automation tasks.

· C# is a full-fledged programming language that has a wide range of existing functionality. Access to
COM objects can be automatically wrapped using C#..

· C++ provides direct control over COM access but requires relatively larger amounts of code than the
other languages.

· Java : Altova products come with native Java classes that wrap the Application API and provide a full
Java look-and-feel.

· Other programming languages that make useful alternatives are: Visual Basic for Applications, Perl,
and Python.

1893

1616 1617

1574

1601

2007

2007

1617

1618

1628

1631

1641

© 2018-2024 Altova GmbH

Application API 1617Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Programming points
The following limitations must be considered in your client code:

· Be aware that if your client code crashes, instances of XMLSpy may still remain in the system.
· Don't hold references to objects in memory longer than you need them, especially those from the

XMLData interface. If the user interacts between two calls of your client, then there is no guarantee that
these references are still valid.

· Don't forget to disable dialogs if the user interface is not visible.
· See Error handling in JScript (and in C# and Java) for details of how to avoid annoying error

messages.
· Free references explicitly if you are using C# or C++.

This documentation
This documentation section about the Application API is broadly divided into two parts.

· The first part consists of an Overview , which describes the object model for the API and explains
how the API is accessed via various programming languages .

· The second part is a reference section (Interfaces and Enumerations) that contains descriptions
of the interface objects of the Application API.

30.3.1 Overview

This overview of the Application API is organized as follows:

· The Object Model describes the relationships between the objects of the Application API.
· Programming Languages explains how the most commonly used programming languages (JScript,

VBScript, C#, and Java) can be used to access the functionality of the Application API. Code listings
from the example files supplied with your application package are used to describe basic mechanisms.

· The DOM and XMLData explains the relationship between the Application API's XMLData interface
and the DOM.

· Obsolete: Authentic View Row Operations supplies information about obsolete objects for Authentic
View table row operations.

· Obsolete: Authentic View Editing Operations supplies information about obsolete objects for
Authentic View editing operations.

30.3.1.1 Object Model

The starting point for every application which uses the Application API is the Application object. This
object contains general methods like import/export support and references to the open documents and any
open project.

The Application object is created differently in various programming languages. In scripting languages such
as JScript or VBScript, this involves calling a function which initializes the application's COM object. For
examples, see the Programming Languages section.

1623 1639 1647

1617

1618

1653 1942

1617

1618

1649

1652

1652

1654

1618

1618 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Broad structure of the object model
The picture below shows the links between the main objects of the Application API:

The Application object consists of the following parts:

· Document collection and reference to the active document.
· Reference to current project and methods for creating and opening projects.
· Methods to support the export to and import from databases, text files, and Word documents.
· URL management.
· Methods for macro menu items.

Once you have created an Application object you can start using the functionality of XMLSpy. In most cases,
you either open a project and access the documents from there or you directly open a document via the
Documents interface.

30.3.1.2 Programming Languages

Programming languages differ in the way they support COM access. A few examples for the most frequently
used languages (links below) will help you get started. The code listings in this section show how basic
functionality can be accessed. The files in the API subfolder of the Examples folder can be used to test this
functionality:

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

1780

© 2018-2024 Altova GmbH

Application API 1619Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

JScript
The JScript listings demonstrate the following basic functionality:

· Start application or attach to a running instance
· Simple document access
· Iteration
· Error handling
· Events
· Import and export of data

VBScript
VBScript is different than JScript only syntactically; otherwise it works in the same way. The link below goes to
an example of how VBScript can be used. For more information, refer to the JScript examples .

· Events : Shows how events are handled using VBScript.

C#
C# can be used to access the Application API functionality. The code listings show how to access the API for
certain basic functionality.

· Start XMLSpy : Starts XMLSpy, which is registered as an automation server, or activates the
program if XMLSpy is already running.

· Open OrgChart.pxf : Locates one of the example documents installed with XMLSpy and opens it. If
this document is already open it becomes the active document.

· OnDocumentOpened Event On/Off : Shows how to listen to XMLSpy events. When turned on, a
message box will pop up after a document has been opened.

· Open ExpReport.xml : Opens another example document.
· Toggle View Mode : Changes the view of all open documents between Text View and Authentic

View. The code shows how to iterate through open documents.
· Validate : Validates the active document and shows the result in a message box. The code shows

how to handle errors and COM output parameters.
· Shutdown XMLSpy : Stops XMLSpy.

Java
The XMLSpy API can be accessed from Java code. The Java sub-section of this section explains how some
basic XMLSpy functionality can be accessed from Java code. It is organized into the following sub-sections:

· Mapping Rules for the Java Wrapper
· Example Java Project
· Application Startup and Shutdown
· Simple Document Access
· Iterations
· Use of Out-Parameters
· Event Handlers

1620

1621

1622

1623

1623

1624

1620

1628

1636

1637

1640

1637

1638

1639

1636

1641

1641

1642

1646

1647

1647

1647

1648

1620 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.1.2.1 JScript

This section contains listings of JScript code that demonstrate the following basic functionality:

· Start application or attach to a running instance
· Simple document access
· Iteration
· Error handling
· Events
· Import and export of data

Example files
The code listings in this section are available in example files that you can test as is or modify to suit your
needs. The JScript example files are located in the JScript subfolder of the API Examples folder:

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

The example files can be run in one of two ways:

· From the command line: Open a command prompt window, change the directory to the path above,
and type the name of one of the example scripts (for example, Start.js).

· From Windows Explorer: In Windows Explorer, browse for the JScript file and double-click it.

The script is executed by Windows Script Host that is packaged with Windows operating system. For more
information about Windows Script Host, refer to MSDN documentation (https://msdn.microsoft.com).

30.3.1.2.1.1 Start Application

The JScript below starts the application and shuts it down. If the COM object of the 32-bit XMLSpy cannot be
found, the code attempts to get the COM object of the 64-bit application; otherwise, an error is thrown. If an
instance of the application is already running, the running instance will be returned.

Note: For 32-bit XMLSpy, the registered name, or programmatic identifier (ProgId) of the COM object is
XMLSpy.Application. For 64-bit XMLSpy, the name is XMLSpy_x64.Application. Be aware, though,
that the calling program will access the CLASSES registry entries in its own registry hive, or group (32-
bit or 64-bit). Therefore, if you run scripts using the standard command prompt and Windows Explorer
on 64-bit Windows, the 64-bit registry entries will be accessed, which point to the 64-bit XMLSpy. For
this reason, if both XMLSpy 32-bit and 64-bit are installed, special handling is required in order to call
the 32-bit XMLSpy. For example, assuming that Windows Scripting Host is the calling program, do the
following:

1. Change the current directory to C:\Windows\SysWOW64.
2. At the command line, type wscript.exe followed by the path to the script that you would like to run, for

example:

1620

1621

1622

1623

1623

1624

https://msdn.microsoft.com

© 2018-2024 Altova GmbH

Application API 1621Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

wscript.exe "C:\Users\...
\Documents\Altova\StyleVision2024\StyleVisionExamples\API\JScript\start.js"wscript.exe
"C:\Users\...\Documents\Altova\XMLSpy2024\Examples\API\JScript\start.js"

// Initialize application's COM object. This will start a new instance of the application
and
// return its main COM object. Depending on COM settings, the main COM object of an
already
// running application might be returned.

try { objSpy = WScript.GetObject("", "XMLSpy.Application"); }

catch(err) {}

if(typeof(objSpy) == "undefined")

{
 try { objSpy = WScript.GetObject("", "XMLSpy_x64.Application") }

 catch(err)

 {
 WScript.Echo("Can't access or create XMLSpy.Application");
 WScript.Quit();
 }
}

// if newly started, the application will start without its UI visible. Set it to
visible.
objSpy.Visible = true;

WScript.Echo(objSpy.Edition + " has successfully started. ");

objSpy.Visible = false; // will shutdown application if it has no more COM

connections
//objSpy.Visible = true; // will keep application running with UI visible

The JScript code listed above is available in the sample file Start.js (see Example Files).

30.3.1.2.1.2 Simple Document Access

After you have started the application as shown in Start Application , you will most likely want to
programmatically open a document in order to work with it. The JScript code listing below illustrates how to
open two documents from the XMLSpy Examples folder and set one of them as the active document.

// Locate examples via USERPROFILE shell variable. The path needs to be adapted to major
release versions.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objSpy.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\\My
Documents\\Altova\\XMLSpy" + majorVersionYear + "\\Examples\\";

1620

1620

1622 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

// Tell XMLSpy to open two documents. No dialogs
objDoc1 = objSpy.Documents.OpenFile(strExampleFolder + "OrgChart.pxf", false);

objSpy.Documents.OpenFile(strExampleFolder + "ExpReport.xml", false);

// The document currently active can be easily located.
objDoc2 = objSpy.ActiveDocument;

// Let us make sure that the document is shown in grid view.
objDoc2.SwitchViewMode(0); // SPYViewModes.spyViewGrid = 0

// Now switch back to the document opened first
objDoc1.SetActiveDocument();

The JScript code listed above is available in the sample file DocumentAccess.js (see Example Files).

30.3.1.2.1.3 Iteration

The JScript listing below shows how to iterate through the open documents. It is assumed that you have
already started the application and opened some documents as shown in the previous sections.

// go through all open documents using a JScript Enumerator
bRequiresSaving = false;

for (var iterDocs = new Enumerator(objSpy.Documents); !iterDocs.atEnd();

iterDocs.moveNext())
{
 if (iterDocs.item().IsModified)

 bRequiresSaving = true;

 var strErrorText = new Array(1);

 var nErrorNumber = new Array(1);

 var errorData = new Array(1);

 if (!iterDocs.item().IsValid(strErrorText, nErrorNumber, errorData))

 {
 var text = strErrorText;

 // access that XMLData object only if filled in
 if (errorData[0] != null)

 text += "(" + errorData[0].Name + "/" + errorData[0].TextValue + ")";

 WScript.Echo("Document \"" + iterDocs.item().Name +"\" validation error[" +
nErrorNumber + "]: " + text);
 }
 else

 {
 // The COM call succeeded and the document is valid.
 WScript.Echo("Document \"" + iterDocs.item().Name + "\" is valid.");
 }
}

1620

© 2018-2024 Altova GmbH

Application API 1623Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

// go through all open documents using index-based access to the document collection
for (i = objSpy.Documents.Count; i > 0; i--)

 objSpy.Documents.Item(i).Close(false);

The JScript code listed above is available in the sample file DocumentAccess.js (see Example Files).

30.3.1.2.1.4 Error Handling

The Application API returns errors in two different ways:

· The HRESULT returned by every API method
· The IErrorInfo interface of the Application API

Every API method returns an HRESULT. This return value gives the caller information about errors during
execution of the method. If the call was successful, the return value is S_OK. The HRESULT option is commonly
used in C/C++ programs.

However, programming languages such as VisualBasic and scripting languages (and other high-level
development environments) don't give the programmer access to the HRESULT return of a COM call. Such
languages use the IErrorInfo interface, which is also supported by the Application API. If an error occurs, the
Application API creates a new object that implements the IErrorInfo interface. The information provided by
the IErrorInfo interface is imported by the development environment into its own error-handling mechanism.

For example, the JScript code listing below causes an error to be thrown by incorrectly declaring an array.
Additional information about the error object is provided by its properties number and description.

try {

 var arr = new Array(-1);

}
catch (err) {

 WScript.Echo("Error : (" + (err.number & 0xffff) + ")" + err.description);
}

30.3.1.2.1.5 Events

COM specifies that a client must register itself at a server for callbacks using the connection point mechanism.
The automation interface for XMLSpy defines the necessary event interfaces. The way to connect to those
events depends on the programming language you use in your client. The following code listing shows how this
is done using JScript.

The method WScript.ConnectObject is used to receive events.

// The event-handler function
function DocEvent_OnBeforeCloseDocument(objDocument)

{

1620

1624 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 WScript.Echo("Received event - before closing document");
}

// Create or connect to XMLSpy (or Authentic Desktop)
try

{
 // Create the environment and XMLSpy (or Authentic Desktop)
 objWshShell = WScript.CreateObject("WScript.Shell");
 objFSO = WScript.CreateObject("Scripting.FileSystemObject");
 objSpy = WScript.GetObject("", "XMLSpy.Application");

// If only Authentic Desktop is installed (and XMLSpy is not installed) use:
// objSpy = WScript.GetObject("", "AuthenticDesktop.Application")

}
catch(err)

 { WScript.Echo ("Can't create WScript.Shell object or XMLSpy"); }

// Create document object and connect to its events
objSpy.Visible = true;

majorVersionYear = objSpy.MajorVersion + 1998
docPath = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\\Documents\\Altova\
\XMLSpy" + majorVersionYear + "\\Examples\\ExpReport.xml";
objDoc = objSpy.Documents.OpenFile (docPath, false);

WScript.ConnectObject(objDoc, "DocEvent_");

// Keep running while waiting for the event
// In the meanwhile close this document in XMLSpy (or Authentic Desktop) manually
WScript.Echo ("Sleeping for 10 seconds ...");
WScript.Sleep (10000);

objDoc = null;

WScript.Echo ("Stopped listening for event");
objSpy.Quit();

30.3.1.2.1.6 Import and Export of Data

Before you implement your import and export tasks with the Application API, it is good practice to test the
connections, parameters, SQL queries and so on in XMLSpy. In this way you are able to verify the results and
make quick adjustments to import or export parameters. Most of the methods for importing and exporting data
are placed in the Application object; the remaining functions are accessible via the Document
interface.

There is some preparatory work necessary before the actual import or export can be started. Every
import/export job consists of two parts. You need to define a connection to your data and the specific behavior
for the import/export process. In case of an import, the connection is either a database, a text-file, or a Word
document. The main issue is which data (columns) to imported into XMLSpy. In case of an export, the
connection is either a database or a text file. Specify which data (elements of the XML file) and additional
parameters (for example, automatic key generation or number of sub-levels) to use from the XML-structure.

1654 1747

© 2018-2024 Altova GmbH

Application API 1625Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

The properties in the DatabaseConnection, TextImportExportSettings and ExportSettings interfaces have
default values. See the corresponding descriptions in the Interfaces chapter for further information.

The sub-sections of this section describe each of these operations in detail.

· Import from Database
· Export to Database
· Import from Text
· Export to Text

Given below are the steps to establish a connection to an existing database for import:

1. Use a DatabaseConnection object and set the following:
· The method Application.GetDatabaseSettings returns a new object for a database

connection: objImpSettings = objSpy.GetDatabaseSettings();
· You have to set either an ADO connection string, objImpSettings.ADOConnection =

strADOConnection or the path to an existing database file: objImpSettings.File =
strExampleFolder + "Tutorial\\Company.mdb";

· To complete the settings you create an SQL SELECT statement to define the data to be queried:
objImpSettings.SQLSelect = "SELECT * FROM Address";

2. Call Application.GetDatabaseImportElementList to get a collection of the resulting columns of
the SQL query: objElementList = objSpy.GetDatabaseImportElementList(objImpSettings);
This collection gives you the opportunity to control which columns should be imported and specify the
datatype of the new elements. Each item of the collection represents one column to import. If you
remove an item, the corresponding column will not be imported. You can additionally modify the
ElementListItem.ElementKind property to set the datatype of the XML elements for each
column. Please consider that GetDatabaseImportElementList() executes the SQL query and could
initiate a time-consuming call. To avoid this, it is possible to pass a null-pointer as the second
parameter to ImportFromDatabase(); this imports all columns as plain XML elements.

3. Start the import with Application.ImportFromDatabase : objImpDocFromDB =
objSpy.ImportFromDatabase(objImpSettings,objElementList);

// Locate examples via USERPROFILE shell variable.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objSpy.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\\My
Documents\\Altova\\XMLSpy" + majorVersionYear + "\\Examples\\";

try

{
 // specify the source of data import
 objImpSettings = objSpy.GetDatabaseSettings();
 objImpSettings.File = strExampleFolder + "Tutorial\\Company.mdb";
 objImpSettings.SQLSelect = "SELECT * FROM Address";

 // column filter
 objElementList = objSpy.GetDatabaseImportElementList(objImpSettings);

 // import into a new XML file
 objImpDocFromDB = objSpy.ImportFromDatabase(objImpSettings,objElementList);
}
catch(err)

1653

1625

1626

1626

1627

1736

1662

1661

1790

1665

1626 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

{
 WScript.Echo("Error importing from database.\n\n" +
 "Error: " + (err.number & 0xffff) + "\n" +
 "Description: " + err.description);
}

The JScript code listed above is available in the sample file ImportExport.js (see Example Files).

To export data to a database, carry out the steps below:

1. Use a DatabaseConnection object and set the necessary properties. All properties except
SQLSelect are important for the export. ADOConnection or File defines the target for the output. You
need to set only one of them.

2. Fill an ExportSettings object with the required values. These properties are the same options as
those available in the export dialog of XMLSpy. Select the menu option Convert | Export to Text
files/Database to see the options and try a combination of export settings. After that it is easy to
transfer these settings to the properties of the interface. Call Application.GetExportSettings to
get an ExportSettings object: objExpSettings = objSpy.GetExportSettings()

3. Build an element list with Document.GetExportElementList . The element list enables you to
eliminate XML elements from the export process. It also gives you information about the record and
field count in the RecordCount and FieldCount properties. Set the ExportSettings.ElementList
property to this collection. It is possible to set the element list to null/Nothing (default) to export all
elements.

4. Call Document.ExportToDatabase to execute the export. The description of the
ExportToDatabase method contains also a code example for a database export.

 // set the behaviour of the export with ExportSettings
 objExpSettings = objSpy.GetExportSettings()

 //set the destination with DatabaseConnection
 objDB = objSpy.GetDatabaseSettings();
 objDB.CreateMissingTables = true;

 objDB.CreateNew = true;

 objDB.File = "C:\\Temp\\Export.mdb";

try

{
 objImpDocFromDB.ExportToDatabase(objImpDocFromDB.RootElement, objExpSettings, objDB);
}
catch(err)

{
 WScript.Echo("Error exporting to database.\n\n" +
 "Error: " + (err.number & 0xffff) + "\n" +
 "Description: " + err.description);
}

The JScript code listed above is available in the sample file ImportExport.js (see Example Files).

Importing data from a text file is similar to the import from a database. You must use other interfaces
(described in steps 1 to 3 below) with different methods and properties:

1620

1736

1791

1663

1767

1791

1760

1620

© 2018-2024 Altova GmbH

Application API 1627Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

1. Use a TextImportExportSettings object and set the properties: The method
Application.GetTextImportExportSettings returns a new object to specify a text file for import:
objImpSettings = objSpy.GetTextImportExportSettings(); You have to set at least the
ImportFile property to the path of the file for the import. Another important property is HeaderRow. Set
it to False if the text file does not contain a leading line as a header row:
objImpSettings.ImportFile = strExampleFolder + "Tutorial\\Shapes.txt";

2. Call Application.GetTextImportElementList to get a collection of all columns inside the text
file: objElementList = objSpy.GetTextImportElementList(objImpSettings);

3. Start the import with Application.ImportFromText : objImpDocFromText =
objSpy.ImportFromText(objImpSettings,objElementList);

try

{
 // specify the source of data import
 objImpSettings = objSpy.GetTextImportExportSettings();
 objImpSettings.ImportFile = strExampleFolder + "Tutorial\\Shapes.txt";
 objImpSettings.HeaderRow = false;

 // column filter
 objElementList = objSpy.GetTextImportElementList(objImpSettings);

 // import into a new XML file
 objImpDocFromText = objSpy.ImportFromText(objImpSettings,objElementList);
}
catch(err)

{
 WScript.Echo("Error importing from text file.\n\n" +
 "Error: " + (err.number & 0xffff) + "\n" +
 "Description: " + err.description);
}

The JScript code listed above is available in the sample file ImportExport.js (see Example Files).

To export data to text, carry out the steps below:

1. Use a TextImportExportSettings object and set the necessary properties.
2. Fill an ExportSettings object with the required values. See Item 2 in Export to database .
3. Build an element list with Document.GetExportElementList . See Item 3 in Export to database

.
4. Call Document.ExportToText to execute the export.

objExpSettings = objSpy.GetExportSettings();
objExpSettings.ElementList =
objImpDocFromText.GetExportElementList(objImpDocFromText.RootElement, objExpSettings);

objTextExp = objSpy.GetTextImportExportSettings();
objTextExp.HeaderRow = true;

objTextExp.DestinationFolder = "C:\\Temp";

1850

1664

1663

1667

1620

1850

1791 1626

1767 1626

1761

1628 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

try

{

 objImpDocFromText.ExportToText(objImpDocFromText.RootElement, objExpSettings,
objTextExp);
}
catch(err)

{
 WScript.Echo("Error exporting to text.\n\n" +
 "Error: " + (err.number & 0xffff) + "\n" +
 "Description: " + err.description);
}

The JScript code listed above is available in the sample file ImportExport.js (see Example Files).

30.3.1.2.2 VBScript

VBScript is syntactically different than JScript but works in the same way. This section contains a listing
showing how events are used with VBScript and an example .

For information about other functionality, refer to the JScript examples listed below:

· Start application or attach to a running instance
· Simple document access
· Iteration
· Error handling
· Import and export of data

30.3.1.2.2.1 Events

COM specifies that a client must register itself at a server for callbacks using the connection point mechanism.
The automation interface for XMLSpy defines the necessary event interfaces. The way to connect to those
events depends on the programming language you use in your client. The following code listing shows how this
is done using VBScript.

The method WScript.ConnectObject is used to receive events.

To run this code, paste it into a file with .vbs extension, and either double-click in Windows Explorer, or run it
from a command prompt.

' the event handler function
Function DocEvent_OnBeforeCloseDocument(objDocument)

 Call WScript.Echo("received event - before closing document")

End Function

' create or connect to XmlSpy

1620

1628 1630

1620

1621

1622

1623

1624

© 2018-2024 Altova GmbH

Application API 1629Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Set objWshShell = WScript.CreateObject("WScript.Shell")

Set objFSO = WScript.CreateObject("Scripting.FileSystemObject")

Set objSpy = WScript.GetObject("", "XMLSpy.Application")

' If only Authentic is installed (and XMLSpy is not installed) use:
' Set objSpy = WScript.GetObject("", "AuthenticDesktop.Application")
' If only XMLSpy 64-bit is intalled, use:
' Set objSpy = WScript.GetObject("", "XMLSpy_x64.Application")

' create document object and connect to its events
objSpy.Visible = True

' Find out user's personal folder and locate one of the installed examples.
personalFolder = objWshShell.ExpandEnvironmentStrings("%UserProfile%")
majorVersionYear = objSpy.MajorVersion + 1998
xmlspyExamplesFolder = personalFolder & "\Documents\Altova\XMLSpy" & majorVersionYear &
"\Examples\"
docPath = xmlspyExamplesFolder & "ExpReport.xml"

' open a document
Set objDoc = objSpy.Documents.OpenFile (docPath, False)

Call WScript.ConnectObject(objDoc, "DocEvent_")

' keep running while waiting on the event
' in the meantime close the document in XMLSPY manually
Call WScript.Echo ("sleeping for 10 seconds ...")

Call WScript.Sleep (10000)

Set objDoc = Nothing

Call WScript.Echo ("stopped listening for event")

Call objSpy.Quit

Note: For 32-bit XMLSpy, the registered name, or programmatic identifier (ProgId) of the COM object is
XMLSpy.Application. For 64-bit XMLSpy, the name is XMLSpy_x64.Application. Be aware, though,
that the calling program will access the CLASSES registry entries in its own registry hive, or group (32-
bit or 64-bit). Therefore, if you run scripts using the standard command prompt and Windows Explorer
on 64-bit Windows, the 64-bit registry entries will be accessed, which point to the 64-bit XMLSpy. For
this reason, if both XMLSpy 32-bit and 64-bit are installed, special handling is required in order to call
the 32-bit XMLSpy. For example, assuming that Windows Scripting Host is the calling program, do the
following:

1. Change the current directory to C:\Windows\SysWOW64.
2. At the command line, type wscript.exe followed by the path to the script that you would like to run, for

example:

wscript.exe "C:\Users\...
\Documents\Altova\StyleVision2024\StyleVisionExamples\API\JScript\start.js"wscript.exe
"C:\Users\...\Documents\Altova\XMLSpy2024\Examples\API\JScript\start.js"

1630 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.1.2.2.2 Example: Using Events

Authentic View supports event connection on a per-object basis. Implementation of this feature is based on
COM connection points and is available in environments that support this mechanism.

The following example is a VBScript code example that shows how to use events from within a VBScript
project.

' --
' VBScript example that demonstrates how to use events.
' --

' Event handler for OnSelectionChanged event of AuthenticView
Function AuthenticViewEvent_OnSelectionChanged(objAuthenticRange)

 If objAuthenticRange.FirstTextPosition <> objAuthenticRange.LastTextPosition Then

 Call WScript.Echo("Selection: " & objAuthenticRange.Text & vbNewLine & vbNewLine

& "Close this dialog.")
 Else

 Call WScript.Echo("Cursor position: " & objAuthenticRange.FirstTextPosition &

vbNewLine & vbNewLine & "Close this dialog.")
 End If

End Function

' Start/access XMLSpy and connect to its automation interface.
Set WshShell = WScript.CreateObject("WScript.Shell")

Set objSpy = GetObject("", "XMLSpy.Application")

' Make the UI of XMLSpy visible.
objSpy.Visible = True

' Find out user's personal folder and locate one of the installed XMLSpy examples.
personalFolder = WshShell.ExpandEnvironmentStrings("%UserProfile%")
majorVersionYear = objSpy.MajorVersion + 1998
xmlspyExamplesFolder = personalFolder & "\Documents\Altova\XMLSpy" & majorVersionYear &
"\Examples\"
docPath = xmlspyExamplesFolder & "ExpReport.xml"

' Create object to access windows file system and test if the our document exists.
Set fso = CreateObject("Scripting.FileSystemObject")

If fso.FileExists(docPath) Then

 ' open the document
 Call objSpy.Documents.OpenFile(docPath, False)

 set objDoc = objSpy.ActiveDocument

 ' switch active document to authentic view
 objDoc.SwitchViewMode 4 ' spyViewAuthentic

 ' Register for connection point events on the authentic view of the active document.
 ' Any function with a valid event name prefixed with "AuthenticViewEvent_" will
 ' be called when the corresponding event gets triggered on the specified object.
 set objView = objDoc.AuthenticView

 Call WScript.ConnectObject(objView, "AuthenticViewEvent_")

 Call WScript.Echo("Events are connected." & vbNewLine & vbNewLine & "Now set or move

© 2018-2024 Altova GmbH

Application API 1631Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

the cursor in XMLSpy." & vbNewLine & vbNewLine & "Close this dialog to shut down
XMLSpy.")

 ' To disconnect from the events delete the reference to the object.
 set objView = Nothing

Else

 Call WScript.Echo("The file " & docPath & " does not exist.")

End If

' shut down XMLSpy when this script ends
objSpy.Visible = False

30.3.1.2.3 C#

The C# programming language can be used to access the Application API functionality. You could use Visual
Studio 2012/2013/2015/2017/2019/2022 to create the C# code, saving it in a Visual Studio project. Create the
project as follows:

1. In Microsoft Visual Studio, add a new project using File | New | Project.
2. Add a reference to the XMLSpy Type Library by clicking Project | Add Reference. The Add Reference

dialog appears. Browse for the XMLSpy Type Library component, which is located in the XMLSpy
application folder, and add it.

3. Enter the code you want.
4. Compile the code and run it.

Example C# project
Your XMLSpy package contains an example C# project, which is located in the API\C# subfolder of the
Examples folder :

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022. The code
listing below shows how basic application functionality can be used. This code is similar to the example C#
project in the API Examples folder of your application package, but might differ slightly.

Platform configuration
If you have a 64-bit operating system and are using a 32-bit installation of XMLSpy, you must add the x86
platform in the solution's Configuration Manager and build the sample using this configuration. A new x86
platform (for the active solution in Visual Studio) can be created in the New Solution Platform dialog (Build |
Configuration Manager | Active solution platform | <New…>).

What the code listing below does
The example code listing below creates a simple user interface (screenshot below) with buttons that invoke
basic XMLSpy operations:

1632 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Start XMLSpy : Starts XMLSpy, which is registered as an automation server, or activates the
application if it is already running.

· Open OrgChart.pxf : Locates one of the example documents installed with XMLSpy and opens it. If
this document is already open it becomes the active document.

· OnDocumentOpened Event On/Off : Shows how to listen to XMLSpy events. When turned on, a
message box will pop up after a document has been opened.

· Open ExpReport.xml : Opens another example document.
· Toggle View Mode : Changes the view of all open documents between Text View and Authentic

View. The code shows how to iterate through open documents.
· Validate : Validates the active document and shows the result in a message box. The code shows

how to handle errors and COM output parameters.
· Shut down XMLSpy : Stops XMLSpy.

You can modify the code (of the code listing below or of the example C# project in the API Examples folder) in
any way you like and run it.

Compiling and running the example
In the API Examples folder, double-click the file AutomateXMLSpy_VS2008.sln or the file
AutomateXMLSpy_VS2010.sln (to open in Visual Studio 2012/2013/2015/2017/2019/2022). Alternatively the file
can be opened from within Visual Studio (with File | Open | Project/Solution). To compile and run the
example, select Debug | Start Debugging or Debug | Start Without Debugging.

Code listing of the example
Given below is the C# code listing of the basic functionality of the form (Form1.cs) created in the
AutomateXMLSpy example. Note that the code listed below might differ slightly from the code in the API
Examples form.The listing below is commented for ease of understanding. Parts of the code are also presented
separately in the sub-sections of this section, according to the Application API functionality they access.

1636

1637

1640

1637

1638

1639

1636

© 2018-2024 Altova GmbH

Application API 1633Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

The code essentially consists of a series of handlers for the buttons in the user interface shown in the
screenshot above.

namespace WindowsFormsApplication2
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 // An instance of XMLSpy accessed via its automation interface
 XMLSpyLib.Application XMLSpy;

 // Location of examples installed with XMLSpy
 String strExamplesFolder;

 private void Form1_Load(object sender, EventArgs e)
 {
 // Locate examples installed with XMLSpy
 // REMARK: You might need to adapt this if you have a different major version
of the product
 strExamplesFolder = Environment.GetEnvironmentVariable("USERPROFILE") + "\\My
Documents\\Altova\\XMLSpy2012\\Examples\\";
 }

 // Handler for the "Start XMLSpy" button
 private void StartXMLSpy_Click(object sender, EventArgs e)
 {
 if (XMLSpy == null)
 {
 Cursor.Current = Cursors.WaitCursor;

 // If no XMLSpy instance is open, create one and make it visible
 XMLSpy = new XMLSpyLib.Application();
 XMLSpy.Visible = true;

 Cursor.Current = Cursors.Default;
 }
 else
 {
 // If an instance of XMLSpy is already running, make sure it's visible
 if (!XMLSpy.Visible)
 XMLSpy.Visible = true;
 }
 }

 // Handler for the "Open OrgChart.pxf" button
 private void openOrgChart_Click(object sender, EventArgs e)
 {
 // Make sure there's a running XMLSpy instance, and that it's visible
 StartXMLSpy_Click(null, null);

 // Open one of the example files installed with the product

1634 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 XMLSpy.Documents.OpenFile(strExamplesFolder + "OrgChart.pxf", false);
 }

 // Handler for the "Open ExpReport.xml" button
 private void openExpReport_Click(object sender, EventArgs e)
 {
 // Make sure there's a running XMLSpy instance, and that it's visible
 StartXMLSpy_Click(null, null);

 // Open one of the sample files installed with the product.
 XMLSpy.Documents.OpenFile(strExamplesFolder + "ExpReport.xml", false);
 }

 // Handler for the "Toggle View Mode" button
 private void toggleView_Click(object sender, EventArgs e)
 {
 // Make sure there's a running XMLSpy instance, and that it's visible
 StartXMLSpy_Click(null, null);

 // Iterate through all open documents and toggle view between Text View and
Authentic View
 foreach (XMLSpyLib.Document doc in XMLSpy.Documents)
 if (doc.CurrentViewMode == XMLSpyLib.SPYViewModes.spyViewText)
 doc.SwitchViewMode(XMLSpyLib.SPYViewModes.spyViewAuthentic);
 else
 doc.SwitchViewMode(XMLSpyLib.SPYViewModes.spyViewText);
 }

 // Handler for the "Shutdown XMLSpy" button
 // Shut down the application instance by explicitly releasing the COM object
 private void shutdownXMLSpy_Click(object sender, EventArgs e)
 {
 if (XMLSpy != null)
 {
 // Allow shutdown of XMLSpy by releasing the UI
 XMLSpy.Visible = false;

 // Explicitly release the COM object
 try
 {
 while (System.Runtime.InteropServices.Marshal.ReleaseComObject(XMLSpy)
> 0) ;
 }
 finally
 {
 // Disallow subsequent access to this object
 XMLSpy = null;
 }
 }
 }

 // Handler for button "Validate"
 private void validate_Click(object sender, EventArgs e)
 {
 // COM errors are returned to C# as exceptions. We use a try/catch block to
handle them.

© 2018-2024 Altova GmbH

Application API 1635Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 try
 {
 // Method 'IsValid' is one of the few functions that uses output parameters
 // Use 'object' type for these parameters
 object strErrorText = "";
 object nErrorNumber = 0;
 object errorData = null;

 if (!XMLSpy.ActiveDocument.IsValid(ref strErrorText, ref nErrorNumber, ref
errorData))
 {
 // The COM call succeeded but the document is not valid
 // A detailed description of the problem is returned in strErrorText,
nErrorNumber and errorData
 listBoxMessages.Items.Add("Document " + XMLSpy.ActiveDocument.Name + "
is not valid.");
 listBoxMessages.Items.Add("\tErrorText : " + strErrorText);
 listBoxMessages.Items.Add("\tErrorNumber: " + nErrorNumber);
 listBoxMessages.Items.Add("\tElement : " + (errorData != null ?
((XMLSpyLib.XMLData)errorData).TextValue : "null"));
 }
 else
 {
 // The COM call succeeded and the document is valid
 listBoxMessages.Items.Add("Document " + XMLSpy.ActiveDocument.Name + "
is valid.");
 }
 }
 catch (Exception ex)
 {
 // The COM call was not successful
 // Probably no application instance has been started or no document is
open.
 listBoxMessages.Items.Add("Error validating active document: " +
ex.Message);
 }
 }

 // Event handler for OnDocumentOpened event
 private void handleOnDocumentOpened(XMLSpyLib.Document i_ipDocument)
 {
 MessageBox.Show("Document " + i_ipDocument.Name + " was opened!");
 }

 // Remember if the event handler is currently registered.
 private bool bEventHandlerIsRegistered = false;

 // Handler for button 'OnDocuemntOpened Event On/Off
 private void toggleOnDocumentOpenedEvent_Click(object sender, EventArgs e)
 {
 if (XMLSpy != null)
 {
 if (bEventHandlerIsRegistered)

1636 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 XMLSpy.OnDocumentOpened -= new
XMLSpyLib._IApplicationEvents_OnDocumentOpenedEventHandler(handleOnDocumentOpened);
 else
 XMLSpy.OnDocumentOpened += new
XMLSpyLib._IApplicationEvents_OnDocumentOpenedEventHandler(handleOnDocumentOpened);

 bEventHandlerIsRegistered = !bEventHandlerIsRegistered;
 }
 }
 }
}

30.3.1.2.3.1 Add Reference to XMLSpy API

Add the application's type library as a reference in a .NET project as follows: With the .NET project open, click
Project | Add Reference. Then browse for the type library, which is called XMLSpy.tlb, and is located in the
XMLSpy application folder.

Then declare a variable to access the XMLSpy API:

 // An instance of XMLSpy is accessed via its automation interface.
 XMLSpyLib.Application XMLSpy;

30.3.1.2.3.2 Application Startup and Shutdown

In the code snippets below, the methods StartXMLSpy_Click and ShutdownXMLSpy_Click are those assigned
to buttons in the AutomateXMLSpy example that, respectively, start up and shut down the application. This
example is located in the C# subfolder of the API Examples folder (see the file Form1.cs):

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022.

Starting XMLSpy
The following code snippet from the AutomateXMLSpy example shows how to start up the application.

 // Handler for the "Start XMLSpy" button
 private void StartXMLSpy_Click(object sender, EventArgs e)
 {
 if (XMLSpy == null)
 {
 Cursor.Current = Cursors.WaitCursor;

 // If no XMLSpy instance is running, we create one and make it visible
 XMLSpy = new XMLSpyLib.Application();
 XMLSpy.Visible = true;

1631

1631

© 2018-2024 Altova GmbH

Application API 1637Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 Cursor.Current = Cursors.Default;
 }
 else
 {
 // If an instance of XMLSpy is already running, make sure it's visible
 if (!XMLSpy.Visible)
 XMLSpy.Visible = true;
 }
 }

Shutting down XMLSpy
The following code snippet from the AutomateXMLSpy example shows how to shut down the application.

// Handler for the "Shutdown XMLSpy" button
 // Shut down the application instance by explicitly releasing the COM object
 private void shutdownXMLSpy_Click(object sender, EventArgs e)
 {
 if (XMLSpy != null)
 {
 // Allow shutdown of XMLSpy by releasing the UI
 XMLSpy.Visible = false;

 // Explicitly release COM object
 try
 {
 while (System.Runtime.InteropServices.Marshal.ReleaseComObject(XMLSpy)
> 0) ;
 }
 finally
 {
 // Disallow subsequent access to this object
 XMLSpy = null;
 }
 }
 }

30.3.1.2.3.3 Opening Documents

The code snippets below (from the AutomateXMLSpy example) show how two files are opened via two
separate methods assigned to two buttons in the user interface. Both methods use the same Application API
access mechanism: XMLSpy.Documents.OpenFile(string, boolean) .

The AutomateXMLSpy example (see the file Form1.cs) is located in the C# subfolder of the API Examples
folder:

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022.

1631

1631

1783

1631

1638 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Code snippet

 // Handler for the "Open OrgChart.pxf" button
 private void openOrgChart_Click(object sender, EventArgs e)
 {
 // Make sure there's a running XMLSpy instance, and that it's visible
 StartXMLSpy_Click(null, null);

 // Open a file from the Examples folder installed with the product
 XMLSpy.Documents.OpenFile(strExamplesFolder + "OrgChart.pxf", false);
 }

 // Handler for the "Open ExpReport.xml" button
 private void openExpReport_Click(object sender, EventArgs e)
 {
 // Make sure there's a running XMLSpy instance, and that it's visible
 StartXMLSpy_Click(null, null);

 // Open a file from the Examples folder installed with the product
 XMLSpy.Documents.OpenFile(strExamplesFolder + "ExpReport.xml", false);
 }

The file opened last will be the active file.

30.3.1.2.3.4 Iterating through Open Documents

The code snippet below (from the AutomateXMLSpy example ; see the file Form1.cs) shows how to iterate
through open documents. A condition is then tested within the iteration loop, and the document view is
switched between Text View and Authentic View.

// Handler for the "Toggle view mode" button
 private void toggleView_Click(object sender, EventArgs e)
 {
 // Make sure there's a running XMLSpy instance, and that it's visible
 StartXMLSpy_Click(null, null);

 // Iterate through open documents and toggle current view between text and
authentic view.
 foreach (XMLSpyLib.Document doc in XMLSpy.Documents)
 if (doc.CurrentViewMode == XMLSpyLib.SPYViewModes.spyViewText)
 doc.SwitchViewMode(XMLSpyLib.SPYViewModes.spyViewAuthentic);
 else
 doc.SwitchViewMode(XMLSpyLib.SPYViewModes.spyViewText);
 }

The AutomateXMLSpy example example is located in the C# subfolder of the API Examples folder:

1631

1631

© 2018-2024 Altova GmbH

Application API 1639Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022.

30.3.1.2.3.5 Errors and COM Output Parameters

The code snippet below (from the AutomateXMLSpy example) shows how to handle errors and COM output
parameters. The method XMLSpy.ActiveDocument.IsValid(ref strErrorText, ref nErrorNumber, ref errorData)
uses output parameters that are used, in the code snippet below, to generate an error-message text.

The AutomateXMLSpy example (see the file Form1.cs) is located in the C# subfolder of the API Examples
folder:

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022.

Code snippet

 // Handler for button "Validate"
 private void validate_Click(object sender, EventArgs e)
 {
 // COM errors are returned to C# as exceptions. We use a try/catch block to
handle them.
 try
 {
 // Method 'IsValid' is one of the few functions that uses output parameters
 // Use 'object' type for these parameters
 object strErrorText = "";
 object nErrorNumber = 0;
 object errorData = null;

 if (!XMLSpy.ActiveDocument.IsValid(ref strErrorText, ref nErrorNumber, ref
errorData))
 {
 // The COM call succeeded but the document is not valid
 // A detailed description of the problem is returned in strErrorText,
nErrorNumber and errorData
 listBoxMessages.Items.Add("Document " + XMLSpy.ActiveDocument.Name + "
is not valid.");
 listBoxMessages.Items.Add("\tErrorText : " + strErrorText);
 listBoxMessages.Items.Add("\tErrorNumber: " + nErrorNumber);
 listBoxMessages.Items.Add("\tElement : " + (errorData != null ?
((XMLSpyLib.XMLData)errorData).TextValue : "null"));
 }
 else
 {

1631

1768

1631

1640 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 // The COM call succeeded and the document is valid
 listBoxMessages.Items.Add("Document " + XMLSpy.ActiveDocument.Name + "
is valid.");
 }
 }
 catch (Exception ex)
 {
 // The COM call was not successful
 // Probably no application instance has been started or no document is
open.
 listBoxMessages.Items.Add("Error validating active document: " +
ex.Message);
 }
 }

30.3.1.2.3.6 Events

The code snippet below (from the AutomateXMLSpy example) lists the code for two event handlers. The
AutomateXMLSpy example (see the file Form1.cs) is located in the C# subfolder of the API Examples
folder:

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022.

Code snippet

 // Event handler for OnDocumentOpened event
 private void handleOnDocumentOpened(XMLSpyLib.Document i_ipDocument)
 {
 MessageBox.Show("Document " + i_ipDocument.Name + " was opened!");
 }

 // Remember if the event handler is currently registered.
 private bool bEventHandlerIsRegistered = false;

 // Handler for button 'OnDocuemntOpened Event On/Off
 private void toggleOnDocumentOpenedEvent_Click(object sender, EventArgs e)
 {
 if (XMLSpy != null)
 {
 if (bEventHandlerIsRegistered)
 XMLSpy.OnDocumentOpened -= new
XMLSpyLib._IApplicationEvents_OnDocumentOpenedEventHandler(handleOnDocumentOpened);
 else
 XMLSpy.OnDocumentOpened += new
XMLSpyLib._IApplicationEvents_OnDocumentOpenedEventHandler(handleOnDocumentOpened);

 bEventHandlerIsRegistered = !bEventHandlerIsRegistered;

1631

1631

© 2018-2024 Altova GmbH

Application API 1641Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 }
 }

30.3.1.2.4 Java

The Application API can be accessed from Java code. To allow accessing the XMLSpy automation server
directly from Java code, the libraries listed below must reside in the classpath. They are installed in the folder:
JavaAPI in the XMLSpy application folder.

· AltovaAutomation.dll: a JNI wrapper for Altova automation servers (AltovaAutomation_x64.dll in
the case of 64-bit versions)

· AltovaAutomation.jar: Java classes to access Altova automation servers
· XMLSpyAPI.jar: Java classes that wrap the XMLSpy automation interface
· XMLSpyAPI_JavaDoc.zip: a Javadoc file containing help documentation for the Java API

Note: In order to use the Java API, the DLL and Jar files must be on the Java Classpath.

Example Java project
An example Java project is supplied with your product installation. You can test the Java project and modify
and use it as you like. For more details of the example Java project, see the section, Example Java Project .

Rules for mapping the Application API names to Java
The rules for mapping between the Application API and the Java wrapper are as follows:

· Classes and class names
For every interface of the XMLSpy automation interface a Java class exists with the name of the
interface.

· Method names
Method names on the Java interface are the same as used on the COM interfaces but start with a
small letter to conform to Java naming conventions. To access COM properties, Java methods that
prefix the property name with get and set can be used. If a property does not support write-access, no
setter method is available. Example: For the Name property of the Document interface, the Java
methods getName and setName are available.

· Enumerations
For every enumeration defined in the automation interface, a Java enumeration is defined with the same
name and values.

· Events and event handlers
For every interface in the automation interface that supports events, a Java interface with the same
name plus 'Event' is available. To simplify the overloading of single events, a Java class with default
implementations for all events is provided. The name of this Java class is the name of the event
interface plus 'DefaultHandler'. For example:
Application: Java class to access the application
ApplicationEvents: Events interface for the Application
ApplicationEventsDefaultHandler: Default handler for ApplicationEvents

1642

1642 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Exceptions to mapping rules
There are some exceptions to the rules listed above. These are listed below:

Interface Java name

Document, method SetEncoding setFileEncoding

AuthenticView, method Goto gotoElement

AuthenticRange, method Goto gotoElement

AuthenticRange, method Clone cloneRange

This section
This section explains how some basic XMLSpy functionality can be accessed from Java code. It is organized
into the following sub-sections:

· Example Java Project
· Application Startup and Shutdown
· Simple Document Access
· Iterations
· Use of Out-Parameters
· Event Handlers

30.3.1.2.4.1 Example Java Project

The XMLSpy installation package contains an example Java project, located in the the API\Java subfolder of
the Examples folder :

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\XMLSpy\2024\Examples

This folder contains Java examples for the XMLSpy API. You can test it directly from the command line using
the batch file BuildAndRun.bat, or you can compile and run the example project from within Eclipse. See
below for instructions on how to use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are listed below.
If you are using a 64-bit version of the application, some filenames contain _x64 in the name. These filenames
are indicated with (_x64).

AltovaAutomation(_x64).dll Java-COM bridge: DLL part

AltovaAutomation.jar Java-COM bridge: Java library part

XMLSpyAPI.jar Java classes of the XMLSpy API

RunXMLSpy.java Java example source code

1642

1646

1647

1647

1647

1648

© 2018-2024 Altova GmbH

Application API 1643Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

BuildAndRun.bat Batch file to compile and run example code from the command line prompt.
Expects folder where Java Virtual Machine resides as parameter.

.classpath Eclipse project helper file

.project Eclipse project file

XMLSpyAPI_JavaDoc.zip Javadoc file containing help documentation for the Java API

What the example does
The example starts up XMLSpy and performs a few operations, including opening and closing documents.
When done, XMLSpy stays open. You must close it manually.

· Start XML Spy : Starts XMLSpy, which is registered as an automation server, or activates XMLSpy if
it is already running.

· Open OrgChart.pxf : Locates one of the example documents installed with XMLSpy and opens it.
· Iteration and Changing the View Mode : Changes the view of all open documents to Text View. The

code also shows how to iterate through open documents.
· Iteration, validation, output parameters : Validates the active document and shows the result in a

message box. The code shows how to use output parameters.
· Event Handling : Shows how to handle XMLSpy events.
· Shut down XMLSpy : Shuts down XMLSpy.

You can modify the example in any way you like and run it.

Running the example from the command line
To run the example from the command line, open a command prompt window, go to the Java folder of the API
Examples folder (see above for location), and then type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

The Java binary folder must be that of a JDK 14 or later installation on your computer. Press the Return key.
The Java source in RunXMLSpy.java will be compiled and then executed.

Loading the example in Eclipse
Open Eclipse and use the Import | Existing Projects into Workspace command to add the Eclipse project
file (.project) located in the Java folder of the API Examples folder (see above for location). The project
RunXMLSpy will then appear in your Package Explorer or Navigator. Select the project and then the command
Run as | Java Application to execute the example.

Note: You can select a class name or method of the Java API and press F1 to get help for that class or
method.

Java source code listing
The Java source code in the example file RunXMLSpy.java is listed below with comments.

001 // Access general JAVA-COM bridge classes

1646

1647

1647

1647

1648

1646

1644 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

002 import com.altova.automation.libs.*;
003
004 // Access XMLSpy Java-COM bridge
005 import com.altova.automation.XMLSpy.*;
006 import com.altova.automation.XMLSpy.Enums.SPYViewModes;
007
008 /**
009 * An example that starts XMLSpy COM server and performs view operations on it
010 * Feel free to extend
011 */
012 public class RunXMLSpy
013 {
014 public static void main(String[] args)
015 {
016 // An instance of the application.
017 Application xmlSpy = null;
018
019 // Instead of COM error handling, use Java exception mechanism
020 try
021 {
022 // Start XMLSpy as COM server
023 xmlSpy = new Application();
024
025 // COM servers start up invisible, so make it visible
026 xmlSpy.setVisible(true);
027
028 // Locate samples installed with the product
029 String strExamplesFolder =
030 System.getenv("USERPROFILE") + "\\My Documents\\Altova\\XMLSpy2012\\Examples\\";
031
032 // Open two example files
033 xmlSpy.getDocuments().openFile(strExamplesFolder + "OrgChart.pxf", false);
034 xmlSpy.getDocuments().openFile(strExamplesFolder + "ExpReport.xml", false);
035
036 // Iterate through open documents and set view mode to 'Text'.
037 for (Document doc:xmlSpy.getDocuments())
038 if (doc.getCurrentViewMode() != SPYViewModes.spyViewText)
039 doc.switchViewMode(SPYViewModes.spyViewText);
040
041 // An alternative iteration mode is index-based
042 // COM indices are typically zero-based
043 Documents documents = xmlSpy.getDocuments();
044 for (int i = 1; i <= documents.getCount();
045 i++)
046 {
047 Document doc = documents.getItem(i);
048
049 // Validation is one of the few methods to have output parameters.
050 // The class JVariant is the correct type for parameters in these cases.
051 // To get values back mark them with the by-reference flag.
052 JVariant validationErrorText = new
053
054 JVariant.JStringVariant("");
055
056 validationErrorText.setByRefFlag();
057 JVariant validationErrorCount = new

© 2018-2024 Altova GmbH

Application API 1645Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

058
059 JVariant.JIntVariant(0);
060
061 validationErrorCount.setByRefFlag();
062 JVariant validationErrorXMLData = new
063
064 JVariant.JIDispatchVariant(0);
065
066 validationErrorXMLData.setByRefFlag();
067 if (!doc.isValid(validationErrorText, validationErrorCount,
validationErrorXMLData))
068 System.out.println("Document" + doc.getName() + " is not wellformed - " +
validationErrorText.getStringValue());
069 else
070 System.out.println("Document" + doc.getName() + " is wellformed.");
071 }
072
073 // The following lines attach to the document events using a default
implementation
074 // for the events and override one of its methods.
075 // If you want to override all document events it is better to derive your
listener class
076 // from DocumentEvents and implement all methods of this interface.
077 Document doc = xmlSpy.getActiveDocument();
078 doc.addListener(new
079
080 DocumentEventsDefaultHandler()
081 {
082 @Override
083 public boolean
084
085 onBeforeCloseDocument(Document i_ipDoc) throws AutomationException
086 {
087 System.out.println("Document
088
089 " + i_ipDoc.getName() + " requested closing.");
090
091 // Allow closing of document
092 return true;
093 }
094 });
095 doc.close(true);
096 doc = null;
097
098 System.out.println("Watch XMLSpy!");
099 }
100 catch (AutomationException e)
101 {
102 // e.printStackTrace();
103 }
104 finally
105 {
106 // Make sure that XMLSpy can shut down properly.
107 if (xmlSpy != null)
108 xmlSpy.dispose();
109

1646 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

110 // Since the COM server was made visible and still is visible,
111 // it will keep running, and needs to be closed manually.
112 System.out.println("Now close XMLSpy!");
113 }
114 }
115 }

30.3.1.2.4.2 Application Startup and Shutdown

The code listings below show how the application can be started up and shut down.

Application startup
Before starting up the application, the appropriate classes must be imported (see below).

01 // Access general JAVA-COM bridge classes
02 import com.altova.automation.libs.*;
03
04 // Access XMLSpy Java-COM bridge
05 import com.altova.automation.XMLSpy.*;
06 import com.altova.automation.XMLSpy.Enums.SPYViewModes;
07
08 /**
09 * An example that starts XMLSpy COM server and performs view operations on it
10 * Feel free to extend
11 */
12 public class RunXMLSpy
13 {
14 public static void main(String[] args)
15 {
16 // An instance of the application.
17 Application xmlSpy = null;
18
19 // Instead of COM error handling, use Java exception mechanism
20 try
21 {
22 // Start XMLSpy as COM server
23 xmlSpy = new Application();
24 // COM servers start up invisible, so make it visible
25 xmlSpy.setVisible(true);
26
27 ...
28 }
29 }
30 }

Application shutdown
The application can be shut down as shown below.

01 {
02 // Allow shutdown of XMLSpy by releasing the UI.
03 xmlSpy.setVisible(true);

© 2018-2024 Altova GmbH

Application API 1647Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

04
05 // Make sure that XMLSpy can shut down properly.
06 if (xmlSpy != null)
07 xmlSpy.dispose();
08
09 // Since the COM server was made visible and still is visible,
10 // it will keep running, and needs to be closed manually.
11 System.out.println("Now close XMLSpy!");
12 }

30.3.1.2.4.3 Simple Document Access

The code listing below shows how to open a document.

1 // Locate samples installed with the product
2 String strExamplesFolder =
3 System.getenv("USERPROFILE") + "\\My Documents\\Altova\\XMLSpy2012\\Examples\\";
4
5
6 // Open file
7 xmlSpy.getDocuments().openFile(strExamplesFolder + "OrgChart.pxf", false);

30.3.1.2.4.4 Iterations

The listing below shows how to iterate through open documents.

01 // Iterate through open documents and set view mode to 'Text'.
02 for (Document doc:xmlSpy.getDocuments())
03 if (doc.getCurrentViewMode() != SPYViewModes.spyViewText)
04 doc.switchViewMode(SPYViewModes.spyViewText);
05
06 // An alternative iteration mode is index-based
07 // COM indices are typically zero-based
08 Documents documents = xmlSpy.getDocuments();
09 for (int i = 1; i <= documents.getCount();
10 i++)
11 {
12 Document doc = documents.getItem(i);
13 ...
14 }

30.3.1.2.4.5 Use of Out-Parameters

The code listing below iterates through open documents and validates each of them. For each validation, a
message is generated using the output parameters of the Validation method.

1648 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

01 // An alternative iteration mode is index-based
02 // COM indices are typically zero-based
03 Documents documents = xmlSpy.getDocuments();
04 for (int i = 1; i <= documents.getCount();
05 i++)
06 {
07 Document doc = documents.getItem(i);
08
09 // Validation is one of the few methods to have output parameters.
10 // The class JVariant is the correct type for parameters in these cases.
11 // To get values back mark them with the by-reference flag.
12 JVariant validationErrorText = new
13
14 JVariant.JStringVariant("");
15
16 validationErrorText.setByRefFlag();
17 JVariant validationErrorCount = new
18
19 JVariant.JIntVariant(0);
20
21 validationErrorCount.setByRefFlag();
22 JVariant validationErrorXMLData = new
23
24 JVariant.JIDispatchVariant(0);
25
26 validationErrorXMLData.setByRefFlag();
27 if (!doc.isValid(validationErrorText,
28
29 validationErrorCount, validationErrorXMLData))
30 System.out.println("Document
31
32 " + doc.getName() + " is not wellformed - " +
33
34 validationErrorText.getStringValue());
35 else
36 System.out.println("Document
37
38 " + doc.getName() + " is wellformed.");
39 }

30.3.1.2.4.6 Event Handlers

The listing below shows how to listen for and use events.

01 // The following lines attach to the document events using a default implementation
02 // for the events and override one of its methods.
03 // If you want to override all document events it is better to derive your listener
class
04 // from DocumentEvents and implement all methods of this interface.
05

© 2018-2024 Altova GmbH

Application API 1649Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

06 Document doc = xmlSpy.getActiveDocument();
07 doc.addListener(new DocumentEventsDefaultHandler()
08 {
09 @Override
10 public boolean
11 onBeforeCloseDocument(Document i_ipDoc) throws AutomationException
12 {
13 System.out.println("Document " + i_ipDoc.getName() + " requested closing.");
14
15 // Allow closing of document
16 return true;
17 }
18 });
19 doc.close(true);
20 doc = null;

30.3.1.3 The DOM and XMLData

The XMLData interface gives you full access to the XML structure behind the current document with less
methods than DOM and is much simpler. The XMLData interface is a minimalist approach to reading and
modifying existing, or newly created XML data. You might however, want to use a DOM tree because you can
access one from an external source or you just prefer the MSXML DOM implementation.

The ProcessDOMNode() and ProcessXMLDataNode() functions provided below convert any segments of an XML
structure between XMLData and DOM.

To use the ProcessDOMNode() function:
· pass the root element of the DOM segment you want to convert in objNode and
· pass the plugin object with the CreateChild() method in objCreator

To use the ProcessXMLDataNode() function:
· pass the root element of the XMLData segment in objXMLData and
· pass the DOMDocument object created with MSXML in xmlDoc

//
// DOM To XMLData conversion
Function ProcessDOMNode(objNode,objCreator)
{

var objRoot;
objRoot = CreateXMLDataFromDOMNode(objNode,objCreator);

If(objRoot) {
If((objNode.nodeValue != Null) && (objNode.nodeValue.length > 0))

objRoot.TextValue = objNode.nodeValue;
// add attributes

If(objNode.attributes) {
var Attribute;
var oNodeList = objNode.attributes;

For(var i = 0;i < oNodeList.length; i++) {
Attribute = oNodeList.item(i);

1650 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

var newNode;
newNode = ProcessDOMNode(Attribute,objCreator);

objRoot.AppendChild(newNode);
}

}
If(objNode.hasChildNodes) {

try {
// add children
var Item;
oNodeList = objNode.childNodes;

For(var i = 0;i < oNodeList.length; i++) {
 Item = oNodeList.item(i);

var newNode;
newNode = ProcessDOMNode(Item,objCreator);

objRoot.AppendChild(newNode);
}

}
catch(err) {
}

}
}
Return objRoot;

}

Function CreateXMLDataFromDOMNode(objNode,objCreator)
{

var bSetName = True;
var bSetValue = True;

var nKind = 4;

switch(objNode.nodeType) {
Case 2:nKind = 5;break;
Case 3:nKind = 6;bSetName = False;break;
Case 4:nKind = 7;bSetName = False;break;
Case 8:nKind = 8;bSetName = False;break;
Case 7:nKind = 9;break;

}
var objNew = Null;
objNew = objCreator.CreateChild(nKind);

If(bSetName)
objNew.Name = objNode.nodeName;

If(bSetValue && (objNode.nodeValue != Null))
objNew.TextValue = objNode.nodeValue;

Return objNew;
}
//
// XMLData To DOM conversion

© 2018-2024 Altova GmbH

Application API 1651Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Function ProcessXMLDataNode(objXMLData,xmlDoc)
{

var objRoot;
objRoot = CreateDOMNodeFromXMLData(objXMLData,xmlDoc);

If(objRoot) {
If(IsTextNodeEnabled(objRoot) && (objXMLData.TextValue.length > 0))

objRoot.appendChild(xmlDoc.createTextNode(objXMLData.TextValue));

If(objXMLData.HasChildren) {
try {

var objChild;
objChild = objXMLData.GetFirstChild(-1);

While(True) {
If(objChild) {

var newNode;
newNode = ProcessXMLDataNode(objChild,xmlDoc);

If(newNode.nodeType == 2) {
// child node is an attribute
objRoot.attributes.setNamedItem(newNode);

}
Else

objRoot.appendChild(newNode);
}
objChild = objXMLData.GetNextChild();

}
}
catch(err) {
}

}
}
Return objRoot;

}

Function CreateDOMNodeFromXMLData(objXMLData,xmlDoc)
{

switch(objXMLData.Kind) {
Case 4:Return xmlDoc.createElement(objXMLData.Name);
Case 5:Return xmlDoc.createAttribute(objXMLData.Name);
Case 6:Return xmlDoc.createTextNode(objXMLData.TextValue);
Case 7:Return xmlDoc.createCDATASection(objXMLData.TextValue);
Case 8:Return xmlDoc.createComment(objXMLData.TextValue);
Case 9:Return

xmlDoc.createProcessingInstruction(objXMLData.Name,objXMLData.TextValue);
}

Return xmlDoc.createElement(objXMLData.Name);
}
Function IsTextNodeEnabled(objNode)
{

switch(objNode.nodeType) {
Case 1:
Case 2:

1652 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Case 5:
Case 6:
Case 11:Return True;

}
Return False;

}

30.3.1.4 Obsolete: Authentic View Row operations

If the schema on which an XML document is based specifies that an element is repeatable, such a structure
can be represented in Authentic View as a table. When represented as a table, rows and their contents can be
manipulated individually, thereby allowing you to manipulate each of the repeatable elements individually. Such
row operations would be performed by an external script.

If an external script is to perform row operations then two steps must occur:

· The first step checks whether the cursor is currently in a row using a property. Such a check could be,
for example, IsRowInsertEnabled, which returns a value of either TRUE or FALSE.

· If the return value is TRUE then a row method, such as RowAppend, can be called. (RowAppend has no
parameters and returns no value.)

The following is a list of properties and methods available for table operations. Each property returns a BOOL,
and the methods have no parameter.

Property Method Table operations

IsRowInsertEnabled RowInsert , superseded by
AuthenticRange.InsertRow

Insert row operation

IsRowAppendEnabled RowAppend , superseded by
AuthenticRange.AppendRow

Append row operation

IsRowDeleteEnabled RowDelete , superseded by
AuthenticRange.DeleteRow

Delete row operation

IsRowMoveUpEnabled RowMoveUp , superseded by
AuthenticRange.MoveRowUp

Move XML data up
one row

IsRowMoveDownEnabled RowMoveDown , superseded by
AuthenticRange.MoveRowDown

Move XML data down
one row

IsRowDuplicateEnabled RowDuplicate , superseded by
AuthenticRange.DuplicateRow

Duplicate currently
selected row

30.3.1.5 Obsolete: Authentic View Editing operations

When XML data is displayed as data in Authentic View, it is possible to manipulate individual elements using
standard editing operations such as cut, copy, and paste. However, not all XML data nodes can be edited. So,
in order to carry out an editing operation, first a property is used to test whether editing is possible, and then a
method is called to perform the editing operation.

1938

1698

1937

1683

1937

1687

1939

1705

1939

1705

1938

1687

© 2018-2024 Altova GmbH

Application API 1653Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

The only method that does not have a test is the method EditSelectAll, which automatically selects all
elements displayed in the document.

The following is a list of properties and methods that perform editing operations. Each property returns a BOOL,
and the methods have no parameter.

Property Method Editing operation

IsEditUndoEnabled EditUndo , superseded by
AuthenticView.Undo

Undo an editing operation

IsEditRedoEnabled EditRedo , superseded by
AuthenticView.Redo

Redo an editing operation

IsEditCopyEnabled EditCopy , superseded by
AuthenticRange.Copy

Copy selected text to the
clipboard

IsEditCutEnabled EditCut , superseded by
AuthenticRange.Cut

Cut selected text to the
clipboard

IsEditPasteEnabled EditPaste , superseded
by
AuthenticRange.Paste

Paste from clipboard to
current cursor position

IsEditClearEnabled EditClear , superseded by
AuthenticRange.Delete

Clear selected text from
XML document

30.3.2 Interfaces

Object Hierarchy
Application

SpyProject
SpyProjectItems

SpyProjectItem
Documents

Document
GridView
AuthenticView

AuthenticRange
AuthenticDataTransfer (previously DocEditDataTransfer)

OldAuthenticView (previously DocEditView, now obsolete, superseded by AuthenticView and
AuthenticRange)

AuthenticSelection (previously DocEditSelection, now obsolete, superseded by
AuthenticRange)

AuthenticEvent (previously DocEditEvent, now obsolete)
AuthenticDataTransfer (previously DocEditDataTransfer)

TextView
XMLData

Dialogs
CodeGeneratorDlg
FileSelectionDlg
SchemaDocumentationDlg

1925

1729

1924

1728

1923

1686

1923

1686

1924

1705

1922

1686

1654

1844

1848

1845

1780

1747

1813

1711

1681

1676

1920 1711

1681

1918

1681

1905

1676

1852

1893

1660

1730

1793

1830

1654 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

GenerateSampleXMLDlg
DTDSchemaGeneratorDlg
FindInFilesDlg
WSDLDocumentationDlg
WSDL20DocumentationDlg
XBRLDocumentationDlg

DatabaseConnection
ExportSettings
TextImportExportSettings
ElementList

ElementListItem

Enumerations

Description
This chapter contains the reference of the XMLSpy 1.5 Type Library.

Most of the given examples are written in VisualBasic. These code snippets assume that there is a variable
defined and set, called objSpy of type Application. There are also some code samples written in JavaScript.

30.3.2.1 Application

Methods
GetDatabaseImportElementList
GetDatabaseSettings
GetDatabaseTables
ImportFromDatabase
CreateXMLSchemaFromDBStructure

GetTextImportElementList
GetTextImportExportSettings
ImportFromText

ImportFromWord

ImportFromSchema

GetExportSettings

NewProject
OpenProject

AddMacroMenuItem
ClearMacroMenu

ShowForm

ShowApplication

URLDelete

1807

1784

1795

1858

1870

1882

1736

1791

1850

1789

1790

1942

1661

1662

1662

1665

1659

1663

1664

1667

1668

1666

1663

1669

1669

1658

1659

1672

1672

1673

© 2018-2024 Altova GmbH

Application API 1655Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

URLMakeDirectory

AddXSLT_XQParameter
GetXSLT_XQParameterCount
GetXSLT_XQParameterName
GetXSLT_XQParameterXPath
RemoveXSLT_XQParameter

FindInFiles

Quit

Properties
Application
Parent

ActiveDocument
Documents

CurrentProject

Dialogs

WarningNumber
WarningText

Status
MajorVersion
MinorVersion
Edition
IsAPISupported
ServicePackVersion

Description
Application is the root for all other objects. It is the only object you can create by CreateObject (VisualBasic) or
other similar COM related functions.

Example

Dim objSpy As Application
Set objSpy = CreateObject("XMLSpy.Application")

30.3.2.1.1 Events

30.3.2.1.1.1 OnBeforeOpenDocument

Event: OnBeforeOpenDocument(objDialog as FileSelectionDlg)

Description

1673

1658

1664

1664

1665

1671

1661

1670

1659

1670

1658

1660

1660

1660

1674

1674

1673

1668

1668

1660

1668

1671

1793

1656 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

This event gets fired whenever a document gets opened via the OpenFile or OpenURL menu command. It is
sent after a document file has been selected but before the document gets opened. The file selection dialog
object is initialized with the name of the selected document file. You can modify this selection. To continue the
opening of the document leave the FileSelectionDlg.DialogAction property of io_objDialog at its default value
spyDialogOK . To abort the opening of the document set this property to spyDialogCancel .

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_BeforeOpenDocument(objDialog)
End Function

XMLSpy scripting environment - JScript:
function On_BeforeOpenDocument(objDialog)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (26, ...) // nEventId = 26

30.3.2.1.1.2 OnBeforeOpenProject

Event: OnBeforeOpenProject(objDialog as FileSelectionDlg)

Description
This event gets fired after a project file has been selected but before the project gets opened. The file selection
dialog object is initialized with the name of the selected project file. You can modify this selection. To continue
the opening of the project leave the FileSelectionDlg.DialogAction property of io_objDialog at its default
value spyDialogOK . To abort the opening of the project set this property to spyDialogCancel .

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_BeforeOpenProject(objDialog)
End Function

XMLSpy scripting environment - JScript:
function On_BeforeOpenProject(objDialog)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (25, ...) // nEventId = 25

1794

1945 1945

1793

1794

1945 1945

© 2018-2024 Altova GmbH

Application API 1657Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.1.1.3 OnDocumentOpened

Event: OnDocumentOpened(objDocument as Document)

Description
This event gets fired whenever a document opens in XMLSpy. This can happen due to opening a file with the
OpenFile or OpenURL dialog, creating a new file or dropping a file onto XMLSpy. The new document gets
passed as parameter. The operation cannot be canceled.

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_OpenDocument(objDocument)
End Function

XMLSpy scripting environment - JScript:
function On_OpenDocument(objDocument)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (7, ...) // nEventId = 7

30.3.2.1.1.4 OnProjectOpened

Event: OnProjectOpened(objProject as SpyProject)

Description
This event gets fired whenever a project gets opened in XMLSpy. The new project gets passed as parameter.

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_OpenProject(objProject)
End Function

XMLSpy scripting environment - JScript:
function On_OpenProject(objProject)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (6, ...) // nEventId = 6

1747

1844

1658 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.1.2 ActiveDocument

Property: ActiveDocument as Document

Description
Reference to the active document. If no document is open, ActiveDocument is null (nothing).

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.3 AddMacroMenuItem

Method: AddMacroMenuItem(strMacro as String,strDisplayText as String)

Description
Adds a menu item to the Tools menu. This new menu item invokes the macro defined by strMacro. See also
Example Scripting Project .

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.

1108 Number of macro items is limited to 16 items.

30.3.2.1.4 AddXSLT_XQParameter

Method: AddXSLT_XQParameter(name as String, XPath as String)

Description
Adds an XSLT or XQuery parameter. The parameter's name and value are the two arguments of the method.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

1124 The XPath expression is not set.

1125 Not a QName.

1126 The specified XPath is not valid. Reason for invalidity appended.

1127 A parameter with the submitted name already exists.

1747

1586

© 2018-2024 Altova GmbH

Application API 1659Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.1.5 Application

Property: Application as Application (read-only)

Description
Accesses the XMLSpy application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.6 ClearMacroMenu

Method: ClearMacroMenu()

Return Value
None

Description
Removes from the Tools menu those menu items that were added by calling AddMacroMenuItem . See also
Example Scripting Project .

Errors

1111 The application object is no longer valid.

30.3.2.1.7 CreateXMLSchemaFromDBStructure

Method: CreateXMLSchemaFromDBStructure(pImportSettings as DatabaseConnection , pTables as
ElementList)

Description
CreateXMLSchemaFromDBStructure creates from a database specified in pImportSettings for the defined
tables in pTables new XML Schema document(s) describing the database tables structure.

The parameter pTables specifies which table structures the XML Schema document should contain. This
parameter can be NULL, specifying that all table structures will be exported.

See also GetDataBaseTables .

Errors

1112 Invalid database specified.

1120 Database import failed.

1654

1658

1586

1736

1789

1662

1660 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.1.8 CurrentProject

Property: CurrentProject as SpyProject

Description
Reference to the active document. If no project is open, CurrentProject is null (nothing).

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.9 Dialogs

Property: Dialogs as Dialogs (read-only)

Description
Access the built-in dialogs of XMLSpy.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.10 Documents

Property: Documents as Documents

Description
Collection of all open documents.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.11 Edition

Property: Edition as String

Description
Returns the edition of the application, for example Altova XMLSpy Enterprise Edition for the Enterprise
edition.

Errors

1111 The application object is no longer valid.

1844

1743

1780

© 2018-2024 Altova GmbH

Application API 1661Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

1100 Invalid address for the return parameter was specified.

30.3.2.1.12 FindInFiles

Method: FindInFiles(pSettings as FindInFilesDlg) as FindInFilesResults

Description
Returns a FindInFilesResults object containing information about the files that matched the specified
settings.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.13 GetDatabaseImportElementList

Method: GetDatabaseImportElementList(pImportSettings as DatabaseConnection) as ElementList

Description
The function returns a collection of ElementListItems where the properties ElementListItem.Name contain
the names of the fields that can be selected for import and the properties ElementListItem.ElementKind are
initialized either to spyXMLDataAttr or spyXMLDataElement, depending on the value passed in
DatabaseConnection.AsAttributes . This list serves as a filter to what finally gets imported by a future call to
ImportFromDatabase . Use ElementList.RemoveElement to exclude fields from import.

Properties mandatory to be filled out for the database connection are one of DatabaseConnection.File ,
DatabaseConnection.ADOConnection and DatabaseConnection.ODBCConnection , as well as
DatabaseConnection.SQLSelect . Use the property DatabaseConnection.AsAttributes to initialize
ElementListItem.ElementKind of the resulting element list to either spyXMLDataAttr or
spyXMLDataElement, respectively.

Example
See example at ImportFromDatabase .

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.

1107 Import from database failed.

1112 Invalid database specified.

1114 Select statement is missing.

1119 database element list import failed.

1795 1806

1806

1736 1789

1790

1790

1738

1665 1789

1739

1737 1741

1742 1738

1790

1665

1662 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.1.14 GetDatabaseSettings

Method: GetDatabaseSettings() as DatabaseConnection

Description
GetDatabaseSettings creates a new object of database settings. The object is used to specify database
connection parameters for the methods GetDatabaseTables , GetDatabaseImportElementList ,
ImportFromDatabase , ImportFromSchema and ExportToDatabase .

Example
See example of ImportFromDatabase .

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.15 GetDatabaseTables

Method: GetDatabaseTables(pImportSettings as DatabaseConnection) as ElementList

Description
GetDatabaseTables reads the table names from the database specified in pImportSettings. Properties
mandatory to be filled out for the database connection are one of DatabaseConnection.File ,
DatabaseConnection.ADOConnection and DatabaseConnection.ODBCConnection . All other properties
are ignored.
The function returns a collection of ElementListItems where the properties ElementListItem.Name contain
the names of tables stored in the specified database. The remaining properties of ElementListItem are
unused.

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.

1112 Invalid database specified.

1113 Error while reading database table information.

1118 Database table query failed.

Example

Dim objImpSettings As DatabaseConnection
 Set objImpSettings = objSpy.GetDatabaseSettings
 objImpSettings.ADOConnection = TxtADO.Text

 'store table names in list box
 ListTables.Clear

 Dim objList As ElementList
 Dim objItem As ElementListItem

1736

1662 1661

1665 1666 1760

1665

1654 1789

1739

1737 1741

1790

1790

© 2018-2024 Altova GmbH

Application API 1663Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 On Error GoTo ErrorHandler
 Set objList = objSpy.GetDatabaseTables(objImpSettings)

For Each objItem In objList
ListTables.AddItem objItem.Name

Next

30.3.2.1.16 GetExportSettings

Method: GetExportSettings()as ExportSettings (read-only)

Description
GetExportSettings creates a new object of common export settings. This object is used to pass the
parameters to the export functions and defines the behaviour of the export calls. See also the export functions
from Document and the examples at Import and Export .

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.17 GetTextImportElementList

Method: GetTextImportElementList(pImportSettings as TextImportExportSettings) as ElementList

Description
GetTextImportElementList retrieves importing information about the text-file as specified in pImportSettings. The
function returns a collection of ElementListItems where the properties ElementListItem.Name contain the
names of the fields found in the file. The values of remaining properties are undefined.

If the text-file does not contain a column header, set pImportSettings.HeaderRow to false. The resulting
element list will contain general column names like 'Field1' and so on.

See also Import and export of data .

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.

1107 Import from database failed.

1115 Error during text element list import. Cannot create parser for import file.

1116 Error during text element list import.

Example
 ' ---
 ' VBA client code fragment - import selected fields from text file
 ' ---

Dim objImpSettings As TextImportExportSettings

1791

1747 1624

1850 1789

1790

1851

1624

1664 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Set objImpSettings = objSpy.GetTextImportExportSettings

objImpSettings.ImportFile = "C:\ImportMe.txt"
objImpSettings.HeaderRow = False

Dim objList As ElementList
Set objList = objSpy.GetTextImportElementList(objImpSettings)

'exclude first column
objList.RemoveItem 1

Dim objImpDoc As Document
On Error Resume Next
Set objImpDoc = objSpy.ImportFromText(objImpSettings, objList)
CheckForError

30.3.2.1.18 GetTextImportExportSettings

Method: GetTextImportExportSettings() as TextImportExportSettings (read-only)

Description
GetTextImportExportSettings creates a new object of common import and export settings for text files. See
also the example for Application.GetTextImportElementList and Import and Export .

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.19 GetXSLT_XQParameterCount

Method: GetXSLT_XQParameterCount() as Long

Description
Returns the number of XSLT and XQuery parameters.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.20 GetXSLT_XQParameterName

Method: GetXSLT_XQParameterName(index as Long) as String

1850

1663 1624

© 2018-2024 Altova GmbH

Application API 1665Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
Returns the name of the XSLT or XQuery parameter identified by the supplied index.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.21 GetXSLT_XQParameterXPath

Method: GetXSLT_XQParameterXPath(index as Long) as String

Description
Returns the XPath expression of the XSLT or XQuery parameter identified by the supplied index.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.22 ImportFromDatabase

Method: ImportFromDatabase(pImportSettings as DatabaseConnection ,pElementList as ElementList)
as Document

Return Value
Creates a new document containing the data imported from the database.

Description
ImportFromDatabase imports data from a database as specified in pImportSettings and creates a new
document containing the data imported from the database. Properties mandatory to be filled out are one of
DatabaseConnection.File , DatabaseConnection.ADOConnection or
DatabaseConnection.ODBCConnection and DatabaseConnection.SQLSelect . Additionally, you can use
DatabaseConnection.AsAttributes , DatabaseConnection.ExcludeKeys ,
DatabaseConnection.IncludeEmptyElements and NumberDateTimeFormat to further parameterize
import.

The parameter pElementList specifies which fields of the selected data gets written into the newly created
document, and which are created as elements and which as attributes. This parameter can be NULL,
specifying that all selected fields will be imported as XML elements.

See GetDatabaseSettings and GetDatabaseImportElementList for necessary steps preceding any
import of data from a database.

Errors

1111 The application object is no longer valid.

1736 1789

1747

1739 1737

1741 1742

1738 1739

1740 1741

1662 1661

1666 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1100 Invalid parameter or invalid address for the return parameter was specified.

1107 Import from database failed.

1112 Invalid database specified.

1114 Select statement is missing.

1117 Transformation to XML failed.

1120 Database import failed.

Example

Dim objImpSettings As DatabaseConnection
Set objImpSettings = objSpy.GetDatabaseSettings

objImpSettings.ADOConnection = strADOConnection
objImpSettings.SQLSelect = "SELECT * FROM MyTable"

Dim objDoc As Document
On Error Resume Next
Set objDoc = objSpy.ImportFromDatabase(objImpSettings,

objSpy.GetDatabaseImportElementList(objImpSettings))
' CheckForError here

30.3.2.1.23 ImportFromSchema

Method: ImportFromSchema(pImportSettings as DatabaseConnection ,strTable as String,pSchemaDoc as
Document) as Document

Return Value
Creates a new document filled with data from the specified database as specified by the schema definition in
pSchemaDoc.

Description
ImportFromSchema imports data from a database specified in pImportSettings. Properties mandatory to be
filled out are one of DatabaseConnection.File , DatabaseConnection.ADOConnection or
DatabaseConnection.ODBCConnection . Additionally, you can use DatabaseConnection.AsAttributes ,
DatabaseConnection.ExcludeKeys and NumberDateTimeFormat to further parameterize import. All other
properties get ignored.

ImportFromSchema does not use an explicit SQL statement to select the data. Instead, it expects a structure
definition of the document to create in form of an XML schema document in pSchemaDoc. From this definition
the database select statement is automatically deduced. Specify in strTable the table name of the import root
that will become the root node in the new document.

See GetDatabaseSettings and GetDatabaseTables for necessary steps preceding an import from a
database based on a schema definition. To create the schema definition file use command 'create database
schema' from the 'convert' menu of XMLSpy.

Errors

1111 The application object is no longer valid.

1736

1747 1747

1739 1737

1741 1738

1739 1741

1662 1662

© 2018-2024 Altova GmbH

Application API 1667Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

1100 Invalid parameter or invalid address for the return parameter was specified.

1107 Import from database failed.

1112 Invalid database specified.

1120 Database import failed.

1121 Could not create validator for the specified schema.

1122 Failed parsing schema for database import.

30.3.2.1.24 ImportFromText

Method: ImportFromText(pImportSettings as TextImportExportSettings ,pElementList as ElementList)
as Document

Description
ImportFromText imports the text file as specified in pImportSettings. The parameter pElementList can be used
as import filter. Either pass the list returned by a previous call to GetTextImportElementList or null to
import all columns. To avoid import of unnecessary columns use ElementList.RemoveElement to remove
the corresponding field names from pElementList before calling ImportFromText.
The method returns the newly created document containing the imported data. This document is the same as
the active document of XMLSpy.

See also Import and export of data .

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.

1107 Import from text file failed.

1117 Transformation to XML failed.

Example
 ' ---
 ' VBA client code fragment - import from text file
 ' ---

Dim objImpSettings As TextImportExportSettings
Set objImpSettings = objSpy.GetTextImportExportSettings

objImpSettings.ImportFile = strFileName
objImpSettings.HeaderRow = False

Dim objImpDoc As Document
On Error Resume Next
Set objImpDoc = objSpy.ImportFromText(objImpSettings,

objSpy.GetTextImportElementList(objImpSettings))

CheckForError

1850 1789

1747

1663

1789

1624

1668 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.1.25 ImportFromWord

Method: ImportFromWord(strFile as String) as Document

Description
ImportFromWord imports the MS-Word Document strFile into a new XML document.

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.
Import from document failed.

30.3.2.1.26 IsAPISupported

Property: IsAPISupported as Boolean

Description
Returns whether the API is supported in this version or not.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.27 MajorVersion

Property: MajorVersion as Integer

Description
Returns the application version's major number, for example 15 for 2013 versions, and 16 for 2014 versions..

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.28 MinorVersion

Property: MinorVersion as Integer

Description
Returns the application version's minor number.

Errors

1111 The application object is no longer valid.

1747

© 2018-2024 Altova GmbH

Application API 1669Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

1100 Invalid address for the return parameter was specified.

30.3.2.1.29 NewProject

Method: NewProject(strPath as String,bDiscardCurrent as Boolean)

Description
NewProject creates a new project.

If there is already a project open that has been modified and bDiscardCurrent is false, then NewProject() fails.

Errors

1111 The application object is no longer valid.

1102 A project is already open but bDiscardCurrent is true.

1103 Creation of new project failed.

30.3.2.1.30 OpenProject

Method: OpenProject(strPath as String,bDiscardCurrent as Boolean,bDialog as Boolean)

Parameters
strPath
Path and file name of the project to open. Can be empty if bDialog is true.

bDiscardCurrent
Discard currently open project and possibly lose changes.

bDialog
Show dialogs for user input.

Return Value
None

Description
OpenProject opens an existing project. If there is already a project open that has been modified and
bDiscardCurrent is false, then OpenProject() fails.

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.

1101 Cannot open specified project.

1102 A project is already open but bDiscardCurrent is true.

1670 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.1.31 Parent

Property: Parent as Application (read-only)

Description
Accesses the XMLSpy application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.32 Quit

Method: Quit()

Return Value
None

Description
This method terminates XMLSpy. All modified documents will be closed without saving the changes. This is
also true for an open project.

If XMLSpy was automatically started as an automation server by a client program, the application will not shut
down automatically when your client program shuts down if a project or any document is still open. Use the
Quit method to ensure automatic shut-down.

Errors

1111 The application object is no longer valid.

30.3.2.1.33 ReloadSettings

Method: ReloadSettings

Return Value

Description
The application settings are reloaded from the registry.

Available with TypeLibrary version 1.5

Errors

1111 The application object is no longer valid.

1654

© 2018-2024 Altova GmbH

Application API 1671Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.1.34 RemoveXSLT_XQParameter

Method: RemoveXSLT_XQParameter(index as Long)

Description
Removes the XSLT or XQuery parameter identified by the supplied index.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.35 RunMacro

Method: RunMacro(strMacro as String)

Return Value

Description
Calls the specified macro either from the project scripts (if present) or from the global scripts.

Available with TypeLibrary version 1.5

Errors

1111 The application object is no longer valid.

30.3.2.1.36 ScriptingEnvironment

Property: ScriptingEnvironment as IUnknown (read-only)

Description
Reference to any active scripting environment. This property makes it possible to access the TypeLibrary of the
XMLSpyFormEditor.exe application which is used as the current scripting environment.

Available with TypeLibrary version 1.5

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.37 ServicePackVersion

Property: ServicePackVersion as Long

1672 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Returns the Service Pack version number of the application. Eg: 1 for 2010 R2 SP1

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.38 ShowApplication

Method: ShowApplication(bShow as Boolean)

Return Value
None

Description
The method shows (bShow = True) or hides (bShow = False) XMLSpy.

Errors

1110 The application object is no longer valid.

30.3.2.1.39 ShowFindInFiles

Method: ShowFindInFiles(pSettings as FindInFilesDlg) as Boolean

Return Value
Returns false if the user pressed the Cancel button, true otherwise.

Description
Displays the FindInFiles dialog preset with the given settings. The user modifications of the settings are stored
in the passed dialog object.

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.

30.3.2.1.40 ShowForm

Method: ShowForm(strFormName as String) as Long

Return Value
Returns zero if the user pressed a Cancel button or the form calls TheView.Cancel().

Description
Displays the form strFormName.

1795

© 2018-2024 Altova GmbH

Application API 1673Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Forms, event handlers and macros can be created with the Scripting Environment. Select "Switch to scripting
environment" from the Tools menu to invoke the Scripting Environment.

Errors

1111 The application object is no longer valid.

1100 Invalid parameter or invalid address for the return parameter was specified.

30.3.2.1.41 Status

Property: Status as ENUMApplicationStatus

Description
Returns the current status of the running application.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.42 URLDelete

Method: URLDelete(strURL as String,strUser as String,strPassword as String)

Return Value
None

Description
The method deletes the file at the URL strURL.

Errors

1111 The application object is no longer valid.

1109 Error deleting file at specified URL.

30.3.2.1.43 URLMakeDirectory

Method: URLMakeDirectory(strURL as String,strUser as String,strPassword as String)

Return Value
None

Description
The method creates a new directory at the URL strURL.

Errors

1111 The application object is no longer valid.

1100 Invalid parameter specified.

1942

1674 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.1.44 Visible

Property: Visible as VARIANT_BOOL

Description
Sets or gets the visibility attribute of XMLSpy. This standard automation property makes usage of
ShowApplication obsolete.

Errors

1110 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.45 WarningNumber

Property: WarningNumber as integer

Description
Some methods fill the property WarningNumber with additional information if an error occurs.

Currently just Documents.OpenFile fills this property.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.1.46 WarningText

Property: WarningText as String

Description
Some methods fill the property WarningText with additional information if an error occurs.

Currently just Documents.OpenFile fills this property.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

30.3.2.2 AuthenticContextMenu

The context menu interface provides the means for the user to customize the context menus shown in
Authentic. The interface has the methods listed in this section.

1672

1783

1783

© 2018-2024 Altova GmbH

Application API 1675Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.2.1 CountItems

Method: CountItems() nItems as long

Return Value
Returns the number of menu items.

Errors

2501 Invalid object.

30.3.2.2.2 DeleteItem

Method: DeleteItem(IndexPosition as long)

Return Value
Deletes the menu item that has the index position submitted in the first parameter.

Errors

2501 Invalid object

2502 Invalid index

30.3.2.2.3 GetItemText

Method: GetItemText(IndexPosition as long) MenuItemName as string

Return Value
Gets the name of the menu item located at the index position submitted in the first parameter.

Errors

2501 Invalid object

2502 Invalid index

30.3.2.2.4 InsertItem

Method: InsertItem(IndexPosition as long, MenuItemName as string, MacroName as string)

Return Value

1676 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Inserts a user-defined menu item at the position in the menu specified in the first parameter and having the
name submitted in the second parameter. The menu item will start a macro, so a valid macro name must be
submitted.

Errors

2501 Invalid object

2502 Invalid index

2503 No such macro

2504 Internal error

30.3.2.2.5 SetItemText

Method: SetItemText(IndexPosition as long, MenuItemName as string)

Return Value
Sets the name of the menu item located at the index position submitted in the first parameter.

Errors

2501 Invalid object

2502 Invalid index

30.3.2.3 AuthenticDataTransfer

Renamed from DocEditDataTransfer to AuthenticDataTransfer

The DocEditView object is renamed to OldAuthenticView.
DocEditSelection is renamed to AuthenticSelection.
DocEditEvent is renamed to AuthenticEvent.
DocEditDataTransfer is renamed to AuthenticDataTransfer.

Their usage—except for AuthenticDataTransfer—is no longer recommended. We
will continue to support existing functionality for a yet undefined period of time but
no new features will be added to these interfaces. All functionality available up to
now in DocEditView , DocEditSelection , DocEditEvent and
DocEditDataTransfer is now available via AuthenticView , AuthenticRange
and AuthenticDataTransfer . Many new features have been added.

For examples on migrating from DocEdit to Authentic see the description of the
different methods and properties of the different DocEdit objects.

Methods

getData

1920 1918 1905

1677 1711 1681

1676

1677

© 2018-2024 Altova GmbH

Application API 1677Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Properties

dropEffect
ownDrag
type

Description

The events OnDragOver and OnBeforeDrop provide information about the object being dragged with an instance
of type AuthenticDataTransfer. It contains a description of the dragged object and its content. The latter is
available either as string or a pointer to a COM object supporting the IUnkown interface.

30.3.2.3.1 dropEffect

Property: dropEffect as long

Description
The property stores the drop effect from the default event handler. You can set the drop effect if you change this
value and return TRUE for the event handler (or set AuthenticEvent.cancelBubble to TRUE if you are still
using the now obsolete AuthenticEvent interface).

Errors

2101 Invalid address for the return parameter was specified.

30.3.2.3.2 getData

Method: getData() as Variant

Description
Retrieve the data associated with the dragged object. Depending on AuthenticDataTransfer.type , that data
is either a string or a COM interface pointer of type IUnknown.

Errors

2101 Invalid address for the return parameter was specified.

30.3.2.3.3 ownDrag

Property: ownDrag as Boolean (read-only)

Description
The property is TRUE if the current dragging source comes from inside Authentic View.

Errors

2101 Invalid address for the return parameter was specified.

1677

1677

1678

1909

1678

1678 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.3.4 type

Property: type as String (read-only)

Description
Holds the type of data you get with the DocEditDataTransfer.getData method.

Currently supported data types are:

OWN data from Authentic View itself

TEXT plain text

UNICODETEXT plain text as UNICODE

Errors

2101 Invalid address for the return parameter was specified.

30.3.2.4 AuthenticEventContext

The EventContext interface gives access to many properties of the context in which a macro is executed.

30.3.2.4.1 EvaluateXPath

Method: EvaluateXPath (strExpression as string) as strValue as string

Return Value
The method evaluates the XPath expression in the context of the node within which the event was triggered and
returns a string.

Description
EvaluateXPath() executes an XPath expression with the given event context. The result is returned as a
string, in the case of a sequence it is a space-separated string.

Errors

2201 Invalid object.

2202 No context.

2209 Invalid parameter.

2210 Internal error.

2211 XPath error.

1677

© 2018-2024 Altova GmbH

Application API 1679Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.4.2 GetEventContextType

Method: GetEventContextType () Type as AuthenticEventContextType enumeration

Return Value
Returns the context node type.

Description
GetEventContextType allows the user to determine whether the macro is in an XML node or in an XPath
atomic item context. The enumeration AuthenticEventContextType is defined as follows:

authenticEventContextXML,
authenticEventContextAtomicItem,
authenticEventContextOther

If the context is a normal XML node, the GetXMLNode() function gives access to it (returns NULL if not).

Errors

2201 Invalid object.

2202 No context.

2209 Invalid parameter.

30.3.2.4.3 GetNormalizedTextValue

Method: GetNormalizedTextValue() strValue as string

Return Value
Returns the value of the current node as string

Errors

2201 Invalid object.

2202 No context.

2203 Invalid context

2209 Invalid parameter.

30.3.2.4.4 GetVariableValue

Method: GetVariableValue(strName as string) strValue as string

Return Value
Gets the value of the variable submitted as the parameter.

Description

1680 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

GetVariableValue gets the variable's value in the scope of the context.

nZoom = parseInt(AuthenticView.EventContext.GetVariableValue('Zoom'));
if (nZoom > 1)
{
 AuthenticView.EventContext.SetVariableValue('Zoom', nZoom - 1);
}

Errors

2201 Invalid object.

2202 No context.

2204 No such variable in scope

2205 Variable cannot be evaluated

2206 Variable returns sequence

2209 Invalid parameter

30.3.2.4.5 GetXMLNode

Method: GetXMLNode() Node as XMLData object

Return Value
Returns the context XML node or NULL

Errors

2201 Invalid object.

2202 No context.

2203 Invalid context

2209 Invalid parameter.

30.3.2.4.6 IsAvailable

Method: IsAvailable() as Boolean

Return Value
Returns true if EventContext is set, false otherwise.

Errors

2201 Invalid object.

© 2018-2024 Altova GmbH

Application API 1681Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.4.7 SetVariableValue

Method: SetVariableValue(strName as string, strValue as string)

Return Value
Sets the value (second parameter) of the variable submitted in the first parameter.

Description
SetVariableValue sets the variable's value in the scope of the context.

nZoom = parseInt(AuthenticView.EventContext.GetVariableValue('Zoom'));
if (nZoom > 1)
{
 AuthenticView.EventContext.SetVariableValue('Zoom', nZoom - 1);
}

Errors

2201 Invalid object.

2202 No context.

2204 No such variable in scope

2205 Variable cannot be evaluated

2206 Variable returns sequence

2207 Variable read-only

2208 No modification allowed

30.3.2.5 AuthenticRange

The first table lists the properties and methods of AuthenticRange that can be used to navigate through the
document and select specific portions.

Properties Methods

Application Clone MoveBegin

FirstTextPosition CollapsToBegin MoveEnd

FirstXMLData CollapsToEnd NextCursorPosition

FirstXMLDataOffset ExpandTo PreviousCursorPosition

LastTextPosition Goto Select

LastXMLData GotoNext SelectNext

LastXMLDataOffset GotoPrevious SelectPrevious

Parent IsEmpty SetFromRange

1684 1685 1704

1688 1685 1704

1689 1685 1695

1690 1688

1696

1701 1694 1707

1702 1694 1707

1703 1696 1708

1705 1699 1710

1682 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 IsEqual

The following table lists the content modification methods, most of which can be found on the right/button
mouse menu.

Properties Edit operations Dynamic table operations

Text Copy AppendRow

 Cut DeleteRow

 Delete DuplicateRow

 IsCopyEnabled InsertRow

 IsCutEnabled IsFirstRow

 IsDeleteEnabled IsInDynamicTable

 IsPasteEnabled IsLastRow

 Paste MoveRowDown

 MoveRowUp

The following methods provide the functionality of the Authentic entry helper windows for range objects.

Operations of the entry helper windows

 Elements Attributes Entities

CanPerformActionWith GetElementAttributeValu
e

GetEntityNames

CanPerformAction GetElementAttributeNam
es

InsertEntity

PerformAction GetElementHierarchy

 HasElementAttribute

 IsTextStateApplied

 SetElementAttributeValue

Description
AuthenticRange objects are the 'cursor' selections of the automation interface. You can use them to point to
any cursor position in the Authentic view, or select a portion of the document. The operations available for
AuthenticRange objects then work on this selection in the same way, as the corresponding operations of the
user interface do with the current user interface selection. The main difference is that you can use an arbitrary
number of AuthenticRange objects at the same time, whereas there is exactly one cursor selection in the user
interface.

To get to an initial range object use AuthenticView.Selection , to obtain a range corresponding with the
current cursor selection in the user interface. Alternatively, some trivial ranges are accessible via the read/only
properties AuthenticView.DocumentBegin , AuthenticView.DocumentEnd , and

1699

1710 1686 1683

1686 1687

1686 1687

1698 1698

1699 1700

1699 1700

1700 1700

1705 1705

1705

1684

1692 1693

1684

1691

1697

1706 1692

1697

1701

1709

1728

1723 1723

© 2018-2024 Altova GmbH

Application API 1683Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

AuthenticView.WholeDocument . The most flexible method is AuthenticView.Goto , which allows
navigation to a specific portion of the document within one call. For more complex selections, combine the
above with the various navigation methods on range objects listed in the first table on this page.

Another method to select a portion of the document is to use the position properties of the range object. Two
positioning systems are available and can be combined arbitrarily:

· Absolute text cursor positions, starting with position 0 at the document beginning, can be set and
retrieved for the beginning and end of a range. For more information see FirstTextPosition and
LastTextPosition . This method requires complex internal calculations and should be used with
care.

· The XMLData element and a text position inside this element, can be set and retrieved for the

beginning and end of a range. For more information see FirstXMLData , FirstXMLDataOffset ,
LastXMLData , and LastXMLDataOffset . This method is very efficient but requires knowledge of
the underlying document structure. It can be used to locate XMLData objects and perform operations
on them otherwise not accessible through the user interface.

Modifications to the document content can be achieved by various methods:

· The Text property allows you to retrieve the document text selected by the range object. If set, the
selected document text gets replaced with the new text.

· The standard document edit functions Cut , Copy , Paste and Delete .
· Table operations for tables that can grow dynamically.
· Methods that map the functionality of the Authentic entry helper windows.
· Access to the XMLData objects of the underlying document to modify them directly.

30.3.2.5.1 AppendRow

Method: AppendRow()as Boolean

Description
If the beginning of the range is inside a dynamic table, this method inserts a new row at the end of the selected
table. The selection of the range is modified to point to the beginning of the new row. The function returns true if
the append operation was successful, otherwise false.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Append row at end of current dynamically growable table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

1730 1725

1688

1701

1689 1690

1702 1703

1710

1686 1686 1705 1686

1893

1684 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.AppendRow
' objRange points to beginning of new row
objRange.Select

End If

30.3.2.5.2 Application

Property: Application as Application (read-only)

Description
Accesses the XMLSpy application object.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.3 CanPerformAction

Method: CanPerformAction (eAction as SPYAuthenticActions , strElementName as String) as Boolean

Description
CanPerformAction and its related methods enable access to the entry-helper functions of Authentic. This
function allows easy and consistent modification of the document content, without having to know exactly
where the modification will take place. The beginning of the range object is used to locate the next valid
location where the specified action can be performed. If the location can be found, the method returns True,
otherwise it returns False.

HINT: To find out all valid element names for a given action, use CanPerformActionWith .

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

2007 Invalid action was specified.

Examples
See PerformAction .

30.3.2.5.4 CanPerformActionWith

Method: CanPerformActionWith (eAction as SPYAuthenticActions , out_arrElementNames as Variant)

Description

1654

1943

1684

1706

1943

© 2018-2024 Altova GmbH

Application API 1685Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

PerformActionWith and its related methods, enable access to the entry-helper functions of Authentic. This
function allows easy and consistent modification of the document content without having to know exactly where
the modification will take place.

This method returns an array of those element names that the specified action can be performed with.

HINT: To apply the action use CanPerformActionWith .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

2007 Invalid action was specified.

Examples
See PerformAction .

30.3.2.5.5 Clone

Method: Clone() as AuthenticRange

Description
Returns a copy of the range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.6 CollapsToBegin

Method: CollapsToBegin() as AuthenticRange

Description
Sets the end of the range object to its begin. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.7 CollapsToEnd

Method: CollapsToEnd() as AuthenticRange

Description

1684

1706

1681

1681

1681

1686 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Sets the beginning of the range object to its end. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.8 Copy

Method: Copy() as Boolean

Description
Returns False if the range contains no portions of the document that may be copied.
Returns True if text, and in case of fully selected XML elements the elements as well, has been copied to the
copy/paste buffer.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.9 Cut

Method: Cut() as Boolean

Description
Returns False if the range contains portions of the document that may not be deleted.
Returns True after text, and in case of fully selected XML elements the elements as well, has been deleted
from the document and saved in the copy/paste buffer.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.10 Delete

Method: Delete() as Boolean

Description
Returns False if the range contains portions of the document that may not be deleted.
Returns True after text, and in case of fully selected XML elements the elements as well, has been deleted
from the document.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Application API 1687Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.5.11 DeleteRow

Method: DeleteRow() as Boolean

Description
If the beginning of the range is inside a dynamic table, this method deletes the selected row. The selection of
the range gets modified to point to the next element after the deleted row. The function returns true, if the delete
operation was successful, otherwise false.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Delete selected row from dynamically growing table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we are in a table
If objRange.IsInDynamicTable Then

objRange.DeleteRow
End If

30.3.2.5.12 DuplicateRow

Method: DuplicateRow() as Boolean

Description
If the beginning of the range is inside a dynamic table, this method inserts a duplicate of the current row after
the selected one. The selection of the range gets modified to point to the beginning of the new row. The function
returns true if the duplicate operation was successful, otherwise false.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' duplicate row in current dynamically growable table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

1688 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.DuplicateRow
' objRange points to beginning of new row
objRange.Select

End If

30.3.2.5.13 EvaluateXPath

Method: EvaluateXPath (strExpression as string) strValue as string

Return Value
The method returns a string

Description
EvaluateXPath() executes an XPath expression with the context node being the beginning of the range
selection. The result is returned as a string, in the case of a sequence it is a space-separated string. If XML
context node is irrelevant, the user may provide any node, like AuthenticView.XMLDataRoot.

Errors

2001 Invalid object

2005 Invalid parameter

2008 Internal error

2202 Missing context node

2211 XPath error

30.3.2.5.14 ExpandTo

Method: ExpandTo (eKind as SPYAuthenticElementKind), as AuthenticRange

Description
Selects the whole element of type eKind, that starts at, or contains, the first cursor position of the range. The
method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Range expansion would be beyond end of document.

2005 Invalid address for the return parameter was specified.

30.3.2.5.15 FirstTextPosition

Property: FirstTextPosition as Long

1944 1681

© 2018-2024 Altova GmbH

Application API 1689Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
Set or get the left-most text position index of the range object. This index is always less or equal to
LastTextPosition . Indexing starts with 0 at document beginning, and increments with every different position
that the text cursor can occupy. Incrementing the test position by 1, has the same effect as the cursor-right
key. Decrementing the test position by 1 has the same effect as the cursor-left key.

If you set FirstTextPosition to a value greater than the current LastTextPosition , LastTextPosition gets
set to the new FirstTextPosition.

HINT: Use text cursor positions with care, since this is a costly operation compared to XMLData based cursor
positioning.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid address for the return parameter was specified.

2006 A text position outside the document was specified.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

nDocStartPosition = objAuthenticView.DocumentBegin.FirstTextPosition
nDocEndPosition = objAuthenticView.DocumentEnd.FirstTextPosition

' let's create a range that selects the whole document
' in an inefficient way
Dim objRange
' we need to get a (any) range object first
Set objRange = objAuthenticView.DocumentBegin
objRange.FirstTextPosition = nDocStartPosition
objRange.LastTextPosition = nDocEndPosition

' let's check if we got it right
If objRange.isEqual(objAuthenticView.WholeDocument) Then

MsgBox "Test using direct text cursor positioning was ok"
Else

MsgBox "Ooops!"
End If

30.3.2.5.16 FirstXMLData

Property: FirstXMLData as XMLData

Description
Set or get the first XMLData element in the underlying document that is partially, or completely selected by the
range. The exact beginning of the selection is defined by the FirstXMLDataOffset attribute.

1701

1701 1701

1893

1690

1690 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Whenever you set FirstXMLData to a new data object, FirstXMLDataOffset gets set to the first cursor
position inside this element. Only XMLData objects that have a cursor position may be used. If you set
FirstXMLData / FirstXMLDataOffset selects a position greater then the current LastXMLData /
LastXMLDataOffset , the latter gets moved to the new start position.

HINT: You can use the FirstXMLData and LastXMLData properties to directly access and manipulate the
underlying XML document in those cases where the methods available with the AuthenticRange object are
not sufficient.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid address for the return parameter was specified.

2008 Internal error

2009 The XMLData object cannot be accessed.

Examples
' ---
' Scripting environment - VBScript
' show name of currently selected XMLData element
' ---
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objXmlData
Set objXMLData = objAuthenticView.Selection.FirstXMLData
' authentic view adds a 'text' child element to elements
' of the document which have content. So we have to go one
' element up.
Set objXMLData = objXMLData.Parent
MsgBox "Current selection selects element " & objXMLData.Name

30.3.2.5.17 FirstXMLDataOffset

Property: FirstXMLDataOffset as Long

Description
Set or get the cursor position offset inside FirstXMLData element for the beginning of the range. Offset
positions are based on the characters returned by the Text property, and start with 0. When setting a new
offset, use -1 to set the offset to the last possible position in the element. The following cases require specific
attention:

· The textual form of entries in Combo Boxes, Check Boxes and similar controls can be different from what

you see on screen. Although the data offset is based on this text, there only two valid offset positions, one at
the beginning and one at the end of the entry. An attempt to set the offset to somewhere in the middle of the
entry, will result in the offset being set to the end.

1690

1690 1702

1703

1689 1702

1681

1689

1710

© 2018-2024 Altova GmbH

Application API 1691Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

· The textual form of XML Entities might differ in length from their representation on the screen. The offset is
based on this textual form.

If FirstXMLData / FirstXMLDataOffset selects a position after the current LastXMLData /
LastXMLDataOffset , the latter gets moved to the new start position.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid offset was specified.
Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Select the complete text of an XMLData element
' using XMLData based selection and ExpandTo
' ---
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' first we use the XMLData based range properties
' to select all text of the first XMLData element
' in the current selection
Dim objRange
Set objRange = objAuthenticView.Selection
objRange.FirstXMLDataOffset = 0 ' start at beginning of element text
objRange.LastXMLData = objRange.FirstXMLData ' select only one element
objRange.LastXMLDataOffset = -1 ' select till its end

' the same can be achieved with the ExpandTo method
Dim objRange2
Set objRange2 = objAuthenticView.Selection.ExpandTo(spyAuthenticTag)

' were we successful?
If objRange.IsEqual(objRange2) Then

objRange.Select()
Else

MsgBox "Oops"
End If

30.3.2.5.18 GetElementAttributeNames

Method: GetElementAttributeNames (strElementName as String, out_arrAttributeNames as Variant)

Description
Retrieve the names of all attributes for the enclosing element with the specified name. Use the
element/attribute pairs, to set or get the attribute value with the methods GetElementAttributeValue and
SetElementAttributeValue .

1690 1702

1703

1692

1709

1692 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid element name was specified.
Invalid address for the return parameter was specified.

Examples
See SetElementAttributeValue .

30.3.2.5.19 GetElementAttributeValue

Method: GetElementAttributeValue (strElementName as String, strAttributeName as String) as String

Description
Retrieve the value of the attribute specified in strAttributeName, for the element identified with strElementName.
If the attribute is supported but has no value assigned, the empty string is returned. To find out the names of
attributes supported by an element, use GetElementAttributeNames , or HasElementAttribute .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid element name was specified.
Invalid attribute name was specified.
Invalid address for the return parameter was specified.

Examples
See SetElementAttributeValue .

30.3.2.5.20 GetElementHierarchy

Method: GetElementHierarchy (out_arrElementNames as Variant)

Description
Retrieve the names of all XML elements that are parents of the current selection. Inner elements get listed
before enclosing elements. An empty list is returned whenever the current selection is not inside a single
XMLData element.

The names of the element hierarchy, together with the range object uniquely identify XMLData elements in the
document. The attributes of these elements can be directly accessed by GetElementAttributeNames , and
related methods.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

C# Examples

1709

1691 1697

1709

1691

© 2018-2024 Altova GmbH

Application API 1693Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

' --
' C#
' --

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 XMLSpyLib.Application app = new XMLSpyLib.Application();

 app.ShowApplication(true);

 XMLSpyLib.AuthenticView view = app.ActiveDocument.AuthenticView;
 XMLSpyLib.AuthenticRange range = view.DocumentBegin;

 object o = null;
 range.GetElementHierarchy(ref o);

 object[] elements = (object[])o;

 foreach (string e in elements)
 {
 Console.WriteLine(e);
 }
 }
 }
}

Also see: SetElementAttributeValue .

30.3.2.5.21 GetEntityNames

Method: GetEntityNames (out_arrEntityNames as Variant)

Description
Retrieve the names of all defined entities. The list of retrieved entities is independent of the current selection, or
location. Use one of these names with the InsertEntity function.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
See: GetElementHierarchy and InsertEntity .

1709

1697

1692 1697

1694 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.5.22 GetVariableValue

Method: GetVariableValue(strName as string) strVal as string

Return Value
Gets the value of the variable named as the method's parameter.

Errors

2001 Invalid object.

2202 No context.

2204 No such variable in scope

2205 Variable cannot be evaluated

2206 Variable returns sequence

2209 Invalid parameter

30.3.2.5.23 Goto

Method: Goto (eKind as SPYAuthenticElementKind , nCount as Long, eFrom as
SPYAuthenticDocumentPosition) as AuthenticRange

Description
Sets the range to point to the beginning of the nCount element of type eKind. The start position is defined by
the parameter eFrom.

Use positive values for nCount to navigate to the document end. Use negative values to navigate to the
beginning of the document. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2004 Target lies before begin of document.

2005 Invalid element kind specified.
Invalid start position specified.
Invalid address for the return parameter was specified.

30.3.2.5.24 GotoNext

Method: GotoNext (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Sets the range to the beginning of the next element of type eKind. The method returns the modified range
object.

1944

1943 1681

1944 1681

© 2018-2024 Altova GmbH

Application API 1695Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' Scripting environment - VBScript
' Scan through the whole document word-by-word
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentBegin
Dim bEndOfDocument
bEndOfDocument = False

On Error Resume Next
While Not bEndOfDocument

objRange.GotoNext(spyAuthenticWord).Select
If ((Err.number - vbObjecterror) = 2003) Then

bEndOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

30.3.2.5.25 GotoNextCursorPosition

Method: GotoNextCursorPosition() as AuthenticRange

Description
Sets the range to the next cursor position after its current end position. Returns the modified object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2005 Invalid address for the return parameter was specified.

1681

1696 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.5.26 GotoPrevious

Method: GotoPrevious (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Sets the range to the beginning of the element of type eKind which is before the beginning of the current range.
The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2004 Target lies before beginning of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' Scripting environment - VBScript
' Scan through the whole document tag-by-tag
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentEnd
Dim bBeginOfDocument
bBeginOfDocument = False

On Error Resume Next
While Not bBeginOfDocument

objRange.GotoPrevious(spyAuthenticTag).Select
If ((Err.number - vbObjecterror) = 2004) Then

bBeginOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

30.3.2.5.27 GotoPreviousCursorPosition

Method: GotoPreviousCursorPosition() as AuthenticRange

Description
Set the range to the cursor position immediately before the current position. Returns the modified object.

Errors

1944 1681

1681

© 2018-2024 Altova GmbH

Application API 1697Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2001 The authentic range object, or its related view object is no longer valid.

2004 Target lies before begin of document.

2005 Invalid address for the return parameter was specified.

30.3.2.5.28 HasElementAttribute

Method: HasElementAttribute (strElementName as String, strAttributeName as String) as Boolean

Description
Tests if the enclosing element with name strElementName, supports the attribute specified in
strAttributeName.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid element name was specified.
Invalid address for the return parameter was specified.

30.3.2.5.29 InsertEntity

Method: InsertEntity (strEntityName as String)

Description
Replace the ranges selection with the specified entity. The specified entity must be one of the entity names
returned by GetEntityNames .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Unknown entry name was specified.

Examples
' ---
' Scripting environment - VBScript
' Insert the first entity in the list of available entities
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' first we get the names of all available entities as they
' are shown in the entry helper of XMLSpy
Dim arrEntities
objRange.GetEntityNames arrEntities

' we insert the first one of the list
If UBound(arrEntities) >= 0 Then

objRange.InsertEntity arrEntities(0)
Else

1693

1698 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

MsgBox "Sorry, no entities are available for this document"
End If

30.3.2.5.30 InsertRow

Method: InsertRow() as Boolean

Description
If the beginning of the range is inside a dynamic table, this method inserts a new row before the current one.
The selection of the range gets modified to point to the beginning of the newly inserted row. The function returns
true if the insert operation was successful, otherwise false.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Insert row at beginning of current dynamically growing table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.InsertRow
' objRange points to beginning of new row
objRange.Select

 End If

30.3.2.5.31 IsCopyEnabled

Property: IsCopyEnabled as Boolean (read-only)

Description
Checks if the copy operation is supported for this range.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

© 2018-2024 Altova GmbH

Application API 1699Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.5.32 IsCutEnabled

Property: IsCutEnabled as Boolean (read-only)

Description
Checks if the cut operation is supported for this range.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.33 IsDeleteEnabled

Property: IsDeleteEnabled as Boolean (read-only)

Description
Checks if the delete operation is supported for this range.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.34 IsEmpty

Method: IsEmpty() as Boolean

Description
Tests if the first and last position of the range are equal.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.35 IsEqual

Method: IsEqual (objCmpRange as AuthenticRange) as Boolean

Description
Tests if the start and end of both ranges are the same.

Errors

2001 One of the two range objects being compared, is invalid.

2005 Invalid address for a return parameter was specified.

1681

1700 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.5.36 IsFirstRow

Property: IsFirstRow as Boolean (read-only)

Description
Test if the range is in the first row of a table. Which table is taken into consideration depends on the extent of
the range. If the selection exceeds a single row of a table, the check is if this table is the first element in an
embedding table. See the entry helpers of the user manual for more information.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.37 IsInDynamicTable

Method: IsInDynamicTable() as Boolean

Description
Test if the whole range is inside a table that supports the different row operations like 'insert', 'append',
duplicate, etc.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.38 IsLastRow

Property: IsLastRow as Boolean (read-only)

Description
Test if the range is in the last row of a table. Which table is taken into consideration depends on the extent of
the range. If the selection exceeds a single row of a table, the check is if this table is the last element in an
embedding table. See the entry helpers of the user manual for more information.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.39 IsPasteEnabled

Property: IsPasteEnabled as Boolean (read-only)

© 2018-2024 Altova GmbH

Application API 1701Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
Checks if the paste operation is supported for this range.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.40 IsSelected

Property: IsSelected as Boolean

Description
Returns true() if selection is present. The selection range still can be empty: that happens when e.g. only the
cursor is set.

30.3.2.5.41 IsTextStateApplied

Method: IsTextStateApplied (i_strElementName as String) as Boolean

Description
Checks if all the selected text is embedded into an XML Element with name i_strElementName. Common
examples for the parameter i_strElementName are "strong", "bold" or "italic".

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.42 LastTextPosition

Property: LastTextPosition as Long

Description
Set or get the rightmost text position index of the range object. This index is always greater or equal to
FirstTextPosition . Indexing starts with 0 at the document beginning, and increments with every different
position that the text cursor can occupy. Incrementing the test position by 1, has the same effect as the
cursor-right key. Decreasing the test position by 1 has the same effect as the cursor-left key.

If you set LastTextPosition to a value less then the current FirstTextPosition , FirstTextPosition gets set
to the new LastTextPosition.

HINT: Use text cursor positions with care, since this is a costly operation compared to XMLData based cursor
positioning.

Errors

1688

1688 1688

1702 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2001 The authentic range object, or its related view object is not valid.

2005 Invalid address for the return parameter was specified.

2006 A text position outside the document was specified.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

nDocStartPosition = objAuthenticView.DocumentBegin.FirstTextPosition
nDocEndPosition = objAuthenticView.DocumentEnd.FirstTextPosition

' let's create a range that selects the whole document
' in an inefficient way
Dim objRange
' we need to get a (any) range object first
Set objRange = objAuthenticView.DocumentBegin
objRange.FirstTextPosition = nDocStartPosition
objRange.LastTextPosition = nDocEndPosition

' let's check if we got it right
If objRange.isEqual(objAuthenticView.WholeDocument) Then

MsgBox "Test using direct text cursor positioning was ok"
Else

MsgBox "Oops!"
End If

30.3.2.5.43 LastXMLData

Property: LastXMLData as XMLData

Description
Set or get the last XMLData element in the underlying document that is partially or completely selected by the
range. The exact end of the selection is defined by the LastXMLDataOffset attribute.

Whenever you set LastXMLData to a new data object, LastXMLDataOffset gets set to the last cursor
position inside this element. Only XMLData objects that have a cursor position may be used. If you set
LastXMLData / LastXMLDataOffset , select a position less then the current FirstXMLData /
FirstXMLDataOffset , the latter gets moved to the new end position.

HINT: You can use the FirstXMLData and LastXMLData properties to directly access and manipulate the
underlying XML document in those cases, where the methods available with the AuthenticRange object are
not sufficient.

Errors

2001 The authentic range object, or its related view object is not valid.

1893

1703

1703

1703 1689

1690

1689 1702

1681

© 2018-2024 Altova GmbH

Application API 1703Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2005 Invalid address for the return parameter was specified.

2008 Internal error

2009 The XMLData object cannot be accessed.

30.3.2.5.44 LastXMLDataOffset

Property: LastXMLDataOffset as Long

Description
Set or get the cursor position inside LastXMLData element for the end of the range.

Offset positions are based on the characters returned by the Text property and start with 0. When setting a
new offset, use -1 to set the offset to the last possible position in the element. The following cases require
specific attention:

· The textual form of entries in Combo Boxes, Check Boxes and similar controls can be different from what

you see on the screen. Although, the data offset is based on this text, there only two valid offset positions,
one at the beginning and one at the end of the entry. An attempt to set the offset to somewhere in the middle
of the entry, will result in the offset being set to the end.

· The textual form of XML Entities might differ in length from their representation on the screen. The offset is
based on this textual form.

If LastXMLData / LastXMLDataOffset selects a position before FirstXMLData / FirstXMLDataOffset
, the latter gets moved to the new end position.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid offset was specified.
Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Select the complete text of an XMLData element
' using XMLData based selection and ExpandTo
' ---
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' first we use the XMLData based range properties
' to select all text of the first XMLData element
' in the current selection
Dim objRange
Set objRange = objAuthenticView.Selection
objRange.FirstXMLDataOffset = 0 ' start at beginning of element text
objRange.LastXMLData = objRange.FirstXMLData ' select only one element
objRange.LastXMLDataOffset = -1 ' select till its end

1702

1710

1702 1703 1689 1690

1704 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

' the same can be achieved with the ExpandTo method
Dim objRange2
Set objRange2 = objAuthenticView.Selection.ExpandTo(spyAuthenticTag)

' were we successful?
If objRange.IsEqual(objRange2) Then

objRange.Select()
Else

MsgBox "Ooops"
End If

30.3.2.5.45 MoveBegin

Method: MoveBegin (eKind as SPYAuthenticElementKind , nCount as Long) as AuthenticRange

Description
Move the beginning of the range to the beginning of the nCount element of type eKind. Counting starts at the
current beginning of the range object.

Use positive numbers for nCount to move towards the document end, use negative numbers to move towards
document beginning. The end of the range stays unmoved, unless the new beginning would be larger than it. In
this case, the end is moved to the new beginning. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2004 Target lies before beginning of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

30.3.2.5.46 MoveEnd

Method: MoveEnd (eKind as SPYAuthenticElementKind , nCount as Long) as AuthenticRange

Description
Move the end of the range to the begin of the nCount element of type eKind. Counting starts at the current end
of the range object.

Use positive numbers for nCount to move towards the document end, use negative numbers to move towards
document beginning. The beginning of the range stays unmoved, unless the new end would be less than it. In
this case, the beginning gets moved to the new end. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2004 Target lies before begin of document.

1944 1681

1944 1681

© 2018-2024 Altova GmbH

Application API 1705Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

30.3.2.5.47 MoveRowDown

Method: MoveRowDown() as Boolean

Description
If the beginning of the range is inside a dynamic table and selects a row which is not the last row in this table,
this method swaps this row with the row immediately below. The selection of the range moves with the row, but
does not otherwise change. The function returns true if the move operation was successful, otherwise false.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.48 MoveRowUp

Method: MoveRowUp() as Boolean

Description
If the beginning of the range is inside a dynamic table and selects a row which is not the first row in this table,
this method swaps this row with the row above. The selection of the range moves with the row, but does not
change otherwise. The function returns true if the move operation was successful, otherwise false.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.49 Parent

Property: Parent as AuthenticView (read-only)

Description
Access the view that owns this range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.50 Paste

Method: Paste() as Boolean

1711

1706 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Returns False if the copy/paste buffer is empty, or its content cannot replace the current selection.

Otherwise, deletes the current selection, inserts the content of the copy/paste buffer, and returns True.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.5.51 PerformAction

Method: PerformAction (eAction as SPYAuthenticActions , strElementName as String) as Boolean

Description
PerformAction and its related methods, give access to the entry-helper functions of Authentic. This function
allows easy and consistent modification of the document content without a need to know exactly where the
modification will take place. The beginning of the range object is used to locate the next valid location where
the specified action can be performed. If no such location can be found, the method returns False. Otherwise,
the document gets modified and the range points to the beginning of the modification.

HINT: To find out element names that can be passed as the second parameter use CanPerformActionWith .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

2007 Invalid action was specified.

Examples
' --
' Scripting environment - VBScript
' Insert the innermost element
' --
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' we determine the elements that can be inserted at the current position
Dim arrElements()
objRange.CanPerformActionWith spyAuthenticInsertBefore, arrElements

' we insert the first (innermost) element
If UBound(arrElements) >= 0 Then

objRange.PerformAction spyAuthenticInsertBefore, arrElements(0)
' objRange now points to the beginning of the inserted element
' we set a default value and position at its end
objRange.Text = "Hello"
objRange.ExpandTo(spyAuthenticTag).CollapsToEnd().Select

Else
MsgBox "Can't insert any elements at current position"

1943

1684

© 2018-2024 Altova GmbH

Application API 1707Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

End If

30.3.2.5.52 Select

Method: Select()

Description
Makes this range the current user interface selection. You can achieve the same result using:
'objRange.Parent.Selection = objRange'

Errors

2001 The authentic range object or its related view object is no longer valid.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' set current selection to end of document
objAuthenticView.DocumentEnd.Select()

30.3.2.5.53 SelectNext

Method: SelectNext (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Selects the element of type eKind after the current end of the range. The method returns the modified range
object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' Scripting environment - VBScript
' Scan through the whole document word-by-word
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange

1944 1681

1708 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Set objRange = objAuthenticView.DocumentBegin
Dim bEndOfDocument
bEndOfDocument = False

On Error Resume Next
While Not bEndOfDocument

objRange.SelectNext(spyAuthenticWord).Select
If ((Err.number - vbObjecterror) = 2003) Then

bEndOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

30.3.2.5.54 SelectPrevious

Method: GotoPrevious (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Selects the element of type eKind before the current beginning of the range. The method returns the modified
range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2004 Target lies before begin of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' Scripting environment - VBScript
' Scan through the whole document tag-by-tag
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentEnd
Dim bBeginOfDocument
bBeginOfDocument = False

On Error Resume Next
While Not bBeginOfDocument

objRange.SelectPrevious(spyAuthenticTag).Select
If ((Err.number - vbObjecterror) = 2004) Then

bBeginOfDocument = True

1944 1681

© 2018-2024 Altova GmbH

Application API 1709Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Err.Clear
ElseIf (Err.number <> 0) Then

Err.Raise ' forward error
End If

Wend

30.3.2.5.55 SetElementAttributeValue

Method: SetElementAttributeValue (strElementName as String, strAttributeName as String, strAttributeValue
as String)

Description
Set the value of the attribute specified in strAttributeName for the element identified with strElementName. If the
attribute is supported but has no value assigned, the empty string is returned. To find out the names of
attributes supported by an element, use GetElementAttributeNames , or HasElementAttribute .

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid element name was specified.
Invalid attribute name was specified.
Invalid attribute value was specified.

Examples
' --
' Scripting environment - VBScript
' Get and set element attributes
' --
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' first we find out all the elements below the beginning of the range
Dim arrElements
objRange.GetElementHierarchy arrElements

If IsArray(arrElements) Then
If UBound(arrElements) >= 0 Then

' we use the top level element and find out its valid attributes
Dim arrAttrs()
objRange.GetElementAttributeNames arrElements(0), arrAttrs

If UBound(arrAttrs) >= 0 Then
' we retrieve the current value of the first valid attribute
Dim strAttrVal
strAttrVal = objRange.GetElementAttributeValue (arrElements(0), arrAttrs(0))
msgbox "current value of " & arrElements(0) & "//" & arrAttrs(0) & " is: " & strAttrVal

' we change this value and read it again
strAttrVal = "Hello"

1691 1697

1710 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

objRange.SetElementAttributeValue arrElements(0), arrAttrs(0), strAttrVal
strAttrVal = objRange.GetElementAttributeValue (arrElements(0), arrAttrs(0))
msgbox "new value of " & arrElements(0) & "//" & arrAttrs(0) & " is: " & strAttrVal

End If
End If

End If

30.3.2.5.56 SetFromRange

Method: SetFromRange (objSrcRange as AuthenticRange)

Description
Sets the range object to the same beginning and end positions as objSrcRange.

Errors

2001 One of the two range objects, is invalid.

2005 Null object was specified as source object.

30.3.2.5.57 SetVariableValue

Method: SetVariableValue(strName as string, strValue as string)

Return Value
Sets the value (second parameter) of the variable named in the first parameter.

Errors

2201 Invalid object.

2202 No context.

2204 No such variable in scope

2205 Variable cannot be evaluated

2206 Variable returns sequence

2207 Variable read-only

2208 No modification allowed

30.3.2.5.58 Text

Property: Text as String

Description

1681

© 2018-2024 Altova GmbH

Application API 1711Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Set or get the textual content selected by the range object.

The number of characters retrieved are not necessarily identical, as there are text cursor positions between the
beginning and end of the selected range. Most document elements support an end cursor position different to
the beginning cursor position of the following element. Drop-down lists maintain only one cursor position, but
can select strings of any length. In the case of radio buttons and check boxes, the text property value holds the
string of the corresponding XML element.

If the range selects more then one element, the text is the concatenation of the single texts. XML entities are
expanded so that '&' is expected as '&'.

Setting the text to the empty string, does not delete any XML elements. Use Cut , Delete or
PerformAction instead.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for a return parameter was specified.

30.3.2.6 AuthenticView

Properties Methods Events

Application Goto OnBeforeCopy

AsXMLString IsRedoEnabled OnBeforeCut

DocumentBegin IsUndoEnabled OnBeforeDelete

DocumentEnd Print OnBeforeDrop

Event Redo OnBeforePaste

MarkupVisibility Undo OnDragOver

Parent UpdateXMLInstanceEntities OnKeyBoardEvent

Selection OnMouseEvent

XMLDataRoot OnSelectionChanged

WholeDocument

Description
AuthenticView and its child objects AuthenticRange and AuthenticDataTransfer provide you

with an interface for Authentic View, which allow easy and consistent modification of
document contents. These interfaces replace the following interfaces which are marked now
as obsolete:

OldAuthenticView (old name was DocEditView)
AuthenticSelection (old name was DocEditSelection, superseded by AuthenticRange)
AuthenticEvent (old name was DocEditEvent)

AuthenticView gives you easy access to specific features such as printing, the multi-level undo buffer, and the
current cursor selection, or position.

1686 1686

1706

1721 1725 1712

1721 1726 1713

1723 1726 1713

1723 1727 1714

1724 1728 1715

1727 1729 1715

1727 1729 1717

1728 1718

1730 1718

1730

1681

1681

1712 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

AuthenticView uses objects of type AuthenticRange to make navigation inside the document straight-
forward, and to allow for the flexible selection of logical text elements. Use the properties DocumentBegin ,
DocumentEnd , or WholeDocument for simple selections, while using the Goto method for more
complex selections. To navigate relative to a given document range, see the methods and properties of the
AuthenticRange object.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' secure access to authentic view object
' ---------------------------------------
Dim objDocument
Set objDocument = Application.ActiveDocument
If (Not objDocument Is Nothing) Then

' we have an active document, now check for view mode
If (objDocument.CurrentViewMode <> spyViewAuthentic) Then

If (Not objDocument.SwitchViewMode (spyViewAuthentic)) Then
MsgBox "Active document does not support authentic view mode"

Else
' now it is safe to access the authentic view object
Dim objAuthenticView
Set objAuthenticView = objDocument.AuthenticView
' now use the authentic view object

End If
End If

Else
MsgBox "No document is open"

End If

30.3.2.6.1 Events

30.3.2.6.1.1 OnBeforeCopy

Event: OnBeforeCopy() as Boolean

Scripting environment - VBScript:
Function On_AuthenticBeforeCopy()

' On_AuthenticBeforeCopy = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforeCopy()
{

// return false; /* to disable operation */
}

IDE Plugin:

1681

1723

1723 1730 1725

1681

© 2018-2024 Altova GmbH

Application API 1713Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

IXMLSpyPlugIn.OnEvent (21, ...) // nEventId = 21

Description
This event gets triggered before a copy operation gets performed on the document. Return True (or nothing) to
allow copy operation. Return False to disable copying.

30.3.2.6.1.2 OnBeforeCut

Event: OnBeforeCut() as Boolean

Scripting environment - VBScript:
Function On_AuthenticBeforeCut()

' On_AuthenticBeforeCut = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforeCut()
{

// return false; /* to disable operation */
}

IDE Plugin:
IXMLSpyPlugIn.OnEvent (20, ...) // nEventId = 20

Description
This event gets triggered before a cut operation gets performed on the document. Return True (or nothing) to
allow cut operation. Return False to disable operation.

30.3.2.6.1.3 OnBeforeDelete

Event: OnBeforeDelete() as Boolean

Scripting environment - VBScript:
Function On_AuthenticBeforeDelete()

' On_AuthenticBeforeDelete = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforeDelete()
{

// return false; /* to disable operation */
}

IDE Plugin:
IXMLSpyPlugIn.OnEvent (22, ...) // nEventId = 22

Description
This event gets triggered before a delete operation gets performed on the document. Return True (or nothing) to
allow delete operation. Return False to disable operation.

1714 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.6.1.4 OnBeforeDrop

Event: OnBeforeDrop (i_nXPos as Long, i_nYPos as Long, i_ipRange as AuthenticRange , i_ipData as
cancelBoolean

Scripting environment - VBScript:
Function On_AuthenticBeforeDrop(nXPos, nYPos, objRange, objData)

' On_AuthenticBeforeDrop = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforeDrop(nXPos, nYPos, objRange, objData)
{

// return false; /* to disable operation */
}

IDE Plugin:
IXMLSpyPlugIn.OnEvent (11, ...) // nEventId = 11

Description
This event gets triggered whenever a previously dragged object gets dropped inside the application window. All
event related information gets passed as parameters.

The first two parameters specify the mouse position at the time when the event occurred. The parameter
objRange passes a range object that selects the XML element below the mouse position. The value of this
parameter might be NULL. Be sure to check before you access the range object. The parameter objData allows
to access information about the object being dragged.

Return False to cancel the drop operation. Return True (or nothing) to continue normal operation.

Examples
' --
' VB code snippet - connecting to object level events
' --
' access XMLSpy (without checking for any errors)
Dim objSpy As XMLSpyLib.Application
Set objSpy = GetObject("", "XMLSpy.Application")

' this is the event callback routine connected to the OnBeforeDrop
' event of object objView
Private Function objView_OnBeforeDrop(ByVal i_nXPos As Long, ByVal i_nYPos As Long,
 ByVal i_ipRange As IAuthenticRange,
 ByVal i_ipData As IAuthenticDataTransfer) As Boolean

 If (Not i_ipRange Is Nothing) Then
 MsgBox ("Dropping on content is prohibited");
 Return False;
 Else
 Return True;
 End If
End Function

1681

© 2018-2024 Altova GmbH

Application API 1715Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

' use VBA keyword WithEvents to connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView
Set objView = objSpy.ActiveDocument.AuthenticView

' continue here with something useful ...
' and serve the windows message loop

30.3.2.6.1.5 OnBeforePaste

Event: OnBeforePaste (objData as Variant, strType as String) as Boolean

Scripting environment - VBScript:
Function On_AuthenticBeforePaste(objData, strType)

' On_AuthenticBeforePaste = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforePaste(objData, strType)
{

// return false; /* to disable operation */
}

IDE Plugin:
IXMLSpyPlugIn.OnEvent (19, ...) // nEventId = 19

Description
This event gets triggered before a paste operation gets performed on the document. The parameter strType is
one of "TEXT", "UNICODETEXT" or "IUNKNOWN". In the first two cases objData contains a string
representation of the object that will be pasted. In the later case, objData contains a pointer to an IUnknown
COM interface.

Return True (or nothing) to allow paste operation. Return False to disable operation.

30.3.2.6.1.6 OnBeforeSave

Event: OnBeforeSave (SaveAs flag) as Boolean

Description: OnBeforeSave gives the opportunity to e.g. warn the user about overwriting the existing XML
document, or to make the document read-only when specific circumstances are not met. The event will be fired
before the file dialog is shown.

30.3.2.6.1.7 OnDragOver

Event: OnDragOver (nXPos as Long, nYPos as Long, eMouseEvent as SPYMouseEvent , objRange as
AuthenticRange , objData as AuthenticDataTransfer) as Boolean

1948

1681

1716 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Scripting environment - VBScript:
Function On_AuthenticDragOver(nXPos, nYPos, eMouseEvent, objRange, objData)

' On_AuthenticDragOver = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticDragOver(nXPos, nYPos, eMouseEvent, objRange, objData)
{

// return false; /* to disable operation */
}

IDE Plugin:
IXMLSpyPlugIn.OnEvent (10, ...) // nEventId = 10

Description
This event gets triggered whenever an object from within or outside of Authentic View gets dragged with the
mouse over the application window. All event related information gets passed as parameters.

The first three parameters specify the mouse position, the mouse button status and the status of the virtual
keys at the time when the event occurred. The parameter objRange passes a range object that selects the
XML element below the mouse position. The value of this parameter might be NULL. Be sure to check before
you access the range object. The parameter objData allows to access information about the object being
dragged.

Return False to cancel the drag operation. Return True (or nothing) to continue normal operation.

Examples
' --
' VB code snippet - connecting to object level events
' --
' access XMLSpy (without checking for any errors)
Dim objSpy As XMLSpyLib.Application
Set objSpy = GetObject("", "XMLSpy.Application")

' this is the event callback routine connected to the OnDragOver
' event of object objView
Private Function objView_OnDragOver(ByVal i_nXPos As Long, ByVal i_nYPos As Long,
 ByVal i_eMouseEvent As SPYMouseEvent,
 ByVal i_ipRange As IAuthenticRange,
 ByVal i_ipData As IAuthenticDataTransfer) As Boolean

 If (((i_eMouseEvent And spyShiftKeyDownMask) <> 0) And
 (Not i_ipRange Is Nothing)) Then
 MsgBox ("Floating over element " & i_ipRange.FirstXMLData.Parent.Name);
 End If

 Return True;
End Function

' use VBA keyword WithEvents to connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView
Set objView = objSpy.ActiveDocument.AuthenticView

© 2018-2024 Altova GmbH

Application API 1717Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

' continue here with something useful ...
' and serve the windows message loop

30.3.2.6.1.8 OnKeyboardEvent

Event: OnKeyboardEvent (eKeyEvent as SPYKeyEvent , nKeyCode as Long, nVirtualKeyStatus as Long) as
Boolean

Scripting environment - VBScript:
Function On_AuthenticKeyboardEvent(eKeyEvent, nKeyCode, nVirtualKeyStatus)

' On_AuthenticKeyboardEvent = True ' to cancel bubbling of event
End Function

Scripting environment - JScript:
function On_AuthenticKeyboardEvent(eKeyEvent, nKeyCode, nVirtualKeyStatus)
{

// return true; /* to cancel bubbling of event */
}

IDE Plugin:
IXMLSpyPlugIn.OnEvent (30, ...) // nEventId = 30

Description
This event gets triggered for WM_KEYDOWN, WM_KEYUP and WM_CHAR Windows messages.

The actual message type is available in the eKeyEvent parameter. The status of virtual keys is combined in the
parameter nVirtualKeyStatus. Use the bit-masks defined in the enumeration datatype SPYVirtualKeyMask ,
to test for the different keys or their combinations.

30.3.2.6.1.9 OnLoad

Event: OnLoad ()

Description: OnLoad can be used e.g. to restrict some AuthenticView functionality, as shown in the example
below:

function On_AuthenticLoad()
{
 // We are disabling all entry helpers in order to prevent user from manipulating XML tree
 AuthenticView.DisableElementEntryHelper();
 AuthenticView.DisableAttributeEntryHelper();

 // We are also disabling the markup buttons for the same purpose
 AuthenticView.SetToolbarButtonState('AuthenticMarkupSmall', authenticToolbarButtonDisabled);
 AuthenticView.SetToolbarButtonState('AuthenticMarkupLarge', authenticToolbarButtonDisabled);
 AuthenticView.SetToolbarButtonState('AuthenticMarkupMixed', authenticToolbarButtonDisabled);
}

In the example the status of the Markup Small, Markup Large, Markup Mixed toolbar buttons are manipulated
with the help of button identifiers. See complete list .

1947

1955

1719

1718 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.6.1.10 OnMouseEvent

Event: OnMouseEvent (nXPos as Long, nYPos as Long, eMouseEvent as SPYMouseEvent , objRange as
AuthenticRange) as Boolean

Scripting environment - VBScript:
Function On_AuthenticMouseEvent(nXPos, nYPos, eMouseEvent, objRange)

' On_AuthenticMouseEvent = True ' to cancel bubbling of event
End Function

Scripting environment - JScript:
function On_AuthenticMouseEvent(nXPos, nYPos, eMouseEvent, objRange)
{

// return true; /* to cancel bubbling of event */
}

IDE Plugin:
IXMLSpyPlugIn.OnEvent (31, ...) // nEventId = 31

Description
This event gets triggered for every mouse movement and mouse button Windows message.

The actual message type and the mouse buttons status, is available in the eMouseEvent parameter. Use the
bit-masks defined in the enumeration datatype SPYMouseEvent to test for the different messages, button
status, and their combinations.

The parameter objRange identifies the part of the document found at the current mouse cursor position. The
range object always selects a complete tag of the document. (This might change in future versions, when a
more precise positioning mechanism becomes available). If no selectable part of the document is found at the
current position, the range object is null.

30.3.2.6.1.11 OnSelectionChanged

Event: OnSelectionChanged (objNewSelection as AuthenticRange)

Scripting environment - VBScript:
Function On_AuthenticSelectionChanged (objNewSelection)
End Function

Scripting environment - JScript:
function On_AuthenticSelectionChanged (objNewSelection)
{
}

IDE Plugin:
IXMLSpyPlugIn.OnEvent (23, ...) // nEventId = 23

Description
This event gets triggered whenever the selection in the user interface changes.

1948

1681

1948

1681

© 2018-2024 Altova GmbH

Application API 1719Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Examples
' --
' VB code snippet - connecting to object level events
' --
' access XMLSpy (without checking for any errors)
Dim objSpy As XMLSpyLib.Application
Set objSpy = GetObject("", "XMLSpy.Application")

' this is the event callback routine connected to the OnSelectionChanged
' event of object objView
Private Sub objView_OnSelectionChanged (ByVal i_ipNewRange As XMLSpyLib.IAuthenticRange)
 MsgBox ("new selection: " & i_ipNewRange.Text)
End Sub

' use VBA keyword WithEvents to connect to object-level event
Dim WithEvents objView As XMLSpyLib.AuthenticView
Set objView = objSpy.ActiveDocument.AuthenticView

' continue here with something useful ...
' and serve the windows message loop

30.3.2.6.1.12 OnToolbarButtonClicked

Event: OnToolbarButtonClicked (Button identifier)

Description: OnToolbarButtonClicked is fired when a toolbar button was clicked by user. The parameter
button identifier helps to determine which button was clicked. The list of predefined button identifiers is below:

· AuthenticPrint
· AuthenticPrintPreview
· AuthenticUndo
· AuthenticRedo
· AuthenticCut
· AuthenticCopy
· AuthenticPaste
· AuthenticClear
· AuthenticMarkupHide
· AuthenticMarkupLarge
· AuthenticMarkupMixed
· AuthenticMarkupSmall
· AuthenticValidate
· AuthenticChangeWorkingDBXMLCell
· AuthenticSave
· AuthenticSaveAs
· AuthenticReload
· AuthenticTableInsertRow
· AuthenticTableAppendRow
· AuthenticTableDeleteRow
· AuthenticTableInsertCol
· AuthenticTableAppendCol
· AuthenticTableDeleteCol

1720 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· AuthenticTableJoinCellRight
· AuthenticTableJoinCellLeft
· AuthenticTableJoinCellAbove
· AuthenticTableJoinCellBelow
· AuthenticTableSplitCellHorizontally
· AuthenticTableSplitCellVertically
· AuthenticTableAlignCellContentTop
· AuthenticTableCenterCellVertically
· AuthenticTableAlignCellContentBottom
· AuthenticTableAlignCellContentLeft
· AuthenticTableCenterCellContent
· AuthenticTableAlignCellContentRight
· AuthenticTableJustifyCellContent
· AuthenticTableInsertTable
· AuthenticTableDeleteTable
· AuthenticTableProperties
· AuthenticAppendRow
· AuthenticInsertRow
· AuthenticDuplicateRow
· AuthenticMoveRowUp
· AuthenticMoveRowDown
· AuthenticDeleteRow
· AuthenticDefineEntities
· AuthenticXMLSignature

For custom buttons the user might add his own identifiers. Please, note that the user must take care, as the
identifiers are not checked for uniqueness. The same identifiers can be used to identify buttons in the
Set/GetToolbarState() COM API calls. By adding code for different buttons, the user is in the position to
completely redefine the AuthenticView toolbar behavior, adding own methods for table manipulation, etc.

30.3.2.6.1.13 OnToolbarButtonExecuted

Event: OnToolbarButtonExecuted (Button identifier)

Description: OnToolbarButtonClicked is fired when a toolbar button was clicked by user. The parameter
button identifier helps to determine which button was clicked. See the list of predefined button identifiers .

OnToolbarButtonExecuted is fired after the toolbar action was executed. It is useful e.g. to add update code,
as shown in the example below:

//event fired when a toolbar button action was executed
function On_AuthenticToolbarButtonExecuted(varBtnIdentifier)
{
 // After whatever command user has executed - make sure to update toolbar button states
 UpdateOwnToolbarButtonStates();
}

In this case UpdateOwnToolbarButtonStates is a user function defined in the Global Declarations.

1719

© 2018-2024 Altova GmbH

Application API 1721Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.6.1.14 OnUserAddedXMLNode

Event: OnUserAddedXMLNode (XML node)

Description: OnUserAddedXMLNode will be fired when the user adds an XML node as a primary action. This
happens in the situations, where the user clicks on

· auto-add hyperlinks (see example OnUserAddedXMLNode.sps)
· the Insert…, Insert After…, Insert Before… context menu items
· Append row, Insert row toolbar buttons
· Insert After…, Insert Before… actions in element entry helper (outside StyleVision)

The event doesn’t get fired on Duplicate row, or when the node was added externally (e.g. via COM API), or on
Apply (e.g. Text State Icons), or when in XML table operations or in DB operations.

The event parameter is the XML node object, which was added giving the user an opportunity to manipulate the
XML node added. An elaborate example for an event handler can be found in the OnUserAddedXMLNode.sps file.

30.3.2.6.2 Application

Property: Application as Application (read-only)

Description
Accesses the XMLSpy application object.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.6.3 AsXMLString

Property: AsXMLString as String

Description
Returns or sets the document content as an XML string. Setting the content to a new value does not change
the schema file or sps file in use. If the new XMLString does not match the actual schema file error 2011 gets
returned.

Errors

2000 The authentic view object is no longer valid.

2011 AsXMLString was set to a value which is no valid XML for the current
schema file.

1654

1722 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.6.4 ContextMenu

Property: ContextMenu() as ContextMenu

Description
The property ContextMenu gives access to customize the context menu. The best place to do it is in the event
handler OnContextMenuActivated.

Errors

2000 Invalid object.

2005 Invalid parameter.

30.3.2.6.5 CreateXMLNode

Method: CreateXMLNode (nKind as SPYXMLDataKind) as XMLData

Return Value
The method returns the new XMLData object.

Description
To create a new XMLData object use the CreateXMLNode() method.

Errors

2000 Invalid object.

2012 Cannot create XML node.

30.3.2.6.6 DisableAttributeEntryHelper

Method: DisableAttributeEntryHelper()

Description
DisableAttributeEntryHelper() disables the attribute entry helper in XMLSpy, Authentic Desktop and Authentic
Browser plug-in.

Errors

2000 Invalid object.

30.3.2.6.7 DisableElementEntryHelper

Method: DisableElementEntryHelper()

Description

1955 1893

1893

© 2018-2024 Altova GmbH

Application API 1723Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

DisableElementEntryHelper() disables the element entry helper in XMLSpy, Authentic Desktop and Authentic
Browser plug-in.

Errors

2000 Invalid object.

30.3.2.6.8 DisableEntityEntryHelper

Method: DisableEntityEntryHelper()

Description
DisableEntityEntryHelper() disables the entity entry helper in XMLSpy, Authentic Desktop and Authentic
Browser plug-in.

Errors

2000 Invalid object.

30.3.2.6.9 DocumentBegin

Property: DocumentBegin as AuthenticRange (read-only)

Description
Retrieve a range object that points to the beginning of the document.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.6.10 DocumentEnd

Property: DocumentEnd as AuthenticRange (read-only)

Description
Retrieve a range object that points to the end of the document.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

1681

1681

1724 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.6.11 DoNotPerformStandardAction

Method: DoNotPerformStandardAction ()

Description
DoNotPerformStandardAction() serves as cancel bubble for macros, and stops further execution after macro
has finished.

Errors

2000 Invalid object.

30.3.2.6.12 EvaluateXPath

Method: EvaluateXPath (XMLData as XMLData , strExpression as string) strValue as string

Return Value
The method returns a string

Description
EvaluateXPath() executes an XPath expression with the given XML context node. The result is returned as a
string, in the case of a sequence it is a space-separated string.

Errors

2000 Invalid object.

2005 Invalid parameter.

2008 Internal error.

2013 XPath error.

30.3.2.6.13 Event

Property: Event as AuthenticEvent (read-only)

Description
This property gives access to parameters of the last event in the same way as OldAuthenticView.event does.
Since all events for the scripting environment and external clients are now available with parameters this Event
property should only be used from within IDE-Plugins.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

1893

© 2018-2024 Altova GmbH

Application API 1725Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.6.14 EventContext

Property: EventContext() as EventContext

Description
EventContext property gives access to the running macros context. See the EventContext interface
description for more details.

Errors

2000 Invalid object.

30.3.2.6.15 GetToolbarButtonState

Method: GetToolbarButtonState (ButtonIdentifier as string) as AuthenticToolbarButtonState

Return Value
The method returns AuthenticToolbarButtonState

Description
Get/SetToolbarButtonState queries the status of a toolbar button, and lets the user disable or enable the
button, identified via its button identifier (see list above). One usage is to disable toolbar buttons
permanently. Another usage is to put SetToolbarButtonState in the OnSelectionChanged event handler, as
toolbar buttons are updated regularly when the selection changes in the document.

Toolbar button states are given by the listed enumerations .

The default state means that the enable/disable of the button is governed by AuthenticView. When the user
sets the button state to enable or disable, the button remains in that state as long as the user does not change
it.

Errors

2000 Invalid object.

2005 Invalid parameter.

2008 Internal error.

2014 Invalid button identifier.

30.3.2.6.16 Goto

Method: Goto (eKind as SPYAuthenticElementKind , nCount as Long, eFrom as
SPYAuthenticDocumentPosition) as AuthenticRange

Description

1678

1719

1944

1944

1943 1681

1726 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Retrieve a range object that points to the beginning of the nCount element of type eKind. The start position is
defined by the parameter eFrom. Use positive values for nCount to navigate to the document end. Use negative
values to navigate towards the beginning of the document.

Errors

2000 The authentic view object is no longer valid.

2003 Target lies after end of document.

2004 Target lies before beginning of document.

2005 Invalid element kind specified.
The document position to start from is not one of spyAuthenticDocumentBegin
or spyAuthenticDocumentEnd.
Invalid address for the return parameter was specified.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

On Error Resume Next
Dim objRange
' goto beginning of first table in document
Set objRange = objAuthenticView.Goto (spyAuthenticTable, 1, spyAuthenticDocumentBegin)
If (Err.number = 0) Then

objRange.Select()
Else

MsgBox "No table found in document"
End If

30.3.2.6.17 IsRedoEnabled

Property: IsRedoEnabled as Boolean (read-only)

Description
True if redo steps are available and Redo is possible.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.6.18 IsUndoEnabled

Property: IsUndoEnabled as Boolean (read-only)

1728

© 2018-2024 Altova GmbH

Application API 1727Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
True if undo steps are available and Undo is possible.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.6.19 MarkupVisibility

Property: MarkupVisibility as SPYAuthenticMarkupVisibility

Description
Set or get current visibility of markup.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid enumeration value was specified.
Invalid address for the return parameter was specified.

30.3.2.6.20 Parent

Property: Parent as Document (read-only)

Description
Access the document shown in this view.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.6.21 Print

Method: Print (bWithPreview as Boolean, bPromptUser as Boolean)

Description
Print the document shown in this view. If bWithPreview is set to True, the print preview dialog pops up. If
bPromptUser is set to True, the print dialog pops up. If both parameters are set to False, the document gets
printed without further user interaction.

Errors

2000 The authentic view object is no longer valid.

1729

1944

1747

1728 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.6.22 Redo

Method: Redo() as Boolean

Description
Redo the modification undone by the last undo command.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.6.23 Selection

Property: Selection as AuthenticRange

Description
Set or get current text selection in user interface.

Errors

2000 The authentic view object is no longer valid.

2002 No cursor selection is active.

2005 Invalid address for the return parameter was specified.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' if we are the end of the document, re-start at the beginning
If (objAuthenticView.Selection.IsEqual(objAuthenticView.DocumentEnd)) Then

objAuthenticView.Selection = objAuthenticView.DocumentBegin
Else

' objAuthenticView.Selection = objAuthenticView.Selection.GotoNextCursorPosition()
' or shorter:
 objAuthenticView.Selection.GotoNextCursorPosition().Select

End If

30.3.2.6.24 SetToolbarButtonState

Method: SetToolbarButtonState (ButtonIdentifier as string, AuthenticToolbarButtonState state)

Description

1681

© 2018-2024 Altova GmbH

Application API 1729Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Get/SetToolbarButtonState queries the status of a toolbar button, and lets the user disable or enable the
button, identified via its button identifier (see list above). One usage is to disable toolbar buttons
permanently. Another usage is to put SetToolbarButtonState in the OnSelectionChanged event handler, as
toolbar buttons are updated regularly when the selection changes in the document.

Toolbar button states are given by the listed enumerations .

The default state means that the enable/disable of the button is governed by AuthenticView. When the user
sets the button state to enable or disable, the button remains in that state as long as the user does not change
it.

Errors

2000 Invalid object.

2008 Internal error.

2014 Invalid button identifier.

30.3.2.6.25 Undo

Method: Undo() as Boolean

Description
Undo the last modification of the document from within this view.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.6.26 UpdateXMLInstanceEntities

Method: UpdateXMLInstanceEntities()

Description
Updates the internal representation of the declared entities, and refills the entry helper. In addition, the validator
is reloaded, allowing the XML file to validate correctly. Please note that this may also cause schema files to be
reloaded.

Errors
The method never returns an error.

Example
// ---
// Scripting environment - JavaScript
// ---
if(Application.ActiveDocument && (Application.ActiveDocument.CurrentViewMode == 4))
{

var objDocType;

1719

1944

1730 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

objDocType = Application.ActiveDocument.DocEditView.XMLRoot.GetFirstChild(10);

if(objDocType)
{

var objEntity = Application.ActiveDocument.CreateChild(14);
objEntity.Name = "child";
objEntity.TextValue = "SYSTEM \"child.xml\"";
objDocType.AppendChild(objEntity);

Application.ActiveDocument.AuthenticView.UpdateXMLInstanceEntities();
}

}

30.3.2.6.27 WholeDocument

Property: WholeDocument as AuthenticRange (read-only)

Description
Retrieve a range object that selects the whole document.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.6.28 XMLDataRoot

Property: XMLDataRoot as XMLData (read-only)

Description
Returns or sets the top-level XMLData element of the current document. This element typically describes the
document structure and would be of kind spyXMLDataXMLDocStruct, spyXMLDataXMLEntityDocStruct or
spyXMLDataDTDDocStruct..

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

30.3.2.7 CodeGeneratorDlg

Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Properties and Methods

Standard automation properties
Application
Parent

1681

1893

1731

1735

© 2018-2024 Altova GmbH

Application API 1731Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Programming language selection properties
ProgrammingLanguage
TemplateFileName

Settings for C++ code
CPPSettings_DOMType
CPPSettings_LibraryType
CPPSettings_UseMFC
CPPSettings_GenerateVC6ProjectFile
CPPSettings_GenerateVSProjectFile

Settings for C# code
CSharpSettings_ProjectType

Dialog handling for above code generation properties
PropertySheetDialogAction

Output path selection properties
OutputPath
OutputPathDialogAction

Presentation of result
OutputResultDialogAction

Description
Use this object to configure the generation of program code for schema files. The method
GenerateProgramCode expects a CodeGeneratorDlg as parameter to configure code generation as well as
the associated user interactions.

30.3.2.7.1 Application

Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.7.2 CompatibilityMode (obsolete)

Property: CompatibilityMode as Boolean
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description

1735

1736

1732

1733

1733

1732

1733

1734

1736

1734

1734

1735

1764

1654

1732 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Set to true to generate code compatible to XMLSpy 2005R3. Set to false to use newly added code-generation
features.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.3 CPPSettings_DOMType

Property: CPPSettings_DOMType as SPYDOMType
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines one of the settings that configure generation of C++ code.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.4 CPPSettings_GenerateVC6ProjectFile

Property: CPPSettings_GenerateVC6ProjectFile as Boolean
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines one of the settings that configure generation of C++ code.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.5 CPPSettings_GenerateGCCMakefile

Property: CPPSettings_GenerateGCCMakefile as Boolean
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Creates makefiles to compile the generated code under Linux with GCC.

1945

© 2018-2024 Altova GmbH

Application API 1733Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.6 CPPSettings_GenerateVSProjectFile

Property: CSharpSettings_GenerateVSProjectFile as SPYProjectType
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines one of the settings that configure generation of C++ code. Only spyVisualStudio2005Project (=4)
and spyVisualStudio2008Project (=5) and spyVisualStudio2010Project (=6) are valid project types.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.7 CPPSettings_LibraryType

Property: CPPSettings_LibraryType as SPYLibType
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines one of the settings that configure generation of C++ code.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.8 CPPSettings_UseMFC

Property: CPPSettings_UseMFC as Boolean
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines one of the settings that configure generation of C++ code.

Errors

1950

1948

1734 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.9 CSharpSettings_ProjectType

Property: CSharpSettings_ProjectType as SPYProjectType
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines the only setting to configure generation of C# code.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.10 OutputPath

Property: OutputPath as String
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Selects the base directory for all generated code.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.7.11 OutputPathDialogAction

Property: OutputPathDialogAction as SPYDialogAction
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines how the sub-dialog for selecting the code generation output path gets handled. Set this value to
spyDialogUserInput(2) to show the dialog with the current value of the OutputPath property as default. Use
spyDialogOK(0) to hide the dialog from the user.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

1950

1945

1734

© 2018-2024 Altova GmbH

Application API 1735Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.7.12 OutputResultDialogAction

Property: OutputResultDialogAction as SPYDialogAction
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines how the sub-dialog that asks to show the result of the code generation process gets handled. Set this
value to spyDialogUserInput(2) to show the dialog. Use spyDialogOK(0) to hide the dialog from the user.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.13 Parent

Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.7.14 ProgrammingLanguage

Property: ProgrammingLanguage as ProgrammingLanguage
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Selects the output language for the code to be generated.

CAUTION: Setting this property to one of C++, C# or Java, changes the property TemplateFileName to the
appropriate template file delivered with XMLSpy as well. If you want to generate C++, C# or Java code based
on your own templates, set first the programming language and then select your template file.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

1945

1743

1949

1736

1736 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.7.15 PropertySheetDialogAction

Property: PropertySheetDialogAction as SPYDialogAction
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Defines how the sub-dialog that configures the code generation process gets handled. Set this value to
spyDialogUserInput(2) to show the dialog with the current values as defaults. Use spyDialogOK(0) to hide the
dialog from the user.

Errors

2200 The object is no longer valid.

2201 Invalid action passed as parameter or an invalid address was specified for
the return parameter.

30.3.2.7.16 TemplateFileName

Property: TemplateFileName as String
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Selects the code generation template file. XMLSpy comes with template files for C++, C# or Java in the SPL
folder of your installation directory.

Setting this property to one of the code generation template files of your XMLSpy installation automatically sets
the ProgrammingLanguage property to its appropriate value.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.8 DatabaseConnection

Properties for import and export
File or
ADOConnection or
ODBCConnection

Properties for import only
DatabaseKind
SQLSelect
AsAttributes
ExcludeKeys
IncludeEmptyElements
NumberDateTimeFormat
NullReplacement

1945

1735

1739

1737

1741

1739

1742

1738

1739

1740

1741

1740

© 2018-2024 Altova GmbH

Application API 1737Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

CommentIncluded

Properties for export only
CreateMissingTables
CreateNew
TextFieldLen
DatabaseSchema

Properties for XML Schema from DB Structure generation
PrimaryKeys
ForeignKeys
UniqueKeys
SchemaExtensionType
SchemaFormat
ImportColumnsType

Description
DatabaseConnection specifies the parameters for the database connection.

Please note that the properties of the DatabaseConnection interface are referring to the settings of the import
and export dialogs of XMLSpy.

30.3.2.8.1 ADOConnection

Property: ADOConnection as String

Description
The property ADOConnection contains a connection string. Either use this property or ODBCConnection or
File to refer to a database.

Errors
No error codes are returned.

Example

Dim objSpyConn As DatabaseConnection
Set objSpyConn = objSpy.GetDatabaseSettings

Dim objADO As DataLinks
Set objADO = CreateObject("DataLinks")

If Not (objADO Is Nothing) Then
Dim objConn As Connection
Set objConn = objADO.PromptNew
objSpyConn.ADOConnection = objConn.ConnectionString

End If

1738

1738

1738

1742

1739

1741

1740

1742

1741

1742

1740

1741

1739

1738 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.8.2 AsAttributes

Property: AsAttributes as Boolean

Description
Set AsAttributes to true if you want to initialize all import fields to be imported as attributes. Default is false and
will initialize all fields to be imported as elements. This property is used only in calls to
Application.GetDatabaseImportElementList .

Errors
No error codes are returned.

30.3.2.8.3 CommentIncluded

Property: CommentIncluded as Boolean

Description
This property tells whether additional comments are added to the generated XML. Default is true. This property
is used only when importing from databases.

Errors
No error codes are returned.

30.3.2.8.4 CreateMissingTables

Property: CreateMissingTables as Boolean

Description
If CreateMissingTables is true, tables which are not already defined in the export database will be created
during export. Default is true. This property is used only when exporting to databases.

Errors
No error codes are returned.

30.3.2.8.5 CreateNew

Property: CreateNew as Boolean

Description
Set CreateNew true if you want to create a new database on export. Any existing database will be overwritten.
See also DatabaseConnection.File . Default is false. This property is used only when exporting to
databases.

Errors
No error codes are returned.

1661

1739

© 2018-2024 Altova GmbH

Application API 1739Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.8.6 DatabaseKind

Property: DatabaseKind as SPYDatabaseKind

Description
Select the kind of database that gets access. The default value is spyDB_Unspecified(7) and is sufficient in
most cases. This property is used only when importing from databases.

Errors
No error codes are returned.

30.3.2.8.7 DatabaseSchema

Property: DatabaseSchema as String

Description
This property specifies the Schema used for export in Schema aware databases. Default is "". This property is
used only when exporting to databases.

Errors
No error codes are returned.

30.3.2.8.8 ExcludeKeys

Property: ExcludeKeys as Boolean

Description
Set ExcludeKeys to true if you want to exclude all key columns from the import data. Default is false. This
property is used only when importing from databases.

Errors
No error codes are returned.

30.3.2.8.9 File

Property: File as String

Description
The property File sets the path for the database during export or import. This property can only be used in
conjunction with a Microsoft Access database. Either use this property or ODBCConnection or
ADOConnection to refer to the database.

See also Import and Export .

Errors
No error codes are returned.

1945

1741

1737

1624

1740 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.8.10 ForeignKeys

Property: ForeignKeys as Boolean

Description
Specifies whether the Foreign Keys constraint is created or not. Default is true. This property is used only
when creating a XML Schema from a DB structure.

Errors
No error codes are returned.

30.3.2.8.11 ImportColumnsType

Property: ImportColumnsType as SPYImportColumnsType

Description
Defines if column information from the DB is saved as element or attribute in the XML Schema. Default is as
element. This property is used only when creating a XML Schema from a DB structure.

Errors
No error codes are returned.

30.3.2.8.12 IncludeEmptyElements

Property: IncludeEmptyElements as Boolean

Description
Set IncludeEmptyElements to false if you want to exclude all empty elements. Default is true. This property is
used only when importing from databases.

Errors
No error codes are returned.

30.3.2.8.13 NullReplacement

Property: NullReplacement as String

Description
This property contains the text value that is used during import for empty elements (null values). Default is "".
This property is used only when importing from databases.

Errors
No error codes are returned.

1947

© 2018-2024 Altova GmbH

Application API 1741Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.8.14 NumberDateTimeFormat

Property: NumberDateTimeFormat as SPYNumberDateTimeFormat

Description
The property NumberDateTimeFormat sets the format of numbers and date- and time-values. Default is
spySystemLocale . This property is used only when importing from databases.

Errors
No error codes are returned.

30.3.2.8.15 ODBCConnection

Property: ODBCConnection as String

Description
The property ODBCConnection contains a ODBC connection string. Either use this property or
ADOConnection or File to refer to a database.

Errors
No error codes are returned.

30.3.2.8.16 PrimaryKeys

Property: PrimaryKeys as Boolean

Description
Specifies whether the Primary Keys constraint is created or not. Default is true. This property is used only
when creating a XML Schema from a DB structure.

Errors
No error codes are returned.

30.3.2.8.17 SchemaExtensionType

Property: SchemaExtensionType as SPYSchemaExtensionType

Description
Defines the Schema extension type used during the Schema generation. This property is used only when
creating a XML Schema from a DB structure.

See also Create XML Schema from DB Structure .

Errors
No error codes are returned.

1949

1949

1737 1739

1952

1392

1742 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.8.18 SchemaFormat

Property: SchemaFormat as SPYSchemaFormat

Description
Defines the Schema format used during the Schema generation. This property is used only when creating a
XML Schema from a DB structure.

See also Create XML Schema from DB Structure .

Errors
No error codes are returned.

30.3.2.8.19 SQLSelect

Property: SQLSelect as String

Description
The SQL query for the import is stored in the property SQLSelect. This property is used only when importing
from databases. See also Import and Export .

Errors
No error codes are returned.

30.3.2.8.20 TextFieldLen

Property: TextFieldLen as long

Description
The property TextFieldLen sets the length for created text fields during the export. Default is 255. This property
is used only when exporting to databases.

Errors
No error codes are returned.

30.3.2.8.21 UniqueKeys

Property: UniqueKeys as Boolean

Description
Specifies whether the Unique Keys constraint is created or not. Default is true. This property is used only when
creating a XML Schema from a DB structure.

Errors
No error codes are returned.

1952

1392

1624

© 2018-2024 Altova GmbH

Application API 1743Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.9 Dialogs

Properties and Methods

Standard automation properties
Application
Parent

Various dialog objects
CodeGeneratorDlg
FileSelectionDlg
SchemaDocumentationDlg
GenerateSampleXMLDlg
DTDSchemaGeneratorDlg
FindInFilesDlg
WSDLDocumentationDlg
WSDL20DocumentationDlg
XBRLDocumentationDlg

Description
The Dialogs object provides access to different built-in dialogs of XMLSpy. These dialog objects allow to
initialize the fields of user dialogs before they get presented to the user or allow to simulate complete user input
by your program.

30.3.2.9.1 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

2300 The object is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.2 CodeGeneratorDlg

Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Property: CodeGeneratorDlg as CodeGeneratorDlg (read-only)

Description
Get a new instance of a code generation dialog object. You will need this object to pass the necessary
parameters to the code generation methods. Initial values are taken from last usage of the code generation
dialog.

1743

1744

1743

1744

1745

1745

1745

1745

1746

1746

1746

1654

1730

1744 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.3 FileSelectionDlg

Property: FileSelectionDlg as FileSelectionDlg (read-only)

Description
Get a new instance of a file selection dialog object.

File selection dialog objects are passed to you with the some events that signal opening or saving of
documents and projects.

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.4 JSONSchemaDocumentationDlg

Property: JSONSchemaDocumentationDlg as JSONSchemaDocumentationDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of JSON Schema documentation. See
Document.GenerateJSONSchemaDocumentation for its usage.

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.5 Parent

Property: Parent as Application (read-only)

Description
Access the XMLSpy application object.

Errors

2300 The object is no longer valid.

2301 Invalid address for the return parameter was specified.

1793

1816

1764

1654

© 2018-2024 Altova GmbH

Application API 1745Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.9.6 SchemaDocumentationDlg

Property: SchemaDocumentationDlg as SchemaDocumentationDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of schema documentation. See
Document.GenerateSchemaDocumentation for its usage.

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.7 GenerateSampleXMLDlg

Property: GenerateSampleXMLDlg as GenerateSampleXMLDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of a sample XML based on a W3C schema
or DTD. See GenerateSampleXML for its usage.

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.8 DTDSchemaGeneratorDlg

Property: DTDSchemaGeneratorDlg as DTDSchemaGeneratorDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of a schema or DTD. See
Document.GenerateDTDOrSchemaEx for its usage.

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.9 FindInFilesDlg

Property: FindInFilesDlg as FindInFilesDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes the search (or replacement) of strings in files. See
Application.FindInFiles for its usage.

1830

1765

1807

1764

1784

1763

1795

1661

1746 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.10 WSDLDocumentationDlg

Property: WSDLDocumentationDlg as WSDLDocumentationDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of WSDL documentation. See
Document.GenerateWSDLDocumentation for its usage.

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.11 WSDL20DocumentationDlg

Property: WSDL20DocumentationDlg as WSDL20DocumentationDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of WSDL 2.0 documentation. See
Document.GenerateWSDL20Documentation for its usage.

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

30.3.2.9.12 XBRLDocumentationDlg

Property: XBRLDocumentationDlg as XBRLDocumentationDlg (read-only)

Description
Get a new instance of a dialog object that parameterizes generation of XBRL documentation. See
Document.GenerateXBRLDocumentation for its usage.

Errors

2300 The Dialogs object or one of its parents is no longer valid.

2301 Invalid address for the return parameter was specified.

1858

1766

1870

1765

1882

1765

© 2018-2024 Altova GmbH

Application API 1747Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.10 Document

The Document interface has the following properties and methods.

Properties and Methods

Standard automation properties
Application
Parent

Various document properties and methods
AsXMLString
SetActiveDocument
Encoding
SetEncoding (obsolete)
Suggestions
Selection

XML validation
IsValid
IsValidEx
SetExternalIsValid
IsWellFormed
TreatXBRLInconsistenciesAsErrors
ValidateOnServer

Document conversion and transformation
AssignDTD
AssignSchema
AssignXSL
AssignXSLFO
ConvertDTDOrSchema
ConvertDTDOrSchemaEx
ConvertXMLToFromJSON
GenerateDTDOrSchema
GenerateDTDOrSchemaEx
FlattenDTDOrSchema
CreateSchemaDiagram
ExecuteXQuery
TransformXSL
TransformXSLEx
TransformXSLFO
TransformXSLFOEx
GenerateProgramCode (Enterprise Edition only)
GenerateSchemaDocumentation
GenerateSampleXML
GenerateJSONSchemaDocumentation
GenerateWSDL20Documentation
GenerateWSDLDocumentation
GenerateXBRLDocumentation

1752

1771

1753

1774

1758

1774

1776

1774

1768

1770

1775

1771

1778

1779

1752

1752

1752

1753

1754

1755

1756

1763

1763

1762

1757

1759

1777

1778

1778

1778

1764

1765

1764

1764

1765

1766

1766

1748 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

ConvertToWSDL20

Document export
GetExportElementList
ExportToText
ExportToDatabase
CreateDBStructureFromXMLSchema
GetDBStructureList

File saving and naming
FullName
Name
Path
GetPathName (obsolete)
SetPathName (obsolete)
Title
IsModified
Saved
SaveAs
Save
SaveInString
SaveToURL
Close

View access
CurrentViewMode
SwitchViewMode
TextView
AuthenticView
GridView
DocEditView (obsolete)

Access to XMLData
RootElement
DataRoot
CreateChild
UpdateViews
StartChanges
EndChanges
UpdateXMLData

Document objects
Document objects represent XML documents opened in XMLSpy.

Use one of the following properties to access documents that are already open XMLSpy:
Application.ActiveDocument
Application.Documents

Use one of the following methods to open a new document in XMLSpy:
Documents.OpenFile
Documents.OpenURL
Documents.OpenURLDialog

1756

1767

1761

1760

1757

1767

1762

1771

1772

1768

1776

1777

1768

1773

1773

1772

1773

1774

1754

1758

1776

1777

1753

1768

1758

1772

1758

1756

1779

1776

1759

1779

1658

1660

1783

1783

1784

© 2018-2024 Altova GmbH

Application API 1749Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Documents.NewFile
Documents.NewFileFromText
SpyProjectItem.Open
Application.ImportFromDatabase
Application.ImportFromSchema
Application.ImportFromText
Application.ImportFromWord
Document.ConvertDTDOrSchema
Document.GenerateDTDOrSchema

30.3.2.10.1 Events

30.3.2.10.1.1 OnBeforeSaveDocument

Event: OnBeforeSaveDocument(objDocument as Document , objDialog as FileSelectionDlg)

XMLSpy scripting environment - VBScript:
Function On_BeforeSaveDocument(objDocument, objDialog)
End Function

' old handler - now obsolete
' return string to save to new file name
' return empty string to cancel save operation
' return nothing to save to original name
Function On_SaveDocument(objDocument, strFilePath)
End Function

XMLSpy scripting environment - JScript:
function On_BeforeSaveDocument(objDocument, objDialog)
{
}

// old handler - now obsolete
// return string to save to new file name
// return empty string to cancel save operation
// return nothing to save to original name
function On_SaveDocument(objDocument, strFilePath)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (27, ...) // nEventId = 27

Description
This event gets fired on any attempt to save a document. The file selection dialog object is initialized with the
name chosen for the document file. You can modify this selection. To continue saving the document leave the
FileSelectionDlg.DialogAction property of io_objDialog at its default value spyDialogOK . To abort saving
of the document set this property to spyDialogCancel .

1782

1782

1846

1665

1666

1667

1668

1754

1763

1747 1793

1794 1945

1945

1750 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.10.1.2 OnBeforeCloseDocument

Event: OnBeforeCloseDocument(objDocument as Document)as Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeCloseDocument(objDocument)

' On_BeforeCloseDocument = False ' to prohibit closing of document
End Function

XMLSpy scripting environment - JScript:
function On_BeforeCloseDocument(objDocument)
{

// return false; /* to prohibit closing of document */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (28, ...) // nEventId = 28

Description
This event gets fired on any attempt to close a document. To prevent the document from being closed return
false.

30.3.2.10.1.3 OnBeforeValidate

Event: OnBeforeValidate(objDocument as Document , bOnLoading as Boolean, bOnCommand as Boolean)
as Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeValidate(objDocument, bOnLoading, bOnCommand)

On_BeforeValidate = bCancelDefaultValidation 'set by the script if necessary
End Function

XMLSpy scripting environment - JScript:
function On_BeforeValidate(objDocument, bOnLoading, bOnCommand)
{

return bCancelDefaultValidation //set by the script if necessary
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (32, ...) // nEventId = 32

Description
This event gets fired before the document is validated. It is possible to suppress the default validation by
returning false from the event handler. In this case the script should also set the validation result using the
SetExternalIsValid method.

bOnLoading is true if the event is raised on the initial validation on loading the document.

bOnCommand is true whenever the user selected the Validate command from the Toolbar or menu.

1747

1747

1775

© 2018-2024 Altova GmbH

Application API 1751Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Available with TypeLibrary version 1.5

30.3.2.10.1.4 OnCloseDocument

Event: OnCloseDocument(objDocument as Document)

XMLSpy scripting environment - VBScript:
Function On_Close Document(objDocument)
End Function

XMLSpy scripting environment - JScript:
function On_Close Document(objDocument)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (8, ...) // nEventId = 8

Description
This event gets fired as a result of closing a document. Do not modify the document from within this event.

30.3.2.10.1.5 OnViewActivation

Event: OnViewActivation(objDocument as Document , eViewMode as SPYViewModes , bActivated as
Boolean)

XMLSpy scripting environment - VBScript:
Function On_ViewActivation(objDocument, eViewMode, bActivated)
End Function

XMLSpy scripting environment - JScript:
function On_ViewActivation(objDocument, eViewMode, bActivated)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (29, ...) // nEventId = 29

Description
This event gets fired whenever a view of a document becomes visible (i.e. becomes the active view) or invisible
(i.e. another view becomes the active view or the document gets closed). However, the first view activation event
after a document gets opened cannot be received, since there is no document object to get the event from. Use
the Application.OnDocumentOpened event instead.

1747

1747 1954

1657

1752 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.10.2 Application

Property: Application as Application (read-only)

Description
Accesses the XMLSpy application object.

Errors

1400 The object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.3 AssignDTD

Method: AssignDTD(strDTDFile as String, bDialog as Boolean)

Description
The method places a reference to the DTD file "strDTDFile" into the document. Note that no error occurs if the
file does not exist, or is not accessible. If bDialog is true XMLSpy presents a dialog to set the file.

Errors

1400 The object is no longer valid.

1409 You are not allowed to assign a DTD to the document.

30.3.2.10.4 AssignSchema

Method: AssignSchema (strSchemaFile as String, bDialog as Boolean)

Description
The method places a reference to the schema file "strSchemaFile" into the document. Note that no error
occurs if the file does not exist or is not accessible. If bDialog is true XMLSpy presents a dialog to set the file.

Errors

1400 The object is no longer valid.

1409 You are not allowed to assign a schema file to the document.

30.3.2.10.5 AssignXSL

Method: AssignXSL (strXSLFile as String, bDialog as Boolean)

Description
The method places a reference to the XSL file "strXSLFile" into the document. Note that no error occurs if the
file does not exist or is not accessible. If bDialog is true XMLSpy presents a dialog to set the file.

Errors

1654

© 2018-2024 Altova GmbH

Application API 1753Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

1400 The object is no longer valid.

1409 You are not allowed to assign an XSL file to the document.

30.3.2.10.6 AssignXSLFO

Method: AssignXSLFO (strXSLFOFile as String, bDialog as Boolean)

Description
The method places a reference to the XSLFO file "strXSLFile" into the document. Note that no error occurs if
the file does not exist or is not accessible. If bDialog is true XMLSpy presents a dialog to set the file.

Errors

1400 The object is no longer valid.

1409 You are not allowed to assign an XSL file to the document.

30.3.2.10.7 AsXMLString

Property: AsXMLString as String

Description
This property can be used to get or set the document content.

Errors

1400 The document object is no longer valid.

1404 Cannot create XMLData object.

1407 View mode cannot be switched.

30.3.2.10.8 AuthenticView

Method: AuthenticView as AuthenticView (read-only)

Description
Returns an object that gives access to properties and methods specific to Authentic view. The object returned
is only valid if the current document is opened in Authentic view mode. The lifetime of an object ends with the
next view switch. Any attempt to access objects or any of its children afterwards will result in an error
indicating that the object is invalid.

AuthenticView and DocEditView both provide automation access to the Authentic view mode of
XMLSpy. Functional overlap is intentional. A future version of Authentic View will include all functionality of
DocEditView and its sub-objects, thereby making usage of DocEditView obsolete.

Errors

1400 The object is no longer valid.

1417 Document needs to be open in authentic view mode.

1711

1711 1920

1920 1920

1754 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' secure access to authentic view object
' ---------------------------------------
Dim objDocument
Set objDocument = Application.ActiveDocument
If (Not objDocument Is Nothing) Then

' we have an active document, now check for view mode
If (objDocument.CurrentViewMode <> spyViewAuthentic) Then

If (Not objDocument.SwitchViewMode (spyViewAuthentic)) Then
MsgBox "Active document does not support authentic view mode"

Else
' now it is safe to access the authentic view object
Dim objAuthenticView
Set objAuthenticView = objDocument.AuthenticView
' now use the authentic view object

End If
End If

Else
MsgBox "No document is open"

End If

30.3.2.10.9 Close

Method: Close (bDiscardChanges as Boolean)

Description
To close the document call this method. If bDiscardChanges is true and the document is modified, the
document will be closed but not saved.

Errors

1400 The object is no longer valid.

1401 Document needs to be saved first.

30.3.2.10.10 ConvertDTDOrSchema

Method: ConvertDTDOrSchema (nFormat as SPYDTDSchemaFormat , nFrequentElements as
SPYFrequentElements)

Parameters
nFormat
Sets the schema output format to DTD or W3C.

nFrequentElements
Create complex elements as elements or complex types.

1946

1946

© 2018-2024 Altova GmbH

Application API 1755Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
ConvertDTDOrSchema takes an existing schema format and converts it into a different format.
For a finer tuning of DTD/XSD conversion, use ConvertDTDOrSchemaEx .

Errors

1400 The object is no longer valid.

1412 Error during conversion. In the case of DTD to DTD or XSD to XSD
conversion, the following errors are returned: DTD to DTD conversion is
not supported. Please use function FlattenDTDOrSchema instead and
Schema to schema conversion is not supported. Please use function
FlattenDTDOrSchema instead.

30.3.2.10.11 ConvertDTDOrSchemaEx

Method: ConvertDTDOrSchemaEx (nFormat as SPYDTDSchemaFormat , nFrequentElements as
SPYFrequentElements , sOutputPath as String, nOutputPathDialogAction as SPYDialogAction)

Parameters
nFormat
Sets the schema output format to DTD, or W3C.

nFrequentElements
Create complex elements as elements or complex types.

sOutputPath

The file path for the newly generated file.

nOutputPathDialogAction

Defines the dialog interaction for this call.

Description
ConvertDTDOrSchemaEx takes an existing schema format and converts it into a different format.

Errors

1400 The object is no longer valid.

1412 Error during conversion. In the case of DTD to DTD or XSD to XSD
conversion, the following errors are returned: DTD to DTD conversion is
not supported. Please use function FlattenDTDOrSchema instead and
Schema to schema conversion is not supported. Please use function
FlattenDTDOrSchema instead.

1755

1946

1946 1945

1756 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.10.12 ConvertToWSDL20

Method: ConvertToWSDL20 (sFilePath as String, bShowDialogs as Boolean)

Parameters
sFilePath
This specifies the file name of the converted WSDL. In case the source WSDL includes files which also must
be converted, then only the directory part of the given path is used and the file names are generated
automatically.

bShowDialogs
Defines whether file/folder selection dialogs are shown.

Description
Converts the WSDL 1.1 document to a WSDL 2.0 file. It will also convert any referenced WSDL files that are
referenced from within this document. Note that this functionality is limited to WSDL View only. See
Document.CurrentViewMode . and SPYViewModes .

Errors

1400 The document object is no longer valid.

1407 Invalid parameters have been passed or an empty file name has been
specified as output target.

1417 The document is not opened in WSDL view, maybe it is not an '.wsdl' file.

1421 Feature is not available in this edition.

1433 WSDL 1.1 to WSDL 2.0 conversion failed.

30.3.2.10.13 ConvertXMLToFromJSON

Method: ConvertXMLToFromJSON()

Description
Converts XML files to JSON and JSON files to XML.

Errors

1400 The object is no longer valid.

1412 Error during conversion.

30.3.2.10.14 CreateChild

Method: CreateChild (nKind as SPYXMLDataKind) as XMLData

Return Value

1758 1954

1955 1893

© 2018-2024 Altova GmbH

Application API 1757Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

The method returns the new XMLData object.

Description
To create a new XMLData object use the CreateChild() method.

Errors

1400 The object is no longer valid.

1404 Cannot create XMLData object.

1407 Invalid address for the return parameter was specified.

30.3.2.10.15 CreateDBStructureFromXMLSchema

Method: CreateDBStructureFromXMLSchema (pDatabase as DatabaseConnection , pTables as
ElementList , bDropTableWithExistingName as Boolean) as String

Description
CreateDBStructureFromXMLSchema exports the given tables to the specified database. The function returns
the SQL statements that were necessary to perform the changes.

See also GetDBStructureList .

Errors

1429 Database selection missing.

1430 Document export failed.

30.3.2.10.16 CreateSchemaDiagram

Method: CreateSchemaDiagram (nKind as SPYSchemaDefKind , strName as String, strFile as String)

Return Value
None.

Description
The method creates a diagram of the schema type strName of kind nKind and saves the output file into strFile.
Note that this functionality is limited to Schema View only. See Document.CurrentViewMode . and
SPYViewModes .

Errors

1400 The object is no longer valid.

1414 Failed to save diagram.

1415 Invalid schema definition type specified.

1736

1789

1767

1951

1758

1954

1758 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.10.17 CurrentViewMode

Method: CurrentViewMode as SPYViewModes

Description
The property holds the current view mode of the document. See also Document.SwitchViewMode .

Errors

1400 The object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.18 DataRoot

Property: DataRoot as XMLData (read-only)

Description
This property provides access to the document's first XMLData object of type spyXMLDataElement. This is
typically the root element for all document content data. See XMLSpyDocument.RootElement to get the
root element of the whole document including XML prolog data. If the CurrentViewMode is not spyViewGrid
or spyViewAuthentic an UpdateXMLData may be necessary to get access to the latest XMLData .

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.19 DocEditView

Method: DocEditView as DocEditView

Description
Holds a reference to the current Authentic View object.

Errors

1400 The object is no longer valid.

1407 Invalid address for the return parameter was specified.

1417 Document needs to be open in authentic view mode.

30.3.2.10.20 Encoding

Property: Encoding as String

Description

1954

1776

1893

1772

1758

1779 1893

© 2018-2024 Altova GmbH

Application API 1759Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

This property provides access to the document's encoding value. However, this property can only be accessed
when the document is opened in spyViewGrid, spyViewText or spyViewAuthentic. See CurrentViewMode on
how to detect a document's actual view mode.

This property makes the method SetEncoding obsolete.

Possible values are, for example:

8859-1,
8859-2,
ASCII, ISO-646,
850,
1252,
1255,
SHIFT-JIS, MS-KANJI,
BIG5, FIVE,
UTF-7,
UTF-8,
UTF-16

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

1416 Operation not supported in current view mode.

30.3.2.10.21 EndChanges

Method: EndChanges()

Description
Use the method EndChanges to display all changes since the call to Document.StartChanges .

Errors

1400 The object is no longer valid.

30.3.2.10.22 ExecuteXQuery

Method: ExecuteXQuery (strXMLFileName as String)

Description
Execute the XQuery statements contained in the document of the document object. Either an XQuery
execution or an XQuery Update is performed depending on the file extension of the document. Use the XML file
specified in the argument as the XML target document that the XQuery document processes.

1758

1774

1776

1760 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· If the document has an XQuery file extension as defined in the Options dialog of XMLSpy, then an
XQuery execution is performed. By default: .xq, .xql, and .xquery are set as XQuery file extensions
in XMLSpy.

· If the document has an XQuery Update file extension as defined in the Options dialog of XMLSpy, then
an XQuery Update action is performed. By default: .xqu is set as an XQuery Update file extension in
XMLSpy.

If your XQuery script does not use an XML source, set the parameter strXMLFileName to an empty string.

Errors

1400 The document object is no longer valid.

1423 XQuery transformation error.

1424 Not all files required for operation could be loaded. Most likely, the file
specified in strXMLFileName does not exist or is not valid.

30.3.2.10.23 ExportToDatabase

Method: ExportToDatabase (pFromChild as XMLData , pExportSettings as ExportSettings , pDatabase
as DatabaseConnection)

Description
ExportToDatabase exports the XML document starting with the element pFromChild. The parameter
pExportSettings defines the behaviour of the export (see Application.GetExportSettings). The parameter
pDatabase specifies the destination of the export (see Application.GetDatabaseSettings).
UpdateXMLData() might be indirectly needed as you have to pass the XMLData as parameter to this
function.

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

1416 Error during export.

1429 Database selection missing.

1430 Document export failed.

Example

Dim objDoc As Document
Set objDoc = objSpy.ActiveDocument

'set the behaviour of the export with ExportSettings
Dim objExpSettings As ExportSettings
Set objExpSettings = objSpy.GetExportSettings

'set the destination with DatabaseConnection

1893 1791

1736

1663

1662

1779 1893

© 2018-2024 Altova GmbH

Application API 1761Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Dim objDB As DatabaseConnection
Set objDB = objSpy.GetDatabaseSettings

objDB.CreateMissingTables = True
objDB.CreateNew = True
objDB.File = "C:\Export.mdb"

objDoc.ExportToDatabase objDoc.RootElement, objExpSettings, objDB
If Err.Number <> 0 Then

a = MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) &
"Description: " & Err.Description)

End If

30.3.2.10.24 ExportToText

Method: ExportToText (pFromChild as XMLData , pExportSettings as ExportSettings , pTextSettings as
TextImportExportSettings)

Description
ExportToText exports tabular information from the document starting at pFromChild into one or many text files.
Columns of the resulting tables are generated in alphabetical order of the column header names. Use
GetExportElementList to learn about the data that will be exported. The parameter pExportSettings defines
the specifics for the export. Set the property ExportSettings.ElementList to the - possibly modified - list
returned by GetExportElementList to avoid exporting all contained tables. The parameter pTextSettings
defines the options specific to text export and import. You need to set the property
TextImportExportSettings.DestinationFolder before you call ExportToText. UpdateXMLData() might be
indirectly needed as you have to pass the XMLData as parameter to this function.

See also Import and export of data .

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

1416 Error during export.

1430 Document export failed.

Example
 ' ---
 ' VBA client code fragment - export document to text files
 ' ---

Dim objDoc As Document
Set objDoc = objSpy.ActiveDocument

Dim objExpSettings As ExportSettings
Set objExpSettings = objSpy.GetExportSettings
objExpSettings.ElementList = objDoc.GetExportElementList(

objDoc.RootElement,
objExpSettings)

1893 1791

1850

1767

1791

1767

1850 1779

1893

1624

1762 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Dim objTextExp As TextImportExportSettings
Set objTextExp = objSpy.GetTextImportExportSettings
objTextExp.HeaderRow = True
objTextExp.DestinationFolder = "C:\Exports"

On Error Resume Next
objDoc.ExportToText objDoc.RootElement, objExpSettings, objTextExp

If Err.Number <> 0 Then
a = MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) & "Description: "
& Err.Description)

End If

30.3.2.10.25 FlattenDTDOrSchema

Method: FlattenDTDOrSchema (sOutputPath as String, nOutputPathDialogAction as SPYDialogAction)

Parameters
sOutputPath

The file path for the newly generated file.

nOutputPathDialogAction

Defines the dialog interaction for this call.

Description
FlattenDTDOrSchema takes an existing DTD or schema, generates a flattened file, and saves the generated file
at the specified location. In the case of DTDs, flattening removes parameter entities and produces a single DTD
from a collection of modules; sections marked IGNORE are suppressed and unused parameter entities are
deleted. When an XML Schema is flattened, (i) the components of all included schemas are added as global
components of the active schema, and (ii) included schemas are deleted.

Errors

1400 The object is no longer valid.

1412 Error during conversion.

30.3.2.10.26 FullName

Property: FullName as String

Description
This property can be used to get or set the full file name - including the path - to where the document gets
saved. The validity of the name is not verified before the next save operation.

1945

© 2018-2024 Altova GmbH

Application API 1763Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

This property makes the methods GetPathName and SetPathName obsolete.

Errors

1400 The document object is no longer valid.

1402 Empty string has been specified as full file name.

30.3.2.10.27 GenerateDTDOrSchema

Method: GenerateDTDOrSchema (nFormat as SPYDTDSchemaFormat , nValuesList as integer, nDetection
as SPYTypeDetection , nFrequentElements as SPYFrequentElements)

Parameters
nFormat
Sets the schema output format to DTD, or W3C.

nValuesList
Generate not more than this amount of enumeration-facets per type. Set to -1 for unlimited.

nDetection
Specifies granularity of simple type detection.

nFrequentElements
Shall the types for all elements be defined as global? Use the value spyGlobalComplexType to define them on
global scope. Otherwise, use the value spyGlobalElements.

Description
Use this method to automatically generate a DTD or schema for the current XML document.
For a finer tuning of DTD / schema generation, use GenerateDTDOrSchemaEx .
Note that this functionality is not available in ZIP View only. See Document.CurrentViewMode . and
SPYViewModes .

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

30.3.2.10.28 GenerateDTDOrSchemaEx

Method: GenerateDTDOrSchemaEx (objDlg as DTDSchemaGeneratorDlg) as Document

Description
Use this method to automatically generate a DTD or schema for the current XML document. A
DTDSchemaGeneratorDlg object is used to pass information to the schema/DTD generator. The generation
process can be configured to allow user interaction or run without further user input.
Note that this functionality is not available in ZIP View only. See Document.CurrentViewMode . and
SPYViewModes .

Errors

1768 1776

1946

1953 1946

1763

1758

1954

1784 1747

1784

1758

1954

1764 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

30.3.2.10.29 GenerateJSONSchemaDocumentation

Method: GenerateJSONSchemaDocumentation (objDlg as JSONSchemaDocumentationDlg)

Description
Generate documentation for a JSON Schema file in HTML, MS-Word, or RTF format. The parameter objDlg is
used to parameterize the generation process. Use Dialogs.JSONSchemaDocumentationDlg to get an
initialized set of options. As a minimum, you will need to set the property
JSONSchemaDocumentationDlg.OutputFile before starting the generation process. Note that this
functionality is limited to Schema View only. See Document.CurrentViewMode and SPYViewModes .

Errors

1400 The document object is no longer valid.

1407 Invalid parameters have been passed or an empty file name has been
specified as output target.

1417 The document is not opened in schema view, maybe it is not a '.json' file.

1421 Feature is not available in this edition.

1422 Error during generation

30.3.2.10.30 GenerateProgramCode

Method: GenerateProgramCode (objDlg as CodeGeneratorDlg)
Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

Description
Generate Java, C++ or C# class files from the XML Schema definitions in your document. A
CodeGeneratorDlg object is used to pass information to the code generator. The generation process can be
configured to allow user interaction or run without further user input.

Errors

1400 The document object is no longer valid.

1407 An empty file name has been specified.

1421 Feature not available in this edition

30.3.2.10.31 GenerateSampleXML

Method: GenerateSampleXML (objDlg as GenerateSampleXMLDlg) as Document

Description

1816

1744

1823

1758 1954

1730

1730

1807 1747

© 2018-2024 Altova GmbH

Application API 1765Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Generates a sample XML if the document is a schema or DTD. Use Dialogs.GenerateSampleXMLDlg to get
an initialized set of options.

Available with TypeLibrary version 1.5

Errors

1400 The document object is no longer valid.

30.3.2.10.32 GenerateSchemaDocumentation

Method: GenerateSchemaDocumentation (objDlg as SchemaDocumentationDlg)

Description
Generate documentation for a schema definition file in HTML, MS-Word, or RTF format. The parameter objDlg
is used to parameterize the generation process. Use Dialogs.SchemaDocumentationDlg to get an initialized
set of options. As a minimum, you will need to set the property SchemaDocumentationDlg.OutputFile
before starting the generation process. Note that this functionality is limited to Schema View only. See
Document.CurrentViewMode and SPYViewModes .

Errors

1400 The document object is no longer valid.

1407 Invalid parameters have been passed or an empty file name has been
specified as output target.

1417 The document is not opened in schema view, maybe it is not an '.xsd' file.

1421 Feature is not available in this edition.

1422 Error during generation

30.3.2.10.33 GenerateWSDL20Documentation

Method: GenerateWSDL20Documentation (objDlg as WSDL20DocumentationDlg)

Description
Generate documentation for a WSDL definition file in HTML, MS-Word, or RTF format. The parameter objDlg is
used to parameterize the generation process. Use Dialogs.WSDL20DocumentationDlg to get an initialized
set of options. As a minimum, you will need to set the property WSDL20DocumentationDlg.OutputFile
before starting the generation process. Note that this functionality is limited to WSDL View only. See
Document.CurrentViewMode and SPYViewModes .

Errors

1400 The document object is no longer valid.

1407 Invalid parameters have been passed or an empty file name has been
specified as output target.

1417 The document is not opened in schema view, maybe it is not an '.xsd' file.

1745

1830

1745

1837

1758 1954

1870

1746

1876

1758 1954

1766 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

1421 Feature is not available in this edition.

1422 Error during generation

30.3.2.10.34 GenerateWSDLDocumentation

Method: GenerateWSDLDocumentation (objDlg as WSDLDocumentationDlg)

Description
Generate documentation for a WSDL definition file in HTML, MS-Word, or RTF format. The parameter objDlg is
used to parameterize the generation process. Use Dialogs.WSDLDocumentationDlg to get an initialized set
of options. As a minimum, you will need to set the property WSDLDocumentationDlg.OutputFile before
starting the generation process. Note that this functionality is limited to WSDL View only. See
Document.CurrentViewMode and SPYViewModes .

Errors

1400 The document object is no longer valid.

1407 Invalid parameters have been passed or an empty file name has been
specified as output target.

1417 The document is not opened in schema view, maybe it is not an '.xsd' file.

1421 Feature is not available in this edition.

1422 Error during generation

30.3.2.10.35 GenerateXBRLDocumentation

Method: GenerateXBRLDocumentation (objDlg as XBRLDocumentationDlg)

Description
Generate documentation for an XBRL file in HTML, MS-Word, or RTF format. The parameter objDlg is used to
parameterize the generation process. Use Dialogs.XBRLDocumentationDlg to get an initialized set of
options. As a minimum, you will need to set the property XBRLDocumentationDlg.OutputFile before starting
the generation process. Note that this functionality is limited to XBRL View only. See
Document.CurrentViewMode and SPYViewModes .

Errors

1400 The document object is no longer valid.

1407 Invalid parameters have been passed or an empty file name has been
specified as output target.

1417 The document is not opened in schema view, maybe it is not an '.xsd' file.

1421 Feature is not available in this edition.

1422 Error during generation

1858

1746

1864

1758 1954

1882

1746

1887

1758 1954

© 2018-2024 Altova GmbH

Application API 1767Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.10.36 GetDBStructureList

Method: GetDBStructureList (pDatabase as DatabaseConnection) as ElementList

Description
GetDBStructureList creates a collection of elements from the Schema document for which tables in the
specified database are created. The function returns a collection of ElementListItems where the properties
ElementListItem.Name contain the names of the tables.

See also CreateDBStructureFromXMLSchema .

Errors

1400 The object is no longer valid.

1427 Failed creating parser for the specified XML.

1428 Export of element list failed.

1429 Database selection missing.

30.3.2.10.37 GetExportElementList

Method: GetExportElementList (pFromChild as XMLData , pExportSettings as ExportSettings) as
ElementList

Description
GetExportElementList creates a collection of elements to export from the document, depending on the settings
in pExportSettings and starting from the element pFromChild. The function returns a collection of
ElementListItems where the properties ElementListItem.Name contain the names of the tables that can be
exported from the document. The property ElementListItem.FieldCount contains the number of columns in
the table. The property ElementListItem.RecordCount contains the number of records in the table. The
property ElementListItem.ElementKind is unused. UpdateXMLData() might be indirectly needed as you
have to pass the XMLData as parameter to this function.

See also Import and export of data .

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

1427 Failed creating parser for the specified XML.

1428 Export of element list failed.

1736 1789

1790

1757

1893 1791

1789

1790

1790

1790

1790 1779

1893

1624

1768 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.10.38 GetPathName (obsolete)

Superseded by Document.FullName

// ----- javascript sample -----
// instead of:
// strPathName = Application.ActiveDocument.GetPathName();
// use now:
strPathName = Application.ActiveDocument.FullName;

Method: GetPathName() as String

Description
The method GetPathName gets the path of the active document.

See also Document.SetPathName (obsolete).

30.3.2.10.39 GridView

Property: GridView as GridView

Description
This property provides access to the grid view functionality of the document.

Errors

1400 The object is no longer valid.

1407 Invalid address for the return parameter was specified.

1417 Document needs to be open in enhanced grid view mode.

30.3.2.10.40 IsModified

Property: IsModified as Boolean

Description
True if the document is modified.

Errors

1400 The object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.41 IsValid

Method: HRESULT IsValid([in, out] VARIANT *strError, [in, out] VARIANT *nErrorPos, [in, out] VARIANT
*pBadData, [out,retval] VARIANT_BOOL *bValid);

1762

1776

1813

© 2018-2024 Altova GmbH

Application API 1769Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Return Value
True if the document is valid, false if not. To call IsValid(), the application GUI must be visible. (If you wish to
validate without the GUI being visible, please use Altova RaptorXML Server.)

Description
IsValid validates the document against its associated schema or DTD. strError gives you the same error
message as when you validate the file within the GUI.

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

1408 Unable to validate file.

Example
The following C++ code snippet provides an example of how to use the IsValid method.

#import "XMLSpy.tlb"

CComPtr< XMLSpyLib::IDocument12> ipDoc = ipXMLSpy->GetActiveDocument();

if (ipDoc)
{
 // prepare in/out parameters for IsValid call
 CComVariant variantError;

 CComVariant variantErrorPos;

 CComVariant variantBadData;

 // IsValid always shows a dialog with the validation result. This cannot be turned
off.
 bool bIsValid = ipDoc->IsValid(&variantError, &variantErrorPos, &variantBadData)

== VARIANT_TRUE;

 if (!bIsValid)

 {
 // retrieve values from out parameters
 CString strError = (V_VT(&variantError) == VT_BSTR ?

V_BSTR(&variantError) : _T(""));
 long npos = (V_VT(&variantErrorPos) == VT_I4 ? V_I4(&variantErrorPos) : -

1);
 CComQIPtr< XMLSpyLib::IXMLData > ipXMLBadData = (V_VT(&variantBadData) ==

VT_DISPATCH ? V_DISPATCH(&variantBadData) : nullptr);

 if (ipXMLBadData)

 strError += CString(_T("\n\n Node: ")) + (LPCWSTR)ipXMLBadData-

>GetName();

 if (!strError.IsEmpty())

 AfxMessageBox("Validation failed - " + strError);

 }

https://www.altova.com/raptorxml.html

1770 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

}

30.3.2.10.42 IsValidEx

Method: IsValidEx (nXSDVersion as SPYValidateXSDVersion , nErrorLimit as int, nErrorFormat as
SPYValidateErrorFormat , out strError as Variant) as Boolean

Return Value
True if the document is valid, false if not.

Description
IsValidEx validates the document against its associated schema or DTD.

In parameters:
nXSDVersion which is an enumeration value of SPYValidateXSDVersion that selects the XSD version to
validate against.
nErrorLimit which is an integer. Values must be 1 to 999.
nErrorFormat which is an enumeration value of SPYValidateErrorFormat that selects the XSD version to
validate against.

Out parameter:
strError is the error message, and is the same as that received when validating the file within the GUI.

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

1408 Unable to validate file.

Example
The following C++ code snippet provides an example of how to use the IsValidEx method.

#import "XMLSpy.tlb"

CComPtr< XMLSpyLib::IDocument12> ipDoc = ipXMLSpy->GetActiveDocument();

if (ipDoc)
{
 CComVariant variantErrorEx;

 bool bIsValidEx = ipDoc->IsValidEx(XMLSpyLib::spyValidateXSDVersion_AutoDetect,

100, XMLSpyLib::SPYValidateErrorFormat_LongXML, &variantErrorEx) == VARIANT_TRUE;

 // // retrieve values from out parameters
 CString strErrorEx = (V_VT(&variantErrorEx) == VT_BSTR ?

V_BSTR(&variantErrorEx) : _T(""));

 if (!strErrorEx.IsEmpty())

1953

1954

1953

1954

© 2018-2024 Altova GmbH

Application API 1771Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 AfxMessageBox("Validation failed - " + strErrorEx);

}

30.3.2.10.43 IsWellFormed

Method: IsWellFormed (pData as XMLData, bWithChildren as Boolean, strError as Variant, nErrorPos as
Variant, pBadXMLData as Variant) as Boolean

Return Value
True if the document is well formed.

Description
IsWellFormed checks the document for well-formedness starting at the element pData.

If the document is not well formed, strError contains an error message, nErrorPos the position in the file and
pBadXMLData holds a reference to the element which breaks the well-formedness. These out-parameters are
defined as VARIANTs to support scripting languages like VBScript.

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

Example

See IsValid.

30.3.2.10.44 Name

Property: Name as String (read-only)

Description
Use this property to retrieve the name - not including the path - of the document file. To change the file name for
a document use the property FullName .

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.45 Parent

Property: Parent as Documents (read-only)

Description
Access the parent of the document object.

1762

1780

1772 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

Property: Parent as Application (read-only)

30.3.2.10.46 Path

Property: Path as String (read-only)

Description
Use this property to retrieve the path - not including the file name - of the document file. To change the file
name and path for a document use the property FullName .

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.47 RootElement

Property: RootElement as XMLData (read-only)

Description
The property RootElement provides access to the root element of the XML structure of the document including
the XML prolog data. To access the first element of a document's content navigate to the first child of kind
spyXMLDataElement or use the Document.DataRoot property. If the CurrentViewMode is not
spyViewGrid or spyViewAuthentic an UpdateXMLData may be necessary to get access to the latest
XMLData .

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.48 Save

Method: Save()

Description
The method writes any modifications of the document to the associated file. See also Document.FullName .

Errors

1400 The document object is no longer valid.

1407 An empty file name has been specified.

1403 Error when saving file, probably the file name is invalid.

1654

1762

1893

1758 1758

1779

1893

1762

© 2018-2024 Altova GmbH

Application API 1773Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.10.49 SaveAs

Method: SaveAs (strFileName as String)

Description
Save the document to the file specified. If saving was successful, the FullName property gets set to the
specified file name.

Errors

1400 The document object is no longer valid.

1407 An empty file name has been specified.

1403 Error when saving file, probably the file name is invalid.

30.3.2.10.50 Saved

Property: Saved as Boolean (read-only)

Description
This property can be used to check if the document has been saved after the last modifications. It returns the
negation of IsModified .

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.51 SaveInString

Method: SaveInString (pData as XMLData , bMarked as Boolean) as String

Parameters
pData
XMLData element to start. Set pData to Document.RootElement if you want to copy the complete file.

bMarked
If bMarked is true, only the elements selected in the grid view are copied.

Return Value
Returns a string with the XML data.

Description
SaveInString starts at the element pData and converts the XMLData objects to a string representation.
UpdateXMLData() might be indirectly needed as you have to pass the XMLData as parameter to this
function.

1762

1768

1893

1772

1779 1893

1774 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

30.3.2.10.52 SaveToURL

Method: SaveToURL (strURL as String, strUser as String, strPassword as String)

Return Value

Description
SaveToURL() writes the document to the URL strURL. This method does not set the permanent file path of the
document.

Errors

1400 The object is no longer valid.

1402 Invalid URL specified.

1403 Error while saving to URL.

30.3.2.10.53 Selection

Property: Selection(string)

Description
Sets the current selection in the document.

Errors

1400 The object is no longer valid.

30.3.2.10.54 SetActiveDocument

Method: SetActiveDocument()

Description
The method sets the document as the active and brings it to the front.

Errors

1400 The object is no longer valid.

30.3.2.10.55 SetEncoding (obsolete)

Superseded by Document.Encoding
1758

© 2018-2024 Altova GmbH

Application API 1775Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.SetEncoding("UTF-16");
// use now:
Application.ActiveDocument.Encoding = "UTF-16";

Method: SetEncoding (strEncoding as String)

Description
SetEncoding sets the encoding of the document like the menu item "File/Encoding..." in XMLSpy. Possible
values for strEncoding are, for example:

8859-1,
8859-2,
ASCII, ISO-646,
850,
1252,
1255,
SHIFT-JIS, MS-KANJI,
BIG5, FIVE,
UTF-7,
UTF-8,
UTF-16

30.3.2.10.56 SetExternalIsValid

Method: SetExternalIsValid (bValid as Boolean)

Parameters

bValid
Sets the result of an external validation process.

Description
The internal information set by this method is only queried on cancelling the default validation in any
OnBeforeValidate handler.

Available with TypeLibrary version 1.5

Errors

1400 The object is no longer valid.

1750

1776 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.10.57 SetPathName (obsolete)

Superseded by Document.FullName

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.SetPathName("C:\\myXMLFiles\\test.xml");
// use now:
Application.ActiveDocument.FullName = "C:\\myXMLFiles\\test.xml";

Method: SetPathName (strPath as String)

Description
The method SetPathName sets the path of the active document. SetPathName only copies the string and does
not check if the path is valid. All succeeding save operations are done into this file.

30.3.2.10.58 StartChanges

Method: StartChanges()

Description
After StartChanges is executed XMLSpy will not update its editor windows until Document.EndChanges is
called. This increases performance of complex tasks to the XML structure.

Errors

1400 The object is no longer valid.

30.3.2.10.59 Suggestions

Property: Suggestions as Array

Description
This property contains the last valid user suggestions for this document. The XMLSpy generated suggestions
can be modified before they are shown to the user in the OnBeforeShowSuggestions event.

Errors

1400 The object is no longer valid.

1407 Invalid parameter or invalid address for the return parameter was specified.

30.3.2.10.60 SwitchViewMode

Method: SwitchViewMode (nMode as SPYViewModes) as Boolean

Return value
Returns true if view mode is switched.

1762

1759

1853

1954

© 2018-2024 Altova GmbH

Application API 1777Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
The method sets the current view mode of the document in XMLSpy. See also Document.CurrentViewMode .

Errors

1400 The object is no longer valid.

1407 Invalid address for the return parameter was specified.

1417 Invalid view mode specified.

30.3.2.10.61 TextView

Property: TextView as TextView

Description
This property provides access to the text view functionality of the document.

Errors

1400 The object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.62 Title

Property: Title as String (read-only)

Description
Title contains the file name of the document. To get the path and filename of the file use FullName .

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.63 TransformXSL

Method: TransformXSL()

Description
TransformXSL processes the XML document via the associated XSL file. See Document.AssignXSL on how
to place a reference to a XSL file into the document.

Errors

1400 The document object is no longer valid.

1411 Error during transformation process.

1758

1852

1762

1752

1778 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.10.64 TransformXSLEx

Method: TransformXSLEx(nAction as SPYDialogAction)

Description
TransformXSLEx processes the XML document via the associated XSL file. The parameter specifies whether a
dialog asking for the result document name should pop up or not. See Document.AssignXSL on how to
place a reference to a XSL file into the document.

Errors

1400 The document object is no longer valid.

1411 Error during transformation process.

30.3.2.10.65 TransformXSLFO

Method: TransformXSLFO()

Description
TransformXSLFO processes the XML document via the associated XSLFO file. See AssignXSLFO on how
to place a reference to a XSLFO file into the document. You need to assign a FOP processor to XMLSpy before
you can use this method.

Errors

1400 The document object is no longer valid.

1411 Error during transformation process.

30.3.2.10.66 TransformXSLFOEx

Method: TransformXSLFOEx(nAction as SPYDialogAction , string as sOutputFilepath)

Description
TransformXSLFOEx performs an XSL-FO transformation. It processes the XML document via the associated
XSL-FO file. The parameter specifies whether a dialog asking for the result document name should pop up or
not. See Document.AssignXSLFO on how to place a reference to an XSL-FO file into the document.

Errors

1400 The document object is no longer valid.

1411 Error during transformation process.

30.3.2.10.67 TreatXBRLInconsistenciesAsErrors

Property: TreatXBRLInconsistenciesAsErrors as Boolean

Description

1945

1752

1753

1945 1945

1753

© 2018-2024 Altova GmbH

Application API 1779Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

If this is set to true the Document.IsValid() method will return false for XBRL instances containing
inconsistencies as defined by the XBRL Specification. The default value of this property is false.

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

30.3.2.10.68 UpdateViews

Method: UpdateViews()

Description
To redraw the Enhanced Grid View and the Tree View call UpdateViews. This can be important after you
changed the XMLData structure of a document. This method does not redraw the text view of XMLSpy.

Errors

1400 The document object is no longer valid.

30.3.2.10.69 UpdateXMLData

Method: UpdateXMLData() as Boolean

Description
The XMLData tree is updated from the current view. Please note that this can fail in case of the TextView if
the current XML text is not well-formed. This is not necessary if CurrentViewMode is spyViewGrid or
spyViewAuthentic because these views keep the XMLData updated.

Available with TypeLibrary version 1.5

Errors

1400 The document object is no longer valid.

30.3.2.10.70 ValidateOnServer

Method: ValidateOnServer(nErrorFormat as SPYValidateErrorFormat) as Boolean

Description
Validates the document on the server using the currently active RaptorXMLServer.

Errors

1400 The document object is no longer valid.

1893

1758

1893

1954

1780 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.11 Documents

Properties
Count
Item

Methods
NewAuthenticFile
NewFile
NewFileFromText
OpenAuthenticFile
OpenFile
OpenURL
OpenURLDialog

Description
This object represents the set of documents currently open in XMLSpy. Use this object to open further
documents or iterate through already opened documents.

Examples
' ---------------------------------------
' XMLSpy scripting environment - VBScript
' iterate through open documents
' ---------------------------------------
Dim objDocuments
Set objDocuments = Application.Documents

For Each objDoc In objDocuments
'do something useful with your document
objDoc.SetActiveDocument()

Next

// ---------------------------------------
// XMLSpy scripting environment - JScript
// close all open documents
// ---------------------------------------
for (var iter = new Enumerator (Application.Documents);
 ! iter.atEnd();
 iter.moveNext())
{

// MsgBox ("Closing file " + iter.item().Name);
iter.item().Close (true);

}

1781

1781

1781

1782

1782

1782

1783

1783

1784

© 2018-2024 Altova GmbH

Application API 1781Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.11.1 Count

Property: Count as long

Description
Count of open documents.

Errors

1600 Invalid Documents object

1601 Invalid input parameter

30.3.2.11.2 Item

Method: Item (n as long) as Document

Description
Gets the document with the index n in this collection. Index is 1-based.

Errors

1600 Invalid Documents object

1601 Invalid input parameter

30.3.2.11.3 NewAuthenticFile

Method: NewAuthenticFile (strSPSPath as String, strXMLPath as String) as Document

Parameters
strSPSPath
The path to the SPS document.

strXMLPath
The new XML document name.

Return Value
The method returns the new document.

Description
NewAuthenticFile creates a new XML file and opens it in Authentic View using SPS design strSPSPath.

1747

1747

1782 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.11.4 NewFile

Method: NewFile (strFile as String, strType as String) as Document

Parameters
strFile
Full path of new file.

strType
Type of new file as string (i.e. "xml", "xsd", ...)

Return Value
Returns the new file.

Description
NewFile creates a new file of type strType (i.e. "xml"). The newly created file is also the ActiveDocument.

30.3.2.11.5 NewFileFromText

Method: NewFileFromText (strText as String, strType as String) as Document

Parameters
strText
The content of the new document in plain text.

strType
Type of the document to create (i.e. "xml").

Return Value
The method returns the new document.

Description
NewFileFromText creates a new document with strText as its content.

30.3.2.11.6 OpenAuthenticFile

Method: OpenAuthenticFile (strSPSPath as String, strXMLPath as String) as Document

Parameters
strSPSPath
The path to the SPS document.

strXMLPath
The path to the XML document (can be empty).

Return Value
The method returns the new document.

1747

1747

1747

© 2018-2024 Altova GmbH

Application API 1783Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
OpenAuthenticFile opens an XML file or database in Authentic View using SPS design strSPSPath.

30.3.2.11.7 OpenFile

Method: OpenFile (strPath as String, bDialog as Boolean) as Document

Parameters
strPath
Path and file name of file to open.

bDialog
Show dialogs for user input.

Return Value
Returns the opened file on success.

Description
OpenFile opens the file strPath. If bDialog is TRUE, a file-dialog will be displayed.

Example

Dim objDoc As Document
Set objDoc = objSpy.Documents.OpenFile(strFile, False)

30.3.2.11.8 OpenURL

Method: OpenURL (strURL as String, nURLType as SPYURLTypes , nLoading as SPYLoading , strUser
as String, strPassword as String) as Document

Parameters
strURL
URL to open as document.

nURLType
Type of document to open. Set to -1 for auto detection.

nLoading
Set nLoading to 0 (zero) if you want to load it from cache or proxy. Otherwise set nLoading to 1.

strUser
Name of the user if required. Can be empty.

strPassword
Password for authentification. Can be empty.

Return Value
The method returns the opened document.

Description

1747

1953 1948

1747

1784 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

OpenURL opens the URL strURL.

30.3.2.11.9 OpenURLDialog

Method: OpenURLDialog (strURL as String, nURLType as SPYURLTypes , nLoading as SPYLoading ,
strUser as String, strPassword as String) as Document

Parameters
strURL
URL to open as document.

nURLType
Type of document to open. Set to -1 for auto detection.

nLoading
Set nLoading to 0 (zero) if you want to load it from cache or proxy. Otherwise set nLoading to 1.

strUser
Name of the user if required. Can be empty.

strPassword
Password for authentification. Can be empty.

Return Value
The method returns the opened document.

Description
OpenURLDialog displays the "open URL" dialog to the user and presets the input fields with the given
parameters.

30.3.2.12 DTDSchemaGeneratorDlg

Properties and Methods

Standard automation properties
Application
Parent

DTDSchemaFormat
ValueList
TypeDetection
FrequentElements
MergeAllEqualNamed
ResolveEntities
AttributeTypeDefinition
GlobalAttributes
OnlyStringEnums
MaxEnumLength
OutputPath
OutputPathDialogAction

1953 1948

1747

1785

1788

1785

1788

1788

1786

1786

1788

1785

1786

1787

1786

1787

1787

© 2018-2024 Altova GmbH

Application API 1785Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
Use this object to configure the generation of a schema or DTD. The method GenerateDTDOrSchemaEx
expects a DTDSchemaGeneratorDlg as parameter to configure the generation as well as the associated user
interactions.

30.3.2.12.1 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.2 AttributeTypeDefinition

Property: AttributeTypeDefinition as SPYAttributeTypeDefinition

Description
Specifies how attribute definitions get merged.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.3 DTDSchemaFormat

Property: DTDSchemaFormat as SPYDTDSchemaFormat

Description
Sets the schema output format to DTD, or W3C.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

1763

1654

1943

1946

1786 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.12.4 FrequentElements

Property: FrequentElements as SPYFrequentElements

Description
Shall the types for all elements be defined as global? Use the value spyGlobalComplexType to define them on
global scope. Otherwise, use the value spyGlobalElements.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.5 GlobalAttributes

Property: GlobalAttributes as Boolean

Description
Shall attributes with same name and type be resolved globally?

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.6 MaxEnumLength

Property: MaxEnumLength as Integer

Description
Specifies the maximum number of characters allowed for enumeration names. If one value is longer than this,
no enumeration will be generated.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.7 MergeAllEqualNamed

Property: MergeAllEqualNamed as Boolean

Description

1946

© 2018-2024 Altova GmbH

Application API 1787Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Shall types of all elements with the same name be merged into one type?

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.8 OnlyStringEnums

Property: OnlyStringEnums as Boolean

Description
Specifies if enumerations will be created only for plain strings or all types of values.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.9 OutputPath

Property: OutputPath as String

Description
Selects the file name for the generated schema/DTD.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.10 OutputPathDialogAction

Property: OutputPathDialogAction as SPYDialogAction

Description
Defines how the sub-dialog for selecting the schema/DTD output path gets handled. Set this value to
spyDialogUserInput(2) to show the dialog with the current value of the OutputPath property as default. Use
spyDialogOK(0) to hide the dialog from the user.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

1945

1787

1788 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.12.11 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.12 ResolveEntities

Property: ResolveEntities as Boolean

Description
Shall all entities be resolved before generation starts? If yes, an info-set will be built.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.13 TypeDetection

Property: TypeDetection as SPYTypeDetection

Description
Specifies granularity of simple type detection.

Errors

3000 The object is no longer valid.

3001 Invalid address for the return parameter was specified.

30.3.2.12.14 ValueList

Property: ValueList as Integer

Description
Generate not more than this amount of enumeration-facets per type. Set to -1 for unlimited.

Errors

3000 The object is no longer valid.

1743

1953

© 2018-2024 Altova GmbH

Application API 1789Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

3001 Invalid address for the return parameter was specified.

30.3.2.13 ElementList

Properties
Count
Item

Methods
RemoveElement

Description
Element lists are used for different purposes during export and import of data. Depending on this purpose,
different properties of ElementListItem are used.

It can hold
· a list of table names returned by a call to Application.GetDatabaseTables ,
· a list of field names retuned by a call to Application.GetDatabaseImportElementList or

Application.GetTextImportElementList ,
· a field name filter list used in Application.ImportFromDatabase and Application.ImportFromText ,
· a list of table names and counts for their rows and columns as returned by calls to GetExportElementList

or
· a field name filter list used in Document.ExportToDatabase and Document.ExportToText .

30.3.2.13.1 Count

Property: Count as long (read-only)

Description
Count of elements in this collection.

30.3.2.13.2 Item

Method: Item(n as long) as ElementListItem

Description
Gets the element with the index n from this collection. The first item has index 1.

30.3.2.13.3 RemoveElement

Method: RemoveElement(Index as long)

Description
RemoveElement removes the element Index from the collection. The first Item has index 1.

1789

1789

1789

1790

1662

1661

1663

1665 1667

1767

1760 1761

1790

1790 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.14 ElementListItem

Properties
Name

ElementKind

FieldCount
RecordCount

Description
An element in an ElementList . Usage of its properties depends on the purpose of the element list. For
details see ElementList .

30.3.2.14.1 ElementKind

Property: ElementKind as SPYXMLDataKind

Description
Specifies if a field should be imported as XML element (data value of spyXMLDataElement) or attribute (data
value of spyXMLDataAttr).

30.3.2.14.2 FieldCount

Property: FieldCount as long (read-only)

Description
Count of fields (i.e. columns) in the table described by this element. This property is only valid after a call to
Document.GetExportElementList .

30.3.2.14.3 Name

Property: Name as String (read-only)

Description
Name of the element. This is either the name of a table or a field, depending on the purpose of the element list.

30.3.2.14.4 RecordCount

Property: RecordCount as long (read-only)

Description
Count of records (i.e. rows) in the table described by this element. This property is only valid after a call to
Document.GetExportElementList .

1790

1790

1790

1790

1789

1789

1955

1767

1767

© 2018-2024 Altova GmbH

Application API 1791Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.15 ExportSettings

Properties

ElementList

EntitiesToText

ExportAllElements
SubLevelLimit

FromAttributes
FromSingleSubElements
FromTextValues

CreateKeys
IndependentPrimaryKey

Namespace

ExportCompleteXML
StartFromElement

Description
ExportSettings contains options used during export of XML data to a database or text file. See Import and
export of data for a general overview.

30.3.2.15.1 CreateKeys

Property: CreateKeys as Boolean

Description
This property turns creation of keys (i.e. primary key and foreign key) on or off. Default is True.

30.3.2.15.2 ElementList

Property: ElementList as ElementList

Description
Default is empty list. This list of elements defines which fields will be exported. To get the list of available fields
use Document.GetExportElementList . It is possible to prevent exporting columns by removing elements
from this list with ElementList.RemoveElement before passing it to Document.ExportToDatabase or
Document.ExportToText .

1791

1792

1792

1793

1792

1792

1792

1791

1793

1793

1792

1793

1624

1789

1767

1789 1760

1761

1792 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.15.3 EntitiesToText

Property: EntitiesToText as Boolean

Description
Defines if XML entities should be converted to text or left as they are during export. Default is True.

30.3.2.15.4 ExportAllElements

Property: ExportAllElements as Boolean

Description
If set to true, all elements in the document will be exported. If set to false, then
ExportSettings.SubLevelLimit is used to restrict the number of sub levels to export. Default is true.

30.3.2.15.5 ExportCompleteXML

Property: ExportCompleteXML as Boolean

Description
Defines whether the complete XML is exported or only the element specified by StartFromElement and its
children. Default is True.

30.3.2.15.6 FromAttributes

Property: FromAttributes as Boolean

Description
Set FromAttributes to false if no export data should be created from attributes. Default is True.

30.3.2.15.7 FromSingleSubElements

Property: FromSingleSubElements as Boolean

Description
Set FromSingleSubElements to false if no export data should be created from elements. Default is True.

30.3.2.15.8 FromTextValues

Property: FromTextValues as Boolean

Description
Set FromTextValues to false if no export data should be created from text values. Default is True.

1793

1793

© 2018-2024 Altova GmbH

Application API 1793Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.15.9 IndependentPrimaryKey

Property: IndependentPrimaryKey as Boolean

Description
Turns creation of independent primary key counter for every element on or off. If ExportSettings.CreateKeys
is False, this property will be ignored. Default is True.

30.3.2.15.10 Namespace

Property: Namespace as SPYExportNamespace

Description
The default setting removes all namespace prefixes from the element names. In some database formats the
colon is not a legal character. Default is spyNoNamespace.

30.3.2.15.11 StartFromElement

Property: StartFromElement as String

Description
Specifies the start element for the export. This property is only considered when ExportCompleteXML is
false.

30.3.2.15.12 SubLevelLimit

Property: SubLevelLimit as Integer

Description
Defines the number of sub levels to include for the export. Default is 0. This property is ignored if
ExportSettings.ExportAllElements is true.

30.3.2.16 FileSelectionDlg

Properties and Methods

Standard automation properties
Application
Parent

Dialog properties
FullName

Acceptance or cancellation of action that caused event
DialogAction

1791

1946

1792

1792

1794

1795

1794

1794

1794 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
The dialog object allows you to receive information about an event and pass back information to the event
handler in the same way as with a user dialog. Use the FileSelectionDlg.FullName to select or modify the
file path and set the FileSelectionDlg.DialogAction property to cancel or agree with the action that caused
the event.

30.3.2.16.1 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

30.3.2.16.2 DialogAction

Property: DialogAction as SPYDialogAction

Description
If you want your script to perform the file selection operation without any user interaction necessary, simulate
user interaction by either setting the property to spyDialogOK(0) or spyDialogCancel(1).
To allow your script to fill in the default values but let the user see and react on the dialog, use the value
spyDialogUserInput(2). If you receive a FileSelectionDlg object in an event handler, spyDialogUserInput(2) is
not supported and will be interpreted as spyDialogOK(0).

Errors

2400 The object is no longer valid.

2401 Invalid value for dialog action or invalid address for the return parameter
was specified.

30.3.2.16.3 FullName

Property: FullName as String

Description
Access the full path of the file the gets selected by the dialog. Most events that pass a FileSelectionDlg object
to you allow you modify this value and thus influence the action that caused the event (e.g. load or save to a
different location).

Errors

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

1794

1794

1654

1945

© 2018-2024 Altova GmbH

Application API 1795Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.16.4 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

2400 The object is no longer valid.

2401 Invalid address for the return parameter was specified.

30.3.2.17 FindInFilesDlg

Properties and Methods

Standard automation properties
Application
Parent

Find
RegularExpression
Replace
DoReplace
ReplaceOnDisk
MatchWholeWord
MatchCase
SearchLocation
StartFolder
IncludeSubfolders
SearchInProjectFilesDoExternal
FileExtension
AdvancedXMLSearch
XMLElementNames
XMLElementContents
XMLAttributeNames
XMLAttributeContents
XMLComments
XMLCData
XMLPI
XMLRest
ShowResult

Description
Use this object to configure the search (or replacement) for strings in files. The method FindInFiles expects
a FindInFilesDlg as parameter.

1743

1796

1798

1797

1798

1798

1796

1798

1797

1797

1799

1800

1797

1799

1796

1796

1801

1801

1800

1800

1801

1800

1801

1802

1799

1661

1796 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.17.1 AdvancedXMLSearch

Property: AdvancedXMLSearch as Boolean

Description
Specifies if the XML search properties (XMLElementNames , XMLElementContents ,
XMLAttributeNames , XMLAttributeContents , XMLComments , XMLCData , XMLPI and
XMLRest) are considered. The default is false.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.2 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.3 DoReplace

Property: DoReplace as Boolean

Description
Specifies if the matched string is replaced by the string defined in Replace . The default is false.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.4 FileExtension

Property: FileExtension as String

Description
Specifies the file filter of the files that should be considered during the search. Multiple file filters must be
delimited with a semicolon (eg: *.xml;*.dtd;a*.xsd). Use the wildcards * and ? to define the file filter.

1801 1801

1800 1801 1801 1800 1801

1802

1654

1798

© 2018-2024 Altova GmbH

Application API 1797Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.5 Find

Property: Find as String

Description
Specifies the string to search for.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.6 IncludeSubfolders

Property: IncludeSubfolders as Boolean

Description
Specifies if subfolders are searched too. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.7 MatchCase

Property: MatchCase as Boolean

Description
Specifies if the search is case sensitive. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.8 MatchWholeWord

Property: MatchWholeWord as Boolean

Description
Specifies whether the whole word or just a part of it must match. The default is false.

1798 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.9 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.10 RegularExpression

Property: RegularExpression as Boolean

Description
Specifies if Find contains a regular expression. The default is false.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.11 Replace

Property: Replace as String

Description
Specifies the replacement string. The matched string is only replaced if DoReplace is set true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.12 ReplaceOnDisk

Property: ReplaceOnDisk as Boolean

Description

1743

1797

1796

© 2018-2024 Altova GmbH

Application API 1799Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Specifies if the replacement is done directly on disk. The modified file is not opened. The default is false.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.13 SearchInProjectFilesDoExternal

Property: SearchInProjectFilesDoExternal as Boolean

Description
Specifies if the external folders in the open project are searched, when a project search is performed. The
default is false.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.14 SearchLocation

Property: SearchLocation as SPYFindInFilesSearchLocation

Description
Specifies the location of the search. The default is spyFindInFiles_Documents.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.15 ShowResult

Property: ShowResult as Boolean

Description
Specifies if the result is displayed in the Find in Files output window. The default is false.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

1946

1800 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.17.16 StartFolder

Property: StartFolder as String

Description
Specifies the folder where the disk search starts.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.17 XMLAttributeContents

Property: XMLAttributeContents as Boolean

Description
Specifies if attribute contents are searched when AdvancedXMLSearch is true. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.18 XMLAttributeNames

Property: XMLAttributeNames as Boolean

Description
Specifies if attribute names are searched when AdvancedXMLSearch is true. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.19 XMLCData

Property: XMLCData as Boolean

Description
Specifies if CData tags are searched when AdvancedXMLSearch is true. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

1796

1796

1796

© 2018-2024 Altova GmbH

Application API 1801Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.17.20 XMLComments

Property: XMLComments as Boolean

Description
Specifies if comments are searched when AdvancedXMLSearch is true. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.21 XMLElementContents

Property: XMLElementContents as Boolean

Description
Specifies if element contents are searched when AdvancedXMLSearch is true. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.22 XMLElementNames

Property: XMLElementNames as Boolean

Description
Specifies if element names are searched when AdvancedXMLSearch is true. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.17.23 XMLPI

Property: XMLPI as Boolean

Description
Specifies if XML processing instructions are searched when AdvancedXMLSearch is true. The default is
true.

Errors

3500 The object is no longer valid.

1796

1796

1796

1796

1802 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3501 Invalid address for the return parameter was specified.

30.3.2.17.24 XMLRest

Property: XMLRest as Boolean

Description
Specifies if the rest of the XML (which is not covered by the other XML search properties) is searched when
AdvancedXMLSearch is true. The default is true.

Errors

3500 The object is no longer valid.

3501 Invalid address for the return parameter was specified.

30.3.2.18 FindInFilesResult

Properties and Methods

Standard automation properties
Application
Parent

Count
Item

Path
Document

Description
This object represents a file that matched the search criteria. It contains a list of FindInFilesResultMatch
objects that describe the matching position.

30.3.2.18.1 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

3700 The object is no longer valid.

3701 Invalid address for the return parameter was specified.

1796

1802

1803

1803

1803

1803

1803

1804

1654

© 2018-2024 Altova GmbH

Application API 1803Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.18.2 Count

Property: Count as long (read-only)

Description
Count of elements in this collection.

30.3.2.18.3 Document

Property: Path as Document (read-only)

Description
This property returns the Document object if the matched file is already open in XMLSpy.

Errors

3700 The object is no longer valid.

3701 Invalid address for the return parameter was specified.

30.3.2.18.4 Item

Method: Item(n as long) as FindInFilesResultMatch

Description
Gets the element with the index n from this collection. The first item has index 1.

30.3.2.18.5 Parent

Property: Parent as FindInFilesResults (read-only)

Description
Access the parent of the object.

Errors

3700 The object is no longer valid.

3701 Invalid address for the return parameter was specified.

30.3.2.18.6 Path

Property: Path as String (read-only)

Description
Returns the path of the file that matched the search criteria.

1747

1747

1804

1806

1804 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

3700 The object is no longer valid.

3701 Invalid address for the return parameter was specified.

30.3.2.19 FindInFilesResultMatch

Properties and Methods

Standard automation properties
Application
Parent

Line
Position
Length
LineText
Replaced

Description
Contains the exact position in the file of the matched string.

30.3.2.19.1 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

3800 The object is no longer valid.

3801 Invalid address for the return parameter was specified.

30.3.2.19.2 Length

Property: Length as Long (read-only)

Description
Returns the length of the matched string.

Errors

3800 The object is no longer valid.

3801 Invalid address for the return parameter was specified.

1804

1805

1805

1805

1804

1805

1806

1654

© 2018-2024 Altova GmbH

Application API 1805Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.19.3 Line

Property: Line as Long (read-only)

Description
Returns the line number of the match. The line numbering starts with 0.

Errors

3800 The object is no longer valid.

3801 Invalid address for the return parameter was specified.

30.3.2.19.4 LineText

Property: LineText as String (read-only)

Description
Returns the text of the line.

Errors

3800 The object is no longer valid.

3801 Invalid address for the return parameter was specified.

30.3.2.19.5 Parent

Property: Parent as FindInFilesResult (read-only)

Description
Access the parent of the object.

Errors

3800 The object is no longer valid.

3801 Invalid address for the return parameter was specified.

30.3.2.19.6 Position

Property: Position as Long (read-only)

Description
Returns the start position of the match in the line. The position numbering starts with 0.

Errors

1802

1806 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3800 The object is no longer valid.

3801 Invalid address for the return parameter was specified.

30.3.2.19.7 Replaced

Property: Replaced as Boolean (read-only)

Description
True if the matched string was replaced.

Errors

3800 The object is no longer valid.

3801 Invalid address for the return parameter was specified.

30.3.2.20 FindInFilesResults

Properties and Methods

Standard automation properties
Application
Parent

Count
Item

Description
This is the result of the FindInFiles method. It is a list of FindInFilesResult objects.

30.3.2.20.1 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

3600 The object is no longer valid.

3601 Invalid address for the return parameter was specified.

1806

1807

1807

1807

1661 1802

1654

© 2018-2024 Altova GmbH

Application API 1807Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.20.2 Count

Property: Count as long (read-only)

Description
Count of elements in this collection.

30.3.2.20.3 Item

Method: Item(n as long) as FindInFilesResult

Description
Gets the element with the index n from this collection. The first item has index 1.

30.3.2.20.4 Parent

Property: Parent as Application (read-only)

Description
Access the parent of the object.

Errors

3600 The object is no longer valid.

3601 Invalid address for the return parameter was specified.

30.3.2.21 GenerateSampleXMLDlg

Properties and Methods

Standard automation properties
Application
Parent

NonMandatoryAttributes
NonMandatoryElements
RepeatCount
FillAttributesWithSampleData
FillElementsWithSampleData
ContentOfNillableElementsIsNonMandatory
TryToUseNonAbstractTypes
SchemaOrDTDAssignment
LocalNameOfRootElement
NamespaceURIOfRootElement
OptionsDialogAction

Properties that are no longer supported

1802

1654

1808

1811

1810

1810

1812

1809

1809

1809

1813

1812

1810

1810

1811

1808 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

TakeFirstChoice - obsolete
FillWithSampleData - obsolete
Optimization - obsolete

Description
Used to set the parameters for the generation of sample XML instances based on a W3C schema or DTD.

30.3.2.21.1 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.2 ChoiceMode

Property: ChoiceMode as SPYSampleXMLGenerationChoiceMode

Description
Specifies which elements will be generated.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.3 ConsiderSampleValueHints

Property: ConsiderSampleValueHints as Boolean

Description
Selects whether to use SampleValueHints or not.

Errors

1812

1809

1811

1654

1950

1812

© 2018-2024 Altova GmbH

Application API 1809Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.4 ContentOfNillableElementsIsNonMandatory

Property: ContentOfNillableElementsIsNonMandatory as Boolean

Description
If true, the contents of elements that are nillable will not be treated as mandatory.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.5 FillAttributesWithSampleData

Property: FillAttributesWithSampleData as Boolean

Description
If true, attributes will have sample content.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.6 FillElementsWithSampleData

Property: FillElementsWithSampleData as Boolean

Description
If true, elements will have sample content.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.7 FillWithSampleData - obsolete

Property: FillWithSampleData as Boolean

1810 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Do no longer access this property. Use FillAttributesWithSampleData and FillElementsWithSampleData
, instead.

Errors

0001 The property is no longer accessible.

30.3.2.21.8 LocalNameOfRootElement

Property: LocalNameOfRootElement as String

Description
Specifies the local name of the root element for the generated sample XML.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.9 NamespaceURIOfRootElement

Property: NamespaceURIOfRootElement as String

Description
Specifies the namespace URI of the root element for the generated sample XML.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.10 NonMandatoryAttributes

Property: NonMandatoryAttributes as Boolean

Description
If true attributes which are not mandatory are created in the sample XML instance file.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.11 NonMandatoryElements

Property: NonMandatoryElements as Boolean

1809 1809

© 2018-2024 Altova GmbH

Application API 1811Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
If true, elements which are not mandatory are created in the sample XML instance file.

Errors

2200 The object is no longer valid.

2201 Invalid address was specified for the return parameter.

30.3.2.21.12 Optimization - obsolete

Property: Optimization as SPYSampleXMLGenerationOptimization

Description
Do not use this property any longer. Use ChoiceMode and NonMandatoryElements.

Errors

0001 The property is no longer accessible.

30.3.2.21.13 OptionsDialogAction

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react on the dialog, set this property to
the value spyDialogUserInput(2). If you want your script to define all the options in the schema documentation
dialog without any user interaction necessary, use spyDialogOK(0). Default is spyDialogOK.

Errors

2200 The object is no longer valid.

2201 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.21.14 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

1950

1945

1743

1812 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.21.15 RepeatCount

Property: RepeatCount as long

Description
Number of elements to create for repeated types.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.16 SampleValueHints

Property: SampleValueHints as SPYSampleXMLGenerationSampleValueHints

Description
Specifies how to select data for the generated sample file.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.17 SchemaOrDTDAssignment

Property: SchemaOrDTDAssignment as SPYSampleXMLGenerationSchemaOrDTDAssignment

Description
Specifies in which way a reference to the related schema or DTD - which is this document - will be generated
into the sample XML.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.21.18 TakeFirstChoice - obsolete

Property: TakeFirstChoice as Boolean

Description
Do no longer use this property.

1951

1951

© 2018-2024 Altova GmbH

Application API 1813Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

0001 The property is no longer accessible.

30.3.2.21.19 TryToUseNonAbstractTypes

Property: TryToUseNonAbstractTypes as Boolean

Description
If true, tries to use a non-abstract type for xsi:type, if element has an abstract type.

Errors

2200 The object is no longer valid.

2201 Invalid address for the return parameter was specified.

30.3.2.22 GridView

Methods
Deselect
Select

SetFocus

Properties
CurrentFocus

IsVisible

Description
GridView Class

30.3.2.22.1 Events

30.3.2.22.1.1 OnBeforeDrag

Event: OnBeforeDrag() as Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeDrag()

' On_BeforeStartEditing = False ' to prohibit dragging
End Function

XMLSpy scripting environment - JScript:
function On_BeforeDrag()
{

// return false; /* to prohibit dragging */

1816

1816

1816

1816

1816

1814 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (4, ...) // nEventId = 4

Description
This event gets fired on an attempt to drag an XMLData element on the grid view. Return false to prevent
dragging the data element to a different position.

30.3.2.22.1.2 OnBeforeDrop

Event: OnBeforeDrop(objXMLData as XMLData) as Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeDrop(objXMLData)

' On_BeforeStartEditing = False ' to prohibit dropping
End Function

XMLSpy scripting environment - JScript:
function On_BeforeDrop(objXMLData)
{

// return false; /* to prohibit dropping */
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (5, ...) // nEventId = 5

Description
This event gets fired on an attempt to drop a previously dragged XMLData element on the grid view. Return false
to prevent the data element to be moved from its original position to the drop destination position.

30.3.2.22.1.3 OnBeforeStartEditing

Event: OnBeforeStartEditing(objXMLData as XMLData , bEditingName as Boolean)as Boolean

XMLSpy scripting environment - VBScript:
Function On_BeforeStartEditing(objXMLData, bEditingName)

' On_BeforeStartEditing = False ' to prohibit editing the field
End Function

XMLSpy scripting environment - JScript:
function On_BeforeStartEditing(objXMLData, bEditingName)
{

// return false; /* to prohibit editing the field */
}

XMLSpy IDE Plugin:

1893

1893

© 2018-2024 Altova GmbH

Application API 1815Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

IXMLSpyPlugIn.OnEvent (1, ...) // nEventId = 1

Description
This event gets fired before the editing mode for a grid cell gets entered. If the parameter bEditingName is true,
the name part of the element will be edited, it its value is false, the value part will be edited.

30.3.2.22.1.4 OnEditingFinished

Event: OnEditingFinished(objXMLData as XMLData , bEditingName as Boolean)

XMLSpy scripting environment - VBScript:
Function On_EditingFinished(objXMLData, bEditingName)
End Function

XMLSpy scripting environment - JScript:
function On_EditingFinished(objXMLData, bEditingName)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (2, ...) // nEventId = 2

Description
This event gets fired when the editing mode of a grid cell is exited. The parameter bEditingName specifies if the
name part of the element has been edited.

30.3.2.22.1.5 OnFocusChanged

Event: OnFocusChanged(objXMLData as XMLData , bSetFocus as Boolean, bEditingName as Boolean)

XMLSpy scripting environment - VBScript:
Function On_FocusChanged(objXMLData, bSetFocus, bEditingName)
End Function

XMLSpy scripting environment - JScript:
function On_FocusChanged(objXMLData, bSetFocus, bEditingName)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (3, ...) // nEventId = 3

Description
This event gets fired whenever a grid cell receives or loses the cursor focus. If the parameter bEditingName is
true, focus of the name part of the grid element has changed. Otherwise, focus of the value part has changed.

1893

1893

1816 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.22.2 CurrentFocus

Property: CurrentFocus as XMLData

Description
Holds the XML element with the current focus. This property is read-only.

30.3.2.22.3 Deselect

Method: Deselect(pData as XMLData)

Description
Deselects the element pData in the grid view.

30.3.2.22.4 IsVisible

Property: IsVisible as Boolean

Description
True if the grid view is the active view of the document. This property is read-only.

30.3.2.22.5 Select

Method: Select (pData as XMLData)

Description
Selects the XML element pData in the grid view.

30.3.2.22.6 SetFocus

Method: SetFocus (pFocusData as XMLData)

Description
Sets the focus to the element pFocusData in the grid view.

30.3.2.23 JSONSchemaDocumentationDlg

This object combines offers options for the generation of documentation of JSON Schemas, as they are
available through user interface dialog boxes in XMLSpy. The document generation options are initialized with
the values used during the last generation of JSON Schema documentation. However, before using the object
you have to set the OutputFile property to a valid file path. Use OptionsDialogAction ,
OutputFileDialogAction and ShowProgressBar to specify the level of user interaction desired. You can
use IncludeAll and AllDetails to set whole option groups at once or the individual properties to operate on
a finer granularity.

1893

1893

1893

1893

1823 1823

1824 1826

1820 1818

© 2018-2024 Altova GmbH

Application API 1817Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Properties and Methods
Standard automation properties
Application
Parent

Output options
MultipleOutputFiles
OptionsDialogAction
OutputFile
OutputFileDialogAction
ShowProgressBar
ShowResult

Document design and layout
SPSFile
UseFixedDesign

Document generation options and methods
OutputFormat
UseFixedDesign
SPSFile
EmbedDiagrams
DiagramFormat
MultipleOutputFiles
EmbedCSSInHTML
CreateDiagramsFolder
GenerateRelativeLinks

IncludeAll
IncludeArrayItems
IncludeDefinitions
IncludeExternalSchemas
IncludeOperatorSubschemas
IncludeOverview
IncludePatternProperties
IncludeProperties
IncludePropertyWildcards
IncludeSchemaDependencies

AllDetails
ShowArrayItems
ShowDiagram
ShowEnumerations
ShowLocation
ShowOperators
ShowProperties
ShowPropertyDetails
ShowSchemaDetails
ShowSourceCode
ShowSpecifying
ShowType

1818

1824

1823

1823

1823

1824

1826

1827

1829

1829

1824

1829

1829

1819

1818

1823

1819

1818

1819

1820

1820

1820

1821

1821

1821

1822

1822

1822

1822

1818

1825

1825

1825

1825

1826

1826

1827

1827

1828

1828

1828

1818 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

ShowTypeConstraints
ShowUsedBy

30.3.2.23.1 AllDetails

Method: AllDetails (i_bDetailsOn as Boolean)

Description
Use this method to turn all details options on or off.

Errors

2900 The object is no longer valid.

30.3.2.23.2 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.3 CreateDiagramsFolder

Property: CreateDiagramsFolder as Boolean

Description
Set this property to true to create a directory for the created images. Otherwise the diagrams will be created in
the same folder as the documentation. This property is only available when the diagrams are not embedded.
The property is initialized with the value used during the last call to
Document.GenerateJSONSchemaDocumentation . The default for the first run is false.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.4 DiagramFormat

Property: DiagramFormat as SPYImageKind

1829

1829

1654

1764

1947

© 2018-2024 Altova GmbH

Application API 1819Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
This property specifies the generated diagram image type. This property is not available for HTML
documentation. The property is initialized with the value used during the last call to
Document.GenerateJSONSchemaDocumentation . The default for the first run is PNG.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.5 EmbedCSSInHTML

Property: EmbedCSSInHTML as Boolean

Description
Set this property to true if you want to embed the CSS data in the generated HTML document. Otherwise a
separate file will be created and linked. This property is only available for HTML documentation. The property is
initialized with the value used during the last call to Document.GenerateWSDLDocumentation . The default
for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.6 EmbedDiagrams

Property: EmbedDiagrams as Boolean

Description
Set this property to true if you want to embed the diagrams in the generated document. This property is not
available for HTML documentation. The property is initialized with the value used during the last call to
Document.GenerateJSONSchemaDocumentation . The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.7 GenerateRelativeLinks

Property: GenerateRelativeLinks as Boolean

Description

1764

1766

1764

1820 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Set this property to true if you want to create relative paths to local files. This property is not available for HTML
documentation. The property is initialized with the value used during the last call to
Document.GenerateJSONSchemaDocumentation . The default for the first run is false.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.8 IncludeAll

Method: IncludeAll (i_bInclude as Boolean)

Description
Use this method to mark or unmark all include options.

Errors

2900 The object is no longer valid.

30.3.2.23.9 IncludeArrayItems

Property: IncludeArrayItems as Boolean

Description
Set this property to true to include array items in the JSON Schema documentation. The property is initialized
with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The default for
the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.10 IncludeDefinitions

Property: IncludeDefinitions as Boolean

Description
Set this property to true to include definitions in the JSON Schema documentation. The property is initialized
with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The default for
the first run is true.

Errors

2900 The object is no longer valid.

1764

1764

1764

© 2018-2024 Altova GmbH

Application API 1821Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2901 Invalid address for the return parameter was specified.

30.3.2.23.11 IncludeExternalSchemas

Property: IncludeExternalSchemas as Boolean

Description
Set this property to true to include external in the JSON Schema documentation. The property is initialized with
the value used during the last call to Document.GenerateJSONSchemaDocumentation . The default for the
first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.12 IncludeOperatorSubschemas

Property: IncludeOperatorSubschemas as Boolean

Description
Set this property to true to include operator subs-chemas in the JSON Schema documentation. The property is
initialized with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The
default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.13 IncludeOverview

Property: IncludeOverview as Boolean

Description
Set this property to true to include an overview of the JSON Schema. The property is initialized with the value
used during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first run is
true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1764

1764

1764

1822 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.23.14 IncludePatternProperties

Property: IncludePatternProperties as Boolean

Description
Set this property to true to include pattern properties in the JSON Schema documentation. The property is
initialized with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The
default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.15 IncludeProperties

Property: IncludeProperties as Boolean

Description
Set this property to true to include properties in the JSON Schema documentation. The property is initialized
with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The default for
the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.16 IncludePropertyWildcards

Property: IncludePropertyWildcrads as Boolean

Description
Set this property to true to include property wildcards in the JSON Schema documentation. The property is
initialized with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The
default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.17 IncludeSchemaDependencies

Property: IncludeSchemaDependencies as Boolean

1764

1764

1764

© 2018-2024 Altova GmbH

Application API 1823Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
Set this property to true to include schema dependencies in the JSON Schema documentation. The property is
initialized with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The
default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.18 MultipleOutputFiles

Property: MultipleOutputFiles as Boolean

Description
Set this property to true to split the documentation into multiple files by schema item. The property is initialized
with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The default for
the first run is false.

Errors

2900 The object is no longer valid.

2901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.23.19 OptionsDialogAction

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react to the dialog, set this property to
the value spyDialogUserInput(2). If you want your script to define all the options in the schema documentation
dialog without any user interaction, use spyDialogOK(0). Default is spyDialogOK.

Errors

2900 The object is no longer valid.

2901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.23.20 OutputFile

Property: OutputFile as String

Description
Full path and name of the file that will contain the generated documentation. In case of HTML output, additional
'.png' files will be generated based on this filename. The default value for this property is an empty string and
needs to be replaced before using this object in a call to Document.GenerateJSONSchemaDocumentation .

1764

1764

1945

1764

1824 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.21 OutputFileDialogAction

Property: OutputFileDialogAction as SPYDialogAction

Description
To allow the user to select the output file with a file selection dialog, set this property to spyDialogUserInput(2).
If the value stored in OutputFile should be taken and no user interaction should occur, use spyDialogOK(0).
Default is spyDialogOK.

Errors

2900 The object is no longer valid.

2901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.23.22 OutputFormat

Property: OutputFormat as SPYSchemaDocumentationFormat

Description
Defines the kind of documentation that will be generated: HTML (value=0), MS-Word (value=1), or RTF
(value=2). The property gets initialized with the value used during the last call to
Document.GenerateJSONSchemaDocumentation . The default for the first run is HTML.

Errors

2900 The object is no longer valid.

2901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.23.23 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1945

1837

1952

1764

1743

© 2018-2024 Altova GmbH

Application API 1825Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.23.24 ShowArrayItems

Property: ShowArrayItems as Boolean

Description
Set this property to true to show array items in the schema documentation. The property is initialized with the
value used during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first
run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.25 ShowDiagram

Property: ShowDiagram as Boolean

Description
Set this property to true to show definitions as diagrams in the schema documentation. The property is
initialized with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The
default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.26 ShowEnumerations

Property: ShowEnumerations as Boolean

Description
Set this property to true to show the enumerations of definitions. The property is initialized with the value used
during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.27 ShowLocation

Property: ShowLocation as Boolean

1764

1764

1764

1826 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Set this property to true to show the location of the JSON Schema. The property is initialized with the value
used during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first run is
true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.28 ShowOperators

Property: ShowOperators as Boolean

Description
Set this property to true to show schema operators in the JSON Schema documentation. The property is
initialized with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The
default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.29 ShowProgressBar

Property: ShowProgressBar as Boolean

Description
Set this property to true to open a window showing the progress of document generation. Use false, to hide it.
Default is false.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.30 ShowProperties

Property: ShowProperties as Boolean

Description
Set this property to true to show the type definition properties. The property is initialized with the value used
during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first run is true.

Errors

1764

1764

1764

© 2018-2024 Altova GmbH

Application API 1827Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.31 ShowPropertyDetails

Property: ShowPropertyDetails as Boolean

Description
Set this property to true to show the property details of type definitions. The property is initialized with the value
used during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first run is
true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.32 ShowResult

Property: ShowResult as Boolean

Description
Set this property to true to automatically open the resulting document when generation completes
successfully. HTML documentation will be opened in XMLSpy. To show Word documentation, MS-Word will be
started. The property gets initialized with the value used during the last call to
Document.GenerateJSONSchemaDocumentation . The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.33 ShowSchemaDetails

Property: ShowSchemaDetails as Boolean

Description
Set this property to true to show information about the JSON Schema. The property is initialized with the value
used during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first run is
true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1764

1764

1764

1828 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.23.34 ShowSourceCode

Property: ShowSourceCode as Boolean

Description
Set this property to true to show the XML source code of definitions. The property is initialized with the value
used during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first run is
true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.35 ShowSpecifying

Property: ShowSpecifying as Boolean

Description
Set this property to true to show the specifying schemas and subschemas. The property is initialized with the
value used during the last call to Document.GenerateJSONSchemaDocumentation . The default for the first
run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.36 ShowType

Property: ShowType as Boolean

Description
Set this property to true to show the type of definitions in the JSON Schema documentation. The property is
initialized with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The
default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1764

1764

1764

© 2018-2024 Altova GmbH

Application API 1829Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.23.37 ShowTypeConstraints

Property: ShowTypeConstraints as Boolean

Description
Set this property to true to show type constraints in the JSON Schema documentation. The property is
initialized with the value used during the last call to Document.GenerateJSONSchemaDocumentation . The
default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.38 ShowUsedBy

Property: ShowUsedBy as Boolean

Description
Set this property to true to show the used-by relation for type definitions in the schema documentation. The
property is initialized with the value used during the last call to
Document.GenerateJSONSchemaDocumentation . The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.39 SPSFile

Property: SPSFile as String

Description
Full path and name of the SPS file that will be used to generate the documentation.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.23.40 UseFixedDesign

Property: UseFixedDesign as Boolean

1764

1764

1830 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Specifies whether the documentation should be created with a fixed design or with a design specified by a SPS
file (which requires StyleVision).

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24 SchemaDocumentationDlg

Properties and Methods

Standard automation properties
Application
Parent

Interaction and visibility properties
OutputFile
OutputFileDialogAction
OptionsDialogAction
ShowProgressBar
ShowResult

Document generation options and methods
OutputFormat
UseFixedDesign
SPSFile
EmbedDiagrams
DiagramFormat
MultipleOutputFiles
EmbedCSSInHTML
CreateDiagramsFolder
GenerateRelativeLinks

IncludeAll
IncludeIndex
IncludeGlobalAttributes
IncludeGlobalElements
IncludeLocalAttributes
IncludeLocalElements
IncludeGroups
IncludeComplexTypes
IncludeSimpleTypes
IncludeAttributeGroups
IncludeRedefines
IncludeReferencedSchemas

AllDetails
ShowDiagram

1831

1838

1837

1838

1837

1841

1842

1838

1844

1843

1833

1832

1837

1832

1832

1833

1833

1835

1834

1834

1835

1836

1835

1834

1836

1833

1836

1836

1831

1840

© 2018-2024 Altova GmbH

Application API 1831Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

ShowNamespace
ShowType
ShowChildren
ShowUsedBy
ShowProperties
ShowSingleFacets
ShowPatterns
ShowEnumerations
ShowAttributes
ShowIdentityConstraints
ShowAnnotations
ShowSourceCode

Description
This object combines options for JSON Schema document generation as they are available through user
interface dialog boxes in XMLSpy. The document generation options are initialized with the values used during
the last generation of JSON Schema documentation. However, before using the object you have to set the
SetOutputFile property to a valid file path. Use OptionsDialogAction , OutputFileDialogAction and
ShowProgressBar to specify the level of user interaction desired. You can use IncludeAll and
AllDetails to set whole option groups at once or the individual properties to operate on a finer granularity.

30.3.2.24.1 AllDetails

Method: AllDetails (i_bDetailsOn as Boolean)

Description
Use this method to turn all details options on or off.

Errors

2900 The object is no longer valid.

30.3.2.24.2 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1841

1843

1839

1843

1841

1842

1841

1840

1839

1840

1839

1842

1837 1837 1838

1841 1833

1831

1654

1832 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.24.3 CreateDiagramsFolder

Property: CreateDiagramsFolder as Boolean

Description
Set this property to true, to create a directory for the created images. Otherwise the diagrams will be created
next to the documentation. This property is only available when the diagrams are not embedded. The property
is initialized with the value used during the last call to Document.GenerateSchemaDocumentation . The
default for the first run is false.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.4 DiagramFormat

Property: DiagramFormat as SPYImageKind

Description
This property specifies the generated diagram image type. This property is not available for HTML
documentation. The property is initialized with the value used during the last call to
Document.GenerateSchemaDocumentation . The default for the first run is PNG.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.5 EmbedCSSInHTML

Property: EmbedCSSInHTML as Boolean

Description
Set this property to true, to embed the CSS data in the generated HTML document. Otherwise a separate file
will be created and linked. This property is only available for HTML documentation. The property is initialized
with the value used during the last call to Document.GenerateWSDLDocumentation . The default for the first
run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1765

1947

1765

1766

© 2018-2024 Altova GmbH

Application API 1833Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.24.6 EmbedDiagrams

Property: EmbedDiagrams as Boolean

Description
Set this property to true, to embed the diagrams in the generated document. This property is not available for
HTML documentation. The property is initialized with the value used during the last call to
Document.GenerateSchemaDocumentation . The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.7 GenerateRelativeLinks

Property: GenerateRelativeLinks as Boolean

Description
Set this property to true, to create relative paths to local files. This property is not available for HTML
documentation. The property is initialized with the value used during the last call to
Document.GenerateSchemaDocumentation . The default for the first run is false.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.8 IncludeAll

Method: IncludeAll (i_bInclude as Boolean)

Description
Use this method to mark or unmark all include options.

Errors

2900 The object is no longer valid.

30.3.2.24.9 IncludeAttributeGroups

Property: IncludeAttributeGroups as Boolean

Description

1765

1765

1834 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Set this property to true, to include attribute groups in the schema documentation. The property is initialized
with the value used during the last call to Document.GenerateSchemaDocumentation . The default for the
first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.10 IncludeComplexTypes

Property: IncludeComplexTypes as Boolean

Description
Set this property to true, to include complex types in the schema documentation. The property is initialized
with the value used during the last call to Document.GenerateSchemaDocumentation . The default for the
first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.11 IncludeGlobalAttributes

Property: IncludeGlobalAttributes as Boolean

Description
Set this property to true, to include global attributes in the schema documentation. The property is initialized
with the value used during the last call to Document.GenerateSchemaDocumentation . The default for the
first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.12 IncludeGlobalElements

Property: IncludeGlobalElements as Boolean

Description
Set this property to true, to include global elements in the schema documentation. The property is initialized
with the value used during the last call to Document.GenerateSchemaDocumentation . The default for the
first run is true.

Errors

1765

1765

1765

1765

© 2018-2024 Altova GmbH

Application API 1835Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.13 IncludeGroups

Property: IncludeGroups as Boolean

Description
Set this property to true, to include groups in the schema documentation. The property is initialized with the
value used during the last call to Document.GenerateSchemaDocumentation . The default for the first run is
true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.14 IncludeIndex

Property: IncludeIndex as Boolean

Description
Set this property to true, to include an index in the schema documentation. The property is initialized with the
value used during the last call to Document.GenerateSchemaDocumentation . The default for the first run is
true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.15 IncludeLocalAttributes

Property: IncludeLocalAttributes as Boolean

Description
Set this property to true, to include local attributes in the schema documentation. The property is initialized
with the value used during the last call to Document.GenerateSchemaDocumentation . The default for the
first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1765

1765

1765

1836 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.24.16 IncludeLocalElements

Property: IncludeLocalElements as Boolean

Description
Set this property to true, to include local elements in the schema documentation. The property is initialized
with the value used during the last call to Document.GenerateSchemaDocumentation . The default for the
first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.17 IncludeRedefines

Property: IncludeRedefines as Boolean

Description
Set this property to true, to include redefines in the schema documentation. The property is initialized with the
value used during the last call to Document.GenerateSchemaDocumentation . The default for the first run is
true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.18 IncludeReferencedSchemas

Property: IncludeReferencedSchemas as Boolean

Description
Set this property to true, to include referenced schemas in the schema documentation. The property is
initialized with the value used during the last call to Document.GenerateSchemaDocumentation . The default
for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.19 IncludeSimpleTypes

Property: IncludeSimpleTypes as Boolean

1765

1765

1765

© 2018-2024 Altova GmbH

Application API 1837Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
Set this property to true, to include simple types in the schema documentation. The property is initialized with
the value used during the last call to Document.GenerateSchemaDocumentation . The default for the first run
is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.20 MultipleOutputFiles

Property: MultipleOutputFiles as Boolean

Description
Set this property to true, to split the documentation files. The property is initialized with the value used during
the last call to Document.GenerateSchemaDocumentation . The default for the first run is false.

Errors

2900 The object is no longer valid.

2901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.24.21 OptionsDialogAction

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react on the dialog, set this property to
the value spyDialogUserInput(2). If you want your script to define all the options in the schema documentation
dialog without any user interaction necessary, use spyDialogOK(0). Default is spyDialogOK.

Errors

2900 The object is no longer valid.

2901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.24.22 OutputFile

Property: OutputFile as String

Description
Full path and name of the file that will contain the generated documentation. In case of HTML output, additional
'.png' files will be generated based on this filename. The default value for this property is an empty string and
needs to be replaced before using this object in a call to Document.GenerateSchemaDocumentation .

Errors

1765

1765

1945

1765

1838 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.23 OutputFileDialogAction

Property: OutputFileDialogAction as SPYDialogAction

Description
To allow the user to select the output file with a file selection dialog, set this property to spyDialogUserInput(2).
If the value stored in OutputFile should be taken and no user interaction should occur, use spyDialogOK(0).
Default is spyDialogOK.

Errors

2900 The object is no longer valid.

2901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.24.24 OutputFormat

Property: OutputFormat as SPYSchemaDocumentationFormat

Description
Defines the kind of documentation that will be generated: HTML (value=0), MS-Word (value=1), or RTF
(value=2). The property gets initialized with the value used during the last call to
Document.GenerateSchemaDocumentation . The default for the first run is HTML.

Errors

2900 The object is no longer valid.

2901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.24.25 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1945

1837

1952

1765

1743

© 2018-2024 Altova GmbH

Application API 1839Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.24.26 ShowAnnotations

Property: ShowAnnotations as Boolean

Description
Set this property to true, to show the annotations to a type definition in the schema documentation. The
property is initialized with the value used during the last call to Document.GenerateSchemaDocumentation .
The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.27 ShowAttributes

Property: ShowAttributes as Boolean

Description
Set this property to true, to show the type definitions attributes in the schema documentation. The property is
initialized with the value used during the last call to Document.GenerateSchemaDocumentation . The default
for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.28 ShowChildren

Property: ShowChildren as Boolean

Description
Set this property to true, to show the children of a type definition as links in the schema documentation. The
property is initialized with the value used during the last call to Document.GenerateSchemaDocumentation .
The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1765

1765

1765

1840 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.24.29 ShowDiagram

Property: ShowDiagram as Boolean

Description
Set this property to true, to show type definitions as diagrams in the schema documentation. The property is
initialized with the value used during the last call to Document.GenerateSchemaDocumentation . The default
for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.30 ShowEnumerations

Property: ShowEnumerations as Boolean

Description
Set this property to true, to show the enumerations contained in a type definition in the schema documentation.
The property is initialized with the value used during the last call to
Document.GenerateSchemaDocumentation . The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.31 ShowIdentityConstraints

Property: ShowIdentityConstraints as Boolean

Description
Set this property to true, to show a type definitions identity constraints in the schema documentation. The
property is initialized with the value used during the last call to Document.GenerateSchemaDocumentation .
The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1765

1765

1765

© 2018-2024 Altova GmbH

Application API 1841Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.24.32 ShowNamespace

Property: ShowNamespace as Boolean

Description
Set this property to true, to show the namespace of type definitions in the schema documentation. The
property is initialized with the value used during the last call to Document.GenerateSchemaDocumentation .
The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.33 ShowPatterns

Property: ShowPatterns as Boolean

Description
Set this property to true, to show the patterns of a type definition in the schema documentation. The property is
initialized with the value used during the last call to Document.GenerateSchemaDocumentation . The default
for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.34 ShowProgressBar

Property: ShowProgressBar as Boolean

Description
Set this property to true, to make the window showing the document generation progress visible. Use false, to
hide it. Default is false.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.35 ShowProperties

Property: ShowProperties as Boolean

1765

1765

1842 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Set this property to true, to show the type definition properties in the schema documentation. The property is
initialized with the value used during the last call to Document.GenerateSchemaDocumentation . The default
for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.36 ShowResult

Property: ShowResult as Boolean

Description
Set this property to true, to automatically open the resulting document when generation was successful. HTML
documentation will be opened in XMLSpy. To show Word documentation, MS-Word will be started. The
property gets initialized with the value used during the last call to
Document.GenerateSchemaDocumentation . The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.37 ShowSingleFacets

Property: ShowSingleFacets as Boolean

Description
Set this property to true, to show the facets of a type definition in the schema documentation. The property is
initialized with the value used during the last call to Document.GenerateSchemaDocumentation . The default
for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.38 ShowSourceCode

Property: ShowSourceCode as Boolean

Description
Set this property to true, to show the XML source code for type definitions in the schema documentation. The
property is initialized with the value used during the last call to Document.GenerateSchemaDocumentation .
The default for the first run is true.

1765

1765

1765

1765

© 2018-2024 Altova GmbH

Application API 1843Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.39 ShowType

Property: ShowType as Boolean

Description
Set this property to true, to show the type of type definitions in the schema documentation. The property is
initialized with the value used during the last call to Document.GenerateSchemaDocumentation . The default
for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.40 ShowUsedBy

Property: ShowUsedBy as Boolean

Description
Set this property to true, to show the used-by relation for type definitions in the schema documentation. The
property is initialized with the value used during the last call to Document.GenerateSchemaDocumentation .
The default for the first run is true.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.24.41 SPSFile

Property: SPSFile as String

Description
Full path and name of the SPS file that will be used to generate the documentation.

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

1765

1765

1844 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.24.42 UseFixedDesign

Property: UseFixedDesign as Boolean

Description
Specifies whether the documentation should be created with a fixed design or with a design specified by a SPS
file (which requires StyleVision).

Errors

2900 The object is no longer valid.

2901 Invalid address for the return parameter was specified.

30.3.2.25 SpyProject

Methods
CloseProject
SaveProject
SaveProjectAs

Properties
RootItems
ProjectFile

Description
SpyProject Class

30.3.2.25.1 CloseProject

Declaration: CloseProject(bDiscardChanges as Boolean, bCloseFiles as Boolean, bDialog as Boolean)

Parameters
bDiscardChanges
Set bDiscardChanges to FALSE if you want to save the changes of the open project files and the project.

bCloseFiles
Set bCloseFiles to TRUE to close all open project files.

bDialog
Show dialogs for user input.

Description
CloseProject closes the current project.

1844

1845

1845

1845

1845

© 2018-2024 Altova GmbH

Application API 1845Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.25.2 ProjectFile

Declaration: ProjectFile as String

Description
Path and filename of the project.

30.3.2.25.3 RootItems

Declaration: RootItems as SpyProjectItems

Description
Root level of collection of project items.

30.3.2.25.4 SaveProject

Declaration: SaveProject

Description
SaveProject saves the current project.

30.3.2.25.5 SaveProjectAs

Declaration: SaveProjectAs (strPath as String, bDialog as Boolean)

Parameters
strPath
Full path with file name of new project file.

bDialog
If bDialog is TRUE, a file-dialog will be displayed.

Description
SaveProjectAs stores the project data into a new location.

30.3.2.26 SpyProjectItem

Methods
Open

Properties
ChildItems
ParentItem
FileExtensions
ItemType
Name

1848

1846

1846

1847

1846

1846

1846

1846 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Path
ValidateWith
XMLForXSLTransformation
XSLForXMLTransformation
XSLTransformationFileExtension
XSLTransformationFolder

Description
SpyProjectItem Class

30.3.2.26.1 ChildItems

Declaration: ChildItems as SpyProjectItems

Description
If the item is a folder, ChildItems is the collection of the folder content.

30.3.2.26.2 FileExtensions

Declaration: FileExtensions as String

Description
Used to set the file extensions if the project item is a folder.

30.3.2.26.3 ItemType

Declaration: ItemType as SPYProjectItemTypes

Description
This property is read-only.

30.3.2.26.4 Name

Declaration: Name as String

Description
Name of the project item. This property is read-only.

30.3.2.26.5 Open

Declaration: Open as Document

Return Value
The project item opened as document.

Description

1847

1847

1847

1847

1847

1848

1848

1949

1747

© 2018-2024 Altova GmbH

Application API 1847Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Opens the project item.

30.3.2.26.6 ParentItem

Declaration: ParentItem as SpyProjectItem

Description
Parent item of the current project item. Can be NULL (Nothing) if the project item is a top-level item.

30.3.2.26.7 Path

Declaration: Path as String

Description
Path of project item. This property is read-only.

30.3.2.26.8 ValidateWith

Declaration: ValidateWith as String

Description
Used to set the schema/DTD for validation.

30.3.2.26.9 XMLForXSLTransformation

Declaration: XMLForXSLTransformation as String

Description
Used to set the XML for XSL transformation.

30.3.2.26.10 XSLForXMLTransformation

Declaration: XSLForXMLTransformation as String

Description
Used to set the XSL for XML transformation.

30.3.2.26.11 XSLTransformationFileExtension

Declaration: XSLTransformationFileExtension as String

Description
Used to set the file extension for XSL transformation output files.

1845

1848 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.26.12 XSLTransformationFolder

Declaration: XSLTransformationFolder as String

Description
Used to set the destination folder for XSL transformation output files.

30.3.2.27 SpyProjectItems

Methods
AddFile
AddFolder
AddURL
RemoveItem

Properties
Count
Item

Description
SpyProjectItems Class

30.3.2.27.1 AddFile

Declaration: AddFile (strPath as String)

Parameters

strPath
Full path with file name of new project item

Description
The method adds a new file to the collection of project items.

30.3.2.27.2 AddFolder

Declaration: AddFolder (strName as String)

Parameters

strName
Name of the new folder.

Description
The method AddFolder adds a folder with the name strName to the collection of project items.

1848

1848

1849

1849

1849

1849

© 2018-2024 Altova GmbH

Application API 1849Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.27.3 AddURL

Declaration: AddURL (strURL as String, nURLType as SPYURLTypes , strUser as String, strPassword as
String, bSave as Boolean)

Description

strURL
URL to open as document.

nURLType
Type of document to open. Set to -1 for auto detection.

strUser
Name of the user if required. Can be empty.

strPassword
Password for authentification. Can be empty.

bSave
Save user and password information.

Description
The method adds an URL item to the project collection.

30.3.2.27.4 Count

Declaration: Count as long

Description
This property gets the count of project items in the collection. The property is read-only.

30.3.2.27.5 Item

Declaration: Item (n as long) as SpyProjectItem

Description
Retrieves the n-th element of the collection of project items. The first item has index 1.

30.3.2.27.6 RemoveItem

Declaration: RemoveItem (pItem as SpyProjectItem)

Description
RemoveItem deletes the item pItem from the collection of project items.

1953

1845

1845

1850 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.28 TextImportExportSettings

Properties for import only
ImportFile

Properties for export only
DestinationFolder
FileExtension
CommentIncluded
RemoveDelimiter
RemoveNewline

Properties for import and export
HeaderRow
FieldDelimiter
EnclosingCharacter
Encoding
EncodingByteOrder

Description
TextImportExportSettings contains options common to text import and export functions.

30.3.2.28.1 CommentIncluded

Property: CommentIncluded as Boolean

Description
This property tells whether additional comments are added to the generated text file. Default is true. This
property is used only when exporting to text files.

30.3.2.28.2 DestinationFolder

Property: DestinationFolder as String

Description
The property DestinationFolder sets the folder where the created files are saved during text export.

30.3.2.28.3 EnclosingCharacter

Property: EnclosingCharacter as SPYTextEnclosing

Description
This property defines the character that encloses all field values for import and export. Default is
spyNoEnclosing .

1851

1850

1851

1850

1852

1852

1851

1851

1850

1851

1851

1953

1953

© 2018-2024 Altova GmbH

Application API 1851Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.28.4 Encoding

Property: Encoding as String

Description
The property Encoding sets the character encoding for the text files for importing and exporting.

30.3.2.28.5 EncodingByteOrder

Property: EncodingByteOrder as SPYEncodingByteOrder

Description
The property EncodingByteOrder sets the byte order for Unicode characters. Default is spyNONE .

30.3.2.28.6 FieldDelimiter

Property: FieldDelimiter as SPYTextDelimiters

Description
The property FieldDelimiter defines the delimiter between the fields during import and export. Default is
spyTabulator .

30.3.2.28.7 FileExtension

Property: FileExtension as String

Description
This property sets the file extension for files created on text export.

30.3.2.28.8 HeaderRow

Property: HeaderRow as Boolean

Description
The property HeaderRow is used during import and export. Set HeaderRow true on import, if the first line of the
text file contains the names of the columns. Set HeaderRow true on export, if the first line in the created text
files should contain the name of the columns. Default value is true.

30.3.2.28.9 ImportFile

Property: ImportFile as String

Description

1946

1946

1952

1952

1852 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

This property is used to set the text file for import. The string has to be a full qualified path. See also Import and
Export .

30.3.2.28.10 RemoveDelimiter

Property: RemoveDelimiter as Boolean

Description
The property RemoveDelimiter defines whether characters in the text that are equal to the delimiter character
are removed. Default is false. This property is used only when exporting to text files.

30.3.2.28.11 RemoveNewline

Property: RemoveNewline as Boolean

Description
The property RemoveNewline defines whether newline characters in the text are removed. Default is false. This
property is used only when exporting to text files.

30.3.2.29 TextView

Properties and Methods

Application
Parent

LineFromPosition
PositionFromLine
LineLength
SelText
GetRangeText
ReplaceText
MoveCaret
GoToLineChar
SelectText
SelectionStart
SelectionEnd
Text
LineCount
Length

Description

1624

1854

1856

1855

1856

1855

1857

1854

1856

1856

1854

1857

1857

1857

1858

1855

1855

© 2018-2024 Altova GmbH

Application API 1853Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.29.1 Events

30.3.2.29.1.1 OnBeforeShowSuggestions

Event: OnBeforeShowSuggestions() as Boolean

Description
This event gets fired before a suggestion window is shown. The Document property Suggestions
contains a string array that is recommended to the user. It is possible to modify the displayed
recommendations during this event. Before doing so you have to assign an empty array to the Suggestions
property. The best location for this is the OnDocumentOpened event. To prevent the suggestion window to
show up return false and true to continue its display.

Examples
Given below are examples of how this event can be scripted.

XMLSpy scripting environment - VBScript:
Function On_BeforeShowSuggestions()
End Function

XMLSpy scripting environment - JScript:
function On_BeforeShowSuggestions()
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (33, ...) // nEventId = 33

30.3.2.29.1.2 OnChar

Event: OnChar(nChar as Long, bExistSuggestion as Boolean) as Boolean

Description
This event gets fired on each key stroke. The parameter nChar is the key that was pressed and
bExistSuggestions tells whether a XMLSpy generated suggestions window is displayed after this key. The
Document property Suggestions contains a string array that is recommended to the user. It is possible
to modify the displayed recommendations during this event. Before doing so you have to assign an empty array
to the Suggestions property. The best location for this is the OnDocumentOpened event. To prevent the
suggestion window to show up return false and true to continue its display.
It is also possible to create a new suggestions window when none is provided by XMLSpy. Set the
Document property Suggestions to a string array with your recommendations and return true.
This event is fired before the OnBeforeShowSuggestions event. If you prevent to show the suggestion
window by returning false then OnBeforeShowSuggestions is not fired.

Examples
Given below are examples of how this event can be scripted.

1747 1776

1776

1657

1747 1776

1776 1657

1747 1776

1853

1853

1854 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XMLSpy scripting environment - VBScript:
Function On_Char(nChar, bExistSuggestions)
End Function

XMLSpy scripting environment - JScript:
function On_Char(nChar, bExistSuggestions)
{
}

XMLSpy IDE Plugin:
IXMLSpyPlugIn.OnEvent (35, ...) // nEventId = 35

30.3.2.29.2 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.3 GetRangeText

Method: GetRangeText(nStart as Long, nEnd as Long) as String

Description
Returns the text in the specified range.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.4 GoToLineChar

Method: GoToLineChar(nLine as Long, nChar as Long)

Description
Moves the caret to the specified line and character position.

Errors

3900 The object is no longer valid.

1654

© 2018-2024 Altova GmbH

Application API 1855Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

3901 Invalid address for the return parameter was specified.

30.3.2.29.5 Length

Property: Length as Long

Description
Returns the character count of the document.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.6 LineCount

Property: LineCount as Long

Description
Returns the number of lines in the document.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.7 LineFromPosition

Method: LineFromPosition(nCharPos as Long) as Long

Description
Returns the line number of the character position.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.8 LineLength

Method: LineLength(nLine as Long) as Long

Description
Returns the length of the line.

Errors

1856 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.9 MoveCaret

Method: MoveCaret(nDiff as Long)

Description
Moves the caret nDiff characters.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.10 Parent

Property: Parent as Document (read-only)

Description
Access the parent of the object.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.11 PositionFromLine

Method: PositionFromLine(nLine as Long) as Long

Description
Returns the start position of the line.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.12 ReplaceText

Method: ReplaceText(nPosFrom as Long, nPosTill as Long, sText as String)

Description
Replaces the text in the specified range.

1747

© 2018-2024 Altova GmbH

Application API 1857Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.13 SelectionEnd

Property: SelectionEnd as Long

Description
Returns/sets the text selection end position.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.14 SelectionStart

Property: SelectionStart as Long

Description
Returns/sets the text selection start position.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.15 SelectText

Method: SelectText(nPosFrom as Long, nPosTill as Long)

Description
Selects the text in the specified range.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.16 SelText

Property: SelText as String

Description
Returns/sets the selected text.

1858 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.29.17 Text

Property: Text as String

Description
Returns/sets the document text.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30 WSDLDocumentationDlg

Properties and Methods

Standard automation properties
Application
Parent

Interaction and visibility properties
GlobalElementsAndTypesOnly
OptionsDialogAction
OutputFile
OutputFileDialogAction
SeparateSchemaDocument
ShowProgressBar
ShowResult

Document generation options and methods
OutputFormat
UseFixedDesign
SPSFile
EmbedDiagrams
DiagramFormat
MultipleOutputFiles
EmbedCSSInHTML
CreateDiagramsFolder

IncludeAll
IncludeBinding
IncludeImportedWSDLFiles
IncludeMessages
IncludeOverview
IncludePortType
IncludeService

1859

1865

1861

1864

1864

1865

1865

1868

1868

1865

1869

1870

1861

1860

1864

1860

1860

1861

1861

1862

1862

1862

1863

1863

© 2018-2024 Altova GmbH

Application API 1859Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

IncludeTypes

AllDetails
ShowBindingDiagram
ShowExtensibility
ShowMessageParts
ShowPort
ShowPortTypeDiagram
ShowPortTypeOperations
ShowServiceDiagram
ShowSourceCode
ShowTypesDiagram
ShowUsedBy

Description
This object combines all options for WSDL document generation as they are available through user interface
dialog boxes in XMLSpy. The document generation options are initialized with the values used during the last
generation of WSDL documentation. However, before using the object you have to set the OutputFile
property to a valid file path. Use OptionsDialogAction , OutputFileDialogAction and
ShowProgressBar to specify the level of user interaction desired. You can use IncludeAll and
AllDetails to set whole option groups at once or the individual properties to operate on a finer granularity.

30.3.2.30.1 AllDetails

Method: AllDetails (i_bDetailsOn as Boolean)

Description
Use this method to turn all details options on or off.

Errors

4300 The object is no longer valid.

30.3.2.30.2 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

1863

1859

1866

1866

1866

1867

1867

1867

1868

1868

1869

1869

1864

1864 1864

1868 1861

1859

1654

1860 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.30.3 CreateDiagramsFolder

Property: CreateDiagramsFolder as Boolean

Description
Set this property to true, to create a directory for the created images. Otherwise the diagrams will be created
next to the documentation. This property is only available when the diagrams are not embedded. The property
is initialized with the value used during the last call to Document.GenerateWSDLDocumentation . The
default for the first run is false.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.4 DiagramFormat

Property: DiagramFormat as SPYImageKind

Description
This property specifies the generated diagram image type. This property is not available for HTML
documentation. The property is initialized with the value used during the last call to
Document.GenerateWSDLDocumentation . The default for the first run is PNG.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.5 EmbedCSSInHTML

Property: EmbedCSSInHTML as Boolean

Description
Set this property to true, to embed the CSS data in the generated HTML document. Otherwise a separate file
will be created and linked. This property is only available for HTML documentation. The property is initialized
with the value used during the last call to Document.GenerateWSDLDocumentation . The default for the first
run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

1766

1947

1766

1766

© 2018-2024 Altova GmbH

Application API 1861Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.30.6 EmbedDiagrams

Property: EmbedDiagrams as Boolean

Description
Set this property to true, to embed the diagrams in the generated document. This property is not available for
HTML documentation. The property is initialized with the value used during the last call to
Document.GenerateWSDLDocumentation . The default for the first run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.7 GlobalElementsAndTypesOnly

Property: GlobalElementsAndTypesOnly as Boolean

Description
Returns/sets a value indicating whether a full Schema documentation is done or only Global Elements and
Types are documented.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.8 IncludeAll

Method: IncludeAll (i_bInclude as Boolean)

Description
Use this method to mark or unmark all include options.

Errors

4300 The object is no longer valid.

30.3.2.30.9 IncludeBinding

Property: IncludeBinding as Boolean

Description

1766

1862 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Set this property to true, to include bindings in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run is
true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.10 IncludeImportedWSDLFiles

Property: IncludeImportedWSDLFiles as Boolean

Description
Set this property to true, to include imported WSDL files in the WSDL documentation. The property is
initialized with the value used during the last call to Document.GenerateWSDLDocumentation . The default
for the first run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.11 IncludeMessages

Property: IncludeMessages as Boolean

Description
Set this property to true, to include messages in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run is
true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.12 IncludeOverview

Property: IncludeOverview as Boolean

Description
Set this property to true, to include an overview in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run is
true.

Errors

1766

1766

1766

1766

© 2018-2024 Altova GmbH

Application API 1863Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.13 IncludePortType

Property: IncludePortType as Boolean

Description
Set this property to true, to include port types in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run is
true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.14 IncludeService

Property: IncludeService as Boolean

Description
Set this property to true, to include services in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run is
true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.15 IncludeTypes

Property: IncludeTypes as Boolean

Description
Set this property to true, to include types in the WSDL documentation. The property is initialized with the value
used during the last call to Document.GenerateWSDLDocumentation . The default for the first run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

1766

1766

1766

1864 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.30.16 MultipleOutputFiles

Property: MultipleOutputFiles as Boolean

Description
Set this property to true, to split the documentation files. The property is initialized with the value used during
the last call to Document.GenerateWSDLDocumentation . The default for the first run is false.

Errors

3900 The object is no longer valid.

3901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.30.17 OptionsDialogAction

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react on the dialog, set this property to
the value spyDialogUserInput(2). If you want your script to define all the options in the schema documentation
dialog without any user interaction necessary, use spyDialogOK(0). Default is spyDialogOK.

Errors

3900 The object is no longer valid.

3901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.30.18 OutputFile

Property: OutputFile as String

Description
Full path and name of the file that will contain the generated documentation. In case of HTML output, additional
'.png' files will be generated based on this filename. The default value for this property is an empty string and
needs to be replaced before using this object in a call to Document.GenerateWSDLDocumentation .

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

1766

1945

1766

© 2018-2024 Altova GmbH

Application API 1865Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.30.19 OutputFileDialogAction

Property: OutputFileDialogAction as SPYDialogAction

Description
To allow the user to select the output file with a file selection dialog, set this property to spyDialogUserInput(2).
If the value stored in OutputFile should be taken and no user interaction should occur, use spyDialogOK(0).
Default is spyDialogOK.

Errors

3900 The object is no longer valid.

3901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.30.20 OutputFormat

Property: OutputFormat as SPYSchemaDocumentationFormat

Description
Defines the kind of documentation that will be generated: HTML (value=0), MS-Word (value=1), or RTF
(value=2). The property gets initialized with the value used during the last call to
Document.GenerateWSDLDocumentation . The default for the first run is HTML.

Errors

3900 The object is no longer valid.

3901 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.30.21 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.22 SeparateSchemaDocument

Property: SeparateSchemaDocument as Boolean

1945

1864

1952

1766

1743

1866 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Returns/sets a value indicating whether the Schema documentation should be placed in a separate document.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.23 ShowBindingDiagram

Property: ShowBindingDiagram as Boolean

Description
Set this property to true, to show binding diagrams in the WSDL documentation. The property is initialized with
the value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run
is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.24 ShowExtensibility

Property: ShowExtensibility as Boolean

Description
Set this property to true, to show service and binding extensibilities in the WSDL documentation. The property
is initialized with the value used during the last call to Document.GenerateWSDLDocumentation . The
default for the first run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.25 ShowMessageParts

Property: ShowMessageParts as Boolean

Description
Set this property to true, to show message parts of messges in the WSDL documentation. The property is
initialized with the value used during the last call to Document.GenerateWSDLDocumentation . The default
for the first run is true.

Errors

1766

1766

1766

© 2018-2024 Altova GmbH

Application API 1867Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.26 ShowPort

Property: ShowPort as Boolean

Description
Set this property to true, to show service ports in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run is
true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.27 ShowPortTypeDiagram

Property: ShowPortTypeDiagram as Boolean

Description
Set this property to true, to show port type diagrams in the WSDL documentation. The property is initialized
with the value used during the last call to Document.GenerateWSDLDocumentation . The default for the first
run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.28 ShowPortTypeOperations

Property: ShowPortTypeOperations as Boolean

Description
Set this property to true, to show port type operations in the WSDL documentation. The property is initialized
with the value used during the last call to Document.GenerateWSDLDocumentation . The default for the first
run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

1766

1766

1766

1868 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.30.29 ShowProgressBar

Property: ShowProgressBar as Boolean

Description
Set this property to true, to make the window showing the document generation progress visible. Use false, to
hide it. Default is false.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.30 ShowResult

Property: ShowResult as Boolean

Description
Set this property to true, to automatically open the resulting document when generation was successful. HTML
documentation will be opened in XMLSpy. To show Word documentation, MS-Word will be started. The
property gets initialized with the value used during the last call to Document.GenerateWSDLDocumentation .
The default for the first run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.31 ShowServiceDiagram

Property: ShowServiceDiagram as Boolean

Description
Set this property to true, to show service diagrams in the WSDL documentation. The property is initialized with
the value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run
is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.32 ShowSourceCode

Property: ShowSourceCode as Boolean

1766

1766

© 2018-2024 Altova GmbH

Application API 1869Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
Set this property to true, to show source code for the includes in the WSDL documentation. The property is
initialized with the value used during the last call to Document.GenerateWSDLDocumentation . The default
for the first run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.33 ShowTypesDiagram

Property: ShowTypesDiagram as Boolean

Description
Set this property to true, to show type diagrams in the WSDL documentation. The property is initialized with
the value used during the last call to Document.GenerateWSDLDocumentation . The default for the first run
is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.34 ShowUsedBy

Property: ShowUsedBy as Boolean

Description
Set this property to true, to show the used-by relation for types, bindings and messages definitions in the
WSDL documentation. The property is initialized with the value used during the last call to
Document.GenerateWSDLDocumentation . The default for the first run is true.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.35 UseFixedDesign

Property: UseFixedDesign as Boolean

Description
Specifies whether the documentation should be created with a fixed design or with a design specified by a SPS
file (which requires StyleVision).

1766

1766

1766

1870 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.30.36 SPSFile

Property: SPSFile as String

Description
Full path and name of the SPS file that will be used to generate the documentation.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.31 WSDL20DocumentationDlg

Properties and Methods

Standard automation properties
Application
Parent

Interaction and visibility properties
GlobalElementsAndTypesOnly
OptionsDialogAction
OutputFile
OutputFileDialogAction
SeparateSchemaDocument
ShowProgressBar
ShowResult

Document generation options and methods
OutputFormat
UseFixedDesign
SPSFile
EmbedDiagrams
DiagramFormat
MultipleOutputFiles
EmbedCSSInHTML
CreateDiagramsFolder

IncludeAll
IncludeBinding
IncludeImportedWSDLFiles
IncludeInterface
IncludeOverview

1871

1877

1873

1876

1876

1876

1877

1879

1880

1877

1881

1881

1873

1872

1875

1872

1872

1873

1873

1874

1874

1874

© 2018-2024 Altova GmbH

Application API 1871Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

IncludeService
IncludeTypes

AllDetails
ShowBindingDiagram
ShowExtensibility
ShowEndpoint
ShowFault
ShowInterfaceDiagram
ShowOperation
ShowServiceDiagram
ShowSourceCode
ShowTypesDiagram
ShowUsedBy

Description
This object combines all options for WSDL document generation as they are available through user interface
dialog boxes in XMLSpy. The document generation options are initialized with the values used during the last
generation of WSDL documentation. However, before using the object you have to set the OutputFile
property to a valid file path. Use OptionsDialogAction , OutputFileDialogAction and
ShowProgressBar to specify the level of user interaction desired. You can use IncludeAll and
AllDetails to set whole option groups at once or the individual properties to operate on a finer granularity.

30.3.2.31.1 AllDetails

Method: AllDetails (i_bDetailsOn as Boolean)

Description
Use this method to turn all details options on or off.

Errors

4300 The object is no longer valid.

30.3.2.31.2 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

1875

1875

1871

1877

1878

1878

1878

1879

1879

1880

1880

1881

1881

1876

1876 1876

1879 1873

1871

1654

1872 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.31.3 CreateDiagramsFolder

Property: CreateDiagramsFolder as Boolean

Description
Set this property to true, to create a directory for the created images. Otherwise the diagrams will be created
next to the documentation. This property is only available when the diagrams are not embedded. The property
is initialized with the value used during the last call to Document.GenerateWSDL20Documentation . The
default for the first run is false.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.4 DiagramFormat

Property: DiagramFormat as SPYImageKind

Description
This property specifies the generated diagram image type. This property is not available for HTML
documentation. The property is initialized with the value used during the last call to
Document.GenerateWSDL20Documentation . The default for the first run is PNG.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.5 EmbedCSSInHTML

Property: EmbedCSSInHTML as Boolean

Description
Set this property to true, to embed the CSS data in the generated HTML document. Otherwise a separate file
will be created and linked. This property is only available for HTML documentation. The property is initialized
with the value used during the last call to Document.GenerateWSDL20Documentation . The default for the
first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

1765

1947

1765

1765

© 2018-2024 Altova GmbH

Application API 1873Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.31.6 EmbedDiagrams

Property: EmbedDiagrams as Boolean

Description
Set this property to true, to embed the diagrams in the generated document. This property is not available for
HTML documentation. The property is initialized with the value used during the last call to
Document.GenerateWSDL20Documentation . The default for the first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.7 GlobalElementsAndTypesOnly

Property: GlobalElementsAndTypesOnly as Boolean

Description
Returns/sets a value indicating whether a full Schema documentation is done or only Global Elements and
Types are documented.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.31.8 IncludeAll

Method: IncludeAll (i_bInclude as Boolean)

Description
Use this method to mark or unmark all include options.

Errors

4300 The object is no longer valid.

30.3.2.31.9 IncludeBinding

Property: IncludeBinding as Boolean

Description

1765

1874 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Set this property to true, to include bindings in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDL20Documentation . The default for the first run is
true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.10 IncludeImportedWSDLFiles

Property: IncludeImportedWSDLFiles as Boolean

Description
Set this property to true, to include imported WSDL files in the WSDL documentation. The property is
initialized with the value used during the last call to Document.GenerateWSDL20Documentation . The
default for the first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.11 IncludeInterface

Property: IncludeInterface as Boolean

Description
Set this property to true, to include interfaces in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDL20Documentation . The default for the first run is
true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.12 IncludeOverview

Property: IncludeOverview as Boolean

Description
Set this property to true, to include an overview in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDL20Documentation . The default for the first run is
true.

Errors

1765

1765

1765

1765

© 2018-2024 Altova GmbH

Application API 1875Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.13 IncludeService

Property: IncludeService as Boolean

Description
Set this property to true, to include services in the WSDL documentation. The property is initialized with the
value used during the last call to Document.GenerateWSDL20Documentation . The default for the first run is
true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.14 IncludeTypes

Property: IncludeTypes as Boolean

Description
Set this property to true, to include types in the WSDL documentation. The property is initialized with the value
used during the last call to Document.GenerateWSDL20Documentation . The default for the first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.15 MultipleOutputFiles

Property: MultipleOutputFiles as Boolean

Description
Set this property to true, to split the documentation files. The property is initialized with the value used during
the last call to Document.GenerateWSDL20Documentation . The default for the first run is false.

Errors

4300 The object is no longer valid.

4301 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

1765

1765

1765

1876 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.31.16 OptionsDialogAction

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react on the dialog, set this property to
the value spyDialogUserInput(2). If you want your script to define all the options in the schema documentation
dialog without any user interaction necessary, use spyDialogOK(0). Default is spyDialogOK.

Errors

4300 The object is no longer valid.

4301 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.31.17 OutputFile

Property: OutputFile as String

Description
Full path and name of the file that will contain the generated documentation. In case of HTML output, additional
'.png' files will be generated based on this filename. The default value for this property is an empty string and
needs to be replaced before using this object in a call to Document.GenerateWSDL20Documentation .

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.18 OutputFileDialogAction

Property: OutputFileDialogAction as SPYDialogAction

Description
To allow the user to select the output file with a file selection dialog, set this property to spyDialogUserInput(2).
If the value stored in OutputFile should be taken and no user interaction should occur, use spyDialogOK(0).
Default is spyDialogOK.

Errors

4300 The object is no longer valid.

4301 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

1945

1765

1945

1876

© 2018-2024 Altova GmbH

Application API 1877Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.31.19 OutputFormat

Property: OutputFormat as SPYSchemaDocumentationFormat

Description
Defines the kind of documentation that will be generated: HTML (value=0), MS-Word (value=1), or RTF
(value=2). The property gets initialized with the value used during the last call to
Document.GenerateWSDL20Documentation . The default for the first run is HTML.

Errors

4300 The object is no longer valid.

4301 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.31.20 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.21 SeparateSchemaDocument

Property: SeparateSchemaDocument as Boolean

Description
Returns/sets a value indicating whether the Schema documentation should be placed in a separate document.

Errors

3900 The object is no longer valid.

3901 Invalid address for the return parameter was specified.

30.3.2.31.22 ShowBindingDiagram

Property: ShowBindingDiagram as Boolean

Description

1952

1765

1743

1878 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Set this property to true, to show binding diagrams in the WSDL documentation. The property is initialized with
the value used during the last call to Document.GenerateWSDL20Documentation . The default for the first
run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.23 ShowEndpoint

Property: ShowEndpoint as Boolean

Description
Set this property to true, to show service endpoints in the WSDL documentation. The property is initialized with
the value used during the last call to Document.GenerateWSDL20Documentation . The default for the first
run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.24 ShowExtensibility

Property: ShowExtensibility as Boolean

Description
Set this property to true, to show service and binding extensibilities in the WSDL documentation. The property
is initialized with the value used during the last call to Document.GenerateWSDL20Documentation . The
default for the first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.25 ShowFault

Property: ShowFault as Boolean

Description
Set this property to true, to show faults in the WSDL documentation. The property is initialized with the value
used during the last call to Document.GenerateWSDL20Documentation . The default for the first run is true.

Errors

1765

1765

1765

1765

© 2018-2024 Altova GmbH

Application API 1879Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.26 ShowInterfaceDiagram

Property: ShowInterfaceDiagram as Boolean

Description
Set this property to true, to show interface diagrams in the WSDL documentation. The property is initialized
with the value used during the last call to Document.GenerateWSDL20Documentation . The default for the
first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.27 ShowOperation

Property: ShowOperation as Boolean

Description
Set this property to true, to show interface and binding operations in the WSDL documentation. The property is
initialized with the value used during the last call to Document.GenerateWSDL20Documentation . The
default for the first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.28 ShowProgressBar

Property: ShowProgressBar as Boolean

Description
Set this property to true, to make the window showing the document generation progress visible. Use false, to
hide it. Default is false.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

1765

1765

1880 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.31.29 ShowResult

Property: ShowResult as Boolean

Description
Set this property to true, to automatically open the resulting document when generation was successful. HTML
documentation will be opened in XMLSpy. To show Word documentation, MS-Word will be started. The
property gets initialized with the value used during the last call to
Document.GenerateWSDL20Documentation . The default for the first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.30 ShowServiceDiagram

Property: ShowServiceDiagram as Boolean

Description
Set this property to true, to show service diagrams in the WSDL documentation. The property is initialized with
the value used during the last call to Document.GenerateWSDL20Documentation . The default for the first
run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.31 ShowSourceCode

Property: ShowSourceCode as Boolean

Description
Set this property to true, to show source code for the includes in the WSDL documentation. The property is
initialized with the value used during the last call to Document.GenerateWSDL20Documentation . The
default for the first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

1765

1765

1765

© 2018-2024 Altova GmbH

Application API 1881Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.31.32 ShowTypesDiagram

Property: ShowTypesDiagram as Boolean

Description
Set this property to true, to show type diagrams in the WSDL documentation. The property is initialized with
the value used during the last call to Document.GenerateWSDL20Documentation . The default for the first
run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.33 ShowUsedBy

Property: ShowUsedBy as Boolean

Description
Set this property to true, to show the used-by relation for types, bindings and messages definitions in the
WSDL documentation. The property is initialized with the value used during the last call to
Document.GenerateWSDL20Documentation . The default for the first run is true.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.34 SPSFile

Property: SPSFile as String

Description
Full path and name of the SPS file that will be used to generate the documentation.

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.31.35 UseFixedDesign

Property: UseFixedDesign as Boolean

1765

1765

1882 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Specifies whether the documentation should be created with a fixed design or with a design specified by a SPS
file (which requires StyleVision).

Errors

4300 The object is no longer valid.

4301 Invalid address for the return parameter was specified.

30.3.2.32 XBRLDocumentationDlg

Properties and Methods

Standard automation properties
Application
Parent

Interaction and visibility properties
OptionsDialogAction
OutputFile
OutputFileDialogAction
ShowProgressBar
ShowResult

Document generation options and methods
OutputFormat
UseFixedDesign
SPSFile
EmbedDiagrams
DiagramFormat
EmbedCSSInHTML
CreateDiagramsFolder

IncludeAll
IncludeOverview
IncludeNamespacePrefixes
IncludeGlobalElements
IncludeDefinitionLinkroles
IncludePresentationLinkroles
IncludeCalculationLinkroles

AllDetails
ShowDiagram
ShowSubstitutiongroup
ShowItemtype
ShowBalance
ShowPeriod
ShowAbstract
ShowNillable
ShowLabels

1883

1888

1887

1887

1887

1891

1892

1888

1893

1893

1884

1884

1884

1883

1885

1886

1886

1886

1885

1886

1885

1883

1889

1892

1890

1889

1891

1889

1891

1890

© 2018-2024 Altova GmbH

Application API 1883Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

ShowReferences
ShowLinkbaseReferences

ShortQualifiedName
ShowImportedElements

Description
This object combines all options for XBRL document generation as they are available through user interface
dialog boxes in XMLSpy. The document generation options are initialized with the values used during the last
generation of XBRL documentation. However, before using the object you have to set the OutputFile
property to a valid file path. Use OptionsDialogAction , OutputFileDialogAction and ShowProgressBar
to specify the level of user interaction desired. You can use IncludeAll and AllDetails to set whole option
groups at once or the individual properties to operate on a finer granularity.

30.3.2.32.1 AllDetails

Method: AllDetails (i_bDetailsOn as Boolean)

Description
Use this method to turn all details options on or off.

Errors

4400 The object is no longer valid.

30.3.2.32.2 Application

Property: Application as Application (read-only)

Description
Access the XMLSpy application object.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.3 CreateDiagramsFolder

Property: CreateDiagramsFolder as Boolean

Description
Set this property to true, to create a directory for the created images. Otherwise the diagrams will be created
next to the documentation. This property is only available when the diagrams are not embedded. The property

1892

1890

1888

1889

1887

1887 1887 1891

1885 1883

1654

1884 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

is initialized with the value used during the last call to Document.GenerateXBRLDocumentation . The default
for the first run is false.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.4 DiagramFormat

Property: DiagramFormat as SPYImageKind

Description
This property specifies the generated diagram image type. This property is not available for HTML
documentation. The property is initialized with the value used during the last call to
Document.GenerateXBRLDocumentation . The default for the first run is PNG.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.5 EmbedCSSInHTML

Property: EmbedCSSInHTML as Boolean

Description
Set this property to true, to embed the CSS data in the generated HTML document. Otherwise a separate file
will be created and linked. This property is only available for HTML documentation. The property is initialized
with the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first
run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.6 EmbedDiagrams

Property: EmbedDiagrams as Boolean

Description
Set this property to true, to embed the diagrams in the generated document. This property is not available for
HTML documentation. The property is initialized with the value used during the last call to
Document.GenerateXBRLDocumentation . The default for the first run is true.

1766

1947

1766

1766

1766

© 2018-2024 Altova GmbH

Application API 1885Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.7 IncludeAll

Method: IncludeAll (i_bInclude as Boolean)

Description
Use this method to mark or unmark all include options.

Errors

4400 The object is no longer valid.

30.3.2.32.8 IncludeCalculationLinkroles

Property: IncludeCalculationLinkroles as Boolean

Description
Set this property to true, to include calculation linkroles in the XBRL documentation. The property is initialized
with the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first
run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.9 IncludeDefinitionLinkroles

Property: IncludeDefinitionLinkroles as Boolean

Description
Set this property to true, to include definition linkroles in the XBRL documentation. The property is initialized
with the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first
run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

1766

1766

1886 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.32.10 IncludeGlobalElements

Property: IncludeGlobalElements as Boolean

Description
Set this property to true, to include global elements in the XBRL documentation. The property is initialized with
the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is
true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.11 IncludeNamespacePrefixes

Property: IncludeNamespacePrefixes as Boolean

Description
Set this property to true, to include namespace prefixes in the XBRL documentation. The property is initialized
with the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first
run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.12 IncludeOverview

Property: IncludeOverview as Boolean

Description
Set this property to true, to include an overview in the XBRL documentation. The property is initialized with the
value used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is
true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.13 IncludePresentationLinkroles

Property: IncludePresentationLinkroles as Boolean

Description

1766

1766

1766

© 2018-2024 Altova GmbH

Application API 1887Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Set this property to true, to include presentation linkroles in the XBRL documentation. The property is initialized
with the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first
run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.14 OptionsDialogAction

Property: OptionsDialogAction as SPYDialogAction

Description
To allow your script to fill in the default values and let the user see and react on the dialog, set this property to
the value spyDialogUserInput(2). If you want your script to define all the options in the schema documentation
dialog without any user interaction necessary, use spyDialogOK(0). Default is spyDialogOK.

Errors

4400 The object is no longer valid.

4401 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.32.15 OutputFile

Property: OutputFile as String

Description
Full path and name of the file that will contain the generated documentation. In case of HTML output, additional
'.png' files will be generated based on this filename. The default value for this property is an empty string and
needs to be replaced before using this object in a call to Document.GenerateXBRLDocumentation .

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.16 OutputFileDialogAction

Property: OutputFileDialogAction as SPYDialogAction

Description
To allow the user to select the output file with a file selection dialog, set this property to spyDialogUserInput(2).
If the value stored in OutputFile should be taken and no user interaction should occur, use spyDialogOK(0).
Default is spyDialogOK.

Errors

1766

1945

1766

1945

1887

1888 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

4400 The object is no longer valid.

4401 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.32.17 OutputFormat

Property: OutputFormat as SPYSchemaDocumentationFormat

Description
Defines the kind of documentation that will be generated: HTML (value=0), MS-Word (value=1), or RTF
(value=2). The property gets initialized with the value used during the last call to
Document.GenerateXBRLDocumentation . The default for the first run is HTML.

Errors

4400 The object is no longer valid.

4401 Invalid value has been used to set the property.
Invalid address for the return parameter was specified.

30.3.2.32.18 Parent

Property: Parent as Dialogs (read-only)

Description
Access the parent of the object.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.19 ShortQualifiedName

Property: ShortQualifiedName as Boolean

Description
Set this property to true, to use short qualified names in the XBRL documentation. The property is initialized
with the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first
run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

1952

1766

1743

1766

© 2018-2024 Altova GmbH

Application API 1889Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.32.20 ShowAbstract

Property: ShowAbstract as Boolean

Description
Set this property to true, to show abstracts in the XBRL documentation. The property is initialized with the
value used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is
true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.21 ShowBalance

Property: ShowBalance as Boolean

Description
Set this property to true, to show balances in the XBRL documentation. The property is initialized with the value
used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.22 ShowDiagram

Property: ShowDiagram as Boolean

Description
Set this property to true, to show diagrams in the XBRL documentation. The property is initialized with the value
used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.23 ShowImportedElements

Property: ShowImportedElements as Boolean

1766

1766

1766

1890 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Set this property to true, to show imported elements in the XBRL documentation. The property is initialized with
the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is
true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.24 ShowItemtype

Property: ShowItemtype as Boolean

Description
Set this property to true, to show item types in the XBRL documentation. The property is initialized with the
value used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is
true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.25 ShowLabels

Property: ShowLabels as Boolean

Description
Set this property to true, to show labels in the XBRL documentation. The property is initialized with the value
used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.26 ShowLinkbaseReferences

Property: ShowLinkbaseReferences as Boolean

Description
Set this property to true, to show linkbase references in the XBRL documentation. The property is initialized
with the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first
run is true.

1766

1766

1766

1766

© 2018-2024 Altova GmbH

Application API 1891Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.27 ShowNillable

Property: ShowNillable as Boolean

Description
Set this property to true, to show nillable properties in the XBRL documentation. The property is initialized with
the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is
true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.28 ShowPeriod

Property: ShowPeriod as Boolean

Description
Set this property to true, to show periods in the XBRL documentation. The property is initialized with the value
used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.29 ShowProgressBar

Property: ShowProgressBar as Boolean

Description
Set this property to true, to make the window showing the document generation progress visible. Use false, to
hide it. Default is false.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

1766

1766

1892 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.32.30 ShowReferences

Property: ShowReferences as Boolean

Description
Set this property to true, to show references in the XBRL documentation. The property is initialized with the
value used during the last call to Document.GenerateXBRLDocumentation . The default for the first run is
true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.31 ShowResult

Property: ShowResult as Boolean

Description
Set this property to true, to automatically open the resulting document when generation was successful. HTML
documentation will be opened in XMLSpy. To show Word documentation, MS-Word will be started. The
property gets initialized with the value used during the last call to Document.GenerateXBRLDocumentation .
The default for the first run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.32 ShowSubstitutiongroup

Property: ShowSubstitutiongroup as Boolean

Description
Set this property to true, to show substitution groups in the XBRL documentation. The property is initialized
with the value used during the last call to Document.GenerateXBRLDocumentation . The default for the first
run is true.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

1766

1766

1766

© 2018-2024 Altova GmbH

Application API 1893Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.32.33 SPSFile

Property: SPSFile as String

Description
Full path and name of the SPS file that will be used to generate the documentation.

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.32.34 UseFixedDesign

Property: UseFixedDesign as Boolean

Description
Specifies whether the documentation should be created with a fixed design or with a design specified by a SPS
file (which requires StyleVision).

Errors

4400 The object is no longer valid.

4401 Invalid address for the return parameter was specified.

30.3.2.33 XMLData

Properties
Kind
Name
TextValue

HasChildren
MayHaveChildren
Parent

Methods
GetFirstChild
GetNextChild
GetCurrentChild

InsertChild
InsertChildAfter
InsertChildBefore
AppendChild

EraseAllChildren

1903

1904

1905

1901

1904

1904

1899

1900

1899

1902

1902

1903

1894

1896

1894 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

EraseChild
EraseCurrentChild

IsSameNode

CountChildren
CountChildrenKind

GetChild
GetChildAttribute
GetChildElement
GetChildKind
GetNamespacePrefixForURI

HasChildrenKind
SetTextValueXMLEncoded

Description
The XMLData interface provides direct XML-level access to a document. You can read and directly modify the
XML representation of the document. However, please, note the following restrictions:

· The XMLData representation is only valid when the document is shown in grid view or authentic view.
· When in authentic view, additional XMLData elements are automatically inserted as parents of each visible

document element. Typically this is an XMLData of kind spyXMLDataElement with the Name property set
to 'Text'.

· When you use the XMLData interface while in a different view mode you will not receive errors, but changes
are not reflected to the view and might get lost during the next view switch.

Note also:

· Setting a new text value for an XML element is possible if the element does not have non-text children.
A text value can be set even if the element has attributes.

· When setting a new text value for an XML element which has more than one text child, the latter will be
deleted and replaced by one new text child.

· When reading the text value of an XML element which has more than one text child, only the value of
the first text child will be returned.

Objects of this class represent the different atomic parts of an XML document. See the enumeration type
SPYXMLDataKind for the available part types. Each part knows its children, thus forming a XMLData tree
with Document.RootElement at its top. To get the top element of the document content - ignoring the XML
header - use Document.DataRoot . For an examples on how to traverse the XMLData tree, see
GetNextChild .

30.3.2.33.1 AppendChild

Declaration: AppendChild (pNewData as XMLData)

Description
AppendChild appends pNewData as last child to the XMLData object.

1896

1896

1903

1895

1895

1897

1898

1898

1898

1899

1902

1905

1904

1955

1772

1758

1900

1893

© 2018-2024 Altova GmbH

Application API 1895Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

1500 The XMLData object is no longer valid.

1505 Invalid XMLData kind was specified.

1506 Invalid address for the return parameter was specified.

1507 Element cannot have Children

1512 Cyclic insertion - new data element is already part of document

1514 Invalid XMLData kind was specified for this position.

1900 Document must not be modified

Example
Dim objCurrentParent As XMLData
Dim objNewChild As XMLData

Set objNewChild = objSpy.ActiveDocument.CreateChild(spyXMLDataElement)
Set objCurrentParent = objSpy.ActiveDocument.RootElement

objCurrentParent.AppendChild objNewChild

Set objNewChild = Nothing

30.3.2.33.2 CountChildren

Declaration: CountChildren as long

Description
CountChildren gets the number of children.

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

30.3.2.33.3 CountChildrenKind

Declaration: CountChildrenKind (nKind as SPYXMLDataKind) as long

Description
CountChildrenKind gets the number of children of the specific kind.

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

1955

1896 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.33.4 EraseAllChildren

Declaration: EraseAllChildren

Description
EraseAllChildren deletes all associated children of the XMLData object.

Errors

1500 The XMLData object is no longer valid.

1900 Document must not be modified

Example
The sample erases all elements of the active document.

Dim objCurrentParent As XMLData

Set objCurrentParent = objSpy.ActiveDocument.RootElement
objCurrentParent.EraseAllChildren

30.3.2.33.5 EraseChild

Method: EraseChild (Child as XMLData)

Description
Deletes the given child node.

Errors

1500 Invalid object.

1506 Invalid input xml

1510 Invalid parameter.

30.3.2.33.6 EraseCurrentChild

Declaration: EraseCurrentChild

Description
EraseCurrentChild deletes the current XMLData child object. Before you call EraseCurrentChild you must
initialize an internal iterator with XMLData.GetFirstChild . After deleting the current child, EraseCurrentChild
increments the internal iterator of the XMLData element. No error is returned when the last child gets erased
and the iterator is moved past the end of the child list. The next call to EraseCurrentChild however, will return
error 1503.

1893

1899

© 2018-2024 Altova GmbH

Application API 1897Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Errors

1500 The XMLData object is no longer valid.

1503 No iterator is initialized for this XMLData object, or the iterator points past
the last child.

1900 Document must not be modified

Examples
// ---------------------------------------
// XMLSpy scripting environment - JScript
// erase all children of XMLData
// ---------------------------------------
// let's get an XMLData element, we assume that the
// cursor selects the parent of a list in grid view
var objList = Application.ActiveDocument.GridView.CurrentFocus;

// the following line would be shorter, of course
// objList.EraseAllChildren ();

// but we want to demonstrate the usage of EraseCurrentChild
if ((objList != null) && (objList.HasChildren))
{

try
{

objEle = objList.GetFirstChild(-1);
while (objEle != null)

objList.EraseCurrentChild();
// no need to call GetNextChild

}
catch (err)

// 1503 - we reached end of child list
{ if ((err.number & 0xffff) != 1503) throw (err); }

}

30.3.2.33.7 GetChild

Declaration: GetChild (position as long) as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetChild() returns a reference to the child at the given index (zero-based).

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

1893

1898 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.33.8 GetChildAttribute

Method: GetChildAttribute (strName as string) child as XMLData object (NULL on error)

Description
Retrieves the attribute having the given name.

Errors

1500 Invalid object.

1510 Invalid parameter.

30.3.2.33.9 GetChildElement

Method: GetChildElement (strName as string, nIndex as long) child as XMLData object (NULL on error)

Description
Retrieves the Nth child element with the given name.

Errors

1500 Invalid object.

1510 Invalid parameter.

30.3.2.33.10 GetChildKind

Declaration: GetChildKind (position as long, nKind as SPYXMLDataKind) as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetChildKind() returns a reference to a child of this kind at the given index (zero-based). The position parameter
is relative to the number of children of the specified kind and not to all children of the object.

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

1955 1893

© 2018-2024 Altova GmbH

Application API 1899Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.33.11 GetCurrentChild

Declaration: GetCurrentChild as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetCurrentChild gets the current child. Before you call GetCurrentChild you must initialize an internal iterator
with XMLData.GetFirstChild .

Errors

1500 The XMLData object is no longer valid.

1503 No iterator is initialized for this XMLData object.

1510 Invalid address for the return parameter was specified.

30.3.2.33.12 GetFirstChild

Declaration: GetFirstChild (nKind as SPYXMLDataKind) as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetFirstChild initializes a new iterator and returns the first child. Set nKind = -1 to get an iterator for all kinds of
children.
REMARK: The iterator is stored inside the XMLData object and gets destroyed when the XMLData object gets
destroyed. Be sure to keep a reference to this object as long as you want to use GetCurrentChild ,
GetNextChild or EraseCurrentChild .

Errors

1500 The XMLData object is no longer valid.

1501 Invalid XMLData kind was specified.

1504 Element has no children of specified kind.

1510 Invalid address for the return parameter was specified.

Example
See the example at XMLData.GetNextChild .

30.3.2.33.13 GetNamespacePrefixForURI

Method: GetNamespacePrefixForURI (strURI as string) strNS as string

1893

1899

1955 1893

1899

1900 1896

1900

1900 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Returns the namespace prefix of the supplied URI.

Errors

1500 Invalid object.

1510 Invalid parameter.

30.3.2.33.14 GetNextChild

Declaration: GetNextChild as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetNextChild steps to the next child of this element. Before you call GetNextChild you must initialize an
internal iterator with XMLData.GetFirstChild .

Check for the last child of the element as shown in the sample below.

Errors

1500 The XMLData object is no longer valid.

1503 No iterator is initialized for this XMLData object.

1510 Invalid address for the return parameter was specified.

Examples
' --
' VBA code snippet - iterate XMLData children
' --
On Error Resume Next
Set objParent = objSpy.ActiveDocument.RootElement

'get elements of all kinds
Set objCurrentChild = objParent.GetFirstChild(-1)

Do
 'do something useful with the child

 'step to next child
 Set objCurrentChild = objParent.GetNextChild

Loop Until (Err.Number - vbObjectError = 1503)

// ---------------------------------------
// XMLSpy scripting environment - JScript
// iterate through children of XMLData
// ---------------------------------------

1893

1899

© 2018-2024 Altova GmbH

Application API 1901Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

try
{

var objXMLData = ... // initialize somehow
var objChild = objXMLData.GetFirstChild(-1);

while (true)
{

// do something usefull with objChild

objChild = objXMLData.GetNextChild();
}

}
catch (err)
{

if ((err.number & 0xffff) == 1504)
; // element has no children

else if ((err.number & 0xffff) == 1503)
; // last child reached

else
throw (err);

}

30.3.2.33.15 GetTextValueXMLDecoded

Method: GetTextValueXMLDecoded ()as string

Description
Gets the decoded text value of the XML.

Errors

1500 Invalid object.

1510 Invalid parameter.

30.3.2.33.16 HasChildren

Declaration: HasChildren as Boolean

Description
The property is true if the object is the parent of other XMLData objects. This property is read-only.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

1902 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.2.33.17 HasChildrenKind

Declaration: HasChildrenKind (nKind as SPYXMLDataKind) as Boolean

Description
The method returns true if the object is the parent of other XMLData objects of the specific kind.

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

30.3.2.33.18 InsertChild

Declaration: InsertChild (pNewData as XMLData)

Description
InsertChild inserts the new child before the current child (see also XMLData.GetFirstChild ,
XMLData.GetNextChild to set the current child).

Errors

1500 The XMLData object is no longer valid.

1503 No iterator is initialized for this XMLData object.

1505 Invalid XMLData kind was specified.

1506 Invalid address for the return parameter was specified.

1507 Element cannot have Children

1512 Cyclic insertion - new data element is already part of document

1514 Invalid XMLData kind was specified for this position.

1900 Document must not be modified

30.3.2.33.19 InsertChildAfter

Method: InsertChildAfter (Node as XMLData, NewData as XMLData)

Description
Inserts a new XML node (supplied with the second parameter) after the specified node (first parameter).

Errors

1500 Invalid object.

1506 Invalid input xml

1955

1893

1899

1900

© 2018-2024 Altova GmbH

Application API 1903Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

1507 No children allowed

1510 Invalid parameter.

1512 Child is already added

1514 Invalid kind at position

30.3.2.33.20 InsertChildBefore

Method: InsertChildBefore (Node as XMLData, NewData as XMLData)

Description
Inserts a new XML node (supplied with the second parameter) before the specified node (first parameter).

Errors

1500 Invalid object.

1506 Invalid input xml

1507 No children allowed

1510 Invalid parameter.

1512 Child is already added

1514 Invalid kind at position

30.3.2.33.21 IsSameNode

Declaration: IsSameNode (pNodeToCompare as XMLData) as Boolean

Description

Returns true if pNodeToCompare references the same node as the object itself.

Errors

1500 The XMLData object is no longer valid.

1506 Invalid address for the return parameter was specified.

30.3.2.33.22 Kind

Declaration: Kind as SPYXMLDataKind

Description
Kind of this XMLData object. This property is read-only.

1893

1955

1904 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

30.3.2.33.23 MayHaveChildren

Declaration: MayHaveChildren as Boolean

Description
Indicates whether it is allowed to add children to this XMLData object.
This property is read-only.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

30.3.2.33.24 Name

Declaration: Name as String

Description
Used to modify and to get the name of the XMLData object.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

30.3.2.33.25 Parent

Declaration: Parent as XMLData

Return value
Parent as XMLData object. Nothing (or NULL) if there is no parent element.

Description
Parent of this element. This property is read-only.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

1893

© 2018-2024 Altova GmbH

Application API 1905Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.2.33.26 SetTextValueXMLEncoded

Method: SetTextValueXMLEncoded (strVal as String)

Description
Sets the encoded text value of the XML.

Errors

1500 Invalid object.

1513 Modification not allowed.

30.3.2.33.27 TextValue

Declaration: TextValue as String

Description
Used to modify and to get the text value of this XMLData object.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

30.3.3 Interfaces (obsolete)

Interfaces contained in this book are obsolete. It is recommended to migrate your applications to the new
interfaces. See the different properties and methods in this book for migration hints.

30.3.3.1 AuthenticEvent (obsolete)

Superseded by AuthenticView and AuthenticRange

The DocEditView object is renamed to OldAuthenticView.
DocEditSelection is renamed to AuthenticSelection.
DocEditEvent is renamed to AuthenticEvent.
DocEditDataTransfer is renamed to AuthenticDataTransfer.

Their usage - except for AuthenticDataTransfer - is no longer recommended. We will continue to support
existing functionality for a yet undefined period of time but no new features will be added to these interface. All
functionality available up to now in DocEditView , DocEditSelection , DocEditEvent and
DocEditDataTransfer is now available via AuthenticView , AuthenticRange and
AuthenticDataTransfer . Many new features have been added.

1955

1711 1681

1920 1918 1905

1677 1711 1681

1676

1906 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For examples on migrating from DocEdit to Authentic see the description of the different methods and
properties of the different DocEdit objects.

Properties

altKey
altLeft
ctrlKey
ctrlLeft
shiftKey
shiftLeft

keyCode
repeat

button

clientX
clientY

dataTransfer

srcElement
fromElement

propertyName

cancelBubble
returnValue

type

Description
DocEditEvent interface.

30.3.3.1.1 altKey (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period

1906

1907

1911

1912

1915

1916

1914

1915

1908

1910

1910

1912

1917

1913

1914

1909

1915

1917

1717

1718

1715

© 2018-2024 Altova GmbH

Application API 1907Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditKeyPressed ()
// {
// if (Application.ActiveDocument.DocEditView.event.altKey ||
// Application.ActiveDocument.DocEditView.event.altLeft)
// MsgBox ("alt key is down");
// }
// use now:
function On_AuthenticView_KeyPressed (SPYKeyEvent i_eKeyEvent, long i_nKeyCode,
SPYVirtualKeyMask i_nVirtualKeyStatus)
{
 if (i_nVirtualKeyStatus & spyAltKeyMask)
 MsgBox ("alt key is down");
}

Declaration: altKey as Boolean

Description
True if the right ALT key is pressed.

30.3.3.1.2 altLeft (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditKeyDown ()
// {
// if (Application.ActiveDocument.DocEditView.event.altKey ||
// Application.ActiveDocument.DocEditView.event.altLeft)
// MsgBox ("alt key is down");
// }
// use now:
function On_AuthenticView_KeyDown (SPYKeyEvent i_eKeyEvent, long i_nKeyCode, SPYVirtualKeyMask
i_nVirtualKeyStatus)

1717

1718

1715

1908 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

{
 if (i_nVirtualKeyStatus & spyAltKeyMask)
 MsgBox ("alt key is down");
}

Declaration: altLeft as Boolean

Description
True if the left ALT key is pressed.

30.3.3.1.3 button (obsolete)

Superseded by parameters to
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditButtonDown ()
// {
// if (Application.ActiveDocument.DocEditView.event.button == 1)
// MsgBox ("left mouse button down detected");
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos, SPYMouseEvent i_eMouseEvent,
IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyLeftButtonDownMask)
 MsgBox ("left mouse button down detected");
}

Declaration: button as long

Description
Specifies which mouse button is pressed:

0 No button is pressed.

1 Left button is pressed.

2 Right button is pressed.

3 Left and right buttons are both pressed.

1718

1715

© 2018-2024 Altova GmbH

Application API 1909Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

4 Middle button is pressed.

5 Left and middle buttons both are pressed.

6 Right and middle buttons are both pressed.

7 All three buttons are pressed.

30.3.3.1.4 cancelBubble (obsolete)

Superseded by the boolean return value of following event handler functions
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

Returning true from an event handler function signals that the event has beend handled and normal event
handling should be aborted.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditKeyPressed ()
// {
// if (Application.ActiveDocument.DocEditView.event.keyCode == 0x20)
// {
// // cancel key processing, swallow spaces :-)
// Application.ActiveDocument.DocEditView.event.cancelBubble = true;
// }
// }
// use now:
function On_AuthenticView_KeyPressed (SPYKeyEvent i_eKeyEvent, long i_nKeyCode,
SPYVirtualKeyMask i_nVirtualKeyStatus)
{
 if (i_nKeyCode == 0x20)
 return true; // cancel key processing, swallow spaces :-)
}

Declaration: cancelBubble as Boolean

Description
Set cancelBubble to TRUE if the default event handler should not be called.

1717

1718

1715

1910 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.3.1.5 clientX (obsolete)

Superseded by parameters to
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnBeforeDrop (On_AuthenticView_BeforeDrop)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// MsgBox ("moving over " + Application.ActiveDocument.DocEditView.event.clientX +
// "/" + Application.ActiveDocument.DocEditView.event.clientY);
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos, SPYMouseEvent i_eMouseEvent,
IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyMouseMoveMask)
 MsgBox ("moving over " + i_nXPos + "/" + i_nYPos);
}

Declaration: clientX as long

Description
X value of the current mouse position in client coordinates.

30.3.3.1.6 clientY (obsolete)

Superseded by parameters to
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnBeforeDrop (On_AuthenticView_BeforeDrop)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:

1718

1714

1715

1718

1714

1715

© 2018-2024 Altova GmbH

Application API 1911Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

// function On_DocEditMouseMove ()
// {
// MsgBox ("moving over " + Application.ActiveDocument.DocEditView.event.clientX +
// "/" + Application.ActiveDocument.DocEditView.event.clientY);
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos, SPYMouseEvent i_eMouseEvent,
IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyMouseMoveMask)
 MsgBox ("moving over " + i_nXPos + "/" + i_nYPos);
}

Declaration: clientY as long

Description
Y value of the current mouse position in client coordinates.

30.3.3.1.7 ctrlKey (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// if (Application.ActiveDocument.DocEditView.event.ctrlKey ||
// Application.ActiveDocument.DocEditView.event.altLeft)
// MsgBox ("control key is down");
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos, SPYMouseEvent i_eMouseEvent,
IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyCtrlKeyMask)
 MsgBox ("control key is down");
}

Declaration: ctrlKey as Boolean

1717

1718

1715

1912 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
True if the right CTRL key is pressed.

30.3.3.1.8 ctrlLeft (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// if (Application.ActiveDocument.DocEditView.event.ctrlKey ||
// Application.ActiveDocument.DocEditView.event.altLeft)
// MsgBox ("control key is down");
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos, SPYMouseEvent i_eMouseEvent,
IAuthenticRange *i_ipRange)
{
 if (i_eMouseEvent & spyCtrlKeyMask)
 MsgBox ("control key is down");
}

Declaration: ctrlLeft as Boolean

Description
True if the left CTRL key is pressed.

30.3.3.1.9 dataTransfer (obsolete)

Superseded by parameters to
AuthenticView.OnBeforeDrop (On_AuthenticView_BeforeDrop)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

1717

1718

1715

1714

1715

© 2018-2024 Altova GmbH

Application API 1913Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditDrop ()
// {
// if (Application.ActiveDocument.DocEditView.event.dataTransfer != null)
// if (! Application.ActiveDocument.DocEditView.event.dataTransfer.ownDrag)
// {
// // cancel key processing, don't drop foreign objects :-)
// Application.ActiveDocument.DocEditView.event.cancelBubble = true;
// }
// }
// use now:
function On_AuthenticView_BeforeDrop (long i_nXPos, long i_nYPos,

 IAuthenticRange *i_ipRange,
 IAuthenticDataTransfer *i_ipData)

{
 if (i_ipRange != null)
 if (! i_ipRange.ownDrag)
 return true; // cancel key processing, don't drop foreign objects :-)

 return false;
}

Declaration: dataTransfer as Variant

Description
Property dataTransfer.

30.3.3.1.10 fromElement (obsolete)

Not supported

Declaration: fromElement as Variant (not supported)

Description
Currently no event sets this property.

1914 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.3.1.11 keyCode (obsolete)

Superseded by a parameter to AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditKeyPressed ()
// {
// if (Application.ActiveDocument.DocEditView.event.keyCode == 0x20)
// {
// // cancel key processing, swallow spaces :-)
// Application.ActiveDocument.DocEditView.event.cancelBubble = true;
// }
// }
// use now:
function On_AuthenticView_KeyPressed (SPYKeyEvent i_eKeyEvent, long i_nKeyCode,
SPYVirtualKeyMask i_nVirtualKeyStatus)
{
 if (i_nKeyCode == 0x20)
 return true; // cancel key processing, swallow spaces :-)
}

Declaration: keyCode as long

Description
Keycode of the currently pressed key. This property is read-write.

30.3.3.1.12 propertyName (obsolete)

Not supported

Declaration: propertyName as String (not supported)

Description
Currently no event sets this property.

1717

© 2018-2024 Altova GmbH

Application API 1915Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.3.1.13 repeat (obsolete)

Not supported

Declaration: repeat as Boolean (not supported)

Description
True if the onkeydown event is repeated.

30.3.3.1.14 returnValue (obsolete)

No longer supported

Declaration: returnValue as Variant

Description
Use returnValue to set a return value for your event handler.

30.3.3.1.15 shiftKey (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditDragOver ()
// {
// if (Application.ActiveDocument.DocEditView.event.shiftKey ||
// Application.ActiveDocument.DocEditView.event.shiftLeft)
// MsgBox ("shift key is down");
// }
// use now:
function On_AuthenticView_DragOver (long i_nXPos, long i_nYPos,

 SPYMouseEvent i_eMouseEvent,

1717

1718

1715

1916 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 IAuthenticRange *i_ipRange,
 IAuthenticDataTransfer *i_ipData)

{
 if (i_eMouseEvent & spyShiftKeyMask)
 MsgBox ("shift key is down");
}

Declaration: shiftKey as Boolean

Description
True if the right SHIFT key is pressed.

30.3.3.1.16 shiftLeft (obsolete)

Superseded by parameters to
AuthenticView.OnKeyboardEvent (On_AuthenticView_KeyPressed)
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditDragOver ()
// {
// if (Application.ActiveDocument.DocEditView.event.shiftKey ||
// Application.ActiveDocument.DocEditView.event.shiftLeft)
// MsgBox ("shift key is down");
// }
// use now:
function On_AuthenticView_DragOver (long i_nXPos, long i_nYPos,

 SPYMouseEvent i_eMouseEvent,
 IAuthenticRange *i_ipRange,
 IAuthenticDataTransfer *i_ipData)

{
 if (i_eMouseEvent & spyShiftKeyMask)
 MsgBox ("shift key is down");
}

Declaration: shiftLeft as Boolean

Description
True if the left SHIFT key is pressed.

1717

1718

1715

© 2018-2024 Altova GmbH

Application API 1917Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.3.1.17 srcElement (obsolete)

Superseded by parameters to
AuthenticView.OnMouseEvent (On_AuthenticView_MouseEvent)
AuthenticView.OnBeforeDrop (On_AuthenticView_BeforeDrop)
AuthenticView.OnDragOver (On_AuthenticView_DragOver)

The event object that holds the information of the last event is now replaced by parameters to the different
event handler functions to simplify data access. The event object will be supported for a not yet defined period
of time for compatibility reasons. No improvements are planned. It is highly recommended to migrate to the
new event handler functions.

With the new event handler function, a range object selecting this element is provided instead of the XMLData
element currently below the mouse cursor.

// ----- XMLSpy scripting environment - javascript sample -----
// instead of:
// function On_DocEditMouseMove ()
// {
// var objEvent = Application.ActiveDocument.DocEditView.event;
// if (objEvent.srcElement != null)
// MsgBox ("moving over " + objEvent.srcElement.Parent.Name);
// }
// use now:
function On_AuthenticView_MouseEvent (long i_nXPos, long i_nYPos, SPYMouseEvent i_eMouseEvent,
IAuthenticRange *i_ipRange)
{
 if ((i_eMouseEvent & spyMouseMoveMask) &&
 (i_ipRange != null))
 MsgBox ("moving over " + i_ipRange.FirstXMLData.Parent.Name);
}

Declaration: srcElement as Variant

Description
Element which fires the current event. This is usually an XMLData object.

30.3.3.1.18 type (obsolete)

Not supported

Declaration: type as String (not supported)

1718

1714

1715

1893

1918 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Currently no event sets this property.

30.3.3.2 AuthenticSelection (obsolete)

Superseded by AuthenticRange

The DocEditView object is renamed to OldAuthenticView.
DocEditSelection is renamed to AuthenticSelection.
DocEditEvent is renamed to AuthenticEvent.
DocEditDataTransfer is renamed to AuthenticDataTransfer.

Their usage - except for AuthenticDataTransfer - is no longer recommended. We will continue to support
existing functionality for a yet undefined period of time but no new features will be added to these interface. All
functionality available up to now in DocEditView , DocEditSelection , DocEditEvent and
DocEditDataTransfer is now available via AuthenticView , AuthenticRange and
AuthenticDataTransfer . Many new features have been added.

For examples on migrating from DocEdit to Authentic see the description of the different methods and
properties of the different DocEdit objects.

Properties
Start
StartTextPosition
End
EndTextPosition

30.3.3.2.1 End (obsolete)

Superseded by AuthenticRange.LastXMLData

// ----- javascript sample -----
// instead of:
// var objXMLData = Application.ActiveDocument.DocEditView.CurrentSelection.End;
// use now:
var objXMLData = Application.ActiveDocument.AuthenticView.Selection.LastXMLData;

Declaration: End as XMLData

Description
XML element where the current selection ends.

1681

1920 1918 1905

1676 1711 1681

1676

1919

1919

1918

1919

1702

1893

© 2018-2024 Altova GmbH

Application API 1919Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.3.2.2 EndTextPosition (obsolete)

Superseded by AuthenticRange.LastXMLDataOffset

// ----- javascript sample -----
// instead of:
// var nOffset = Application.ActiveDocument.DocEditView.CurrentSelection.EndTextPosition;
// use now:
var nOffset = Application.ActiveDocument.AuthenticView.Selection.LastXMLDataOffset;

Declaration: EndTextPosition as long

Description
Position in DocEditSelection.End.TextValue where the selection ends.

30.3.3.2.3 Start (obsolete)

Superseded by AuthenticRange.FirstXMLData

// ----- javascript sample -----
// instead of:
// var objXMLData = Application.ActiveDocument.DocEditView.CurrentSelection.Start;
// use now:
var objXMLData = Application.ActiveDocument.AuthenticView.Selection.FirstXMLData;

Declaration: Start as XMLData

Description
XML element where the current selection starts.

30.3.3.2.4 StartTextPosition (obsolete)

Superseded by AuthenticRange.FirstXMLDataOffset

// ----- javascript sample -----
// instead of:
// var nOffset = Application.ActiveDocument.DocEditView.CurrentSelection.StartTextPosition;
// use now:
var nOffset = Application.ActiveDocument.AuthenticView.Selection.FirstXMLDataOffset;

Declaration: StartTextPosition as long

1703

1918

1689

1893

1690

1920 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description
Position in DocEditSelection.Start.TextValue where the selection starts.

30.3.3.3 OldAuthentictView (obsolete)

Superseded by AuthenticView and AuthenticRange

The DocEditView object is renamed to OldAuthenticView.
DocEditSelection is renamed to AuthenticSelection.
DocEditEvent is renamed to AuthenticEvent.
DocEditDataTransfer is renamed to AuthenticDataTransfer.

Their usage - except for AuthenticDataTransfer - is no longer recommended. We will continue to support
existing functionality for a yet undefined period of time but no new features will be added to these interfaces.
All functionality available up to now in DocEditView , DocEditSelection , DocEditEvent and
DocEditDataTransfer is now available via AuthenticView , AuthenticRange and
AuthenticDataTransfer . Many new features have been added.

For examples on migrating from DocEdit to Authentic see the description of the different methods and
properties of the different DocEdit objects.

Methods

LoadXML
SaveXML

EditClear
EditCopy
EditCut
EditPaste
EditRedo
EditSelectAll
EditUndo

RowAppend
RowDelete
RowDuplicate
RowInsert
RowMoveDown
RowMoveUp

ApplyTextState
IsTextStateApplied
IsTextStateEnabled

MarkUpView

1919

1711 1681

1920 1918 1905

1677 1711 1681

1676

1936

1940

1922

1923

1923

1924

1924

1925

1925

1937

1937

1938

1938

1939

1939

1921

1935

1935

1936

© 2018-2024 Altova GmbH

Application API 1921Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

SelectionSet
SelectionMoveTabOrder

GetNextVisible
GetPreviousVisible

GetAllowedElements

Properties
CurrentSelection

event

XMLRoot

IsEditClearEnabled
IsEditCopyEnabled
IsEditCutEnabled
IsEditPasteEnabled
IsEditRedoEnabled
IsEditUndoEnabled

IsRowAppendEnabled
IsRowDeleteEnabled
IsRowDuplicateEnabled
IsRowInsertEnabled
IsRowMoveDownEnabled
IsRowMoveUpEnabled

Description
Interface for Authentic View.

30.3.3.3.1 ApplyTextState (obsolete)

Superseded by AuthenticRange.PerformAction

Use spyAuthenticApply for the eAction parameter. The PerformAction method allows to apply text state
attributes to any range of the document, not only the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.ApplyTextState ("bold");
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.PerformAction (spyAuthenticApply, "bold"))
 MsgBox ("Error: can't set current selection to bold");

1941

1941

1928

1929

1926

1922

1926

1942

1929

1930

1930

1931

1931

1932

1932

1933

1933

1934

1934

1934

1706

1922 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Declaration: ApplyTextState (elementName as String)

Description
Applies or removes the text state defined by the parameter elementName. Common examples for the
parameter elementName would be strong and italic.

In an XML document there are segments of data, which may contain sub-elements. For example consider the
following HTML:

fragment

The HTML tag will cause the word fragment to be bold. However, this only happens because the HTML
parser knows that the tag is bold. With XML there is much more flexibility. It is possible to define any XML
tag to do anything you desire. The point is that it is possible to apply a Text state using XML. But the Text
state that is applied must be part of the schema. For example in the OrgChart.xml, OrgChart.sps,
OrgChart.xsd example the tag is the same as bold. And to apply bold the method ApplyTextState() is
called. But like the row and edit operations it is necessary to test if it is possible to apply the text state.

See also IsTextStateEnabled and IsTextStateApplied .

30.3.3.3.2 CurrentSelection (obsolete)

Superseded by AuthenticView.Selection

The returned AuthenticRange object supports navigation via XMLData elements as well as navigation by
document elements (e.g. characters, words, tags) or text cursor positions.

// ----- javascript sample -----
// instead of:
// var objDocEditSel = Application.ActiveDocument.DocEditView.CurrentSelection;
// use now:
 var objRange = Application.ActiveDocument.AuthenticView.Selection;

Declaration: CurrentSelection as DocEditSelection

Description
The property provides access to the current selection in the Authentic View.

30.3.3.3.3 EditClear (obsolete)

Superseded by AuthenticRange.Delete

1935 1935

1728

1681

1918

1686

© 2018-2024 Altova GmbH

Application API 1923Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

The Delete method of AuthenticRange allows to delete any range of the document, not only the current UI
selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditClear();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.Delete())
 MsgBox ("Error: can't delete current selection");

Declaration: EditClear

Description
Deletes the current selection.

30.3.3.3.4 EditCopy (obsolete)

Superseded by AuthenticRange.Copy

The Copy method of AuthenticRange allows to delete any range of the document, not only the current UI
selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditCopy();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.Copy())
 MsgBox ("Error: can't copy current selection");

Declaration: EditCopy

Description
Copies the current selection to the clipboard.

30.3.3.3.5 EditCut (obsolete)

Superseded by AuthenticRange.Cut

The Cut method of AuthenticRange allows to delete any range of the document, not only the current UI
selection.

1686

1686

1924 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditCut();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.Cut())
 MsgBox ("Error: can't cut out current selection");

Declaration: EditCut

Description
Cuts the current selection from the document and copies it to the clipboard.

30.3.3.3.6 EditPaste (obsolete)

Superseded by AuthenticRange.Paste

The Paste method of AuthenticRange allows to delete any range of the document, not only the current UI
selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditPaste();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.Paste())
 MsgBox ("Error: can't paste to current selection");

Declaration: EditPaste

Description
Pastes the content from the clipboard into the document.

30.3.3.3.7 EditRedo (obsolete)

Superseded by AuthenticView.Redo

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditRedo();
// use now:
if (! Application.ActiveDocument.AuthenticView.Redo())
 MsgBox ("Error: no redo step available");

1705

1728

© 2018-2024 Altova GmbH

Application API 1925Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Declaration: EditRedo

Description
Redo the last undo step.

30.3.3.3.8 EditSelectAll (obsolete)

Superseded by AuthenticView.WholeDocument and AuthenticRange.Select

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditSelectAll();
// use now:
Application.ActiveDocument.AuthenticView.WholeDocument.Select();

Declaration: EditSelectAll

Description
The method selects the complete document.

30.3.3.3.9 EditUndo (obsolete)

Superseded by AuthenticView.Undo

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.EditUndo();
// use now:
if (! Application.ActiveDocument.AuthenticView.Undo())
 MsgBox ("Error: no undo step available");

Declaration: EditUndo

Description
Undo the last action.

1730 1707

1729

1926 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.3.3.10 event (obsolete)

Superseded by parameters to AuthenticView events .

Declaration: event as DocEditEvent

Description
The event property holds a DocEditEvent object which contains information about the current event.

30.3.3.3.11 GetAllowedElements (obsolete)

Superseded by AuthenticRange.CanPerformActionWith

AuthenticRange now supports all functionality of the 'elements' entry helper. Besides querying the elements
that can be inserted, appended, etc., you can invoke the action as well. See
AuthenticRange.PerformAction for more information.

// ----- javascript sample -----
// instead of:
// var arrElements = New Array();
// var objDocEditView = Application.ActiveDocument.DocEditView;
// var objStartElement = objDocEditView.CurrentSelection.Start;
// var objEndElement = objDocEditView.CurrentSelection.End;
// objDocEditView.GetAllowedElements(k_ActionInsertBefore, objStartElement, objEndElement,
arrElements);
// use now:
var arrElements = New Array();
Application.ActiveDocument.AuthenticView.Selection.CanPerformActionWith (spyAuthenticInsertBefore,
arrElements);

Declaration: GetAllowedElements (nAction as SpyAuthenticElementActions , pStartElement as
XMLData , pEndElement as XMLData , pElements as Variant)

Description
GetAllowedElements() returns the allowed elements for the various actions specified by nAction.

JavaScript example:

Function GetAllowed()
{

var objView = Application.ActiveDocument.DocEditView;

var arrElements = New Array(1);

var objStart = objView.CurrentSelection.Start;

1711

1905

1684

1706

1943

1893 1893

© 2018-2024 Altova GmbH

Application API 1927Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

var objEnd = objView.CurrentSelection.End;

var strText;
strText = "valid elements at current selection:\n\n";

For(var i = 1;i <= 4;i++) {
objPlugIn.GetAllowedElements(i,objStart,objEnd,arrElements);
strText = strText + ListArray(arrElements) + "------------------\n";

}

Return strText;
}

Function ListArray(arrIn)
{

var strText = "";

If(TypeOf(arrIn) == "object") {
For(var i = 0;i <= (arrIn.length - 1);i++)

strText = strText + arrIn[i] + "\n";
}

Return strText;
}

VBScript example:

Sub DisplayAllowed
Dim objView
Set objView = Application.ActiveDocument.DocEditView

Dim arrElements()

Dim objStart
Dim objEnd
Set objStart = objView.CurrentSelection.Start
Set objEnd = objView.CurrentSelection.End

Dim strText
strText = "valid elements at current selection:" & chr(13) & chr(13)

Dim i

For i = 1 To 4
objView.GetAllowedElements i,objStart,objEnd,arrElements
strText = strText & ListArray(arrElements) & "---------------" & chr(13)

Next

msgbox strText
End Sub

Function ListArray(arrIn)
Dim strText

1928 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If IsArray(arrIn) Then
Dim i

For i = 0 To UBound(arrIn)
strText = strText & arrIn(i) & chr(13)

Next
End If

ListArray = strText
End Function

30.3.3.3.12 GetNextVisible (obsolete)

Superseded by AuthenticRange.SelectNext

AuthenticRange now supports a wide range of element navigation methods based on document elements like
characters, words, tags and many more. Selecting the text passage that represents the content of the next
XML element is just one of them.

// ----- javascript sample -----
// instead of:
// var objCurrXMLData = ...
// var objXMLData = Application.ActiveDocument.DocEditView.GetNextVisible(objCurrXMLData);
// Application.ActiveDocument.DocEditView.SelectionSet (objXMLData, 0, objXMLData, -1);
// use now:
var objRange = ...
try
 { objRange.SelectNext (spyAuthenticTag).Select(); }
catch (err)
{
 if ((err.number & 0xffff) == 2003)
 MsgBox ("end of document reached");
 else
 throw (err);
}

Declaration: GetNextVisible (pElement as XMLData) as XMLData

Description
The method gets the next visible XML element in the document.

1707

1893 1893

© 2018-2024 Altova GmbH

Application API 1929Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.3.3.13 GetPreviousVisible (obsolete)

Superseded by AuthenticRange.SelectPrevious

AuthenticRange now supports a wide range of element navigation methods based on document elements like
characters, words, tags and many more. Selecting the text passage that represents the content of the
previous XML element is just one of them.

// ----- javascript sample -----
// instead of:
// var objCurrXMLData = ...
// var objXMLData = Application.ActiveDocument.DocEditView.GetPreviousVisible(objCurrXMLData);
// Application.ActiveDocument.DocEditView.SelectionSet (objXMLData, 0, objXMLData, -1);
// use now:
var objRange = ...
try
 { objRange.SelectPrevious (spyAuthenticTag).Select(); }
catch (err)
{
 if ((err.number & 0xffff) == 2004)
 MsgBox ("begin of document reached");
 else
 throw (err);
}

Declaration: GetPreviousVisible (pElement as XMLData) as XMLData

Description
The method gets the previous visible XML element in the document.

30.3.3.3.14 IsEditClearEnabled (obsolete)

Superseded by AuthenticRange.IsDeleteEnabled

The IsDeleteEnabled property is now supported for any range of the document, not only the current UI
selection.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditClearEnabled)
// Application.ActiveDocument.DocEditView.EditClear();
// use now:
var objCurrSelection = Application.ActiveDocument.AuthenticView.Selection;
if (objCurrSelection.IsDeleteEnabled)
 objCurrSelection.Delete();

1708

1893 1893

1699

1930 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Declaration: IsEditClearEnabled as Boolean

Description
True if EditClear is possible. See also Editing operations .

30.3.3.3.15 IsEditCopyEnabled (obsolete)

Superseded by AuthenticRange.IsCopyEnabled

The IsCopyEnabled property is now supported for any range of the document, not only the current UI
selection.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditCopyEnabled)
// Application.ActiveDocument.DocEditView.EditCopy();
// use now:
var objCurrSelection = Application.ActiveDocument.AuthenticView.Selection;
if (objCurrSelection.IsCopyEnabled)
 objCurrSelection.Copy();

Declaration: IsEditCopyEnabled as Boolean

Description
True if copy to clipboard is possible. See also EditCopy and Editing operations .

30.3.3.3.16 IsEditCutEnabled (obsolete)

Superseded by AuthenticRange.IsCutEnabled

The IsCutEnabled property is now supported for any range of the document, not only the current UI selection.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditCutEnabled)
// Application.ActiveDocument.DocEditView.EditCut();
// use now:
var objCurrSelection = Application.ActiveDocument.AuthenticView.Selection;
if (objCurrSelection.IsCutEnabled)
 objCurrSelection.Cut();

Declaration: IsEditCutEnabled as Boolean

1922 1652

1698

1923 1652

1699

© 2018-2024 Altova GmbH

Application API 1931Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description
True if EditCut is currently possible. See also Editing operations .

30.3.3.3.17 IsEditPasteEnabled (obsolete)

Superseded by AuthenticRange.IsPasteEnabled

The IsPasteEnabled property is now supported for any range of the document, not only the current UI
selection.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditPasteEnabled)
// Application.ActiveDocument.DocEditView.EditPaste();
// use now:
var objCurrSelection = Application.ActiveDocument.AuthenticView.Selection;
if (objCurrSelection.IsPasteEnabled)
 objCurrSelection.Paste();

Declaration: IsEditPasteEnabled as Boolean

Description
True if EditPaste is possible. See also Editing operations .

30.3.3.3.18 IsEditRedoEnabled (obsolete)

Superseded by AuthenticView.IsRedoEnabled

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditRedoEnabled)
// Application.ActiveDocument.DocEditView.EditRedo();
// use now:
if (Application.ActiveDocument.AuthenticView.IsRedoEnabled)
 Application.ActiveDocument.AuthenticView.Redo();

Declaration: IsEditRedoEnabled as Boolean

Description
True if EditRedo is currently possible. See also Editing operations .

1923 1652

1700

1924 1652

1726

1924 1652

1932 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.3.3.19 IsEditUndoEnabled (obsolete)

Superseded by AuthenticView.IsUndoEnabled

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsEditUndoEnabled)
// Application.ActiveDocument.DocEditView.EditUndo();
// use now:
if (Application.ActiveDocument.AuthenticView.IsUndoEnabled)
 Application.ActiveDocument.AuthenticView.Undo();

Declaration: IsEditUndoEnabled as Boolean

Description
True if EditUndo is possible. See also Editing operations .

30.3.3.3.20 IsRowAppendEnabled (obsolete)

Superseded by AuthenticRange.IsInDynamicTable

The operations 'insert', 'append', 'delete' and 'duplicate' row are available whenever the selection is inside a
dynamic table.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowAppendEnabled)
// Application.ActiveDocument.DocEditView.RowAppend();
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsInDynamicTable())
 Application.ActiveDocument.AuthenticView.Selection.AppendRow();

Declaration: IsRowAppendEnabled as Boolean

Description
True if RowAppend is possible. See also Row operations .

1726

1925 1652

1700

1937 1652

© 2018-2024 Altova GmbH

Application API 1933Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.3.3.21 IsRowDeleteEnabled (obsolete)

Superseded by AuthenticRange.IsInDynamicTable

The operations 'insert', 'append', 'delete' and 'duplicate' row are available whenever the selection is inside a
dynamic table.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowDeleteEnabled)
// Application.ActiveDocument.DocEditView.Rowdelete();
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsInDynamicTable())
 Application.ActiveDocument.AuthenticView.Selection.DeleteRow();

Declaration: IsRowDeleteEnabled as Boolean

Description
True if RowDelete is possible. See also Row operations .

30.3.3.3.22 IsRowDuplicateEnabled (obsolete)

Superseded by AuthenticRange.IsInDynamicTable

The operations 'insert', 'append', 'delete' and 'duplicate' row are available whenever the selection is inside a
dynamic table.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowDuplicateEnabled)
// Application.ActiveDocument.DocEditView.RowDuplicate();
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsInDynamicTable())
 Application.ActiveDocument.AuthenticView.Selection.DuplicateRow();

Declaration: IsRowDuplicateEnabled as Boolean

Description
True if RowDuplicate is currently possible. See also Row operations .

1700

1937 1652

1700

1938 1652

1934 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.3.3.23 IsRowInsertEnabled (obsolete)

Superseded by AuthenticRange.IsInDynamicTable

The operations 'insert', 'append', 'delete' and 'duplicate' row are available whenever the selection is inside a
dynamic table.

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowInsertEnabled)
// Application.ActiveDocument.DocEditView.RowInsert();
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsInDynamicTable())
 Application.ActiveDocument.AuthenticView.Selection.InsertRow();

Declaration: IsRowInsertEnabled as Boolean

Description
True if RowInsert is possible. See also Row operations .

30.3.3.3.24 IsRowMoveDownEnabled (obsolete)

Superseded by AuthenticRange.IsLastRow

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.OldAuthenticView.IsRowMoveDownEnabled)
// Application.ActiveDocument.DocEditView.RowMoveDown();
// use now:
if (!Application.ActiveDocument.AuthenticView.Selection.IsLastRow)
 Application.ActiveDocument.AuthenticView.Selection.MoveRowDown();

Declaration: IsRowMoveDownEnabled as Boolean

Description
True if RowMoveDown is currently possible. See also Row operations .

30.3.3.3.25 IsRowMoveUpEnabled (obsolete)

Superseded by AuthenticRange.IsFirstRow

1700

1938 1652

1700

1939 1652

1700

© 2018-2024 Altova GmbH

Application API 1935Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

// ----- javascript sample -----
// instead of:
// if (Application.ActiveDocument.DocEditView.IsRowMoveUpEnabled)
// Application.ActiveDocument.DocEditView.RowMoveUp();
// use now:
if (!Application.ActiveDocument.AuthenticView.Selection.IsFirstRow)
 Application.ActiveDocument.AuthenticView.Selection.MoveRowUp();

Declaration: IsRowMoveUpEnabled as Boolean

Description
True if RowMoveUp is possible. See also Row operations .

30.3.3.3.26 IsTextStateApplied (obsolete)

Superseded by AuthenticRange.IsTextStateApplied

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.IsTextStateApplied ("bold");
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.IsTextStateApplied ("bold"))
 MsgBox ("bold on");
else
 MsgBox ("bold off");

Declaration: IsTextStateApplied (elementName as String) as Boolean

Description
Checks to see if the it the text state has already been applied. Common examples for the parameter
elementName would be strong and italic.

30.3.3.3.27 IsTextStateEnabled (obsolete)

Superseded by AuthenticRange.CanPerformAction

Use spyAuthenticApply for the eAction parameter. The CanPerformAction method allows to operate on any
range of the document, not only the current UI selection.

// ----- javascript sample -----

1939 1652

1701

1684

1936 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

// instead of:
// Application.ActiveDocument.DocEditView.IsTextStateEnabled ("bold");
// use now:
if (Application.ActiveDocument.AuthenticView.Selection.CanPerformAction (spyAuthenticApply, "bold"))
 ... // e.g. enable 'bold' button

Declaration: IsTextStateEnabled (i_strElementName as String) as Boolean

Description
Checks to see if it is possible to apply a text state. Common examples for the parameter elementName would
be strong and italic.

30.3.3.3.28 LoadXML (obsolete)

Superseded by AuthenticView.AsXMLString

AuthenticView now supports the property AsXMLString that can be used to directly access and replace the
document content as an XMLString.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.LoadXML (strDocAsXMLString);
// use now:
try
 { Application.ActiveDocument.AuthenticView.AsXMLString = strDocAsXMLString; }
catch (err)
 { MsgBox ("Error: invalid XML string"); }

Declaration: LoadXML (xmlString as String)

Description
Loads the current XML document with the XML string applied. The new content is displayed immediately.
The xmlString parameter must begin with the XML declaration, e.g.,
objPlugIn.LoadXML("<?xml version='1.0' encoding='UTF-8'?><root></root>");

30.3.3.3.29 MarkUpView (obsolete)

Superseded by AuthenticView.MarkupVisibility

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.MarkuUpView = 2;

1721

1727

© 2018-2024 Altova GmbH

Application API 1937Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

// use now:
Application.ActiveDocument.AuthenticView.MarkupVisibility = spyAuthenticMarkupLarge;

Declaration: MarkUpView (k ind as long)

Description
By default the document displayed is using HTML techniques. But sometimes it is desirable to show the
editing tags. Using this method it is possible to display three different types of markup tags:

0 hide the markup tags

2 show the large markup tags

3 show the mixed markup tags.

30.3.3.3.30 RowAppend (obsolete)

Superseded by AuthenticRange.AppendRow

The table operations of AuthenticRange now allow to manipulate any table in the current document
independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowAppend();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.AppendRow())
 MsgBox ("Error: can't append row");

Declaration: RowAppend

Description
Appends a row at the current position.

See also Row operations .

30.3.3.3.31 RowDelete (obsolete)

Superseded by AuthenticRange.DeleteRow

The table operations of AuthenticRange now allow to manipulate any table in the current document
independent of the current UI selection.

1683

1652

1687

1938 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowDelete();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.DeleteRow())
 MsgBox ("Error: can't delete row");

Declaration: RowDelete

Description
Deletes the currently selected row(s).

See also Row operations .

30.3.3.3.32 RowDuplicate (obsolete)

Superseded by AuthenticRange.DuplicateRow

The table operations of AuthenticRange now allow to manipulate any table in the current document
independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowDuplicate();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.DuplicateRow())
 MsgBox ("Error: can't duplicate row");

Declaration: RowDuplicate

Description
The method duplicates the currently selected rows.

See also Row operations .

30.3.3.3.33 RowInsert (obsolete)

Superseded by AuthenticRange.InsertRow

The table operations of AuthenticRange now allow to manipulate any table in the current document
independent of the current UI selection.

1652

1687

1652

1698

© 2018-2024 Altova GmbH

Application API 1939Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowInsert();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.InsertRow())
 MsgBox ("Error: can't insert row");

Declaration: RowInsert

Description
Inserts a new row immediately above the current selection.

See also Row operations .

30.3.3.3.34 RowMoveDown (obsolete)

Superseded by AuthenticRange.MoveRowDown

The table operations of AuthenticRange now allow to manipulate any table in the current document
independent of the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowMoveDown();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.MoveRowDown())
 MsgBox ("Error: can't move row down");

Declaration: RowMoveDown

Description
Moves the current row one position down.

See also Row operations .

30.3.3.3.35 RowMoveUp (obsolete)

Superseded by AuthenticRange.MoveRowUp

The table operations of AuthenticRange now allow to manipulate any table in the current document
independent of the current UI selection.

1652

1705

1652

1705

1940 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.RowAppend();
// use now:
if (! Application.ActiveDocument.AuthenticView.Selection.MoveRowUp())
 MsgBox ("Error: can't move row up");

Declaration: RowMoveUp

Description
Moves the current row one position up.

See also Row operations .

30.3.3.3.36 SaveXML (obsolete)

Superseded by AuthenticView.AsXMLString

AuthenticView now supports the property XMLString that can be used to directly access and replace the
document content as an XMLString.

// ----- javascript sample -----
// instead of:
// var strDocAsXMLString = Application.ActiveDocument.DocEditView.SaveXML();
// use now:
try
{
 var strDocAsXMLString = Application.ActiveDocument.AuthenticView.AsXMLString;
 ... // do something here
}
catch (err)
 { MsgBox ("Error: invalid XML string"); }

Declaration: SaveXML as String

Return Value
XML structure as string

Description
Saves the current XML data to a string that is returned to the caller.

1652

1721

© 2018-2024 Altova GmbH

Application API 1941Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.3.3.37 SelectionMoveTabOrder (obsolete)

Superseded by AuthenticRange.SelectNext

AuthenticRange now supports a wide range of element navigation methods based on document elements like
characters, words, tags and many more. Selecting the next paragraph is just one of them, and navigation is
not necessarily bound to the current UI selection.

// ----- javascript sample -----
// instead of:
// Application.ActiveDocument.DocEditView.SelectionMoveTabOrder(true, true);
// use now:
Application.ActiveDocument.AuthenticView.Selection.SelectNext (spyAuthenticParagraph).Select();
// to append a row to a table use AuthenticRange.AppendRow

Declaration: SelectionMoveTabOrder (bForward as Boolean, bTag as Boolean)

Description
SelectionMoveTabOrder() moves the current selection forwards or backwards.

If bTag is false and the current selection is at the last cell of a table a new line will be added.

30.3.3.3.38 SelectionSet (obsolete)

Superseded by AuthenticRange.FirstXMLData and related properties

AuthenticRange supports navigation via XMLData elements as well as navigation by document elements (e.g.
characters, words, tags) or text cursor positions.

// ----- javascript sample -----
// instead of:
// if (! Application.ActiveDocument.DocEditView.SelectionSet(varXMLData1, 0, varXMLData2, -1))
// MsgBox ("Error: invalid data position");
// use now:
try
{
 var objSelection = Application.ActiveDocument.AuthenticView.Selection;
 objSelection.FirstXMLData = varXMLData1;
 objSelection.FirstXMLdataOffset = 0;
 objSelection.LastXMLData = varXMLData2;
 objSelection.LastXMLDataOffset = -1;
 objSelection.Select();
}
catch (err)
 { MsgBox ("Error: invalid data position"); }
// to select all text between varXMLData1 and varXMLdata2, inclusive

1707

1689

1942 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Declaration: SelectionSet (pStartElement as XMLData , nStartPos as long, pEndElement as XMLData ,
nEndPos as long) as Boolean

Description
Use SelectionSet() to set a new selection in the Authentic View. Its possible to set pEndElement to null
(nothing) if the selection should be just over one (pStartElement) XML element.

30.3.3.3.39 XMLRoot (obsolete)

Superseded by AuthenticView.XMLDataRoot

// ----- javascript sample -----
// instead of:
// var objXMLData = Application.ActiveDocument.DocEditView.XMLRoot;
// use now:
var objXMLData = Application.ActiveDocument.AuthenticView.XMLDataRoot;

Declaration: XMLRoot as XMLData

Description
XMLRoot is the parent element of the currently displayed XML structure. Using the XMLData interface you
have full access to the complete content of the file.

30.3.4 Enumerations

This is a list of all enumerations used by the XMLSpy API. If your scripting environment does not support
enumerations use the number-values instead.

30.3.4.1 ENUMApplicationStatus

Enumeration to specify the current Application status.

eApplicationRunning = 0

eApplicationAfterLicenseCheck = 1

eApplicationBeforeLicenseCheck = 2

eApplicationConcurrentLicenseCheckFailed = 3

eApplicationProcessingCommandLine = 4

1893 1893

1730

1893

1893

© 2018-2024 Altova GmbH

Application API 1943Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.4.2 SPYAttributeTypeDefinition

Attribute type definition that can be selected for generation of Sample XML. This type is used with the method
GenerateDTDOrSchema and GenerateDTDOrSchemaEx .

spyMergedGlobal = 0

spyDistinctGlobal = 1

spyLocal = 2

30.3.4.3 SPYAuthenticActions

Actions that can be performed on AuthenticRange objects.

spyAuthenticInsertAt = 0

spyAuthenticApply = 1

spyAuthenticClearSurr = 2

spyAuthenticAppend = 3

spyAuthenticInsertBefore = 4

spyAuthenticRemove = 5

30.3.4.4 SPYAuthenticDocumentPosition

Relative and absolute positions used for navigating with AuthenticRange objects.

spyAuthenticDocumentBegin = 0

spyAuthenticDocumentEnd = 1

spyAuthenticRangeBegin = 2

spyAuthenticRangeEnd = 3

30.3.4.5 SPYAuthenticElementActions

Actions that can be used with the obsolete object GetAllowedElements (superseded by
AuthenticRange.CanPerformActionWith).

k_ActionInsertAt = 0

k_ActionApply = 1

k_ActionClearSurr = 2

1763 1763

1681

1681

1684

1944 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

k_ActionAppend = 3

k_ActionInsertBefore = 4

k_ActionRemove = 5

30.3.4.6 SPYAuthenticElementKind

Enumeration of the different kinds of elements used for navigation and selection within the AuthenticRange
and AuthenticView objects.

spyAuthenticChar = 0

spyAuthenticWord = 1

spyAuthenticLine = 3

spyAuthenticParagraph = 4

spyAuthenticTag = 6

spyAuthenticDocument = 8

spyAuthenticTable = 9

spyAuthenticTableRow = 10

spyAuthenticTableColumn = 11

30.3.4.7 SPYAuthenticMarkupVisibility

Enumeration values to customize the visibility of markup with MarkupVisibility .

spyAuthenticMarkupHidden = 0

spyAuthenticMarkupSmall = 1

spyAuthenticMarkupLarge = 2

spyAuthenticMarkupMixed = 3

30.3.4.8 SPYAuthenticToolbarButtonState

Authentic toolbar button states are given by the following enumerations.

authenticToolbarButtonDefault = 0

authenticToolbarButtonEnabled = 1

authenticToolbarButtonDisabled = 2

1681

1711

1727

© 2018-2024 Altova GmbH

Application API 1945Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.4.9 SPYDatabaseKind

Values to select different kinds of databases for import. See DatabaseConnection.DatabaseKind for its use.

spyDB_Access = 0

spyDB_SQLServer = 1

spyDB_Oracle = 2

spyDB_Sybase = 3

spyDB_MySQL = 4

spyDB_DB2 = 5

spyDB_Other = 6

spyDB_Unspecified = 7

spyDB_PostgreSQL = 8

spyDB_iSeries = 9

30.3.4.10 SPYDialogAction

Values to simulate different interactions on dialogs. See Dialogs for all dialogs available.

spyDialogOK = 0 // simulate click on OK button

spyDialogCancel = 1 // simulate click on Cancel button

spyDialogUserInput = 2 // show dialog and allow user interaction

30.3.4.11 SPYDOMType

Enumeration values to parameterize generation of C++ code from schema definitions.

spyDOMType_msxml4 = 0 Obsolete

spyDOMType_xerces = 1

spyDOMType_xerces3 = 2

spyDOMType_msxml6 = 3

spyDOMType_xerces indicates Xerces 2.x usage.
spyDOMType_xerces3 indicates Xerces 3.x usage.

1739

1743

1946 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.4.12 SPYDTDSchemaFormat

Enumeration to identify the different schema formats.

spyDTD = 0

spyW3C = 1

30.3.4.13 SPYEncodingByteOrder

Enumeration values to specify encoding byte ordering for text import and export.

spyNONE = 0

spyLITTLE_ENDIAN = 1

spyBIG_ENDIAN = 2

30.3.4.14 SPYExportNamespace

Enumeration type to configure handling of namespace identifiers during export.

spyNoNamespace = 0

spyReplaceColonWithUnderscore = 1

30.3.4.15 SPYFindInFilesSearchLocation

The different locations where a search can be performed. This type is used with the FindInFilesDlg dialog.

spyFindInFiles_Documents = 0

spyFindInFiles_Project = 1

spyFindInFiles_Folder = 2

30.3.4.16 SPYFrequentElements

Enumeration values to parameterize schema generation.

spyGlobalElements = 0

spyGlobalComplexType = 1

1795

© 2018-2024 Altova GmbH

Application API 1947Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.4.17 SPYImageKind

Enumeration values to parameterize image type of the generated documentation. These values are used in
SchemaDocumentationDialog.DiagramFormat and WSDLDocumentationDlg.DiagramFormat .

spyImageType_PNG = 0

spyImageType_EMF = 1

30.3.4.18 SPYImportColumnsType

Enumeration to specify different Import columns types.

spyImportColumns_Element = 0

spyImportColumns_Attribute = 1

30.3.4.19 SPYKeyEvent

Enumeration type to identify the different key events. These events correspond with the equally named windows
messages.

spyKeyDown = 0

spyKeyUp = 1

spyKeyPressed = 2

30.3.4.20 SPYKeyStatus

Enumeration type to identify the key status.

spyLeftShiftKeyMask = 1

spyRightShiftKeyMask = 2

spyLeftCtrlKeyMask = 4

spyRightCtrlKeyMask = 8

spyLeftAltKeyMask = 16

spyRightAltKeyMask = 32

1832 1860

1948 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.4.21 SPYLibType

Enumeration values to parameterize generation of C++ code from schema definitions.

spyLibType_static = 0

spyLibType_dll = 1

30.3.4.22 SPYLoading

Enumeration values to define loading behaviour of URL files.

spyUseCacheProxy = 0

spyReload = 1

30.3.4.23 SPYMouseEvent

Enumeration type that defines the mouse status during a mouse event. Use the enumeration values as
bitmasks rather then directly comparing with them.

spyNoButtonMask = 0

spyMouseMoveMask = 1

spyLeftButtonMask = 2

spyMiddleButtonMask = 4

spyRightButtonMask = 8

spyButtonUpMask = 16

spyButtonDownMask = 32

spyDoubleClickMask = 64

spyShiftKeyDownMask = 128

spyCtrlKeyDownMask = 256

spyLeftButtonDownMask = 34 // spyLeftButtonMask | spyButtonDownMask

spyMiddleButtonDownMask = 36 // spyMiddleButtonMask | spyButtonDownMask

spyRightButtonDownMask = 40 // spyRightButtonMask | spyButtonDownMask

spyLeftButtonUpMask = 18 // spyLeftButtonMask | spyButtonUpMask

spyMiddleButtonUpMask = 20 // spyMiddleButtonMask | spyButtonUpMask

spyRightButtonUpMask = 24 // spyRightButtonMask | spyButtonUpMask

spyLeftDoubleClickMask = 66 // spyRightButtonMask | spyButtonUpMask

spyMiddleDoubleClickMask = 68 // spyMiddleButtonMask | spyDoubleClickMask

© 2018-2024 Altova GmbH

Application API 1949Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

spyRightDoubleClickMask = 72 // spyRightButtonMask | spyDoubleClickMask

Examples

' to check for ctrl-leftbutton-down in VB
If (i_eMouseEvent = (XMLSpyLib.spyLeftButtonDownMask Or XMLSpyLib.spyCtrlKeyDownMask)) Then

' react on ctrl-leftbutton-down
End If

' to check for double-click with any button in VBScript
If (((i_eMouseEvent And spyDoubleClickMask) <> 0) Then

' react on double-click
End If

30.3.4.24 SPYNumberDateTimeFormat

Enumeration value to configure database connections.

spySystemLocale = 0

spySchemaCompatible = 1

30.3.4.25 SPYProgrammingLanguage

Enumeration values to select the programming language for code generation from schema definitions. Only
available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

spyUndefinedLanguage = -1

spyJava = 0

spyCpp = 1

spyCSharp = 2

30.3.4.26 SPYProjectItemTypes

Enumeration values to identify the different elements in project item lists. See SpyProjectItem.ItemType .

spyUnknownItem = 0

spyFileItem = 1

spyFolderItem = 2

spyURLItem = 3

1846

1950 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.4.27 SPYProjectType

Enumeration values to generation C# and C++ code from schema definitions.

spyVisualStudio2010Project = 6

spyVisualStudio2013Project = 7

spyVisualStudio2015Project = 8

spyVisualStudio2017Project = 9

spyVisualStudio2019Project =10

spyDotNetCore3_1_Project =11 C# only

spyDotNet5_0_Project =12 C# only

spyDotNet6_0_Project =13 C# only

spyVisualStudio2022Project =14

spyDotNet8_0_Project =15 C# only

30.3.4.28 SpySampleXMLGenerationChoiceMode

This enumeration is used in GenerateSampleXMLDlg.ChoiceMode :

spySampleXMLGen_FirstBranch = 0

spySampleXMLGen_AllBranches = 1

spySampleXMLGen_ShortestBranch = 2

30.3.4.29 SPYSampleXMLGenerationOptimization (Obsolete)

This enumeration is OBSOLETE since v2014.

Specify the elements that will be generated in the Sample XML. This enumeration is used in
GenerateSampleXMLDlg .

spySampleXMLGen_Optimized = 0

spySampleXMLGen_NonMandatoryElements = 1

spySampleXMLGen_Everything = 2

1808

1807

© 2018-2024 Altova GmbH

Application API 1951Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.4.30 SpySampleXMLGenerationSampleValueHints

This enumeration is used in GenerateSampleXMLDlg.SampleValueHints

spySampleXMLGen_FirstFit = 0

spySampleXMLGen_RandomFit = 1

spySampleXMLGen_CycleThrough = 2

30.3.4.31 SPYSampleXMLGenerationSchemaOrDTDAssignment

Specifies what kind of reference to the schema/DTD should be added to the generated Sample XML. This
enumeration is used in GenerateSampleXMLDlg .

spySampleXMLGen_AssignRelatively = 0

spySampleXMLGen_AssignAbsolutely = 1

spySampleXMLGen_DoNotAssign = 2

30.3.4.32 SPYSchemaDefKind

Enumeration type to select schema diagram types.

spyKindElement = 0

spyKindComplexType = 1

spyKindSimpleType = 2

spyKindGroup = 3

spyKindModel = 4

spyKindAny = 5

spyKindAttr = 6

spyKindAttrGroup = 7

spyKindAttrAny = 8

spyKindIdentityUnique = 9

spyKindIdentityKey = 10

spyKindIdentityKeyRef = 11

spyKindIdentitySelector = 12

spyKindIdentityField = 13

spyKindNotation = 14

spyKindInclude = 15

1812

1807

1952 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

spyKindImport = 16

spyKindRedefine = 17

spyKindFacet = 18

spyKindSchema = 19

spyKindCount = 20

30.3.4.33 SPYSchemaDocumentationFormat

Enumeration values to parameterize generation of schema documentation. These values are used in
SchemaDocumentationDialog.OutputFormat and WSDLDocumentationDlg.OutputFormat .

spySchemaDoc_HTML = 0

spySchemaDoc_MSWord = 1

spySchemaDoc_RTF = 2

spySchemaDoc_PDF = 3

30.3.4.34 SPYSchemaExtensionType

Enumeration to specify different Schema Extension types.

spySchemaExtension_None = 0

spySchemaExtension_SQL_XML = 1

spySchemaExtension_MS_SQL_Server = 2

spySchemaExtension_Oracle = 3

30.3.4.35 SPYSchemaFormat

Enumeration to specify different Schema Format types.

spySchemaFormat_Hierarchical = 0

spySchemaFormat_Flat = 1

30.3.4.36 SPYTextDelimiters

Enumeration values to specify text delimiters for text export.

1838 1865

© 2018-2024 Altova GmbH

Application API 1953Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

spyTabulator = 0

spySemicolon = 1

spyComma = 2

spySpace = 3

30.3.4.37 SPYTextEnclosing

Enumeration value to specify text enclosing characters for text import and export.

spyNoEnclosing = 0

spySingleQuote = 1

spyDoubleQuote = 2

30.3.4.38 SPYTypeDetection

Enumeration to select how type detection works during GenerateDTDOrSchema and
GenerateDTDOrSchemaEx .

spyBestPossible = 0

spyNumbersOnly = 1

spyNoDetection = 2

30.3.4.39 SPYURLTypes

Enumeration to specify different URL types.

spyURLTypeAuto = -1

spyURLTypeXML = 0

spyURLTypeDTD = 1

30.3.4.40 SPYValidateXSDVersion

Description
Enumeration values that select what XSD version to use. The XSD version that is selected depends on both (i)
the presence/absence—and, if present, the value—of the /xs:schema/@vc:minVersion attribute of the XSD
document, and (ii) the value of this enumeration.

1763

1763

1954 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

spyValidateXSDVersion_AutoDetect = 0

spyValidateXSDVersion_1_1 = 1

spyValidateXSDVersion_1_0 = 2

spyValidateXSDVersion_1_0 selects XSD 1.0 if vc:minVersion is absent, or is present with any value.
spyValidateXSDVersion_1_1 selects XSD 1.1 if vc:minVersion is absent, or is present with any value.
spyValidateXSDVersion_AutoDetect selects XSD 1.1 if vc:minVersion=1.1. If the vc:minVersion attribute
is absent, or is present with a value other than 1.1, then XSD 1.0 is selected.

30.3.4.41 SPYValidateErrorFormat

Enumeration values that select the format of the error message.

spyValidateErrorFormat_Text = 0

spyValidateErrorFormat_ShortXML = 1

spyValidateErrorFormat_LongXML = 2

30.3.4.42 SPYViewModes

Enumeration values that define the different view modes for XML documents. The mode spyViewAuthentic(4)
identifies the mode that was intermediately called DocEdit mode and is now called Authentic mode. The mode
spyViewJsonSchema identifies a mode which is mapped to the Schema Design View on the GUI but is
distinguished internally.

spyViewGrid = 0

spyViewText = 1

spyViewBrowser = 2

spyViewSchema = 3

spyViewContent = 4 // obsolete

spyViewAuthentic = 4

spyViewWSDL = 5

spyViewZIP = 6

spyViewEditionInfo = 7

spyViewXBRL = 8

spyViewJsonSchema = 9

© 2018-2024 Altova GmbH

Application API 1955Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.4.43 SPYVirtualKeyMask

Enumeration type for the most frequently used key masks that identify the status of the virtual keys. Use these
values as bitmasks rather then directly comparing with them. When necessary, you can create further masks
by using the 'logical or' operator.

spyNoVirtualKeyMask = 0

spyLeftShiftKeyMask = 1

spyRightShiftKeyMask = 2

spyLeftCtrlKeyMask = 4

spyRightCtrlKeyMask = 8

spyLeftAltKeyMask = 16

spyRightAltKeyMask = 32

spyShiftKeyMask = 3 // spyLeftShiftKeyMask | spyRightShiftKeyMask

spyCtrlKeyMask = 12 // spyLeftCtrlKeyMask | spyRightCtrlKeyMask

spyAltKeyMask = 48 // spyLeftAltKeyMask | spyRightAltKeyMask

Examples

' VBScript sample: check if ctrl-key is pressed
If ((i_nVirtualKeyStatus And spyCtrlKeyMask) <> 0)) Then

' ctrl-key is pressed
End If

' VBScript sample: check if ONLY ctrl-key is pressed
If (i_nVirtualKeyStatus == spyCtrlKeyMask) Then

' exactly ctrl-key is pressed
End If

// JScript sample: check if any of the right virtual keys is pressed
if ((i_nVirtualKeyStatus & (spyRightShiftKeyMask | spyRightCtrlKeyMask |
spyRightAltKeyMask)) != 0)
{

; ' right virtual key is pressed
}

30.3.4.44 SPYXMLDataKind

The different types of XMLData elements available for XML documents.

spyXMLDataXMLDocStruct = 0

spyXMLDataXMLEntityDocStruct = 1

spyXMLDataDTDDocStruct = 2

spyXMLDataXML = 3

1956 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

spyXMLDataElement = 4

spyXMLDataAttr = 5

spyXMLDataText = 6

spyXMLDataCData = 7

spyXMLDataComment = 8

spyXMLDataPI = 9

spyXMLDataDefDoctype = 10

spyXMLDataDefExternalID = 11

spyXMLDataDefElement = 12

spyXMLDataDefAttlist = 13

spyXMLDataDefEntity = 14

spyXMLDataDefNotation = 15

spyXMLDataKindsCount = 16

30.3.5 Application API for Java (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

The Application API in Java has an interface built up of Java classes, each of which corresponds to an object in
the Application API . Developers can use these Java classes to interact with the COM API. These classes
are listed below and described in subsequent sections. For a description of the Application API objects
themselves, see the Application API documentation . Bear in mind that some API features are only available
in scripting environments; these have therefore not been ported to Java.

Java classes

SpyApplication
 SpyProject
SpyProjectItems
SpyProjectItem

 SpyDocuments
SpyDoc
SpyAuthenticView
SpyAuthenticRange

SpyDocEditView
SpyDocEditSelection

1641

1616

1616

1616

1960

1973

1974

1974

1966

1964

1987

1986

1989

1988

© 2018-2024 Altova GmbH

Application API 1957Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

SpyGridView
SpyTextView
SpyXMLData

SpyDialogs
SpyCodeGeneratorDlg
SpyDTDSchemaGeneratorDlg
SpyFileSelectionDlg
SpyFindInFilesDlg
SpyGenerateSampleXMLDlg
SpySchemaDocumentationDlg
SpyWSDL20DocumentationDlg
SpyWSDLDocumentationDlg
SpyXBRLDocumentationDlg

SpyDatabaseConnection
SpyElementList
SpyElementListItem
SpyExportSettings
SpyFindInFilesResults

SpyFindInFilesResult
SpyFindInFilesMatch

SpyTextImportExportSettings

Implementation of COM properties in Java
Properties in Java have been defined to include both a set and get method (set if it is allowed by the COM

implementation). For example, the COM class Document contains the GridView property. In Java the method

is called SpyDoc and the property is defined as a GetGridView method.

If you encounter compiling problems, please check the following points:

· The xmlspylib.dll must be available in ..\windows\system32.
· The XMLSpyInterface.jar file must be inserted in the ClassPath environment variable.

Setting the ClassPath variable in Windows XP

1. Click Start | Settings | Control panel | System | Advanced | Environment Variables. This opens
the Environment Variables dialog box.

2. If a ClassPath entry already exists in the System variables group, select the ClassPath entry, and
click the Edit button. Edit the path to: "C:\Program Files\Altova\xmlspy\XMLSpyInterface.jar".

If a ClassPath entry does not exist in the System variables group, click the New button. The New
System Variable dialog pops up. Enter CLASSPATH as the variable name, and "C:\Program
Files\Altova\xmlspy\XMLSpyInterface.jar" as the ClassPath variable (alter the path to match
your installation, if necessary).

1973

1978

1985

1963

1961

1966

1969

1969

1972

1975

1978

1980

1983

1962

1967

1967

1968

1971

1971

1970

1977

1958 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.1 Sample source code (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

The "SpyDoc doc = app.GetDocuments().OpenFile(...)" command parameter must be altered to

suit your environment.

What the sample does:

· Starts a new XMLSpy instance
· Opens the Datasheet.xml file (alter the path here...)
· Switches to the Enhanced Grid view
· Appends a new child element called "NewChild" with the text value "NewValuE" element to the root

element
· Checks if the document is valid and outputs a message to the Java console
· Quits and releases the XMLSpy application

import XMLSpyInterface.*;

public class TestSpyInterface

{
public TestSpyInterface() {}

public static void main(String[] args)

{
SpyApplication app = null;
SpyDoc oDoc = null;
SpyXMLData oData = null;
SpyXMLData oNewChild = null;

try
{

app = new SpyApplication();

app.ShowApplication(true);

oDoc = app.GetDocuments().OpenFile("C:\\FilePath\\OrgChart.xml", true);

// OrgChart.xml is in the folder C:\Documents and Settings\<username>\My

Documents\Altova\XMLSpy2024. The filepath should be in

// the form: C:\\Documents and Settings\\Username\\Folder\\Filename.xml

1641

© 2018-2024 Altova GmbH

Application API 1959Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

if (oDoc != null)
{

oDoc.SwitchViewMode(SPYViewModes.spyViewGrid);
oData = oDoc.GetRootElement();
oNewChild = oDoc.CreateChild(SPYXMLDataKind.spyXMLDataElement);

oNewChild.SetName("NewChild");
oNewChild.SetTextValue("newVaLuE");
oData.AppendChild(oNewChild);

if (oDoc.IsValid() == false)

{
// is to be expected after above insertion

System.out.println("!!!!!!validation error: " + oDoc.GetErrorString());
System.out.println("!!!!!!validation error: " + oDoc.GetErrorPos());
System.out.println("!!!!!!validation error: " + oDoc.GetBadData());

}
}

app.Quit();
}
finally
{

// Free any allocated resources by calling ReleaseInstance().

if (oNewChild != null)
oNewChild.ReleaseInstance();

if (oData != null)
oData.ReleaseInstance();

if (oDoc != null)
oDoc.ReleaseInstance();

if (app != null)
app.ReleaseInstance();

}
}

}

If you have difficulties compiling this sample, please try the following commands on the (Start | Run | cmd)
command line. Please make sure you are currently in the folder that contains the sample java file.

compilation
javac -classpath c:\yourpathhere\XMLSpyInterface.jar testspyinterface.java

Execution
java -classpath c:\yourpathhere\XMLSpyInterface.jar testspyinterface

1960 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.2 SpyApplication (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyApplication

{
public void ReleaseInstance ();

public void ShowApplication (boolean bShow);

public void Quit ();

public void AddMacroMenuItem (String sMacro, String sDisplayText);

public void ClearMacroMenu ();

public SpyDoc GetActiveDocument ();

public SpyProject GetCurrentProject ();

public SpyDocuments GetDocuments ();

public SpyElementList GetDatabaseImportElementList (SpyDatabaseConnection

oImportSettings);
public SpyDatabaseConnection GetDatabaseSettings ();

public SpyElementList GetDatabaseTables (SpyDatabaseConnection oImportSettings);

public SpyExportSettings GetExportSettings ();

public SpyElementList GetTextImportElementList (SpyTextImportExportSettings

oImportSettings);
public SpyTextImportExportSettings GetTextImportExportSettings ();

public SpyDoc ImportFromDatabase (SpyDatabaseConnection oImportSettings,

SpyElementList oElementList);
public SpyDoc ImportFromSchema (SpyDatabaseConnection oImportSettings, String

strTable, SpyDoc oSchemaDoc);
public SpyDoc ImportFromText (SpyTextImportExportSettings oImportSettings,

SpyElementList oElementList);
public SpyDoc ImportFromWord (String sFile);

public void NewProject (String sPath, boolean bDiscardCurrent);

public void OpenProject (String sPath , boolean bDiscardCurrent, boolean bDialog);

public long ShowForm (String sName);

public void URLDelete (String sURL, String sUser, String sPassword);

public void URLMakeDirectory (String sURL, String sUser, String sPassword);

public int GetWarningNumber ();

public String GetWarningText ();

// since Version 2004R4

public SpyApplication GetApplication ();

public SpyApplication GetParent ();

public SpyDialogs GetDialogs ();

public boolean GetVisible ();

public void SetVisible (boolean i_bVisibility);

public long GetWindowHandle();

1641

1958

1672

1670

1658

1659

1964 1658

1973 1660

1966 1660

1967 1661 1962

1962 1662

1967 1662 1962

1968 1663

1967 1663 1977

1977 1664

1964 1665 1962

1967

1964 1666 1962

1964

1964 1667 1977

1967

1964 1668

1669

1669

1672

1673

1673

1674

1674

1960 1659

1960 1670

1963 1660

1674

1674

© 2018-2024 Altova GmbH

Application API 1961Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public void ReloadSettings ();

public SpyFindInFilesResults FindInFiles (SpyFindInFilesDlg dlgSettings);

public boolean ShowFindInFiles (SpyFindInFilesDlg dlgSettings);

public void Selection(String sVal);

public long Status ();

public int MajorVersion ();

public int MinorVersion ();

public String Edition ();

public boolean IsAPISupported ();

public long ServicePackVersion ();

public void CreateXMLSchemaFromDBStructure (SpyDatabaseConnection oConnection,

SpyElementList oTables);
}

30.3.5.3 SpyCodeGeneratorDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

Only available/enabled in the Enterprise edition. An error is returned, if accessed by any other version.

// since version 2004R4

public class SpyCodeGeneratorDlg

{

public void ReleaseInstance ();

public SpyApplication GetApplication ();

public SpyDialogs GetParent ();

public long GetProgrammingLanguage ();

public void SetProgrammingLanguage (long i_eVal);

public String GetTemplateFileName ();

public void SetTemplateFileName (String i_strVal);

public String GetOutputPath ();

public void SetOutputPath (String i_strVal);

public long GetOutputPathDialogAction ();

public void SetOutputPathDialogAction (long i_eVal);

public long GetPropertySheetDialogAction ();

public void SetPropertySheetDialogAction (long i_eVal);

public long GetOutputResultDialogAction ();

public void SetOutputResultDialogAction (long i_eVal);

public long GetCPPSettings_DOMType ();

public void SetCPPSettings_DOMType (long i_eVal);

public long GetCPPSettings_LibraryType ();

public void SetCPPSettings_LibraryType (long i_eVal);

1670

1971 1661 1969

1672 1969

1990 1673

1668

1668

1660

1668

1671

1659 1962

1967

1641

1958

1960 1731

1963 1735

1998 1735

1735 1998

1736

1736

1734

1734

1994 1734

1734 1994

1994 1736

1736 1994

1994 1735

1735 1994

1994 1732

1732 1994

1997 1733

1733 1997

1962 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public boolean GetCPPSettings_UseMFC ();

public void SetCPPSettings_UseMFC (boolean i_bVal);

public long GetCSharpSettings_ProjectType ();

public void SetCSharpSettings_ProjectType (long i_eVal);

}

30.3.5.4 SpyDatabaseConnection (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyDatabaseConnection

{
public void ReleaseInstance ();

public String GetADOConnection ();

public void SetADOConnection (String sValue);

public boolean GetAsAttributes ();

public void SetAsAttributes (boolean bValue);

public boolean GetCreateMissingTables ();

public void SetCreateMissingTables (boolean bValue);

public boolean GetCreateNew ();

public void SetCreateNew (boolean bValue);

public boolean GetExcludeKeys ();

public void SetExcludeKeys (boolean bValue);

public String GetFile ();

public void SetFile (String sValue);

public boolean GetIncludeEmptyElements ();

public void SetIncludeEmptyElements (boolean bValue);

public long GetNumberDateTimeFormat ();

public void SetNumberDateTimeFormat (long nValue);

public String GetODBCConnection ();

public void SetODBCConnection (String sValue);

public String GetSQLSelect ();

public void SetSQLSelect (String sValue);

public long GetTextFieldLen ();

public void SetTextFieldLen (long nValue);

// since version 2004R4

public long GetDatabaseKind ();

public void SetDatabaseKind (long nValue);

// since version 2008R2

1733

1733

1999 1734

1734 1999

1641

1958

1737

1737

1738

1738

1738

1738

1738

1738

1739

1739

1739

1739

1740

1740

1998 1741

1741 1998

1741

1741

1742

1742

1742

1742

1993 1739

1739 1993

© 2018-2024 Altova GmbH

Application API 1963Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public boolean GetCommentIncluded ();

public void SetCommentIncluded (boolean bValue);

public String GetNullReplacement ();

public void SetNullReplacement (String sValue);

public String GetDatabaseSchema ();

public void SetDatabaseSchema (String sValue);

// since version 2010r3

public boolean GetPrimaryKeys ()

public void SetPrimaryKeys (boolean bValue)

public boolean GetForeignKeys ()

public void SetForeignKeys (boolean bValue)

public boolean GetUniqueKeys ()

public void SetUniqueKeys (boolean bValue)

public long GetSchemaExtensionType ()

public void SetSchemaExtensionType (long nValue)

public long GetSchemaFormat ()

public void SetSchemaFormat (long nValue)

public long GetImportColumnsType ()

public void SetImportColumnsType (long nValue)

}

30.3.5.5 SpyDialogs (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

// Since version 2004R4

public class SpyDialogs

{
public SpyApplication GetApplication ();

public SpyApplication GetParent ();

public SpyCodeGeneratorDlg GetCodeGeneratorDlg ();

public SpyFileSelectionDlg GetFileSelectionDlg ();

public SpySchemaDocumentationDlg GetSchemaDocumentationDlg ();

public SpyGenerateSampleXMLDlg GetGenerateSampleXMLDlg ();

public SpyDTDSchemaGeneratorDlg GetDTDSchemaGeneratorDlg ();

public SpyFindInFilesDlg GetFindInFilesDlg ();

public SpyWSDLDocumentationDlg GetWSDLDocumentationDlg ();

// Since version 2010

public SpyWSDL20DocumentationDlg GetWSDL20DocumentationDlg ();

public SpyXBRLDocumentationDlg GetXBRLDocumentationDlg ();

}

1738

1738

1740

1740

1739

1739

1741

1741

1740

1740

1742

1742

2002 1741

1741 2002

2002 1742

1742 2002

1997 1740

1740 1997

1641

1960 1743

1960 1744

1961 1743

1969 1744

1975 1745

1972 1745

1966 1745

1969 1745

1980 1746

1978 1746

1983 1746

1964 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.6 SpyDoc (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyDoc

{
public void ReleaseInstance ();

public void SetEncoding (String strEncoding);

public void SetPathName (String strPath);

public String GetPathName ();

public String GetTitle ();

public boolean IsModified ();

public void Save ();

public void Close (boolean bDiscardChanges);

public void UpdateViews ();

public long GetCurrentViewMode ();

public boolean SwitchViewMode (long nMode);

public SpyGridView GetGridView ();

public void SetActiveDocument ();

public void StartChanges ();

public void EndChanges ();

public void TransformXSL ();

public void AssignDTD (String sDTDFile, boolean bDialog);

public void AssignSchema (String sSchemaFile, boolean bDialog);

public void AssignXSL (String sXSLFile, boolean bDialog);

public void ConvertDTDOrSchema (long nFormat, long nFrequentElements);

public SpyXMLData CreateChild (long nKind);

public void CreateSchemaDiagram (long nKind, String sName, String sFile);

public SpyDocEditView GetDocEditView ();

public void ExportToDatabase (SpyXMLData oFromChild, SpyExportSettings

oExportSettings, SpyDatabaseConnection oDatabaseConnection);
public void ExportToText (SpyXMLData oFromChild, SpyExportSettings

oExportSettings, SpyTextImportExportSettings oTextSettings);
public void GenerateDTDOrSchema (long nFormat, int nValuesList, long nDetection,

long nFrequentElements);

public SpyElementList GetExportElementList (SpyXMLData oFromChild,

SpyExportSettings oExportSettings);
public SpyXMLData GetRootElement ();

public String SaveInString (SpyXMLData oData, boolean bMarked);

public void SaveToURL (String sUrl, String sUser, String sPassword);

public String GetErrorString(); // See IsValid () or IsWellFormed ()

public int GetErrorPos(); // See IsValid () or IsWellFormed ()

public SpyXMLData GetBadData(); // See IsValid () or IsWellFormed ()

public boolean IsValid ();

1641

1958

1758

1758

1768

1777

1768

1772

1754

1779

2005 1758

1776 2005

1973 1768

1774

1776

1759

1777

1752

1752

1752

1754 1994 1996

1985 1756 2006

1757 2001

1989 1758

1760 1985 1968

1962

1761 1985 1968

1977

1763 1994 2004

1996

1967 1767 1985

1968

1985 1772

1773 1985

1774

1768 1771

1768 1771

1985 1768 1771

1768

© 2018-2024 Altova GmbH

Application API 1965Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public boolean IsWellFormed (SpyXMLData oData, boolean bWithChildren);

// Since version 2004R3

public SpyAuthenticView GetAuthenticView ()

// Since version 2004R4

public SpyApplication GetApplication ();

public SpyDocuments GetParent ();

public String GetFullName ();

public void SetFullName (String i_strName);

public String GetName ();

public String GetPath ();

public boolean GetSaved ();

public void SaveAs (String i_strFileNameOrPath);

public String GetEncoding ();

public SpyXMLData GetDataRoot ();

public void GenerateProgramCode (SpyCodeGeneratorDlg i_dlg);

public void AssignXSLFO (String i_strFile, boolean i_bUseDialog);

public void TransformXSLFO ();

public void GenerateSchemaDocumentation (SpySchemaDocumentationDlg i_dlg);

public void ExecuteXQuery (String i_strXMLSourceFile);

public void SetExternalIsValid (boolean bIsValid);

public SpyDoc GenerateSampleXML (SpyGenerateSampleXMLDlg ipGenerateXMLDlg);

public boolean UpdateXMLData ();

public String GetAsXMLString ();

public void SetAsXMLString (String newVal);

public SpyDoc GenerateDTDOrSchemaEx (SpyDTDSchemaGeneratorDlg

ipDTDSchemaGeneratorDlg);
public SpyDoc ConvertDTDOrSchemaEx (long nFormat, long nFrequentElements,

String sOutputPath, long nOutputPathDialogAction);

public SpyTextView GetTextView ();

public String[] GetSuggestions ();

public void SetSuggestions (String[] aList);

public void SetSelection(String sVal);

// Since version 2009

public void GenerateWSDLDocumentation (SpyWSDLDocumentationDlg ipWSDLDocumenationDlg

);
public void TransformXSLEx (long nDialogAction);

// Since version 2010

public void GenerateWSDL20Documentation (SpyWSDL20DocumentationDlg

ipWSD20DocumenationDlg);
public void GenerateXBRLDocumentation (SpyXBRLDocumentationDlg

ipXBRLDocumentationDlg);
public SpyDoc ConvertToWSDL20 (String sFilePath, boolean bShowDialogs);

// Since version 2010r3

public String CreateDBStructureFromXMLSchema (SpyDatabaseConnection oConnection,

SpyElementList oTables, boolean bDropTableWithExistingName);

public SpyElementList GetDBStructureList (SpyDatabaseConnection oConnection);

}

1771 1985

1987 1753

1960 1752

1966 1771

1762

1762

1771

1772

1773

1773

1758

1985 1758

1764 1961

1753

1778

1765 1975

1759

1775

1964 1764 1972

1779

1753

1753

1964 1763 1966

1964 1755 1994 1996

1994

1978 1777

1776

1776

1766 1980

1778 1994

1765 1978

1766 1983

1964 1756

1757 1962

1967

1967 1767 1962

1966 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.7 SpyDocuments (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyDocuments

{
public void ReleaseInstance ();

public long Count ();

public SpyDoc GetItem (long nNo);

public SpyDoc NewFile (String strFile, String strType);

public SpyDoc NewFileFromText (String nSource, String strType);

public SpyDoc OpenFile (String sPath, boolean bDialog);

public SpyDoc OpenURL (String sUrl, long nURLType, long nLoading, String

sUser, String sPassword);
public SpyDoc OpenURLDialog (String sURL, long nURLType, long nLoading, String

sUser, String sPassword);
// Since version 2011r2

public SpyDoc NewAuthenticFile (String strSPSPath, String strXMLPath);

public SpyDoc OpenAuthenticFile (String strSPSPath, String strXMLPath);

}

30.3.5.8 SpyDTDSchemaGeneratorDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyDTDSchemaGeneratorDlg

{
public void ReleaseInstance ();

public SpyApplication GetApplication ();

public long GetDTDSchemaFormat ();

public void SetDTDSchemaFormat (long newVal);

public short GetValueList ();

public void SetValueList (short newVal);

public long GetTypeDetection ();

1641

1958

1781

1964 1781

1964 1782

1964 1782

1964 1783

1964 1783 2004 1998

1964 1784 2004 1998

1964 1781

1964 1782

1641

1958

1960 1785

1994 1785

1785 1994

1788

1788

2004 1788

© 2018-2024 Altova GmbH

Application API 1967Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public void SetTypeDetection (long newVal);

public long GetFrequentElements ();

public void SetFrequentElements (long newVal);

public boolean GetMergeAllEqualNamed ();

public void SetMergeAllEqualNamed (boolean newVal);

public boolean GetResolveEntities ();

public void SetResolveEntities (boolean newVal);

public long GetAttributeTypeDefinition ();

public void SetAttributeTypeDefinition (long newVal);

public boolean GetGlobalAttributes ();

public void SetGlobalAttributes (boolean newVal);

public boolean GetOnlyStringEnums ();

public void SetOnlyStringEnums (boolean newVal);

public long GetMaxEnumLength ();

public void SetMaxEnumLength (long newVal);

public String GetOutputPath ();

public void SetOutputPath (String newVal);

public long GetOutputPathDialogAction ();

public void SetOutputPathDialogAction (long newVal);

}

30.3.5.9 SpyElementList (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyElementList

{
public void ReleaseInstance ();

public long GetCount ();

public SpyElementListItem GetItem (long nIndex);

public void RemoveElement (long nIndex);

}

30.3.5.10 SpyElementListItem (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

1788 2004

1996 1786

1786 1996

1786

1786

1788

1788

1990 1785

1785 1990

1786

1786

1787

1787

1786

1786

1787

1787

1994 1787

1787 1994

1641

1958

1789

1967 1789

1789

1968 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyElementListItem

{
public void ReleaseInstance ();

public long GetElementKind ();

public void SetElementKind (long nKind);

public long GetFieldCount ();

public String GetName ();

public long GetRecordCount ();

}

30.3.5.11 SpyExportSettings (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyExportSettings

{
public void ReleaseInstance ();

public boolean GetCreateKeys ();

public void SetCreateKeys (boolean bValue);

public SpyElementList GetElementList ();

public void SetElementList (SpyElementList obj);

public boolean GetEntitiesToText ();

public void SetEntitiesToText (boolean bValue);

public boolean GetExportAllElements ();

public void SetExportAllElements (boolean bValue);

public boolean GetFromAttributes ();

public void SetFromAttributes (boolean bValue);

public boolean GetFromSingleSubElements ();

public void SetFromSingleSubElements (boolean bValue);

public boolean GetFromTextValues ();

public void SetFromTextValues (boolean bValue);

public boolean GetIndependentPrimaryKey ();

public void SetIndependentPrimaryKey (boolean bValue);

public long GetNamespace ();

public void SetNamespace (long nValue);

public int GetSubLevelLimit ();

public void SetSubLevelLimit (int nValue);

}

1641

1958

2006 1790

1790 2006

1790

1790

1790

1641

1958

1791

1791

1967 1791

1791 1967

1792

1792

1792

1792

1792

1792

1792

1792

1792

1792

1793

1793

1995 1793

1793 1995

1793

1793

© 2018-2024 Altova GmbH

Application API 1969Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.5.12 SpyFileSelectionDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

// Since version 2004R4

public class SpyFileSelectionDlg

{
public void ReleaseInstance ();

public SpyApplication GetApplication ();

public SpyDialogs GetParent ();

public String GetFullName ();

public void SetFullName (String i_strName);

public long GetDialogAction ();

public void SetDialogAction (long i_eAction);

}

30.3.5.13 SpyFindInFilesDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyFindInFilesDlg

{
public void ReleaseInstance ();

public SpyApplication GetApplication ();

public String GetFind ();

public void SetFind (String sNewVal);

public boolean GetRegularExpression ();

public void SetRegularExpression (boolean bNewVal);

public String GetReplace ();

public void SetReplace (String sNewVal);

public boolean GetReplaceOnDisk ();

public void SetReplaceOnDisk (boolean bNewVal);

public boolean GetDoReplace ();

public void SetDoReplace (boolean bNewVal);

1641

1958

1960 1794

1963 1795

1794

1794

1994 1794

1794 1994

1641

1958

1960 1796

1797

1797

1798

1798

1798

1798

1798

1798

1796

1796

1970 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public boolean GetMatchWholeWord ();

public void SetMatchWholeWord (boolean bNewVal);

public boolean GetMatchCase ();

public void SetMatchCase (boolean bNewVal);

public long GetSearchLocation ();

public void SetSearchLocation (long nPosition);

public String GetStartFolder ();

public void SetStartFolder (String sNewVal);

public boolean GetIncludeSubfolders ();

public void SetIncludeSubfolders (boolean bNewVal);

public boolean GetSearchInProjectFilesDoExternal ();

public void SetSearchInProjectFilesDoExternal (boolean bNewVal);

public String GetFileExtension ();

public void SetFileExtension (String sNewVal);

public boolean GetAdvancedXMLSearch ();

public void SetAdvancedXMLSearch (boolean bNewVal);

public boolean GetXMLElementNames ();

public void SetXMLElementNames (boolean bNewVal);

public boolean GetXMLElementContents ();

public void SetXMLElementContents (boolean bNewVal);

public boolean GetXMLAttributeNames ();

public void SetXMLAttributeNames (boolean bNewVal);

public boolean GetXMLAttributeContents ();

public void SetXMLAttributeContents (boolean bNewVal);

public boolean GetXMLComments ();

public void SetXMLComments (boolean bNewVal);

public boolean GetXMLCData ();

public void SetXMLCData (boolean bNewVal);

public boolean GetXMLPI ();

public void SetXMLPI (boolean bNewVal);

public boolean GetXMLRest ();

public void SetXMLRest (boolean bNewVal);

public boolean GetShowResult ();

public void SetShowResult (boolean bNewVal);

}

30.3.5.14 SpyFindInFilesMatch (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyFindInFilesMatch

{
public void ReleaseInstance ();

public long Line ();

1797

1797

1797

1797

1996 1799

1799 1996

1800

1800

1797

1797

1799

1799

1796

1796

1796

1796

1801

1801

1801

1801

1800

1800

1800

1800

1801

1801

1800

1800

1801

1801

1802

1802

1799

1799

1641

1958

1805

© 2018-2024 Altova GmbH

Application API 1971Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public long Position ();

public long Length ();

public String LineText ();

public boolean Replaced ();

}

30.3.5.15 SpyFindInFilesResult (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyFindInFilesResult

{
public void ReleaseInstance ();

public long Count ();

public SpyFindInFilesMatch GetItem (long nNo);

public String GetPath ();

public SpyDoc GetDocument ();

}

30.3.5.16 SpyFindInFilesResults (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyFindInFilesResults

{
public void ReleaseInstance ();

public long Count ();

public SpyFindInFilesResult GetItem (long nNo);

}

1805

1804

1805

1806

1641

1958

1803

1970 1803

1803

1964 1803

1641

1958

1807

1971 1807

1972 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.17 SpyGenerateSampleXMLDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyGenerateSampleXMLDlg

{
public void ReleaseInstance ();

public SpyApplication GetApplication ();

public boolean GetNonMandatoryAttributes ();

public void SetNonMandatoryAttributes (boolean newVal);

public boolean GetNonMandatoryElements ();

public void SetNonMandatoryElements (boolean newVal);

public boolean GetTakeFirstChoice ();

public void SetTakeFirstChoice (boolean newVal);

public long GetRepeatCount ();

public void SetRepeatCount (long newVal);

public boolean GetFillWithSampleData ();

public void SetFillWithSampleData (boolean newVal);

public boolean GetFillElementsWithSampleData ();

public void SetFillElementsWithSampleData (boolean newVal);

public boolean GetFillAttributesWithSampleData ();

public void SetFillAttributesWithSampleData (boolean newVal);

public boolean GetContentOfNillableElementsIsNonMandatory ();

public void SetContentOfNillableElementsIsNonMandatory (boolean newVal);

public boolean GetTryToUseNonAbstractTypes ();

public void SetTryToUseNonAbstractTypes (boolean newVal);

public long GetOptimization ();

public void SetOptimization (long newVal);

public long GetSchemaOrDTDAssignment ();

public void SetSchemaOrDTDAssignment (long newVal);

public String GetLocalNameOfRootElement ();

public void SetLocalNameOfRootElement (String newVal);

public String GetNamespaceURIOfRootElement ();

public void SetNamespaceURIOfRootElement (String newVal);

public long GetOptionsDialogAction ();

public void SetOptionsDialogAction (long newVal);

}

1641

1958

1960 1808

1810

1810

1810

1810

1812

1812

1812

1812

1809

1809

1809

1809

1809

1809

1809

1809

1813

1813

2000 1811

1811 2000

2000 1812

1812 2000

1810

1810

1810

1810

1994 1811

1811 1994

© 2018-2024 Altova GmbH

Application API 1973Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.5.18 SpyGridView (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyGridView

{
public void ReleaseInstance ();

public SpyXMLData GetCurrentFocus ();

public void Deselect (SpyXMLData oData);

public boolean GetIsVisible ();

public void Select (SpyXMLData oData);

public void SetFocus (SpyXMLData oData);

}

30.3.5.19 SpyProject (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyProject

{
public void ReleaseInstance ();

public void CloseProject (boolean bDiscardChanges, boolean bCloseFiles, boolean bDialog

);
public String GetProjectFile ();

public void SetProjectFile (String sFile);

public SpyProjectItems GetRootItems ();

public void SaveProject ();

public void SaveProjectAs (String sPath, boolean bDialog);

}

1641

1958

1985 1816

1816 1985

1816

1816 1985

1816 1985

1641

1958

1844

1845

1845

1974 1845

1845

1845

1974 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.20 SpyProjectItem (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyProjectItem

{
public void ReleaseInstance ();

public SpyProjectItems GetChildItems ();

public String GetFileExtensions ();

public void SetFileExtensions (String sExtensions);

public long GetItemType ();

public String GetName ();

public SpyDoc Open ();

public SpyProjectItem GetParentItem ();

public String GetPath ();

public String GetValidateWith ();

public void SetValidateWith (String sVal);

public String GetXMLForXSLTransformation ();

public void SetXMLForXSLTransformation (String sVal);

public String GetXSLForXMLTransformation ();

public void SetXSLForXMLTransformation (String sVal);

public String GetXSLTransformationFileExtension ();

public void SetXSLTransformationFileExtension (String sVal);

public String GetXSLTransformationFolder ();

public void SetXSLTransformationFolder (String sVal);

}

30.3.5.21 SpyProjectItems (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyProjectItems

{
public void ReleaseInstance ();

1641

1958

1974 1846

1846

1846

1999 1846

1846

1964 1846

1974 1847

1847

1847

1847

1847

1847

1847

1847

1847

1847

1848

1848

1641

1958

© 2018-2024 Altova GmbH

Application API 1975Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public void AddFile (String sPath);

public void AddFolder (String sName);

public void AddURL (String sURL, long nURLType, String sUser, String sPassword,

boolean bSave);

public long Count ();

public SpyProjectItem GetItem (long nNumber);

public void RemoveItem (SpyProjectItem oItemToRemove);

}

30.3.5.22 SpySchemaDocumentationDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

// Since version 2004R4

public class SpySchemaDocumentationDlg

{

public void ReleaseInstance ();

public SpyApplication GetApplication ();

public SpyDialogs GetParent ();

public String GetOutputFile ();

public void SetOutputFile (String i_strVal);

public long GetOutputFormat ();

public void SetOutputFormat (long i_eVal);

public boolean GetShowResult ();

public void SetShowResult (boolean i_bVal);

public long GetOptionsDialogAction ();

public void SetOptionsDialogAction (long i_eVal);

public long GetOutputFileDialogAction ();

public void SetOutputFileDialogAction (long i_eVal);

public boolean GetShowProgressBar ();

public void SetShowProgressBar (boolean i_bVal);

public void IncludeAll (boolean i_bInclude);

public boolean GetIncludeIndex ();

public void SetIncludeIndex (boolean i_bVal);

public boolean GetIncludeGlobalElements ();

public void SetIncludeGlobalElements (boolean i_bVal);

public boolean GetIncludeLocalElements ();

public void SetIncludeLocalElements (boolean i_bVal);

public boolean GetIncludeGroups ();

1848

1848

1849 2004

1849

1974 1849

1849 1974

1641

1958

1960 1831

1963 1838

1837

1837

2001 1838

1838 2001

1842

1842

1994 1837

1837 1994

1994 1838

1838 1994

1841

1841

1833

1835

1835

1834

1834

1836

1836

1835

1976 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public void SetIncludeGroups (boolean i_bVal);

public boolean GetIncludeComplexTypes ();

public void SetIncludeComplexTypes (boolean i_bVal);

public boolean GetIncludeSimpleTypes ();

public void SetIncludeSimpleTypes (boolean i_bVal);

public boolean GetIncludeAttributeGroups ();

public void SetIncludeAttributeGroups (boolean i_bVal);

public boolean GetIncludeRedefines ();

public void SetIncludeRedefines (boolean i_bVal);

public void AllDetails (boolean i_bDetailsOn);

public boolean GetShowDiagram ();

public void SetShowDiagram (boolean i_bVal);

public boolean GetShowNamespace ();

public void SetShowNamespace (boolean i_bVal);

public boolean GetShowType ();

public void SetShowType (boolean i_bVal);

public boolean GetShowChildren ();

public void SetShowChildren (boolean i_bVal);

public boolean GetShowUsedBy ();

public void SetShowUsedBy (boolean i_bVal);

public boolean GetShowProperties ();

public void SetShowProperties (boolean i_bVal);

public boolean GetShowSingleFacets ();

public void SetShowSingleFacets (boolean i_bVal);

public boolean GetShowPatterns ();

public void SetShowPatterns (boolean i_bVal);

public boolean GetShowEnumerations ();

public void SetShowEnumerations (boolean i_bVal);

public boolean GetShowAttributes ();

public void SetShowAttributes (boolean i_bVal);

public boolean GetShowIdentityConstraints ();

public void SetShowIdentityConstraints (boolean i_bVal);

public boolean GetShowAnnotations ();

public void SetShowAnnotations (boolean i_bVal);

public boolean GetShowSourceCode ();

public void SetShowSourceCode (boolean i_bVal);

// Since version 2009

public boolean GetEmbedDiagrams ();

public void SetEmbedDiagrams (boolean i_bVal);

public long GetDiagramFormat ();

public void SetDiagramFormat (long i_nVal);

public boolean GetIncludeGlobalAttributes ();

public void SetIncludeGlobalAttributes (boolean i_bVal);

public boolean GetIncludeLocalAttributes ();

public void SetIncludeLocalAttributes (boolean i_bVal);

public boolean GetIncludeReferencedSchemas ();

public void SetIncludeReferencedSchemas (boolean i_bVal);

public boolean GetMultipleOutputFiles ();

1835

1834

1834

1836

1836

1833

1833

1836

1836

1831

1840

1840

1841

1841

1843

1843

1839

1839

1843

1843

1841

1841

1842

1842

1841

1841

1840

1840

1839

1839

1840

1840

1839

1839

1842

1842

1833

1833

1997 1832

1832 1997

1834

1834

1835

1835

1836

1836

1837

© 2018-2024 Altova GmbH

Application API 1977Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public void SetMultipleOutputFiles (boolean i_bVal);

// Since version 2010

public boolean GetEmbedCSSInHTML ();

public void SetEmbedCSSInHTML (boolean i_bVal);

public boolean GetCreateDiagramsFolder ();

public void SetCreateDiagramsFolder (boolean i_bVal);

// Since version 2010r3

public boolean GetGenerateRelativeLinks ();

public void SetGenerateRelativeLinks (boolean i_bVal);

// Since version 2011r2

public boolean GetUseFixedDesign ();

public void SetUseFixedDesign (boolean i_bVal);

public String GetSPSFile ();

public void SetSPSFile (String i_strVal);

}

30.3.5.23 SpyTextImportExportSettings (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyTextImportExportSettings

{
public void ReleaseInstance ();

public String GetDestinationFolder ();

public void SetDestinationFolder (String sVal);

public long GetEnclosingCharacter ();

public void SetEnclosingCharacter (long nEnclosing);

public String GetEncoding ();

public void SetEncoding (String sVal);

public long GetEncodingByteOrder ();

public void SetEncodingByteOrder (long nByteOrder);

public long GetFieldDelimiter ();

public void SetFieldDelimiter (long nDelimiter);

public String GetFileExtension ();

public void SetFileExtension (String sVal);

public boolean GetHeaderRow ();

public void SetHeaderRow (boolean bVal);

public String GetImportFile ();

1837

1832

1832

1832

1832

1833

1833

1844

1844

1843

1843

1641

1958

1850

1850

2003 1850

1850 2003

1851

1851

1995 1851

1851 1995

2003 1851

1851 2003

1851

1851

1851

1851

1851

1978 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public void SetImportFile (String sVal);

}

30.3.5.24 SpyTextView (obsolete)

public class SpyTextView

{
public void ReleaseInstance ();

public SpyApplication GetApplication ();

public SpyDoc GetParent ();

public long LineFromPosition (long nCharPos);

public long PositionFromLine (long nLine);

public long LineLength (long nLine);

public String GetSelText ();

public void SetSelText (String sText);

public String GetRangeText (long nPosFrom, long nPosTill);

public void ReplaceText (long nPosFrom, long nPosTill, String sText);

public void MoveCaret (long nDiff);

public void GoToLineChar (long nLine, long nChar);

public void SelectText (long nPosFrom, long nPosTill);

public long GetSelectionStart ();

public void SetSelectionStart (long nNewVal);

public long GetSelectionEnd ();

public void SetSelectionEnd (long nNewVal);

public String GetText ();

public void SetText (String sText);

public long LineCount ();

public long Length ();

}

30.3.5.25 SpyWSDL20DocumentationDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

// Since version 2010

public class SpyWSDL20DocumentationDlg

{

public void ReleaseInstance ();

public SpyApplication GetApplication ();

public long GetOptionsDialogAction ();

1851

1958

1960 1854

1964 1856

1855

1856

1855

1857

1857

1854

1856

1856

1854

1857

1857

1857

1857

1857

1858

1858

1855

1855

1641

1958

1960 1871

1994 1876

© 2018-2024 Altova GmbH

Application API 1979Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public void SetOptionsDialogAction (long nNewVal);

public long GetOutputFileDialogAction ();

public void SetOutputFileDialogAction (long nNewVal);

public boolean GetShowProgressBar ();

public void SetShowProgressBar (boolean bNewVal);

public String GetOutputFile ();

public void SetOutputFile (String sNewVal);

public long GetOutputFormat ();

public void SetOutputFormat (long nNewVal);

public boolean GetMultipleOutputFiles ();

public void SetMultipleOutputFiles (boolean bNewVal);

public boolean GetEmbedCSSInHTML ();

public void SetEmbedCSSInHTML (boolean bNewVal);

public long GetDiagramFormat ();

public void SetDiagramFormat (long nNewVal);

public boolean GetEmbedDiagrams ();

public void SetEmbedDiagrams (boolean bNewVal);

public boolean GetCreateDiagramsFolder ();

public void SetCreateDiagramsFolder (boolean bNewVal);

public boolean GetShowResult ();

public void SetShowResult (boolean bNewVal);

public void IncludeAll (boolean bNewVal);

public void AllDetails (boolean bNewVal);

public boolean GetIncludeOverview ();

public void SetIncludeOverview (boolean bNewVal);

public boolean GetIncludeService ();

public void SetIncludeService (boolean bNewVal);

public boolean GetIncludeBinding ();

public void SetIncludeBinding (boolean bNewVal);

public boolean GetIncludeInterface ();

public void SetIncludeInterface (boolean bNewVal);

public boolean GetIncludeTypes ();

public void SetIncludeTypes (boolean bNewVal);

1876 1994

1994 1876

1876 1994

1879

1879

1876

1876

2001 1877

1877 2001

1875

1875

1872

1872

1997 1872

1872 1997

1873

1873

1872

1872

1880

1880

1873

1871

1874

1874

1875

1875

1873

1873

1874

1874

1875

1875

1980 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public boolean GetIncludeImportedWSDLFiles ();

public void SetIncludeImportedWSDLFiles (boolean bNewVal);

public boolean GetShowServiceDiagram ();

public void SetShowServiceDiagram (boolean bNewVal);

public boolean GetShowBindingDiagram ();

public void SetShowBindingDiagram (boolean bNewVal);

public boolean GetShowInterfaceDiagram ();

public void SetShowInterfaceDiagram (boolean bNewVal);

public boolean GetShowTypesDiagram ();

public void SetShowTypesDiagram (boolean bNewVal);

public boolean GetShowEndpoint ();

public void SetShowEndpoint (boolean bNewVal);

public boolean GetShowSourceCode ();

public void SetShowSourceCode (boolean bNewVal);

public boolean GetShowExtensibility ();

public void SetShowExtensibility (boolean bNewVal);

public boolean GetShowUsedBy ();

public void SetShowUsedBy (boolean bNewVal);

public boolean GetShowOperation ();

public void SetShowOperation (boolean bNewVal);

public boolean GetShowFault ();

public void SetShowFault (boolean bNewVal);

// Since version 2011r2

public boolean GetUseFixedDesign ();

public void SetUseFixedDesign (boolean i_bVal);

public String GetSPSFile ();

public void SetSPSFile (String i_strVal);

}

30.3.5.26 SpyWSDLDocumentationDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

1874

1874

1880

1880

1877

1877

1879

1879

1881

1881

1878

1878

1880

1880

1878

1878

1881

1881

1879

1879

1878

1878

1881

1881

1881

1881

© 2018-2024 Altova GmbH

Application API 1981Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

// Since version 2008r2sp1

public class SpyWSDLDocumentationDlg

{

public void ReleaseInstance ();

public SpyApplication GetApplication ();

public String GetOutputFile ();

public void SetOutputFile (String sNewVal);

public long GetOutputFileDialogAction ();

public void SetOutputFileDialogAction (long nNewVal);

public long GetOptionsDialogAction ();

public void SetOptionsDialogAction (long nNewVal);

public boolean GetShowProgressBar ();

public void SetShowProgressBar (boolean bNewVal);

public boolean GetShowResult ();

public void SetShowResult (boolean bNewVal);

public long GetOutputFormat ();

public void SetOutputFormat (long nNewVal);

public boolean GetEmbedDiagrams ();

public void SetEmbedDiagrams (boolean bNewVal);

public long GetDiagramFormat ();

public void SetDiagramFormat (long nNewVal);

public boolean GetMultipleOutputFiles ();

public void SetMultipleOutputFiles (boolean bNewVal);

public void IncludeAll (boolean bNewVal);

public boolean GetIncludeBinding ();

public void SetIncludeBinding (boolean bNewVal);

public boolean GetIncludeImportedWSDLFiles ();

public void SetIncludeImportedWSDLFiles (boolean bNewVal);

public boolean GetIncludeMessages ();

public void SetIncludeMessages (boolean bNewVal);

1641

1958

1960 1859

1864

1864

1994 1865

1865 1994

1994 1864

1864 1994

1868

1868

1868

1868

2001 1865

1865 2001

1861

1861

1997 1860

1860 1997

1864

1864

1861

1861

1861

1862

1862

1862

1862

1982 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public boolean GetIncludeOverview ();

public void SetIncludeOverview (boolean bNewVal);

public boolean GetIncludePortType ();

public void SetIncludePortType (boolean bNewVal);

public boolean GetIncludeService ();

public void SetIncludeService (boolean bNewVal);

public boolean GetIncludeTypes ();

public void SetIncludeTypes (boolean bNewVal);

public void AllDetails (boolean bNewVal);

public boolean GetShowBindingDiagram ();

public void SetShowBindingDiagram (boolean bNewVal);

public boolean GetShowExtensibility ();

public void SetShowExtensibility (boolean bNewVal);

public boolean GetShowMessageParts ();

public void SetShowMessageParts (boolean bNewVal);

public boolean GetShowPort ();

public void SetShowPort (boolean bNewVal);

public boolean GetShowPortTypeDiagram ();

public void SetShowPortTypeDiagram (boolean bNewVal);

public boolean GetShowPortTypeOperations ();

public void SetShowPortTypeOperations (boolean bNewVal);

public boolean GetShowServiceDiagram ();

public void SetShowServiceDiagram (boolean bNewVal);

public boolean GetShowSourceCode ();

public void SetShowSourceCode (boolean bNewVal);

public boolean GetShowTypesDiagram ();

public void SetShowTypesDiagram (boolean bNewVal);

public boolean GetShowUsedBy ();

public void SetShowUsedBy (boolean bNewVal);

// Since version 2010

public boolean GetEmbedCSSInHTML ();

public void SetEmbedCSSInHTML (boolean i_bVal);

public boolean GetCreateDiagramsFolder ();

public void SetCreateDiagramsFolder (boolean i_bVal);

1862

1862

1863

1863

1863

1863

1863

1863

1859

1866

1866

1866

1866

1866

1866

1867

1867

1867

1867

1867

1867

1868

1868

1868

1868

1869

1869

1869

1869

1860

1860

1860

1860

© 2018-2024 Altova GmbH

Application API 1983Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

// Since version 2011r2

public boolean GetUseFixedDesign ();

public void SetUseFixedDesign (boolean i_bVal);

public String GetSPSFile ();

public void SetSPSFile (String i_strVal);

}

30.3.5.27 SpyXBRLDocumentationDlg (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

// Since version 2010

public class SpyXBRLDocumentationDlg

{

public void ReleaseInstance ();

public SpyApplication GetApplication ();

public long GetOptionsDialogAction ();

public void SetOptionsDialogAction (long nNewVal);

public long GetOutputDialogAction ();

public void SetOutputDialogAction (long nNewVal);

public boolean GetShowProgressBar ();

public void SetShowProgressBar (boolean bNewVal);

public String GetOutputFile ();

public void SetOutputFile (String sNewVal);

public long GetOutputFormat ();

public void SetOutputFormat (long nNewVal);

public boolean GetEmbedCSSInHTML ();

public void SetEmbedCSSInHTML (boolean bNewVal);

public long GetDiagramFormat ();

public void SetDiagramFormat (long nNewVal);

1869

1869

1870

1870

1641

1958

1960 1883

1994 1887

1887 1994

1994 1887

1887 1994

1891

1891

1887

1887

2001 1888

1888 2001

1884

1884

1997 1884

1884 1997

1984 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public boolean GetEmbedDiagrams ();

public void SetEmbedDiagrams (boolean bNewVal);

public boolean GetCreateDiagramsFolder ();

public void SetCreateDiagramsFolder (boolean bNewVal);

public boolean GetShowResult ();

public void SetShowResult (boolean bNewVal);

public void IncludeAll (boolean bNewVal);

public void AllDetails (boolean bNewVal);

public boolean GetIncludeOverview ();

public void SetIncludeOverview (boolean bNewVal);

public boolean GetIncludeNamespacePrefixes ();

public void SetIncludeNamespacePrefixes (boolean bNewVal);

public boolean GetIncludeGlobalElements ();

public void SetIncludeGlobalElements (boolean bNewVal);

public boolean GetIncludeDefinitionLinkroles ();

public void SetIncludeDefinitionLinkroles (boolean bNewVal);

public boolean GetIncludePresentationLinkroles ();

public void SetIncludePresentationLinkroles (boolean bNewVal);

public boolean GetIncludeCalculationLinkroles ();

public void SetIncludeCalculationLinkroles (boolean bNewVal);

public boolean GetShowDiagram ();

public void SetShowDiagram (boolean bNewVal);

public boolean GetShowSubstitutiongroup ();

public void SetShowSubstitutiongroup (boolean bNewVal);

public boolean GetShowItemtype ();

public void SetShowItemtype (boolean bNewVal);

public boolean GetShowBalance ();

public void SetShowBalance (boolean bNewVal);

public boolean GetShowPeriod ();

public void SetShowPeriod (boolean bNewVal);

public boolean GetShowAbstract ();

public void SetShowAbstract (boolean bNewVal);

public boolean GetShowNillable ();

public void SetShowNillable (boolean bNewVal);

1884

1884

1883

1883

1892

1892

1885

1883

1886

1886

1886

1886

1886

1886

1885

1885

1886

1886

1885

1885

1889

1889

1892

1892

1890

1890

1889

1889

1891

1891

1889

1889

1891

1891

© 2018-2024 Altova GmbH

Application API 1985Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

public boolean GetShowLabels ();

public void SetShowLabels (boolean bNewVal);

public boolean GetShowReferences ();

public void SetShowReferences (boolean bNewVal);

public boolean GetShowLinkbaseReferences ();

public void SetShowLinkbaseReferences (boolean bNewVal);

public boolean GetShortQualifiedName ();

public void SetShortQualifiedName (boolean bNewVal);

public boolean GetShowImportedElements ();

public void SetShowImportedElements (boolean bNewVal);

// Since version 2011r2

public boolean GetUseFixedDesign ();

public void SetUseFixedDesign (boolean i_bVal);

public String GetSPSFile ();

public void SetSPSFile (String i_strVal);

};

30.3.5.28 SpyXMLData (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyXMLData

{
public void ReleaseInstance ();

public void AppendChild (SpyXMLData oNewData);

public void EraseAllChildren ();

public void EraseCurrentChild ();

public SpyXMLData GetCurrentChild ();

public SpyXMLData GetFirstChild (long nKind);

public SpyXMLData GetNextChild ();

public boolean GetHasChildren ();

public void InsertChild (SpyXMLData oNewData);

public boolean IsSameNode (SpyXMLData oToComp);

public long GetKind ();

public boolean GetMayHaveChildren ();

public String GetName ();

1890

1890

1892

1892

1890

1890

1888

1888

1889

1889

1893

1893

1893

1893

1641

1958

1894 1985

1896

1896

1985 1899

1985 1899 2006

1985 1900

1901

1902 1985

1903 1985

2006 1903

1904

1904

1986 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public void SetName (String sValue);

public SpyXMLData GetParent ();

public String GetTextValue ();

public void SetTextValue (String sValue);

}

30.3.5.29 Authentic (obsolete)

30.3.5.29.1 SpyAuthenticRange (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

// Since version 2004R3

public class SpyAuthenticRange

{
 public void ReleaseInstance ();

 public SpyApplication GetApplication ();

 public SpyAuthenticView GetParent ();

 public SpyAuthenticRange GotoNext (long eKind);

 public SpyAuthenticRange GotoPrevious (long eKind);

 public void Select ();

 public long GetFirstTextPosition ();

 public void SetFirstTextPosition (long nTextPosition);

 public long GetLastTextPosition ();

 public void SetLastTextPosition (long nTextPosition);

 public String GetText ();

 public void SetText (String strText);

 public boolean PerformAction (long eAction, String strElementName);

 public boolean CanPerformAction (long eAction, String strElementName);

 public String[] CanPerformActionWith (long eAction);

 public SpyAuthenticRange GoTo (long eKind, long nCount, long nFrom);

 public SpyAuthenticRange SelectNext (long eKind);

 public SpyAuthenticRange SelectPrevious (long eKind);

 public SpyAuthenticRange MoveBegin (long eKind, long nCount);

 public SpyAuthenticRange MoveEnd (long eKind, long nCount);

 public SpyAuthenticRange ExpandTo (long eKind);

 public SpyAuthenticRange CollapsToBegin ();

 public SpyAuthenticRange CollapsToEnd ();

 public SpyAuthenticRange GotoNextCursorPosition ();

 public SpyAuthenticRange GotoPreviousCursorPosition ();

 public boolean IsEmpty ();

 public boolean IsEqual (SpyAuthenticRange ipCmp);

1904

1985 1904

1905

1905

1641

1958

1960 1684

1987 1705

1986 1694 1992

1986 1696 1992

1707

1688

1688

1701

1701

1710

1710

1706 1991

1684 1991

1684 1991

1986 1694 1992 1991

1986 1707 1992

1986 1708 1992

1986 1704 1992

1986 1704 1992

1986 1688 1992

1986 1685

1986 1685

1986 1695

1986 1696

1699

1699 1986

© 2018-2024 Altova GmbH

Application API 1987Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 public SpyAuthenticRange Clone ();

 public SpyAuthenticRange SetFromRange (SpyAuthenticRange ipSrc);

 public boolean Delete ();

 public boolean Cut ();

 public boolean Copy ();

 public boolean Paste ();

 public SpyXMLData GetFirstXMLData ();

 public void SetFirstXMLData (SpyXMLData objXMLDataPtr);

 public long GetFirstXMLDataOffset ();

 public void SetFirstXMLDataOffset (long nOffset);

 public SpyXMLData GetLastXMLData ();

 public void SetLastXMLData (SpyXMLData objXMLDataPtr);

 public long GetLastXMLDataOffset ();

 public void SetLastXMLDataOffset (long nOffset);

 public String[] GetElementHierarchy ();

 public String[] GetElementAttributeNames (String strElementName);

 public boolean HasElementAttribute (String strElementName, String

strAttributeName);
 public String GetElementAttributeValue (String strElementName, String

strAttributeName);
 public void SetElementAttributeValue (String strElementName, String

strAttributeName, String strNewValue);
 public String[] GetEntityNames ();

 public void InsertEntity (String strEntityName);

 public boolean IsInDynamicTable ();

 public boolean AppendRow ();

 public boolean InsertRow ();

 public boolean DuplicateRow ();

 public boolean DeleteRow ();

 public boolean MoveRowUp ();

 public boolean MoveRowDown ();

// Since version 2004R4

public boolean IsCopyEnabled ();

public boolean IsCutEnabled ();

public boolean IsPasteEnabled ();

public boolean IsDeleteEnabled ();

public boolean IsTextStateApplied (String i_strElementName);

public boolean IsFirstRow ();

public boolean IsLastRow ();

}

30.3.5.29.2 SpyAuthenticView (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

1986 1685

1986 1710 1986

1686

1686

1686

1705

1985 1689

1689 1985

1690

1690

1985 1702

1702 2005

1703

1703

1692

1691

1697

1692

1709

1693

1697

1700

1683

1698

1687

1687

1705

1705

1698

1699

1700

1699

1701

1700

1700

1641

1988 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

// Since version 2004R3

public class SpyAuthenticView

{
 public void ReleaseInstance ();

 public SpyApplication GetApplication ();

 public SpyDoc GetParent ();

 public SpyAuthenticRange GetSelection ();

 public void SetSelection (SpyAuthenticRange obj);

 public SpyAuthenticRange GetDocumentBegin ();

 public SpyAuthenticRange GetDocumentEnd ();

 public SpyAuthenticRange GetWholeDocument ();

 public long GetMarkupVisibility ();

 public void SetMarkupVisibility (long eSpyAuthenticMarkupVisibility);

 public SpyAuthenticRange GoTo (long eKind, long nCount, long nFrom);

 public void Print (boolean bWithPreview, boolean bPromptUser);

 public boolean Undo ();

 public boolean Redo ();

 public void UpdateXMLInstanceEntities ();

// Since version 2004R4

public String GetAsXMLString ();

public void SetAsXMLString (String i_strXML);

public SpyXMLData GetXMLDataRoot ();

public boolean IsUndoEnabled ();

public boolean IsRedoEnabled ();

}

30.3.5.29.3 SpyDocEditSelection (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyDocEditSelection

{
public void ReleaseInstance ();

public SpyXMLData GetEnd ();

public long GetEndTextPosition ();

public SpyXMLData GetStart ();

public long GetStartTextPosition ();

}

1958

1960 1721

1964 1727

1986 1728

1728 1986

1986 1723

1986 1723

1986 1730

1993 1727

1727 1993

1986 1725 1992 1991

1727

1729

1728

1729

1721

1721

1985 1730

1726

1704

1641

1958

1985 1918

1919

1985 1919

1919

© 2018-2024 Altova GmbH

Application API 1989Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.5.29.4 SpyDocEditView (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SpyDocEditView

{
public void ReleaseInstance ();

public void ApplyTextState (String sElementName);

public SpyDocEditSelection GetCurrentSelection ();

public void EditClear ();

public void EditCopy ();

public void EditCut ();

public void EditPaste ();

public void EditRedo ();

public void EditSelectAll ();

public void EditUndo ();

public SpyXMLData GetNextVisible (SpyXMLData oElement);

public SpyXMLData GetPreviousVisible (SpyXMLData oElement);

public boolean GetIsEditClearEnabled ();

public boolean GetIsEditCopyEnabled ();

public boolean GetIsEditCutEnabled ();

public boolean GetIsEditPasteEnabled ();

public boolean GetIsEditRedoEnabled ();

public boolean GetIsEditUndoEnabled ();

public boolean GetIsRowAppendEnabled ();

public boolean GetIsRowDeleteEnabled ();

public boolean GetIsRowDuplicateEnabled ();

public boolean GetIsRowInsertEnabled ();

public boolean GetIsRowMoveDownEnabled ();

public boolean GetIsRowMoveUpEnabled ();

public boolean IsTextStateApplied (String sElementName);

public boolean IsTextStateEnabled (String sElementName);

public void LoadXML (String sXML);

public void MarkUpView (long nKind);

public void RowAppend ();

public void RowDelete ();

public void RowDuplicate ();

public void RowInsert ();

public void RowMoveDown ();

public void RowMoveUp ();

public String SaveXML ();

public void SelectionMoveTabOrder (boolean bForward, boolean bTag);

1641

1958

1921

1988 1922

1922

1923

1923

1924

1924

1925

1925

1985 1928 1985

1985 1929 1985

1929

1930

1930

1931

1931

1932

1932

1933

1933

1934

1934

1934

1935

1935

1936

1936

1937

1937

1938

1938

1939

1939

1940

1941

1990 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public boolean SelectionSet (SpyXMLData oStart, long nStartPos, SpyXMLData

oEndElement, long nEndPos);

public SpyXMLData GetXMLRoot ();

public String[] GetAllowedElements (long nAction, SpyXMLData oStartPtr,

SpyXMLData oEndPtr);
}

30.3.5.30 Predefined constants (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

This section lists all classes that define the predefined constants used by the Java interface.

30.3.5.30.1 SPYApplicationStatus (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYApplicationStatus
{

public final static long spyApplicationStatus_Running = 0;
public final static long spyApplicationStatus_AfterLicenseCheck = 1;
public final static long spyApplicationStatus_BeforeLicenseCheck = 2;
public final static long
spyApplicationStatus_ConcurrentLicenseCheckFailed

= 3;

public final static long spyApplicationStatus_ProcessingCommandLine = 4;
}

30.3.5.30.2 SPYAttributeTypeDefinition (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

1941 1985 1985

1985 1942

1926 1985

1985

1641

1641

© 2018-2024 Altova GmbH

Application API 1991Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYAttributeTypeDefinition
{

public final static long
spyMergedGlobal

= 0;

public final static long
spyDistinctGlobal

= 1;

public final static long spyLocal = 2;
}

30.3.5.30.3 SPYAuthenticActions (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYAuthenticActions
{

public final static long spyAuthenticInsertAt = 0;
public final static long spyAuthenticApply = 1;
public final static long spyAuthenticClearSurr = 2;
public final static long spyAuthenticAppend = 3;
public final static long
spyAuthenticInsertBefore

= 4;

public final static long spyAuthenticRemove = 5;
}

30.3.5.30.4 SPYAuthenticDocumentPosition (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

1641

1641

1641

1992 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public class SPYAuthenticDocumentPosition
{

public final static long
spyAuthenticDocumentBegin

= 0;

public final static long
spyAuthenticDocumentEnd

= 1;

public final static long spyAuthenticRangeBegin = 2;
public final static long spyAuthenticRangeEnd = 3;

}

30.3.5.30.5 SPYAuthenticElementKind (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYAuthenticElementKind
{

public final static long
spyAuthenticChar

= 0;

public final static long
spyAuthenticWord

= 1;

public final static long
spyAuthenticLine

= 3;

public final static long
spyAuthenticParagraph

= 4;

public final static long
spyAuthenticTag

= 6;

public final static long
spyAuthenticDocument

= 8;

public final static long
spyAuthenticTable

= 9;

public final static long
spyAuthenticTableRow

= 10;

public final static long
spyAuthenticTableColumn

= 11;

}

1641

© 2018-2024 Altova GmbH

Application API 1993Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.5.30.6 SPYAuthenticMarkupVisibility (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYAuthenticMarkupVisibility
{

public final static long
spyAuthenticMarkupHidden

= 0;

public final static long spyAuthenticMarkupSmall= 1;
public final static long spyAuthenticMarkupLarge= 2;
public final static long spyAuthenticMarkupMixed= 3;

}

30.3.5.30.7 SPYDatabaseKind (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYLoading
{

public final static long spyDB_Access = 0;
public final static long
spyDB_SQLServer

= 1;

public final static long spyDB_Oracle = 2;
public final static long spyDB_Sybase = 3;
public final static long spyDB_MySQL = 4;
public final static long spyDB_DB2 = 5;
public final static long spyDB_Other = 6;
public final static long
spyDB_Unspecified

= 7;

}

1641

1641

1994 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.30.8 SPYDialogAction (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYDialogAction
{

public final static long spyDialogOK = 0;
public final static long
spyDialogCancel

= 1;

public final static long
spyDialogUserInput

= 2;

}

30.3.5.30.9 SPYDOMType (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYDOMType
{

public final static long
spyDOMType_msxml4

= 0;

public final static long
spyDOMType_xerces

= 1;

}

30.3.5.30.10 SPYDTDSchemaFormat (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

1641

1641

© 2018-2024 Altova GmbH

Application API 1995Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYDTDSchemaFormat
{

public final static long spyDTD = 0;
public final static long spyDCD = 1;
public final static long spyXMLData = 2;
public final static long spyBizTalk = 3;
public final static long spyW3C = 4;

}

30.3.5.30.11 SPYEncodingByteOrder (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYEncodingByteOrder
{

public final static long spyNONE = 0;
public final static long spyLITTLE_ENDIAN = 1;
public final static long spyBIG_ENDIAN = 2;

}

30.3.5.30.12 SPYExportNamespace (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYExportNamespace
{

public final static long spyNoNamespace = 0;
public final static long spyReplaceColonWithUnderscore = 1;

1641

1641

1641

1996 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

}

30.3.5.30.13 SPYFindInFilesSearchLocation (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYFindInFilesSearchLocation
{

public final static long
spyFindInFiles_Documents

= 0;

public final static long
spyFindInFiles_Project

= 1;

public final static long
spyFindInFiles_Folder

= 2;

}

30.3.5.30.14 SPYFrequentElements (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYFrequentElements
{

public final static long
spyGlobalElements

= 0;

public final static long
spyGlobalComplexType

= 1;

}

1641

1641

© 2018-2024 Altova GmbH

Application API 1997Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.5.30.15 SPYImageKind (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYImageKind
{

public final static long
spyImageType_PNG

= 0;

public final static long
spyImageType_EMF

= 1;

}

30.3.5.30.16 SPYImportColumnsType (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

30.3.5.30.17 SPYLibType (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYLibType
{

public final static long
spyLibType_static

= 0;

public final static long spyLibType_dll= 1;

1641

1641

1641

1998 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

}

30.3.5.30.18 SPYLoading (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYLoading
{

public final static long
spyUseCacheProxy

= 0;

public final static long spyReload = 1;
}

30.3.5.30.19 SPYNumberDateTimeFormat (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYNumberDateTimeFormat
{

public final static long spySystemLocale = 0;
public final static long
spySchemaCompatible

= 1;

}

30.3.5.30.20 SPYProgrammingLanguage (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

1641

1641

© 2018-2024 Altova GmbH

Application API 1999Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYLoading
{

public final static long spyUndefinedLanguage = -1;
public final static long spyJava = 0;
public final static long spyCpp = 1;
public final static long spyCSharp = 2;

}

30.3.5.30.21 SPYProjectItemTypes (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYProjectItemTypes
{

public final static long
spyUnknownItem

= 0;

public final static long spyFileItem= 1;
public final static long
spyFolderItem

= 2;

public final static long spyURLItem = 3;
}

30.3.5.30.22 SPYProjectType (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYProjectType
{

1641

1641

1641

2000 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

public final static long
spyVisualStudioProject

= 0;

public final static long
spyVisualStudio2003Project

= 1;

public final static long spyBorlandProject = 2;
public final static long spyMonoMakefile = 3;

}

30.3.5.30.23 SPYSampleXMLGenerationOptimization (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYSampleXMLGenerationOptimization
{

public final static long spySampleXMLGen_Optimized = 0;
public final static long
spySampleXMLGen_NonMandatoryElements

= 1;

public final static long spySampleXMLGen_Everything = 2;
}

30.3.5.30.24 SPYSampleXMLGenerationSchemaOrDTDAssignment (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYSampleXMLGenerationOptimization
{

public final static long
spySampleXMLGen_AssignRelatively

= 0;

public final static long
spySampleXMLGen_AssignAbsolutely

= 1;

public final static long spySampleXMLGen_DoNotAssign= 2;
}

1641

1641

© 2018-2024 Altova GmbH

Application API 2001Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.5.30.25 SPYSchemaDefKind (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYSchemaDefKind
{

public final static long spyKindElement = 0;
public final static long spyKindComplexType = 1;
public final static long spyKindSimpleType = 2;
public final static long spyKindGroup = 3;
public final static long spyKindModel = 4;
public final static long spyKindAny = 5;
public final static long spyKindAttr = 6;
public final static long spyKindAttrGroup = 7;
public final static long spyKindAttrAny = 8;
public final static long spyKindIdentityUnique= 9;
public final static long spyKindIdentityKey = 10;
public final static long spyKindIdentityKeyRef= 11;
public final static long
spyKindIdentitySelector

= 12;

public final static long spyKindIdentityField = 13;
public final static long spyKindNotation = 14;
public final static long spyKindInclude = 15;
public final static long spyKindImport = 16;
public final static long spyKindRedefine = 17;
public final static long spyKindFacet = 18;
public final static long spyKindSchema = 19;
public final static long spyKindCount = 20;

}

30.3.5.30.26 SPYSchemaDocumentationFormat (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYSchemaDocumentationFormat

1641

1641

2002 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

{
public final static long
spySchemaDoc_HTML

= 0;

public final static long
spySchemaDoc_MSWord

= 1;

public final static long
spySchemaDoc_RTF

= 2;

public final static long
spySchemaDoc_PDF

= 3;

}

30.3.5.30.27 SPYSchemaExtensionType (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYSchemaExtensionType
{

public final static long spySchemaExtension_None = 0;
public final static long spySchemaExtension_SQL_XML = 1;
public final static long
spySchemaExtension_MS_SQL_Server

= 2;

public final static long spySchemaExtension_Oracle = 3;
}

30.3.5.30.28 SPYSchemaFormat (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYSchemaFormat
{

public final static long
spySchemaFormat_Hierarchical

= 0;

public final static long spySchemaFormat_Flat = 1;
}

1641

1641

© 2018-2024 Altova GmbH

Application API 2003Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.5.30.29 SPYTextDelimiters (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYTextDelimiters
{

public final static long spyTabulator = 0;
public final static long spySemicolon = 1;
public final static long spyComma = 2;
public final static long spySpace = 3;

}

30.3.5.30.30 SPYTextEnclosing (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYTextEnclosing
{

public final static long
spyNoEnclosing

= 0;

public final static long
spySingleQuote

= 1;

public final static long
spyDoubleQuote

= 2;

}

1641

1641

2004 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.30.31 SPYTypeDetection (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYTypeDetection
{

public final static long
spyBestPossible

= 0;

public final static long
spyNumbersOnly

= 1;

public final static long
spyNoDetection

= 2;

}

30.3.5.30.32 SPYURLTypes (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYURLTypes
{

public final static long
spyURLTypeAuto

= (-1);

public final static long
spyURLTypeXML

= 0;

public final static long
spyURLTypeDTD

= 1;

}

1641

1641

© 2018-2024 Altova GmbH

Application API 2005Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.3.5.30.33 SpyViewModes (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYViewModes
{

public final static long spyViewGrid = 0;
public final static long spyViewText = 1;
public final static long spyViewBrowser = 2;
public final static long spyViewSchema = 3;
public final static long spyViewContent = 4;
public final static long spyViewAuthentic= 4;
public final static long spyViewWSDL = 5;
public final static long spyViewZIP = 6;
public final static long
spyViewEditionInfo

= 7;

}

30.3.5.30.34 SPYWhitespaceComparison (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYWhitespaceComparison
{

public final static long spyCompareAsIs = 0;
public final static long
spyCompareNormalized

= 1;

public final static long spyStripAll = 2;
}

1641

1641

2006 Programmers' Reference Application API

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.3.5.30.35 SPYXMLDataKind (obsolete)

The objects described in this section (Application API for Java) are obsolete from v2012
onwards.

For information about how to access the Application API from Java code, see the
section: Programming Languages | Java .

public class SPYXMLDataKind
{

public final static long
spyXMLDataXMLDocStruct

= 0;

public final static long
spyXMLDataXMLEntityDocStruct

= 1;

public final static long
spyXMLDataDTDDocStruct

= 2;

public final static long spyXMLDataXML = 3;
public final static long
spyXMLDataElement

= 4;

public final static long spyXMLDataAttr = 5;
public final static long spyXMLDataText = 6;
public final static long spyXMLDataCData = 7;
public final static long
spyXMLDataComment

= 8;

public final static long spyXMLDataPI = 9;
public final static long
spyXMLDataDefDoctype

= 10;

public final static long
spyXMLDataDefExternalID

= 11;

public final static long
spyXMLDataDefElement

= 12;

public final static long
spyXMLDataDefAttlist

= 13;

public final static long
spyXMLDataDefEntity

= 14;

public final static long
spyXMLDataDefNotation

= 15;

public final static long
spyXMLDataKindsCount

= 16;

}

1641

© 2018-2024 Altova GmbH

ActiveX Integration 2007Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4 ActiveX Integration

The XMLSpy user interface and the functionality described in this section can be integrated into custom
applications that can consume ActiveX controls. ActiveX technology enables a wide variety of languages to be
used for integration, such as C++, C#, and VB.NET. All components are full OLE Controls. Integration into Java
is provided through wrapper classes.

To integrate the ActiveX controls into your custom code, the XMLSpy Integration Package must be
installed (see https://www.altova.com/components/download). Ensure that you install XMLSpy first, and
then the XMLSpy Integration Package. Other prerequisites apply, depending on language and platform (see
Prerequisites).

You can flexibly choose between two different levels of integration: application level and document level.

Integration at application level means embedding the complete interface of XMLSpy (including its menus,
toolbars, panes, etc) as an ActiveX control into your custom application. For example, in the most simple
scenario, your custom application could consist of only one form that embeds the XMLSpy graphical user
interface. This approach is easier to implement than integration at document level but may not be suitable if
you need flexibility to configure the XMLSpy graphical user interface according to your custom requirements.

Integration at document level means embedding XMLSpy into your own application piece-by-piece. This
includes implementing not only the main XMLSpy control but also the main document editor window, and,
optionally, any additional windows. This approach provides greater flexibility to configure the GUI, but requires
advanced interaction with ActiveX controls in your language of choice.

The sections Integration at the Application Level and Integration at Document Level describe the key
steps at these respective levels. The ActiveX Integration Examples section provides examples in C# and
Java. Looking through these examples will help you to make the right decisions quickly. The Object
Reference section describes all COM objects that can be used for integration, together with their properties
and methods.

For information about using XMLSpy as a Visual Studio plug-in, see XMLSpy in Visual Studio .

30.4.1 Prerequisites

To integrate the XMLSpy ActiveX control into a custom application, the following must be installed on your
computer:

· XMLSpy
· The XMLSpy Integration Package, available for download at

https://www.altova.com/components/download

To integrate the 64-bit ActiveX control, install the 64-bit versions of XMLSpy and XMLSpy Integration Package.
For applications developed under Microsoft .NET platform with Visual Studio, both the 32-bit and 64-bit versions
of XMLSpy and XMLSpy Integration Package must be installed, as explained below.

2007

2010 2012

2015

2047

1069

https://www.altova.com/components/download
https://www.altova.com/components/download

2008 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Microsoft .NET (C#, VB.NET) with Visual Studio
To integrate the XMLSpy ActiveX control into a 32-bit application developed under Microsoft .NET, the following
must be installed on your computer:

· Microsoft .NET Framework 4.0 or later
· Visual Studio 2012/2013/2015/2017/2019/2022
· XMLSpy 32-bit and XMLSpy Integration Package 32-bit
· The ActiveX controls must be added to the Visual Studio toolbox (see Adding the ActiveX Controls to

the Toolbox).

If you want to integrate the 64-bit ActiveX control, the following prerequisites apply in addition to the ones
above:

· XMLSpy 32-bit and XMLSpy Integration Package 32-bit must still be installed (this is required to
provide the 32-bit ActiveX control to the Visual Studio designer, since Visual Studio runs on 32-bit)

· XMLSpy 64-bit and XMLSpy Integration Package 64-bit must be installed (provides the actual 64-bit
ActiveX control to your custom application at runtime)

· In Visual Studio, create a 64-bit build configuration and build your application using this configuration.
For an example, see Running the Sample C# Solution .

Java
To integrate the XMLSpy ActiveX control into Java application using the Eclipse development environment, the
following must be installed on your computer:

· Java Runtime Environment (JRE) or Java Development Kit (JDK) 7 or later
· Eclipse
· XMLSpy and XMLSpy Integration Package

Note: To run the 64-bit version of the XMLSpy ActiveX control, use a 64-bit version of Eclipse, as well as the
64-bit version of XMLSpy and the XMLSpy Integration Package.

XMLSpy integration and deployment on client computers
If you create a .NET application and intend to distribute it to other clients, you will need to install the following
on the client computer(s):

· XMLSpy
· The XMLSpy Integration Package
· The custom integration code or application.

30.4.2 Adding the ActiveX Controls to the Toolbox

To use the XMLSpy ActiveX controls in an application developed with Visual Studio, the controls must first be
added to the Visual Studio Toolbox, as follows:

1. On the Tools menu of Visual Studio, click Choose Toolbox Items.

2008

2015

© 2018-2024 Altova GmbH

ActiveX Integration 2009Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2. On the COM Components tab, select the check boxes next to the XMLSpyControl, XMLSpyControl
Document, and XMLSpyControl Placeholder.

In case the controls above are not available, follow the steps below:

1. On the COM Components tab, click Browse, and select the XMLSpyControl.ocx file from the
XMLSpy installation folder. Remember that the XMLSpy Integration Package must be installed;
otherwise, this file is not available, see Prerequisites .

2. If prompted to restart Visual Studio with elevated permissions, click Restart under different
credentials.

If the steps above were successful, the XMLSpy ActiveX controls become available in the Visual Studio
Toolbox.

2007

2010 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: For an application-level integration, only the XMLSpyControl ActiveX control is used (see Integration
at Application Level). The XMLSpyControl Document and XMLSpyControl Placeholder controls
are used for document-level integration (see Integration at Document Level).

30.4.3 Integration at Application Level

Integration at application level allows you to embed the complete interface of XMLSpy into a window of your
application. With this type of integration, you get the whole user interface of XMLSpy, including all menus,
toolbars, the status bar, document windows, and helper windows. Customization of the application's user
interface is restricted to what XMLSpy provides. This includes rearrangement and resizing of helper windows
and customization of menus and toolbars.

The only ActiveX control you need to integrate is XMLSpyControl . Do not instantiate or access
XMLSpyControlDocument or XMLSpyControlPlaceHolder ActiveX controls when integrating at
application-level.

If you have any initialization to do or if you want to automate some behaviour of XMLSpy, use the properties,
methods, and events described for XMLSpyControl . Consider using XMLSpyControl.Application for
more complex access to XMLSpy functionality.

2010

2012

2051

2059 2066

2051 2052

© 2018-2024 Altova GmbH

ActiveX Integration 2011Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

In C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which integrates the
XMLSpy ActiveX controls at application level are as follows:

1. Check that all prerequisites are met (see Prerequisites).
2. Create a new Visual Studio Windows Forms project with a new empty form.
3. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the ActiveX

Controls to the Toolbox).
4. Drag the XMLSpyControl from the toolbox onto your new form.
5. Select the XMLSpyControl on the form, and, in the Properties window, set the IntegrationLevel

property to ICActiveXIntegrationOnApplicationLevel.

6. Create a build platform configuration that matches the platform under which you want to build (x86,
x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in

this example, x86).

2007

2008

2012 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration
that matches your target platform (x86, x64).

30.4.4 Integration at Document Level

Compared to integration at application level, integration at document level is a more complex, yet more flexible
way to embed XMLSpy functionality into your application by means of ActiveX controls. With this approach,
your code can access selectively the following parts of the XMLSpy user interface:

· Document editing window
· Project window
· Entry helper windows
· Validator output window
· XPath profiler window
· XPath dialog window
· XSLT/XQuery debugger windows
· SOAP debugger window

As mentioned in Integration at Application Level , for an ActiveX integration at application level, only one
control is required, namely the XMLSpyControl. However, for an ActiveX integration at document level,
XMLSpy functionality is provided by the following ActiveX controls:

· XMLSpyControl
· XMLSpyControl Document
· XMLSpyControl Placeholder

These controls are supplied by the XMLSpyControl.ocx file available in the application installation folder of
XMLSpy. When you develop the ActiveX integration with Visual Studio, you will need to add these controls to
the Visual Studio toolbox (see Adding the ActiveX Controls to the Toolbox).

The basic steps to integrate the ActiveX controls at document level into your application are as follows:

1. First, instantiate XMLSpyControl in your application. Instantiating this control is mandatory; it enables
support for the XMLSpyControl Document and XMLSpyControl Placeholder controls mentioned above.
It is important to set the IntegrationLevel property to ICActiveXIntegrationOnDocumentLevel (or "1").

2010

2051

2059

2066

2008

2053

© 2018-2024 Altova GmbH

ActiveX Integration 2013Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

To hide the control from the user, set its Visible property to False. Note that, when integrating at
document level, do not use the Open method of the XMLSpyControl; this might lead to unexpected
results. Use the corresponding open methods of XMLSpyControl Document and XMLSpyControl
PlaceHolder instead.

2. Create at least one instance of XMLSpyControl Document in your application. This control supplies the
document editing window of XMLSpy to your application and can be instantiated multiple times if
necessary. Use the method Open to load any existing file. To access document-related functionality,
use the Path and Save or methods and properties accessible via the property Document. Note that the
control does not support a read-only mode. The value of the property ReadOnly is ignored.

3. Optionally, add to your application the XMLSpyControl Placeholder control for each additional window
(other than the document window) that must be available to your application. Instances of
XMLSpyControl PlaceHolder allow you to selectively embed additional windows of XMLSpy into your
application. The window kind (for example, Project window) is defined by the property
PlaceholderWindowID. Therefore, to set the window kind, set the property PlaceholderWindowID. For
valid window identifiers, see XMLSpyControlPlaceholderWindow . Use only one XMLSpyControl
PlaceHolder for each window identifier.

For placeholder controls that select the XMLSpy project window, additional methods are available. Use
OpenProject to load a XMLSpy project. Use the property Project and the methods and properties from
the XMLSpy automation interface to perform any other project related operations.

For example, in C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which
integrates the XMLSpy ActiveX controls at document level could be similar to those listed below. Note that your
application may be more complex if necessary; however, the instructions below are important to understand the
minimum requirements for an ActiveX integration at document level.

1. Create a new Visual Studio Windows Forms project with a new empty form.
2. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the ActiveX

Controls to the Toolbox).
3. Drag the XMLSpyControl from the toolbox onto your new form.
4. Set the IntegrationLevel property of the XMLSpyControl to ICActiveXIntegrationOnDocumentLevel, and

the Visible property to False. You can do this either from code or from the Properties window.
5. Drag the XMLSpyControl Document from the toolbox onto the form. This control provides the main

document window of XMLSpy to your application, so you may need to resize it to a reasonable size for
a document.

6. Optionally, add one or more XMLSpyControl Placeholder controls to the form (one for each
additional window type that your application needs, for example, the Project window). You will typically
want to place such additional placeholder controls either below or to the right or left of the main
document control, for example:

2069

2008

2051

2059

2066

2014 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

7. Set the PlaceholderWindowID property of each XMLSpyControl Placeholder control to a valid window
identifier. For the list of valid values, see XMLSpyControlPlaceholderWindow .

8. Add commands to your application (at minimum, you will need to open, save and close documents),
as shown below.

Querying XMLSpy Commands
When you integrate at document level, no XMLSpy menu or toolbar is available to your application. Instead, you
can retrieve the required commands, view their status, and execute them programmatically, as follows:

· To retrieve all available commands, use the CommandsList property of the XMLSpyControl.
· To retrieve commands organized according to their menu structure, use the MainMenu property.
· To retrieve commands organized by the toolbar in which they appear, use the Toolbars property.
· To send commands to XMLSpy, use the Exec method.
· To query if a command is currently enabled or disabled, use the QueryStatus method.

This enables you to flexibly integrate XMLSpy commands into your application's menus and toolbars.

Your installation of XMLSpy also provides you with command label images used within XMLSpy. See the folder
<ApplicationFolder>\Examples\ActiveX\Images of your XMLSpy installation for icons in GIF format. The file
names correspond to the command names as they are listed in the Command Reference section.

2069

2052

2053

2054

2055

2056

2028

© 2018-2024 Altova GmbH

ActiveX Integration 2015Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

General considerations
To automate the behaviour of XMLSpy, use the properties, methods, and events described for the
XMLSpyControl , XMLSpyControl Document , and XMLSpyControl Placeholder .

For more complex access to XMLSpy functionality, consider using the following properties:

· XMLSpyControl.Application
· XMLSpyControlDocument.Document
· XMLSpyControlPlaceHolder.Project

These properties give you access to the XMLSpy automation interface (XMLSpyAPI)

Note: To open a document, always use XMLSpyControlDocument.Open or
XMLSpyControlDocument.New on the appropriate document control. To open a project, always use
XMLSpyControlPlaceHolder.OpenProject on a placeholder control embedding a XMLSpy project
window.

For examples that show how to instantiate and access the necessary controls in different programming
environments, see ActiveX Integration Examples .

30.4.5 ActiveX Integration Examples

This section contains examples of XMLSpy document-level integration using different container environments
and programming languages. Source code for all examples is available in the folder
<ApplicationFolder>\Examples\ActiveX of your XMLSpy installation.

30.4.5.1 C#

A basic ActiveX integration example solution for C# and Visual Studio is available in the folder
<ApplicationFolder>\Examples\ActiveX\C#. Before you compile the source code and run the sample,

make sure that all prerequisites are met (see Running the Sample C# Solution).

30.4.5.1.1 Running the Sample C# Solution

The sample Visual Studio solution available in the folder <ApplicationFolder>\Examples\ActiveX\C#
illustrates how to consume the XMLSpy ActiveX controls. Before attempting to build and run this solution, note
the following steps:

Step 1: Check the prerequisites
Visual Studio 2010 or later is required to open the sample solution. For the complete list of prerequisites, see
Prerequisites .

2051 2059 2066

2052

2060

2067

2062

2062

2067

2015

2015

2007

2016 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Step 2: Copy the sample to a directory where you have write permissions
To avoid running Visual Studio as an Administrator, copy the source code to a directory where you have write
permissions, instead of running it from the default location.

Step 3: Check and set all required control properties
The sample application contains one instance of XMLSpyControlDocument and one instance of
XMLSpyControlPlaceHolder controls. Double-check that the following properties of these controls are set as
shown in the table below:

Control name Property Property value

XMLSpyControl IntegrationLevel ICActiveXIntegrationOnDocumentLevel

XPathDialog PlaceholderWindowID 16

Here is how you can view or set the properties of an ActiveX control:

1. Open the MDIMain.cs form in the designer window.

Note: On 64-bit Windows, it may be necessary to change the build configuration of the Visual Studio solution
to "x86" before opening the designer window. If you need to build the sample as a 64-bit application,
see Prerequisites .

2. Open the Document Outline window of Visual Studio (On the View menu, click Other Windows |
Document Outline).

2059

2066

2007

© 2018-2024 Altova GmbH

ActiveX Integration 2017Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

3. Click an ActiveX control in the Document Outline window, and edit its required property in the
Properties window, for example:

Step 4: Set the build platform
· Create a build platform configuration that matches the platform under which you want to build (x86,

x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in

this example, x86).

2018 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration
that matches your target platform (x86, x64); otherwise, runtime errors might occur.

On running the sample, the main MDI Frame window is created and contains an editing window with an empty
XML document and a XPath Dialog window of XMLSpy at the bottom. Use File | Open to open any XML file
from the XMLSpy examples folder. The file is loaded and displayed. After you load the document, you can start
using the XPath dialog. Note that you may need to slightly drag the lower-right corner of the form to cause the
dialog to redraw itself and display its contents.

30.4.5.2 Java

XMLSpy ActiveX components can be accessed from Java code. Java integration is provided by the libraries
listed below. These libraries are available in the folder <ApplicationFolder>\Examples\JavaAPI of your
XMLSpy installation, after you have installed both XMLSpy and the XMLSpy Integration Package (see also
Prerequisites).

· AltovaAutomation.dll: a JNI wrapper for Altova automation servers (in case of the 32-bit installation
of XMLSpy)

· AltovaAutomation_x64.dll: a JNI wrapper for Altova automation servers (in case of the 64-bit
installation of XMLSpy)

· AltovaAutomation.jar: Java classes to access Altova automation servers
· XMLSpyActiveX.jar: Java classes that wrap the XMLSpy ActiveX interface
· XMLSpyActiveX_JavaDoc.zip: a Javadoc file containing help documentation for the Java interface

Note: In order to use the Java ActiveX integration, the .dll and .jar files must be included in the Java class
search path.

Example Java project
An example Java project is supplied with your product installation. You can test the Java project and modify
and use it as you like. For more details, see Example Java Project .

2007

2020

© 2018-2024 Altova GmbH

ActiveX Integration 2019Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Rules for mapping the ActiveX Control names to Java
For the documentation of ActiveX controls, see Object Reference . Note that the object naming conventions
are slightly different in Java compared to other languages. Namely, the rules for mapping between the ActiveX
controls and the Java wrapper are as follows:

Classes and class names
For every component of the XMLSpy ActiveX interface a Java class exists with the name of the component.

Method names
Method names on the Java interface are the same as used on the COM interfaces but start with a small letter
to conform to Java naming conventions. To access COM properties, Java methods that prefix the property
name with get and set can be used. If a property does not support write-access, no setter method is available.
Example: For the IntegrationLevel property of the XMLSpyControl, the Java methods getIntegrationLevel
and setIntegrationLevel are available.

Enumerations
For every enumeration defined in the ActiveX interface, a Java enumeration is defined with the same name and
values.

Events and event handlers
For every interface in the automation interface that supports events, a Java interface with the same name plus
'Event' is available. To simplify the overloading of single events, a Java class with default implementations for all
events is provided. The name of this Java class is the name of the event interface plus 'DefaultHandler'. For
example:

XMLSpyControl: Java class to access the application
XMLSpyControlEvents: Events interface for the XMLSpyControl
XMLSpyControlEventsDefaultHandler: Default handler for XMLSpyControlEvents

Exceptions to mapping rules
There are some exceptions to the rules listed above. These are listed below:

Interface Java name

XMLSpyControlDocument, method New newDocument

Document, method SetEncoding setFileEncoding

AuthenticView, method Goto gotoElement

AuthenticRange, method Goto gotoElement

AuthenticRange, method Clone cloneRange

This section
This section shows how some basic XMLSpy ActiveX functionality can be accessed from Java code. It is
organized into the following sub-sections:

· Example Java Project
· Creating the ActiveX Controls
· Loading Data in the Controls

2047

2020

2022

2023

2020 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Basic Event Handling
· Menus
· UI Update Event Handling
· Creating an XML Tree

30.4.5.2.1 Example Java Project

The XMLSpy installation package contains an example Java project, located in the ActiveX Examples folder of
the application folder: <ApplicationFolder>\Examples\ActiveX\Java\.

The Java example shows how to integrate the XMLSpyControl in a common desktop application created with
Java. You can test it directly from the command line using the batch file BuildAndRun.bat, or you can compile
and run the example project from within Eclipse. See below for instructions on how to use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are listed below:

.classpath Eclipse project helper file

.project Eclipse project file

AltovaAutomation.dll Java-COM bridge: DLL part (for the 32-bit installation)

AltovaAutomation_x64.dll Java-COM bridge: DLL part (for the 64-bit installation)

AltovaAutomation.jar Java-COM bridge: Java library part

BuildAndRun.bat Batch file to compile and run example code from the command
line prompt. Expects folder where Java Virtual Machine resides
as parameter.

XMLSpyActiveX.jar Java classes of the XMLSpy ActiveX control

XMLSpyActiveX_JavaDoc.zip Javadoc file containing help documentation for the Java API

XMLSpyContainer.java Java example source code

XMLSpyContainerEventHandler.java Java example source code

XMLTreeDialog.java Java example source code

What the example does
The example places one XMLSpy document editor window, the XMLSpy project window, the XMLSpy XPath
window and an XMLSpy entry helper in an AWT frame window. It reads out the File menu defined for XMLSpy
and creates an AWT menu with the same structure. You can use this menu or the project window to open and
work with files in the document editor.

You can modify the example in any way you like.

The following specific features are described in code listings:

2023

2024

2025

2026

© 2018-2024 Altova GmbH

ActiveX Integration 2021Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

· Creating the ActiveX Controls : Starts XMLSpy, which is registered as an automation server, or
activates XMLSpy if it is already running.

· Loading Data in the Controls : Locates one of the example documents installed with XMLSpy and
opens it.

· Basic Event Handling : Changes the view of all open documents to Text View. The code also shows
how to iterate through open documents.

· Menus : Validates the active document and shows the result in a message box. The code shows
how to use output parameters.

· UI Update Event Handling : Shows how to handle XMLSpy events.
· Creating an XML Tree : Shows how to create an XML tree and prepare it for modal activation.

Updating the path to the Examples folder
Before running the provided sample, you may need to edit the XMLSpyContainer.java file. Namely, check
that the following path refers to the actual folder where the XMLSpy example files are stored on your operating
system:

// Locate samples installed with the product.
final String strExamplesFolder = System.getenv("USERPROFILE") + "\\Documents\\Altova\
\XMLSpy2024\\XMLSpyExamples\\";

Running the example from the command line
To run the example from the command line:

1. Check that all prerequisites are met (see Prerequisites).
2. Open a command prompt window, change the current directory to the sample Java project folder, and

type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

3. Press Enter.

The Java source in XMLSpyContainer.java will be compiled and then executed.

Compiling and running the example in Eclipse
To import the sample Java project into Eclipse:

1. Check that all prerequisites are met (see Prerequisites).
2. On the File menu, click Import.
3. Select Existing Projects into Workspace, and browse for the Eclipse project file located at

<ApplicationFolder>\Examples\ActiveX\Java\. Since you may not have write-access in this
folder, it is recommended to select the Copy projects into workspace check box on the Import dialog
box.

To run the example application, right-click the project in Package Explorer and select the command Run as |
Java Application.

2022

2023

2023

2024

2025

2026

2007

2007

2022 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Help for Java API classes is available through comments in code as well as the Javadoc view of Eclipse. To
enable the Javadoc view in Eclipse, select the menu command Window | Show View | JavaDoc.

30.4.5.2.2 Creating the ActiveX Controls

The code listing below show how ActiveX controls can be created. The constructors will create the Java wrapper
objects. Adding these Canvas-derived objects to a panel or to a frame will trigger the creation of the wrapped
ActiveX object.

01 /**
02 * XMLSpy manager control - always needed
03 */
04 public static XMLSpyControl xmlSpyControl = null;
05
06 /**
07 * XMLSpy document editing control
08 */
09 public static XMLSpyControlDocument xmlSpyDocument = null;
10
11 /**
12 * Tool windows - XMLSpy place-holder controls
13 */
14 private static XMLSpyControlPlaceHolder xmlSpyProjectToolWindow = null;
15 private static XMLSpyControlPlaceHolder xmlSpyXpathToolWindow = null;
16 private static XMLSpyControlPlaceHolder xmlSpyEHAttributeToolWindow = null;
17
18 // Create the XMLSpy ActiveX control; the parameter determines that we want
19 // to place document controls and place-holder controls individually.
20 // It gives us full control over the menu, as well.
21 xmlSpyControl = new XMLSpyControl(
 ICActiveXIntegrationLevel.ICActiveXIntegrationOnDocumentLevel.getValue());
22 xmlSpyDocument = new XMLSpyControlDocument();
23 xmlSpyDocument.setPreferredSize(new Dimension (640, 480));
24
25 // Create a project window and open the sample project in it
26 xmlSpyProjectToolWindow = new XMLSpyControlPlaceHolder(
27 XMLSpyControlPlaceholderWindow.XMLSpyControlProjectWindowToolWnd.getValue());
28 xmlSpyProjectToolWindow.setPreferredSize(new Dimension(200, 200));
29 xmlSpyXpathToolWindow = new XMLSpyControlPlaceHolder(
 XMLSpyControlPlaceholderWindow.XMLSpyControlXPathDialogToolWnd.getValue());
30 xmlSpyEHAttributeToolWindow = new XMLSpyControlPlaceHolder(
 XMLSpyControlPlaceholderWindow.XMLSpyControlEntryHelperTopToolWnd.getValue());
31
32 frame.add(xmlSpyControl, BorderLayout.NORTH);
33 frame.add(xmlSpyDocument, BorderLayout.CENTER);
34 southPanel.add(xmlSpyProjectToolWindow);
35 southPanel.add(xmlSpyXpathToolWindow);
36 southPanel.add(xmlSpyEHAttributeToolWindow);

© 2018-2024 Altova GmbH

ActiveX Integration 2023Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4.5.2.3 Loading Data in the Controls

The code listing below show how data can be loaded in the ActiveX controls.

1 // Locate samples installed with the product.
2 final String strExamplesFolder = System.getenv("USERPROFILE") +
 "\\Documents\\Altova\\XMLSpy2024\\Examples\\";
3 xmlSpyProjectToolWindow.openProject(strExamplesFolder + "Examples.spp");

30.4.5.2.4 Basic Event Handling

The code listing below shows how basic events can be handled. When calling the XMLSpyControl’s open
method, or when trying to open a file via the menu or Project tree, the onOpenedOrFocused event is sent to the
attached event handler. The basic handling for this event is opening the file by calling the
XMLSpyDocumentControl’s open method.

01 // Open the PXF file when button is pressed
02 btnOpenPxf.addActionListener(new ActionListener() {
03 public void actionPerformed(ActionEvent e) {
04 try {
05 xmlSpyControl.open(strExamplesFolder + "OrgChart.pxf");
06 } catch (AutomationException e1) {
07 e1.printStackTrace();
08 }
09 }
10 });
11 public void onOpenedOrFocused(String i_strFileName, boolean
i_bOpenWithThisControl, boolean i_bFileAlreadyOpened) throws AutomationException
12 {
13 // Handle the New/Open events coming from the Project tree or from the menus
14 if (!i_bFileAlreadyOpened)
15 {
16 // This is basically an SDI interface, so open the file in the already existing
document control
17 try {
18 XMLSpyContainer.xmlSpyDocument.open(i_strFileName);
19 XMLSpyContainer.xmlSpyDocument.requestFocusInWindow();
20 } catch (Exception e) {
21 e.printStackTrace();
22 }
23 }
24 }

2024 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.4.5.2.5 Menus

The code listing below shows how menu items can be created. Each XMLSpyCommand object gets a
corresponding MenuItem object, with the ActionCommand set to the ID of the command. The actions generated
by all menu items are handled by the same function, which can perform specific handlings (like reinterpreting
the closing mechanism) or can delegate the execution to the XMLSpyControl object by calling its exec
method. The menuMap object that is filled during menu creation is used later (see section UI Update Event
Handling).

01 // Load the file menu when the button is pressed
02 btnMenu.addActionListener(new ActionListener() {
03 public void actionPerformed(ActionEvent e) {
04 try {
05 // Create the menubar that will be attached to the frame
06 MenuBar mb = new MenuBar();
07 // Load the main menu's first item - the File menu
08 XMLSpyCommand xmlSpyMenu =
xmlSpyControl.getMainMenu().getSubCommands().getItem(0);
09 // Create Java menu items from the Commands objects
10 Menu fileMenu = new Menu();
11 handlerObject.fillMenu(fileMenu, xmlSpyMenu.getSubCommands());
12 fileMenu.setLabel(xmlSpyMenu.getLabel().replace("&", ""));
13 mb.add(fileMenu);
14 frame.setMenuBar(mb);
15 frame.validate();
16 } catch (AutomationException e1) {
17 e1.printStackTrace();
18 }
19 // Disable the button when the action has been performed
20 ((AbstractButton) e.getSource()).setEnabled(false);
21 }
22 }) ;
23 /** * Populates a menu with the commands and submenus contained in an XMLSpyCommands
object */
24 public void fillMenu(Menu newMenu, XMLSpyCommands xmlSpyMenu) throws
AutomationException
25 {
26 // For each command/submenu in the xmlSpyMenu
27 for (int i = 0 ; i < xmlSpyMenu.getCount() ; ++i)
28 {
29 XMLSpyCommand xmlSpyCommand = xmlSpyMenu.getItem(i);
30 if (xmlSpyCommand.getIsSeparator())
31 newMenu.addSeparator();
32 else
33 {
34 XMLSpyCommands subCommands = xmlSpyCommand.getSubCommands();
35 // Is it a command (leaf), or a submenu?
36 if (subCommands.isNull() || subCommands.getCount() == 0)
37 {
38 // Command -> add it to the menu, set its ActionCommand to its ID and store it
in the menuMap
39 MenuItem mi = new MenuItem(xmlSpyCommand.getLabel().replace("&", ""));
40 mi.setActionCommand("" + xmlSpyCommand.getID());

2025

© 2018-2024 Altova GmbH

ActiveX Integration 2025Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

41 mi.addActionListener(this);
42 newMenu.add(mi);
43 menuMap.put(xmlSpyCommand.getID(), mi);
44 }
45 else
46 {
47 // Submenu -> create submenu and repeat recursively
48 Menu newSubMenu = new Menu();
49 fillMenu(newSubMenu, subCommands);
50 newSubMenu.setLabel(xmlSpyCommand.getLabel().replace("&", ""));
51 newMenu.add(newSubMenu);
52 }
53 }
54 }
55 }
56
57 /**
58 * Action handler for the menu items
59 * Called when the user selects a menu item; the item's action command corresponds to
the command table for XMLSpy
60 */
61 public void actionPerformed(ActionEvent e)
62 {
63 try
64 {
65 int iCmd = Integer.parseInt(e.getActionCommand());
66 // Handle explicitly the Close commands
67 switch (iCmd)
68 {
69 case 57602: // Close
70 case 34050: // Close All
71 XMLSpyContainer.initXmlSpyDocument();
72 break;
73 default:
74 XMLSpyContainer.xmlSpyControl.exec(iCmd);
75 break;
76 }
77 }
78 catch (Exception ex)
79 {
80 ex.printStackTrace();
81 }
82
83 }

30.4.5.2.6 UI Update Event Handling

The code listing below shows how a UI-Update event handler can be created.

01 /**
02 * Call-back from the XMLSpyControl.
03 * Called to enable/disable commands

2026 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

04 */
05 @Override
06 public void onUpdateCmdUI() throws AutomationException
07 {
08 // A command should be enabled if the result of queryStatus contains the Supported
(1) and Enabled (2) flags
09 for (java.util.Map.Entry<Integer, MenuItem> pair : menuMap.entrySet())
10
pair.getValue().setEnabled(XMLSpyContainer.xmlSpyControl.queryStatus(pair.getKey()) >
2);
11 }
12 /**
13 * Call-back from the XMLSpyControl.
14 * Usually called while enabling/disabling commands due to UI updates
15 */
16 @Override
17 public boolean onIsActiveEditor(String i_strFilePath) throws AutomationException
18 {
19 try {
20 return
XMLSpyContainer.xmlSpyDocument.getDocument().getFullName().equalsIgnoreCase(i_strFilePath
);
21 } catch (Exception e) {
22 return false;
23 }
24 }

30.4.5.2.7 Creating an XML Tree

The listing below loads an XML data object as nodes in a tree.

01 // access required XMLSpy Java-COM classes
02 import com.altova.automation.XMLSpy.XMLData;
03
04 // access AWT and Swing components
05 import java.awt.*;
06 import javax.swing.*;
07 import javax.swing.tree.*;
08
09 /**
10 * A simple example of a tree control loading the structure from an XMLData object.
11 * The class receives an XMLData object, loads its nodes in a JTree, and prepares
12 * for modal activation.
13 *
14 * Feel free to modify and extend this sample.
15 *
16 * @author Altova GmbH
17 */
18 class XMLTreeDialog extends JDialog
19 {
20 /**
21 * The tree control

© 2018-2024 Altova GmbH

ActiveX Integration 2027Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

22 */
23 private JTree myTree;
24
25 /**
26 * Root node of the tree control
27 */
28 private DefaultMutableTreeNode top ;
29
30 /**
31 * Constructor that prepares the modal dialog containing the filled tree control
32 * @param xml The data to be displayed in the tree
33 * @param parent Parent frame
34 */
35 public XMLTreeDialog(XMLData xml, Frame parent)
36 {
37 // Construct the modal dialog
38 super(parent, "XML tree", true);
39 // Arrange controls in the dialog
40 top = new DefaultMutableTreeNode("root");
41 myTree = new JTree(top);
42 setContentPane(new JScrollPane(myTree));
43 // Build up the tree
44 fillTree(top, xml);
45 myTree.expandRow(0);
46 }
47
48 /**
49 * Loads the nodes of an XML element under a given tree node
50 * @param node Target tree node
51 * @param elem Source XML element
52 */
53 private void fillTree(DefaultMutableTreeNode node, XMLData elem)
54 {
55 try
56 {
57 // There are several ways to iterate through child elements: either using the
getFirstChild/getNextChild,
58 // or by incrementing an index up to countChildren and calling getChild [as shown
below].
59 // If you only want to get children of one kind, you should use
countChildrenKind/getChildKind,
60 // or provide a kind to the getFirstChild before iterating with the getNextChild.
61 int nSize = elem.countChildren() ;
62 for (int i = 0 ; i < nSize ; ++i)
63 {
64 // Create a new tree node for each child element, and continue recursively
65 XMLData newElem = elem.getChild(i) ;
66 DefaultMutableTreeNode newNode = new DefaultMutableTreeNode(newElem.getName())
;
67 node.add(newNode) ;
68 fillTree(newNode, newElem) ;
69 }
70 }
71 catch (Exception e)
72 {
73 e.printStackTrace();

2028 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

74 }
75 }
76
77 }

30.4.6 Command Reference

This section lists the names and identifiers of all menu commands that are available within XMLSpy. Every sub-
section lists the commands from the corresponding top-level menu of XMLSpy. The command tables are
organized as follows:

· The "Menu Item" column shows the command's menu text as it appears in XMLSpy, to make it easier
for you to identify the functionality behind the command.

· The "Command Name" column specifies the string that can be used to get an icon with the same
name from ActiveX\Images folder of the XMLSpy installation directory.

· The "ID" column shows the numeric identifier of the column that must be supplied as argument to
methods which execute or query this command.

To execute a command, use the XMLSpyControl.Exec or the XMLSpyControlDocument.Exec methods.
To query the status of a command, use the XMLSpyControl.QueryStatus or
XMLSpyControlDocument.QueryStatus methods.

Depending on the edition of XMLSpy you have installed, some of these commands might not be supported.

30.4.6.1 "File" Menu

The "File" menu has the following commands:

Menu item Command name ID

New... ID_FILE_NEW 57600

Open... ID_FILE_OPEN 57601

Reload IDC_FILE_RELOAD 34065

Encoding... IDC_ENCODING 34061

Close ID_FILE_CLOSE 57602

Close All IDC_CLOSE_ALL 34050

Close All But Active IDC_CLOSE_OTHERS 34271

Save ID_FILE_SAVE 57603

Save As... ID_FILE_SAVE_AS 57604

Save All ID_FILE_SAVE_ALL 34208

2055 2062

2056

2062

© 2018-2024 Altova GmbH

ActiveX Integration 2029Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Send by Mail... ID_FILE_SEND_MAIL 57612

Print... ID_FILE_PRINT 57607

Print Preview IDC_PRINT_PREVIEW 34104

Print Setup... ID_FILE_PRINT_SETUP 57606

Recent File ID_FILE_MRU_FILE1 57616

Exit ID_APP_EXIT 57665

30.4.6.2 "Edit" Menu

The "Edit" menu has the following commands:

Menu item Command name ID

Undo ID_EDIT_UNDO 57643

Redo ID_EDIT_REDO 57644

Cut ID_EDIT_CUT 57635

Copy ID_EDIT_COPY 57634

Paste ID_EDIT_PASTE 57637

Delete ID_EDIT_CLEAR 57632

Copy as XML Text IDC_COPY_AS_XML_TEXT 33443

Copy as Tab-separated Text IDC_COPY_AS_STRUCTURED_TEXT 33442

Copy XPath IDC_COPY_XPATH 33444

Copy XPointer IDC_COPY_XPOINTER 33445

File Path... IDC_EDIT_INSERT_PATH_STRING 34013

XInclude... IDC_EDIT_INSERT_XINCLUDE_STRING 34017

Encoded External File... IDC_EDIT_INSERT_ENCODED_BINARY_STRI
NG

34273

Pretty-Print IDC_PRETTY_PRINT 34101

Strip Whitespaces IDC_STRIP_WHITESPACES 34296

Select All ID_EDIT_SELECT_ALL 57642

2030 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Find... ID_EDIT_FIND 57636

Find Next ID_EDIT_REPEAT 57640

Replace... ID_EDIT_REPLACE 57641

Find in Files... IDC_FIND_IN_FILES 34000

Insert/Remove Bookmark IDC_TOGGLE_BOOKMARK 34162

Remove All Bookmarks IDC_REMOVEALLBOOKMARKS 34132

Go to Next Bookmark IDC_GOTONEXTBOOKMARK 34070

Go to Previous Bookmark IDC_GOTOPREVBOOKMARK 34071

Comment In/Out IDC_TOGGLE_XML_COMMENT 34029

30.4.6.3 "Project" Menu

The "Project" menu has the following commands:

Menu item Command name ID

New Project IDC_ICPROJECTGUI_NEW 37200

Open Project... IDC_ICPROJECTGUI_OPEN 37201

Reload Project IDC_ICPROJECTGUI_RELOAD 37202

Close Project IDC_ICPROJECTGUI_CLOSE 37203

Save Project IDC_ICPROJECTGUI_SAVE 37204

Save Project As... IDC_ICPROJECTGUI_SAVE_AS 37207

Enable Source Control ID_SCC_ENABLE 38602

Add Files to Project... IDC_ICPROJECTGUI_ADD_FILES_TO_PROJE
CT

37205

Add Global Resource to Project... IDC_ICPROJECTGUI_ADD_GLOBAL_RESOUR
CE_TO_PROJECT

37239

Add URL to Project... IDC_ICPROJECTGUI_ADD_URL_TO_PROJEC
T

37206

Add Active File to Project IDC_ICPROJECTGUI_ADD_ACTIVE_FILE_TO_
PROJECT

37208

© 2018-2024 Altova GmbH

ActiveX Integration 2031Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Add Active and Related Files to Project IDC_ICPROJECTGUI_ADD_ACTIVE_AND_REL
ATED_FILES_TO_PROJECT

37209

Add Project Folder to Project... IDC_ICPROJECTGUI_ADD_FOLDER_TO_PRO
JECT

37210

Add External Folder to Project... IDC_ICPROJECTGUI_ADD_EXT_FOLDER_TO_
PROJECT

37211

Add External Web Folder to Project... IDC_ICPROJECTGUI_ADD_EXT_URL_FOLDER
_TO_PROJECT

37212

Script settings... IDC_PROJECT_SCRIPT_SETTINGS 34136

Properties... IDC_ICPROJECTGUI_PROJECT_PROPERTIE
S

37223

Recent Project IDC_ICPROJECTGUI_RECENT 37224

30.4.6.4 "XML" Menu

The "XML" menu has the following commands:

Menu item Command name ID

Attribute IDC_INSERT_ATTRIBUTE 33449

Element IDC_INSERT_STRUCT 33459

Text IDC_INSERT_TEXT 33460

CDATA IDC_INSERT_CDATA 33450

Comment IDC_INSERT_COMMENT 33451

XML IDC_INSERT_XML 33461

Processing Instruction IDC_INSERT_PI 33458

XInclude... IDC_INSERT_XINCLUDE 34019

DOCTYPE IDC_INSERT_DEF_DOCTYPE 33453

ExternalID IDC_INSERT_DEF_EXTERNAL_ID 33456

ELEMENT IDC_INSERT_DEF_ELEMENT 33454

ATTLIST IDC_INSERT_DEF_ATTLIST 33452

ENTITY IDC_INSERT_DEF_ENTITY 33455

2032 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

NOTATION IDC_INSERT_DEF_NOTATION 33457

Encoded External File... IDC_INSERT_ENCODED_BINARY 34274

Attribute IDC_APPEND_ATTRIBUTE 33415

Element IDC_APPEND_STRUCT 33425

Text IDC_APPEND_TEXT 33426

CDATA IDC_APPEND_CDATA 33416

Comment IDC_APPEND_COMMENT 33417

XML IDC_APPEND_XML 33427

Processing Instruction IDC_APPEND_PI 33424

XInclude... IDC_APPEND_XINCLUDE 34026

DOCTYPE IDC_APPEND_DEF_DOCTYPE 33419

ExternalID IDC_APPEND_DEF_EXTERNAL_ID 33422

ELEMENT IDC_APPEND_DEF_ELEMENT 33420

ATTLIST IDC_APPEND_DEF_ATTLIST 33418

ENTITY IDC_APPEND_DEF_ENTITY 33421

NOTATION IDC_APPEND_DEF_NOTATION 33423

Encoded External File... IDC_APPEND_ENCODED_BINARY 34276

Attribute IDC_ADD_CHILD_ATTRIBUTE 33402

Element IDC_ADD_CHILD_STRUCT 33412

Text IDC_ADD_CHILD_TEXT 33413

CDATA IDC_ADD_CHILD_CDATA 33403

Comment IDC_ADD_CHILD_COMMENT 33404

XML IDC_ADD_CHILD_XML 33414

Processing Instruction IDC_ADD_CHILD_PI 33411

XInclude... IDC_ADD_CHILD_XINCLUDE 34027

DOCTYPE IDC_ADD_CHILD_DEF_DOCTYPE 33406

ExternalID IDC_ADD_CHILD_DEF_EXTERNAL_ID 33409

ELEMENT IDC_ADD_CHILD_DEF_ELEMENT 33407

© 2018-2024 Altova GmbH

ActiveX Integration 2033Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

ATTLIST IDC_ADD_CHILD_DEF_ATTLIST 33405

ENTITY IDC_ADD_CHILD_DEF_ENTITY 33408

NOTATION IDC_ADD_CHILD_DEF_NOTATION 33410

Encoded External File... IDC_ADD_CHILD_ENCODED_BINARY 34277

Attribute IDC_CONVERT_TO_ATTRIBUTE 33429

Element IDC_CONVERT_TO_STRUCT 33439

Text IDC_CONVERT_TO_TEXT 33440

CDATA IDC_CONVERT_TO_CDATA 33430

Comment IDC_CONVERT_TO_COMMENT 33431

XML IDC_CONVERT_TO_XML 33441

Processing Instruction IDC_CONVERT_TO_PI 33438

DOCTYPE IDC_CONVERT_TO_DEF_DOCTYPE 33433

ExternalID IDC_CONVERT_TO_DEF_EXTERNAL_ID 33436

ELEMENT IDC_CONVERT_TO_DEF_ELEMENT 33434

ATTLIST IDC_CONVERT_TO_DEF_ATTLIST 33432

ENTITY IDC_CONVERT_TO_DEF_ENTITY 33435

NOTATION IDC_CONVERT_TO_DEF_NOTATION 33437

Display as Table IDC_GRID_VIEW_AS_TABLE 34075

Insert Row IDC_TABLE_INSERT_ROW 34158

Append Row IDC_TABLE_APPEND_ROW 34157

Ascending Sort IDC_TABLE_SORT_ASC 33464

Descending Sort IDC_TABLE_SORT_DESC 33465

Move Left IDC_MOVE_LEFT 34091

Move Right IDC_MOVE_RIGHT 34092

Enclose in Element IDC_ENCLOSE_IN_ELEMENT 33446

Evaluate XPath... IDC_EVALUATE_XPATH 34007

Check Well-Formedness IDC_CHECK_WELL_FORM 34049

Validate XML IDC_VALIDATE 32954

2034 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Validate XML on Server (high-performance) IDC_VALIDATE_RAPTOR 34309

Update Entry Helpers IDC_UPDATE_ELEMENT_CHOICE 34173

Namespace Prefix... IDC_NAMESPACE 33462

Create XML Signature... IDC_XML_SIGNATURE_CREATE 34280

Verify XML Signature... IDC_XML_SIGNATURE_VERIFY 34281

30.4.6.5 "DTD/Schema" Menu

The "DTD/Schema" menu has the following commands:

Menu item Command name ID

Assign DTD... IDC_ASSIGN_DTD 34032

Assign Schema... IDC_ASSIGN_SCHEMA 34033

Include Another DTD... IDC_INCLUDE_DTD 34084

Go to DTD IDC_GOTO_DTD 34072

Go to Schema IDC_GOTO_SCHEMA 34074

Go to Definition IDC_GOTO_DEFINITION 33447

Generate DTD/Schema... IDC_GENERATE_DTD_SCHEMA 34068

Flatten DTD... IDC_FLATTEN_DTD 34301

Convert DTD To Schema... IDC_CONVERT_DTD_TO_SCHEMA 34299

Flatten Schema... IDC_FLATTEN_SCHEMA 34302

Convert Schema To DTD... IDC_CONVERT_SCHEMA_TO_DTD 34300

Convert to UML... IDC_CONVERT_SCHEMA_TO_UML 34008

Generate XML from DB, Excel, EDI with
MapForce...

IDC_DTD_OPENIN_MAPFORCE 34056

Design HTML/PDF/Word Output with
StyleVision...

IDC_DTD_OPENIN_STYLEVISION 34057

Generate Sample XML/JSON File... IDC_GENERATE_XML_FROM_SCHEMA 34069

Generate Program Code... IDC_GENERATE_CODE_FROM_SCHEMA 34067

Flush Memory Cache IDC_FLUSH_CACHED_FILES 34066

© 2018-2024 Altova GmbH

ActiveX Integration 2035Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4.6.6 "Schema design" Menu

The "Schema design" menu has the following commands:

Menu item Command name ID

Schema Settings... IDC_SCHEMA_NAMESPACES 33571

Save Diagram... IDC_SCHEMA_SAVE_DIAGRAM 33581

Generate Documentation... IDC_SCHEMA_DOCUMENTATION 34146

Configure View... IDC_SCHEMA_VIEW_CONFIG 33593

Zoom... IDC_SCHEMA_ZOOM 34150

Display All Globals IDC_SCHEMA_MODE_GLOBALS 34147

Display Diagram IDC_SCHEMA_MODE_DIAGRAM 33570

Enable Oracle Schema Extensions IDC_SCHEMA_ORACLE_EXTENSIONS 33577

Oracle Schema Settings... IDC_SCHEMA_ORACLE_SCHEMA_SETTING
S

33578

Enable Microsoft SQL Server Schema
Extensions

IDC_SCHEMA_SQLSERVER_EXTENSIONS 33588

Named Schema Relationships... IDC_SCHEMA_SQLSERVER_GLOBAL_RELA
TIONSHIPS

33589

Unnamed Element Relationships... IDC_SCHEMA_SQLSERVER_LOCAL_RELATI
ONSHIPS

33590

Connect to SchemaAgent Server... IDC_SCHEMA_SCHEMAAGENT_SERVER_C
ONNECT

33582

Disconnect from SchemaAgent Server IDC_SCHEMA_SCHEMAAGENT_SERVER_DI
SCONNECT

33583

File Only IDC_SCHEMAAGENT_SHOW_FILE_ONLY 33504

File and All Directly Referenced Schema Files IDC_SCHEMAAGENT_SHOW_WITH_DIRECTL
Y_REFERENCED_SCHEMAS

33608

File and All Directly Referencing Schema Files IDC_SCHEMAAGENT_SHOW_WITH_DIRECTL
Y_REFERENCING_SCHEMAS

33602

File and All Directly Related Schema Files IDC_SCHEMAAGENT_SHOW_WITH_DIRECTL
Y_RELATED_SCHEMAS

33613

SchemaAgent Validation... IDC_SCHEMA_EXTVALID_MENU 33539

2036 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Create Schema Subset... IDC_SCHEMA_CREATE_SUBSET 33650

Flatten Schema... IDC_SCHEMA_FLATTEN 33651

30.4.6.7 "XSL/XQuery" Menu

The "XSL/XQuery" menu has the following commands:

Menu item Command name ID

XSL Transformation IDC_TRANSFORM_XSL 33006

XSL Speed Optimizer IDC_TRANSFORM_XSLPBO 34306

XSL-FO Transformation IDC_TRANSFORM_XSLFO 33007

XSL Parameters / XQuery Variables... IDC_TRANSFORM_XSL_PARAMS 33008

XQuery/Update Execution IDC_TRANSFORM_XQUERY 34170

Enable Back Mapping IDC_ENABLE_BACKMAPPING 34364

Enable XSLT/ XQuery Profiling.... IDC_PROFILING_OPTIONS 34105

Assign XSL... IDC_ASSIGN_XSL 33001

Assign XSL-FO... IDC_ASSIGN_XSLFO 33002

Assign Sample XML File... IDC_ASSIGN_SAMPLE_XML 33000

Go to XSL IDC_GOTO_XSL 33004

Start Debugger / Go ID_PROCESS_XSL 34212

Stop Debugger ID_XSLT_DEBUGGER_STOP 33017

Restart Debugger ID_XSLT_DEBUGGER_RESTART 33013

End Debugger Session ID_XSLT_DEBUGGER_END_SESSION 33011

Step Into ID_XSLT_DEBUGGER_STEP 33014

Step Out ID_XSLT_DEBUGGER_STEP_OUT 33015

Step Over ID_XSLT_DEBUGGER_STEP_OVER 33016

Show Current Execution Node ID_XSLT_DEBUGGER_GO_TO_CURRENT_EX
ECUTION_NODES

33012

Insert/Remove Breakpoint IDC_TOGGLE_BREAKPOINT 34246

© 2018-2024 Altova GmbH

ActiveX Integration 2037Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Insert/Remove Tracepoint IDC_TOGGLE_TRACEPOINT 34248

Enable/Disable Breakpoint IDC_ENABLE_BREAKPOINT 34245

Enable/Disable Tracepoint IDC_ENABLE_TRACEPOINT 34247

Breakpoints/Tracepoints... ID_XSLTDEBUGGER_BREAKPOINTS 33009

Call Stack ID_XSL_DEBUGWINDOWS_CALLSTACK 34238

XPath-Watch ID_XSL_DEBUGWINDOWS_WATCH 34244

Context ID_XSL_DEBUGWINDOWS_CONTEXT 34239

Variables ID_XSL_DEBUGWINDOWS_VARIABLE 34243

Messages ID_XSL_DEBUGWINDOWS_MESSAGES 34240

Templates ID_XSL_DEBUGWINDOWS_TEMPLATES 34241

Info ID_XSLXQUERY_DEBUGWINDOWS_INFO 34237

Trace ID_XSL_DEBUGWINDOWS_TRACES 34242

Debug Settings... ID_XSLTDEBUGGER_SETTINGS 33010

30.4.6.8 "Authentic" Menu

The "Authentic" menu has the following commands:

Menu item Command name ID

New Document... IDC_AUTHENTIC_NEW_FILE 34036

Edit Database Data... IDC_AUTHENTIC_EDIT_DB 34035

Assign a StyleVision Stylesheet... IDC_ASSIGN_SPS 34034

Edit StyleVision Stylesheet IDC_EDIT_SPS 34060

Select New Row with XML Data for Editing... IDC_CHANGE_WORKING_DB_XML_CELL 32861

XML Signature... IDC_AUTHENTICGUI_XMLSIGNATURE 32862

Define XML Entities... IDC_DEFINE_ENTITIES 32805

Hide Markup IDC_MARKUP_HIDE 32855

Show Small Markup IDC_MARKUP_SMALL 32858

Show Large Markup IDC_MARKUP_LARGE 32856

2038 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Show Mixed Markup IDC_MARKUP_MIXED 32857

Toggle Bold IDC_AUTHENTICGUI_RICHEDIT_TOGGLEBOL
D

32813

Toggle Italic IDC_AUTHENTICGUI_RICHEDIT_TOGGLEITALI
C

32814

Toggle Underline IDC_AUTHENTICGUI_RICHEDIT_TOGGLEUND
ERLINE

32815

Toggle Strikethrough IDC_AUTHENTICGUI_RICHEDIT_TOGGLESTRI
KETHROUGH

32816

Foreground Color IDC_AUTHENTICGUI_RICHEDIT_COLOR_FOR
EGROUND

32824

Background Color IDC_AUTHENTICGUI_RICHEDIT_COLOR_BAC
KGROUND

32830

Align Left IDC_AUTHENTICGUI_RICHEDIT_ALIGN_LEFT 32818

Center IDC_AUTHENTICGUI_RICHEDIT_ALIGN_CENT
ER

32819

Align Right IDC_AUTHENTICGUI_RICHEDIT_ALIGN_RIGHT 32820

Append Row IDC_ROW_APPEND 32806

Insert Row IDC_ROW_INSERT 32809

Duplicate Row IDC_ROW_DUPLICATE 32808

Move Row Up IDC_ROW_MOVE_UP 32811

Move Row Down IDC_ROW_MOVE_DOWN 32810

Delete Row IDC_ROW_DELETE 32807

Generate an HTML document IDC_PXF_GENERATE_HTML 34283

Generate an RTF document IDC_PXF_GENERATE_RTF 34284

Generate a PDF document IDC_PXF_GENERATE_PDF 34285

Generate a Word 2007+ document IDC_PXF_GENERATE_DOCX 34286

Generate a Text document DC_PXF_GENERATE_TEXT

Trusted Locations... IDC_TRUSTED_LOCATIONS 34288

© 2018-2024 Altova GmbH

ActiveX Integration 2039Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4.6.9 "DB" Menu

The "DB" menu has the following commands:

Menu item Command name ID

Query Database IDC_QUERYDATABASE 34012

Manage XML Schemas... IDC_DB_MANAGESCHEMAS 34014

Assign XML Schema... IDC_DB_CHOOSEVALIDATIONSCHEMA 34016

Manage XML Schemas... IDC_DB_MANAGESCHEMAS 34014

Manage XML Schemas... IDC_DB_MANAGESCHEMAS 34014

Browse Oracle XML Documents... ID_CONVERT_ORACLEXMLDB_BROWSE 34205

30.4.6.10 "Convert" Menu

The "Convert" menu has the following commands:

Menu item Command name ID

Import Text File... IDC_IMPORT_TEXT 34082

Import Database Data... IDC_IMPORT_DATABASE 34080

Import Microsoft Word Document... IDC_IMPORT_WORD 34083

Create XML Schema from DB Structure IDC_CREATE_DB_SCHEMA 34054

DB Import Based on XML Schema IDC_IMPORT_DB_SCHEMA 34081

Create DB Structure from XML Schema IDC_CREATE_DB_BASED_ON_SCHEMA 34053

Export to Text Files... IDC_EXPORT_TEXTFILE 34064

Export to a Database... IDC_EXPORT_DB 34003

Convert XML Instance to/from JSON... IDC_JSON_CONVERT_TOFROM_XML 34135

Convert XML Schema to/from JSON Schema... IDC_JSON_CONVERT_TOFROM_XSD 34350

30.4.6.11 "View" Menu

The "View" menu has the following commands:

2040 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Text View IDC_VIEW_TEXT 34180

Enhanced Grid View IDC_VIEW_GRID 34178

Schema Design View IDC_VIEW_SCHEMA 34179

WSDL Design View IDC_VIEW_WSDL 34117

XBRL Taxonomy View IDC_VIEW_XBRL 34118

Authentic View IDC_VIEW_CONTENT 34177

Browser View IDC_VIEW_BROWSER 34176

Expand + IDC_SEL_EXPAND 34152

Collapse - IDC_SEL_COLLAPSE 34151

Expand Fully IDC_SEL_EXPAND_ALL 33463

Collapse Unselected IDC_COLLAPSE_UNSELECTED 33428

Optimal Widths IDC_OPTIMAL_WIDTHS 34099

Word Wrap IDC_WORD_WRAP 34181

Go to Line/Character IDC_GOTO_LINE 34073

Go to File IDC_GOTO_FILE 33448

Text View Settings IDC_TEXTVIEW_SETTINGS 34119

30.4.6.12 "Browser" Menu

The "Browser" menu has the following commands:

Menu item Command name ID

Back IDC_STEP_BACK 32958

Forward IDC_STEP_FORWARD 32957

Stop IDC_BROWSER_STOP 34047

Refresh IDC_BROWSER_REFRESH 34046

Largest IDC_BROWSER_FONT_LARGEST 34041

Larger IDC_BROWSER_FONT_LARGE 34040

Medium IDC_BROWSER_FONT_MEDIUM 34042

© 2018-2024 Altova GmbH

ActiveX Integration 2041Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Smaller IDC_BROWSER_FONT_SMALL 34043

Smallest IDC_BROWSER_FONT_SMALLEST 34044

30.4.6.13 "WSDL" Menu

The "WSDL" menu has the following commands:

Menu item Command name ID

Insert Message ID_WSDL_MESSAGES_ADDNEWMESSAGE 33715

Delete Message ID_WSDL_MESSAGES_DELETESELECTEDM
ESSAGE

33717

Add Message Part (Parameter) ID_WSDL_MESSAGES_ADDMESSAGEPART 33714

Delete Message Part (Parameter) ID_WSDL_MESSAGES_DELETEMESSAGEP
ART

33716

request-response IDC_WSDL_OPERATION_APPENDREQUEST
RESPONSE

33734

solicit-response IDC_WSDL_OPERATION_APPENDSOLICITRE
SPONSE

33737

one-way IDC_WSDL_OPERATION_APPENDONEWAY 33735

notification IDC_WSDL_OPERATION_APPENDNOTIFICAT
ION

33736

Empty Operation ID_WSDL_OPERATIONS_APPENDAOPERATI
ONTOTHISPORTTYPE

33722

Delete Operation ID_WSDL_OPERATIONS_DELETEOPERATIO
N

33724

Add Input Element ID_WSDL_OPERATIONS_ADDINPUTFUNCTIO
N

33719

Add Output Element ID_WSDL_OPERATIONS_ADDOUTPUTFUNCT
ION

33721

Add Fault Element ID_WSDL_OPERATIONS_ADDFAULTFUNCTI
ON

33718

Delete Input/Output/Fault Element ID_WSDL_OPERATIONS_DELETEINPUTOUT
PUTFUNCTION

33723

2042 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Add New Message to Input/Output/Fault
Element

ID_WSDL_OPERATIONS_ADDNEWMESSAG
ETOTHISELEMENT

33720

Insert Port Type ID_WSDL_PORTTYPE_INSERTAPORTTYPE 33727

Delete Port Type ID_WSDL_PORTTYPE_DELETETHISPORTTY
PE

33726

Insert Binding ID_WSDL_BINDING_NEWBINDING 33713

Delete Binding ID_WSDL_BINDING_DELETEBINDING 33711

soap:body ID_WSDL_BINDING_APPENDEXTENSIBILITY_
SOAPBODY

33706

soap:header ID_WSDL_BINDING_APPENDEXTENSIBILITY_
SOAPHEADER

33708

soap:headerfault ID_WSDL_BINDING_APPENDEXTENSIBILITY_
SOAPHEADERFAULT

33709

soap:fault ID_WSDL_BINDING_APPENDEXTENSIBILITY_
SOAPFAULT

33707

mime:content ID_WSDL_BINDING_APPENDEXTENSIBILITY_
MIMECONTENT

33702

mime:multipartrelated ID_WSDL_BINDING_APPENDEXTENSIBILITY_
MIMEMULTIPARTRELATED

33704

mime:part ID_WSDL_BINDING_APPENDEXTENSIBILITY_
MIMEPART

33705

mime:mimeXml ID_WSDL_BINDING_APPENDEXTENSIBILITY_
MIMEMIMEXML

33703

http:urlencoded ID_WSDL_BINDING_APPENDEXTENSIBILITY_
HTTPURLENCODED

33700

http:urlreplacement ID_WSDL_BINDING_APPENDEXTENSIBILITY_
HTTPURLREPLACEMENT

33701

Delete Extensibility Element ID_WSDL_BINDING_DELETEEXTENSIBILITY 33712

Insert Service ID_WSDL_SERVICE_INSERTSERVICE 33731

Delete Service ID_WSDL_SERVICE_DELETETHISSERVICE 33729

Insert Port ID_WSDL_SERVICE_INSERTNEWPORT 33730

Delete Port ID_WSDL_SERVICE_DELETETHISPORT 33728

Add New Interface IDC_WSDL20_ADDINTERFACE 33794

© 2018-2024 Altova GmbH

ActiveX Integration 2043Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Delete Interface IDC_WSDL20_DELETEINTERFACE 33795

Add New Fault IDC_WSDL20_ADDINTERFACEFAULT 33796

Delete Fault IDC_WSDL20_DELETEINTERFACEFAULT 33808

In-only IDC_WSDL20_ADDINTERFACEOPERATION_I
NONLY

33797

Robust-in-only IDC_WSDL20_ADDINTERFACEOPERATION_
ROBUSTINONLY

33798

In-out IDC_WSDL20_ADDINTERFACEOPERATION_I
NOUT

33801

In-opt-out IDC_WSDL20_ADDINTERFACEOPERATION_I
NOPTOUT

33802

Out-in IDC_WSDL20_ADDINTERFACEOPERATION_
OUTIN

33803

Out-opt-in IDC_WSDL20_ADDINTERFACEOPERATION_
OUTOPTIN

33804

Out-only IDC_WSDL20_ADDINTERFACEOPERATION_
OUTONLY

33800

Robust-out-only IDC_WSDL20_ADDINTERFACEOPERATION_
ROBUSTOUTONLY

33799

Empty Operation IDC_WSDL20_ADDINTERFACEOPERATION_
EMPTY

33805

Delete Operation IDC_WSDL20_DELETEINTERFACEOPERATIO
N

33809

Add New Binding IDC_WSDL20_ADDBINDING 33820

Delete Binding IDC_WSDL20_DELETEBINDING 33821

Add New Fault IDC_WSDL20_ADDBINDINGFAULT 33822

Delete Fault IDC_WSDL20_DELETEBINDINGFAULT 33826

Add New Operation IDC_WSDL20_ADDBINDINGOPERATION 33823

Delete Operation IDC_WSDL20_DELETEBINDINGOPERATION 33827

Add New Service IDC_WSDL20_ADDSERVICE 33839

Delete Service IDC_WSDL20_DELETESERVICE 33840

Add New Endpoint IDC_WSDL20_ADDENDPOINT 33841

2044 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Delete Endpoint IDC_WSDL20_DELETEENDPOINT 33842

New Schema ID_WSDL_TYPES_NEWSCHEMA 33733

Embed Schema ID_WSDL_TYPES_EMBEDSCHEMA 39456

Extract Schema(s) ID_WSDL_TYPES_EXTRACTSCHEMAS 39459

Edit Schema(s) in Schema View ID_WSDL_TYPES_EDITTHISSCHEMA 33732

Save Diagram... IDC_WSDL_SAVE_DIAGRAM 39451

Generate Documentation... ID_WSDL_GENERATEDOCUMENTATION 39452

Reparse WSDL Document IDC_WSDL_REPARSE 33774

Convert to WSDL 2.0 IDC_WSDL_CONVERT_TO_WSDL20 39453

Generate WSDL Program Code with
MapForce...

IDC_WSDL_GENERATE_CODE_MAPFORCE 34122

30.4.6.14 "SOAP" Menu

The "SOAP" menu has the following commands:

Menu item Command name ID

Create New SOAP Request... ID_SOAP_GENERATESOAPMESSAGE 34224

Send Request to Server... ID_SOAP_SENDREQUESTTOSERVER 34225

SOAP Request Settings... ID_SOAP_SOAPREQUESTSETTINGS 34227

Soap Debugger Session ID_SOAP_SOAPDEBUGGER 34226

Go ID_SOAPDEBUGGER_BUTTONPLAY 34221

Single Step ID_SOAPDEBUGGER_SINGLESTEP 34222

Break on Next Request ID_SOAPDEBUGGER_BREAKONNEXTREQU
EST

34219

Break on Next Response ID_SOAPDEBUGGER_BREAKONNEXTRESP
ONSE

34220

Stop the Proxy Server ID_SOAPDEBUGGER_STOPSERVER 34223

Soap Debugger Options ID_SOAPDEBUGGEROPTIONS 34218

© 2018-2024 Altova GmbH

ActiveX Integration 2045Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4.6.15 "XBRL" Menu

The "XBRL" menu has the following commands:

Menu item Command name ID

Arcroles... IDC_XMLSPYXBRLEDITOR_ARCROLES 34114

Linkroles... IDC_XMLSPYXBRLEDITOR_LINKROLES 34115

Namespace Prefixes... IDC_XMLSPYXBRLEDITOR_NAMESPACES 34116

Set Target Namespace... IDC_XMLSPYXBRLEDITOR_SET_TARGETNA
MESPACE

34039

Parameter Values... IDC_ICXBRLEDITOR_PARAMETER_VALUES 38913

Import/Reference... IDC_XMLSPYXBRLEDITOR_IMPORT_REFERE
NCE

34137

Find Component By Id... IDC_ICXBRLEDITOR_FIND_COMPONENT_BY
_ID

38893

Generate Documentation... IDC_XMLSPYXBRLEDITOR_GENERATEDOCU
MENTATION

34125

View Settings... IDC_XMLSPYXBRLEDITOR_VIEWSETTINGS 34113

Generate XBRL from DB, Excel, CSV with
MapForce...

IDC_XBRL_GENERATE_WITH_MAPFORCE 34045

Present XBRL as HTML/PDF/Word with
StyleVision...

IDC_XBRL_PRESENT_WITH_STYLEVISION 34121

Execute Formula... IDC_XBRL_EXECUTE_FORMULA 34305

Execute Formula on Server (high-
performance)...

IDC_XBRL_EXECUTE_FORMULA_RAPTOR 34352

Generate Table... IDC_XBRL_GENERATE_TABLE 34304

Generate Table on Server (high-performance)... IDC_XBRL_GENERATE_TABLE_RAPTOR 34353

Transform Inline XBRL IDC_IXBRL_TRANSFORM 34354

30.4.6.16 "Tools" Menu

The "Tools" menu has the following commands:

2046 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Spelling... IDC_SPELL_CHECK 34154

Spelling Options... IDC_SPELL_OPTIONS 34155

Scripting Editor... ID_SCRIPTFORMEDITOR_EDIT_PROJECT 39666

none ID_SCRIPTFORMEDITOR_EXECUTE_MACRO
_MENU_UPPDATE

39600

Compare Open File With... ID_XMLDIFF_CHOOSE_FILES 34235

Compare Directories... ID_XMLDIFF_CHOOSE_DIRECTORIES 34234

Compare Options... ID_XMLDIFF_SETTINGS 34236

IDC_TOOLS_ENTRY 34292

Global Resources IDC_GLOBALRESOURCES 37401

IDC_GLOBALRESOURCES_SUBMENUENTR
Y1

37408

Manage Raptor Servers ... IDC_VALIDATE_RAPTOR_MANAGER 34311

none IDC_VALIDATE_RAPTOR_NOCFG 34326

Customize... IDC_APP_TOOLS_CUSTOMIZE 32959

Options... IDC_SETTINGS 34133

ID_SCRIPTING_MACROITEMS 34249

30.4.6.17 "Window" Menu

The "Window" menu has the following commands:

Menu item Command name ID

Cascade ID_WINDOW_CASCADE 57650

Tile horizontally ID_WINDOW_TILE_HORZ 57651

Tile vertically ID_WINDOW_TILE_VERT 57652

Project window IDC_PROJECT_WINDOW 34128

Info window IDC_INFO_WINDOW 34085

Entry Helpers IDC_ENTRY_HELPERS 34062

Output windows IDC_OUTPUT_DIALOGBARS 34004

© 2018-2024 Altova GmbH

ActiveX Integration 2047Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Menu item Command name ID

Project and Entry Helpers IDC_PROJECT_ENTRYHELPERS 34006

All on/off IDC_ALL_BARS 34031

30.4.6.18 "Help" Menu

The "Help" menu has the following commands:

Menu item Command name ID

Table of Contents... IDC_HELP_CONTENTS 32966

Index... IDC_HELP_INDEX 32967

Search... IDC_HELP_SEARCH 32969

Keyboard Map... IDC_HELP_KEYMAPDLG 32968

Software Activation... IDC_ACTIVATION 32970

Order Form... IDC_OPEN_ORDER_PAGE 32971

Registration... IDC_REGISTRATION 32972

Check for Updates... IDC_CHECK_FOR_UPDATES 32973

XMLSpy Product Comparison... IDC_PRODUCT_COMPARISON 32955

Support Center... IDC_OPEN_SUPPORT_PAGE 32961

FAQ on the Web... IDC_OPEN_FAQ_PAGE 32962

Download Components and Free Tools... IDC_OPEN_COMPONENTS_PAGE 32963

Authentic on the Internet.. IDC_OPEN_HOME_PAGE 32964

Authentic Training... IDC_OPEN_TRAINING_PAGE 32965

About XMLSpy... ID_APP_ABOUT 57664

30.4.7 Object Reference

Objects:
XMLSpyCommand
XMLSpyCommands
XMLSpyControl
XMLSpyControlDocument

2048

2050

2051

2059

2048 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XMLSpyControlPlaceHolder

To give access to standard XMLSpy functionality, objects of the XMLSpy automation interface can be
accessed as well. See XMLSpyControl.Application , XMLSpyControlDocument.Document and
XMLSpyControlPlaceHolder.Project for more information.

30.4.7.1 XMLSpyCommand

Properties:
ID
Label
Name
IsSeparator
ToolTip
StatusText
Accelerator
SubCommands

Description:
A command object can be one of the following: an executable command, a command container (for example, a
menu, submenu, or toolbar), or a menu separator. To determine what kind of information is stored in the current
Command object, query its ID, IsSeparator, and SubCommands properties, as follows.

The Command object is... When...

An executable command · ID is greater than zero
· IsSeparator is false
· SubCommands is empty

A command container · ID is zero
· IsSeparator is false
· SubCommands contains a collection of

Command objects.

Separator · ID is zero
· IsSeparator is true

30.4.7.1.1 Accelerator

Property: Accelerator as string

Description:
Returns the accelerator key defined for the command. If the command has no accelerator key assigned, this
property returns the empty string. The string representation of the accelerator key has the following format:

[ALT+][CTRL+][SHIFT+]key

Where key is converted using the Windows Platform SDK function GetKeyNameText.

2066

2052 2060

2067

2049

2049

2049

2049

2050

2049

2048

2050

© 2018-2024 Altova GmbH

ActiveX Integration 2049Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4.7.1.2 ID

Property: ID as long

Description:
This property gets the unique identifier of the command. A command's ID is required to execute the command
(using Exec) or query its status (using QueryStatus). If the command is a container for other commands
(for example, a top-level menu), or a separator, the ID is 0.

30.4.7.1.3 IsSeparator

Property: IsSeparator as boolean

Description:
The property returns true if the command object is a menu separator; false otherwise. See also
Command .

30.4.7.1.4 Label

Property: Label as string

Description:
This property gets the text of the command as it is displayed in the graphical user interface of XMLSpy. If the
command is a separator, "Label" is an empty string. This property may also return an empty string for some
toolbar commands that do not have any GUI text associated with them.

30.4.7.1.5 Name

Property: Name as string

Description:
This property gets the unique name of the command. This value can be used to get the icon file of the
command, where it is available. The available icon files can be found in the folder
<ApplicationFolder>\Examples\ActiveX\Images of your XMLSpy installation.

30.4.7.1.6 StatusText

Property: Label as string

Description:

2055 2056

2048

2050 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The status text is the text shown in the status bar of XMLSpy when the command is selected. It applies only to
command objects that are not separators or containers of other commands; otherwise, the property is an
empty string.

30.4.7.1.7 SubCommands

Property: SubCommands as Commands

Description:
The SubCommands property gets the collection of Command objects that are sub-commands of the current
command. The property is applicable only to commands that are containers for other commands (menus,
submenus, or toolbars). Such container commands have the ID set to 0, and the IsSeparator property set to
false.

30.4.7.1.8 ToolTip

Property: ToolTip as string

Description:
This property gets the text that is shown as a tool-tip for each command. If the command does not have a
tooltip text, the property returns an empty string.

30.4.7.2 XMLSpyCommands

Properties:
Count
Item

Description:
Collection of Command objects to get access to command labels and IDs of the XMLSpyControl. Those
commands can be executed with the Exec method and their status can be queried with QueryStatus .

30.4.7.2.1 Count

Property: Count as long

Description:
Number of Command objects on this level of the collection.

2050

2048

2050

2051

2048

2055 2056

2048

© 2018-2024 Altova GmbH

ActiveX Integration 2051Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4.7.2.2 Item

Property: Item (n as long) as Command

Description:
Gets the command with the index n in this collection. Index is 1-based.

30.4.7.3 XMLSpyControl

Properties:
IntegrationLevel
Appearance
Application
BorderStyle
CommandsList
EnableUserPrompts
MainMenu
Toolbars

Methods:
Open
Exec
QueryStatus

Events:
OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnContextChanged
OnDocumentOpened
OnValidationWindowUpdated

This object is a complete ActiveX control and should only be visible if the XMLSpy library is used in the
Application Level mode.

CLSID: a258bba2-3835-4c16-8590-72b44f52c471
ProgID: Altova.XMLSpyControl

30.4.7.3.1 Properties

The following properties are defined:

IntegrationLevel
EnableUserPrompts
Appearance
BorderStyle

2048

2053

2052

2052

2052

2052

2053

2053

2054

2055

2055

2056

2058

2058

2056

2057

2057

2057

2059

2053

2053

2052

2052

2052 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Command related properties:
CommandsList
MainMenu
Toolbars

Access to XMLSpyAPI:
Application

30.4.7.3.1.1 Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the control. Default value is 0.

30.4.7.3.1.2 Application

Property: Application as Application

Dispatch Id: 1

Description:
The Application property gives access to the Application object of the complete XMLSpy automation server
API. The property is read-only.

30.4.7.3.1.3 BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

30.4.7.3.1.4 CommandsList

Property: CommandList as Commands (read-only)

Dispatch Id: 1004

Description:

2052

2053

2054

2052

2050

© 2018-2024 Altova GmbH

ActiveX Integration 2053Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

This property returns a flat list of all commands defined available with XMLSpyControl. To get commands
organized according to their menu structure, use MainMenu . To get toolbar commands, use Toolbars .

public void GetAllXmlSpyCommands()
{
 // Get all commands from the XMLSpy ActiveX control assigned to the current form
 XMLSpyControlLib.XMLSpyCommands commands = this.axXMLSpyControl1.CommandList;
 // Iterate through all commands
 for (int i = 0; i < commands.Count; i++)
 {
 // Get each command by index and output it to the console
 XMLSpyControlLib.XMLSpyCommand cmd = axXMLSpyControl1.CommandList[i];
 Console.WriteLine("{0} {1} {2}", cmd.ID, cmd.Name, cmd.Label.Replace("&", ""));
 }
}

C# example

30.4.7.3.1.5 EnableUserPrompts

Property: EnableUserPrompts as boolean

Dispatch Id: 1006

Description:
Setting this property to false, disables user prompts in the control. The default value is true.

30.4.7.3.1.6 IntegrationLevel

Property: IntegrationLevel as ICActiveXIntegrationLevel

Dispatch Id: 1000

Description:
The IntegrationLevel property determines the operation mode of the control. See also Integration at
Application Level and Integration at Document Level for more information.

Note: It is important to set this property immediately after the creation of the XMLSpyControl object.

30.4.7.3.1.7 MainMenu

Property: MainMenu as Command (read-only)

Dispatch Id: 1003

2053 2054

2068

2010 2012

2048

2054 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Description:
This property provides information about the structure and commands available in the XMLSpyControl main
menu, as a Command object. The Command object contains all available submenus of XMLSpy (for example
"File", "Edit", "View" etc.). To access the submenu objects, use the SubCommands property of the MainMenu
property. Each submenu is also a Command object. For each submenu, you can then further iterate through their
SubCommands property in order to get their corresponding child commands and separators (this technique may
be used, for example, to create the application menu programmatically). Note that some menu commands act
as containers ("parents") for other menu commands, in which case they also have a SubCommands property. To
get the structure of all menu commands programmatically, you will need a recursive function.

public void GetXmlSpyMenus()
{
 // Get the main menu from the XMLSpy ActiveX control assigned to the current form
 XMLSpyControlLib.XMLSpyCommand mainMenu = this.axXMLSpyControl1.MainMenu;

 // Loop through entries of the main menu (e.g. File, Edit, etc.)
 for (int i = 0; i < mainMenu.SubCommands.Count; i++)
 {
 XMLSpyControlLib.XMLSpyCommand menu = mainMenu.SubCommands[i];
 Console.WriteLine("{0} menu has {1} children items (including separators)",
menu.Label.Replace("&", ""), menu.SubCommands.Count);
 }
}

C# example

30.4.7.3.1.8 Toolbars

Property: Toolbars as Commands (read-only)

Dispatch Id: 1005

Description:
This property provides information about the structure of XMLSpyControl toolbars, as a Command object. The
Command object contains all available toolbars of XMLSpy. To access the toolbars, use the SubCommands
property of the Toolbars property. Each toolbar is also a Command object. For each toolbar, you can then
further iterate through their SubCommands property in order to get their commands (this technique may be used,
for example, to create the application's toolbars programmatically).

public void GetXmlSpyToolbars()
{
 // Get the application toolbars from the StyleVision ActiveX control assigned to the
current form
 XMLSpyControlLib.XMLSpyCommands toolbars = this.axXMLSpyControl1.Toolbars;

 // Iterate through all toolbars
 for (int i = 0; i < toolbars.Count; i++)
 {

2050

© 2018-2024 Altova GmbH

ActiveX Integration 2055Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

 XMLSpyControlLib.XMLSpyCommand toolbar = toolbars[i];
 Console.WriteLine();
 Console.WriteLine("The toolbar \"{0}\" has the following commands:",
toolbar.Label);

 // Iterate through all commands of this toolbar
 for (int j = 0; j < toolbar.SubCommands.Count; j++)
 {
 XMLSpyControlLib.XMLSpyCommand cmd = toolbar.SubCommands[j];
 // Output only command objects that are not separators
 if (!cmd.IsSeparator)
 {
 Console.WriteLine("{0}, {1}, {2}", cmd.ID, cmd.Name, cmd.Label.Replace("&",
""));
 }
 }
 }
}

C# example

30.4.7.3.2 Methods

The following methods are defined:

Open
Exec
QueryStatus

30.4.7.3.2.1 Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 6

Description:
This method calls the XMLSpy command with the ID nCmdID. If the command can be executed, the method
returns true. To get a list of all available commands, use CommandsList . To retrieve the status of any
command, use QueryStatus .

30.4.7.3.2.2 Open

Method: Open (strFilePath as string) as boolean

Dispatch Id: 5

Description:

2055

2055

2056

2052

2056

2056 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The result of the method depends on the extension passed in the argument strFilePath. If the file extension
is .sps, a new document is opened. If the file extension is .svp, the corresponding project is opened. If a
different file extension is passed into the method, the control tries to load the file as a new component into the
active document.

Do not use this method to load documents or projects when using the control in document-level integration
mode. Instead, use XMLSpyControlDocument.Open and XMLSpyControlPlaceHolder.OpenProject .

30.4.7.3.2.3 QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 7

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command specified by
nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.
1 2 Enabled Set if the command is enabled (can be executed).
2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid XMLSpy command. If
QueryStatus returns a value of 1 or 5, the command is disabled.

30.4.7.3.3 Events

The XMLSpyControl ActiveX control provides the following connection point events:

OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnContextChanged
OnDocumentOpened
OnValidationWindowUpdated

30.4.7.3.3.1 OnCloseEditingWindow

Event: OnCloseEditingWindow (i_strFilePath as String) as boolean

Dispatch Id: 1002

Description:

2062 2067

2058

2058

2056

2057

2057

2057

2059

© 2018-2024 Altova GmbH

ActiveX Integration 2057Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

This event is triggered when XMLSpy needs to close an already open document. As an answer to this event,
clients should close the editor window associated with i_strFilePath. Returning true from this event indicates
that the client has closed the document. Clients can return false if no specific handling is required and
XMLSpyControl should try to close the editor and destroy the associated document control.

30.4.7.3.3.2 OnContextChanged

Event: OnContextChanged (i_strContextName as String, i_bActive as bool) as bool

Dispatch Id: 1004

Description:
This event is triggered when XMLSpy activates or de-actives one of the following operational contexts:

· XSLT Profiling - "XSLTProfiling" is passed as the context name
· XSLT / XQuery debugging - "DebuggingXSLT" is passed as the context name
· SOAP debugging - "DebuggingSOAP" is passed as the context name (Enterprise edition only)

30.4.7.3.3.3 OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1

Description:
This event is triggered whenever a document is opened. The argument objDocument is a Document object from
the XMLSpy automation interface and can be used to query for more details about the document, or perform
additional operations. When integrating on document-level, it is often better to use the event
XMLSpyControlDocument.OnDocumentOpened instead.

30.4.7.3.3.4 OnFileChangedAlert

Event: OnFileChangedAlert (i_strFilePath as String) as bool

Dispatch Id: 1001

Description:
This event is triggered when a file loaded with XMLSpyControl is changed on the hard disk by another
application. Clients should return true, if they handled the event, or false, if XMLSpy should handle it in its
customary way, i.e. prompting the user for reload.

2064

2058 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.4.7.3.3.5 OnLicenseProblem

Event: OnLicenseProblem (i_strLicenseProblemText as String)

Dispatch Id: 1005

Description:
This event is triggered when XMLSpyControl detects that no valid license is available for this control. In case of
restricted user licenses this can happen some time after the control has been initialized. Integrators should use
this event to disable access to this control's functionality. After returning from this event, the control will block
access to its functionality (e.g. show empty windows in its controls and return errors on requests).

30.4.7.3.3.6 OnOpenedOrFocused

Event: OnOpenedOrFocused (i_strFilePath as String, i_bOpenWithThisControl as bool)

Dispatch Id: 1000

Description:
When integrating at application level, this event informs clients that a document has been opened, or made
active by XMLSpy.

When integrating at document level, this event instructs the client to open the file i_strFilePath in a
document window. If the file is already open, the corresponding document window should be made the active
window.

if i_bOpenWithThisControl is true, the document must be opened with XMLSpyControl, since internal
access is required. Otherwise, the file can be opened with different editors.

30.4.7.3.3.7 OnToolWindowUpdated

Event: OnToolWindowUpdated(pToolWnd as long)

Dispatch Id: 1006

Description:
This event is triggered when the tool window is updated.

30.4.7.3.3.8 OnUpdateCmdUI

Event: OnUpdateCmdUI()

Dispatch Id: 1003

Description:

© 2018-2024 Altova GmbH

ActiveX Integration 2059Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Called frequently to give integrators a good opportunity to check status of XMLSpy commands using
XMLSpyControl.QueryStatus . Do not perform long operations in this callback.

30.4.7.3.3.9 OnValidationWindowUpdated

Event: OnValidationWindowUpdated()

Dispatch Id: 3

Description:
This event is triggered whenever the validation output window is updated with new information.

30.4.7.4 XMLSpyControlDocument

Properties:
Appearance
BorderStyle
Document
IsModified
Path
ReadOnly

Methods:
Exec
New
Open
QueryStatus
Reload
Save
SaveAs

Events:
OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnContextChanged
OnFileChangedAlert
OnActivate

If the XMLSpyControl is integrated in the Document Level mode each document is displayed in an own object of
type XMLSpyControlDocument. The XMLSpyControlDocument contains only one document at the time but can
be reused to display different files one after another.

This object is a complete ActiveX control.

CLSID: 52A552E6-2AB8-4e3e-B545-BE998233DDA0
ProgID: Altova.XMLSpyControlDocument

2056

2060

2060

2060

2061

2061

2061

2062

2062

2062

2062

2063

2063

2063

2064

2064

2065

2064

2065

2064

2060 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.4.7.4.1 Properties

The following properties are defined:

ReadOnly
IsModified
Path
Appearance
BorderStyle

Access to XMLSpyAPI:
Document

30.4.7.4.1.1 Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the document control. Default value is 0.

30.4.7.4.1.2 BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

30.4.7.4.1.3 Document

Property: Document as Document

Dispatch Id: 1

Description:
The Document property gives access to the Document object of the XMLSpy automation server API. This
interface provides additional functionality which can be used with the document loaded in the control. The
property is read-only.

2061

2061

2061

2060

2060

2060

© 2018-2024 Altova GmbH

ActiveX Integration 2061Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4.7.4.1.4 IsModified

Property: IsModified as boolean (read-only)

Dispatch Id: 1006

Description:
IsModified is true if the document content has changed since the last open, reload or save operation. It is
false, otherwise.

30.4.7.4.1.5 Path

Property: Path as string

Dispatch Id: 1005

Description:
Sets or gets the full path name of the document loaded into the control.

30.4.7.4.1.6 ReadOnly

Property: ReadOnly as boolean

Dispatch Id: 1007

Description:
Using this property you can turn on and off the read-only mode of the document. If ReadOnly is true it is not
possible to do any modifications.

30.4.7.4.2 Methods

The following methods are defined:

Document handling:
New
Open
Reload
Save
SaveAs

Command Handling:
Exec
QueryStatus

2062

2062

2063

2063

2063

2062

2062

2062 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.4.7.4.2.1 Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 8

Description:
Exec calls the XMLSpy command with the ID nCmdID. If the command can be executed, the method returns
true. This method should be called only if there is currently an active document available in the application.

To get commands organized according to their menu structure, use the MainMenu property of
XMLSpyControl. To get toolbar commands, use the Toolbars property of the XMLSpyControl.

30.4.7.4.2.2 New

Method: New () as boolean

Dispatch Id: 1000

Description:
This method initializes a new document inside the control.

30.4.7.4.2.3 Open

Method: Open (strFileName as string) as boolean

Dispatch Id: 1001

Description:
Open loads the file strFileName as the new document into the control.

30.4.7.4.2.4 QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 9

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command specified by
nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.
1 2 Enabled Set if the command is enabled (can be executed).

2053

2054

© 2018-2024 Altova GmbH

ActiveX Integration 2063Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid XMLSpy command. If
QueryStatus returns a value of 1 or 5 the command is disabled. The client should call the QueryStatus
method of the document control if there is currently an active document available in the application.

30.4.7.4.2.5 Reload

Method: Reload() as boolean

Dispatch Id: 1002

Description:
Reload updates the document content from the file system.

30.4.7.4.2.6 Save

Method: Save() as boolean

Dispatch Id: 1003

Description:
Save saves the current document at the location Path .

30.4.7.4.2.7 SaveAs

Method: SaveAs (strFileName as string) as boolean

Dispatch Id: 1004

Description:
SaveAs sets Path to strFileName and then saves the document to this location.

30.4.7.4.3 Events

The XMLSpyControlDocument ActiveX control provides following connection point events:

OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnContextChanged
OnFileChangedAlert
OnActivate
OnSetEditorTitle

2061

2061

2064

2064

2065

2064

2065

2064

2065

2064 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.4.7.4.3.1 OnActivate

Event: OnActivate ()

Dispatch Id: 1005

Description:
This event is triggered when the document control is activated, has the focus, and is ready for user input.

30.4.7.4.3.2 OnContextChanged

Event: OnContextChanged (i_strContextName as String, i_bActive as bool) as bool

Dispatch Id: 1004

Description:
This event is triggered when this document is shown in a different XMLSpy view. The following values are
passed:

· Grid view - "View_0" is passed as the context name
· Text view - "View_1" is passed as the context name
· Browser view - "View_2" is passed as the context name
· Schema view - "View_3" is passed as the context name
· Authentic view - "View_4" is passed as the context name
· WSDL view - "View_5" is passed as the context name

30.4.7.4.3.3 OnDocumentClosed

Event: OnDocumentClosed (objDocument as Document)

Dispatch Id: 1001

Description:
This event is triggered whenever the document loaded into this control is closed. The argument objDocument is
a Document object from the XMLSpy automation interface and should be used with care.

30.4.7.4.3.4 OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1000

© 2018-2024 Altova GmbH

ActiveX Integration 2065Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

Description:
This event is triggered whenever a document is opened in this control. The argument objDocument is a
Document object from the XMLSpy automation interface, and can be used to query for more details about the
document, or perform additional operations.

30.4.7.4.3.5 OnDocumentSaveAs

Event: OnContextDocumentSaveAs (i_strFileName as String)

Dispatch Id: 1007

Description:
This event is triggered when this document gets internally saved under a new name.

30.4.7.4.3.6 OnFileChangedAlert

Event: OnFileChangedAlert () as bool

Dispatch Id: 1003

Description:
This event is triggered when the file loaded into this document control is changed on the hard disk by another
application. Clients should return true, if they handled the event, or false, if XMLSpy should handle it in its
customary way, i.e. prompting the user for reload.

30.4.7.4.3.7 OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1002

Description:
This event gets triggered whenever the document changes between modified and unmodified state. The
parameter i_bIsModifed is true if the document contents differs from the original content, and false, otherwise.

30.4.7.4.3.8 OnSetEditorTitle

Event: OnSetEditorTitle ()

Dispatch Id: 1006

Description:
This event is being raised when the contained document is being internally renamed.

2066 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.4.7.5 XMLSpyControlPlaceHolder

Properties available for all kinds of placeholder windows:
PlaceholderWindowID

Properties for project placeholder window:
Project

Methods for project placeholder window:
OpenProject
CloseProject

The XMLSpyControlPlaceHolder control is used to show the additional XMLSpy windows like Overview, Library
or Project window. It is used like any other ActiveX control and can be placed anywhere in the client
application.

CLSID: 135DEEF4-6DF0-47c2-8F8C-F145F5F3F672
ProgID: Altova.XMLSpyControlPlaceHolder

30.4.7.5.1 Properties

The following properties are defined:

PlaceholderWindowID

Access to XMLSpyAPI:
Project

30.4.7.5.1.1 Label

Property: Label as String (read-only)

Dispatch Id: 1001

Description:
This property gives access to the title of the placeholder. The property is read-only.

30.4.7.5.1.2 PlaceholderWindowID

Property: PlaceholderWindowID as XMLSpyControlPlaceholderWindow

Dispatch Id: 1

Description:

2066

2067

2067

2067

2066

2067

2069

© 2018-2024 Altova GmbH

ActiveX Integration 2067Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

This property specifies which XMLSpy window should be displayed in the client area of the control. The
PlaceholderWindowID can be set at any time to any valid value of the XMLSpyControlPlaceholderWindow
enumeration. The control changes its state immediately and shows the new XMLSpy window.

30.4.7.5.1.3 Project

Property: Project as Project (read-only)

Dispatch Id: 2

Description:
The Project property gives access to the Project object of the XMLSpy automation server API. This interface
provides additional functionality which can be used with the project loaded into the control. The property will
return a valid project interface only if the placeholder window has PlaceholderWindowID with a value of
XMLSpyXProjectWindow (=3). The property is read-only.

30.4.7.5.2 Methods

The following method is defined:

OpenProject
CloseProject

30.4.7.5.2.1 OpenProject

Method: OpenProject (strFileName as string) as boolean

Dispatch Id: 3

Description:
OpenProject loads the file strFileName as the new project into the control. The method will fail if the
placeholder window has a PlaceholderWindowID different to XMLSpyXProjectWindow (=3).

30.4.7.5.2.2 CloseProject

Method: CloseProject ()

Dispatch Id: 4

Description:
CloseProject closes the project loaded by the control. The method will fail if the placeholder window has a
PlaceholderWindowID different to XMLSpyXProjectWindow (=3).

2069

2066

2067

2067

2066

2066

2068 Programmers' Reference ActiveX Integration

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

30.4.7.5.3 Events

The XMLSpyControlPlaceholder ActiveX control provides following connection point events:

OnModifiedFlagChanged

30.4.7.5.3.1 OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1

Description:
This event gets triggered only for placeholder controls with a PlaceholderWindowID of
XMLSpyXProjectWindow (=3). The event is fired whenever the project content changes between modified

and unmodified state. The parameter i_bIsModifed is true if the project contents differs from the original
content, and false, otherwise.

30.4.7.5.3.2 OnSetLabel

Event: OnSetLabel(i_strNewLabel as string)

Dispatch Id: 1000

Description:
Raised when the title of the placeholder window is changed.

30.4.7.6 Enumerations

The following enumerations are defined:

ICActiveXIntegrationLevel
XMLSpyControlPlaceholderWindow

30.4.7.6.1 ICActiveXIntegrationLevel

Possible values for the IntegrationLevel property of the XMLSpyControl.

ICActiveXIntegrationOnApplicationLevel = 0
ICActiveXIntegrationOnDocumentLevel = 1

2068

2066

2068

2069

2053

© 2018-2024 Altova GmbH

ActiveX Integration 2069Programmers' Reference

Altova XMLSpy 2024 Enterprise Edition

30.4.7.6.2 XMLSpyControlPlaceholderWindow

This enumeration contains the list of the supported additional XMLSpy windows.

XMLSpyControlNoToolWnd = -1
XMLSpyControlEntryHelperTopToolWnd = 0
XMLSpyControlEntryHelperMiddleToolWnd = 1
XMLSpyControlEntryHelperBottomToolWnd = 2
XMLSpyControlValidatorOutputToolWnd = 3
XMLSpyControlProjectWindowToolWnd = 4
XMLSpyControlXSLTDebuggerContextToolWnd = 5
XMLSpyControlXSLTDebuggerCallstackToolWnd = 6
XMLSpyControlXSLTDebuggerVariableToolWnd = 7
XMLSpyControlXSLTDebuggerWatchToolWnd = 8
XMLSpyControlXSLTDebuggerTemplateToolWnd = 9
XMLSpyControlXSLTDebuggerInfoToolWnd = 10
XMLSpyControlXSLTDebuggerMessageToolWnd = 11
XMLSpyControlXSLTDebuggerTraceToolWnd = 12
XMLSpyControlSOAPDebuggerToolWnd = 13
XMLSpyControlXPathProfilerListToolWnd = 14
XMLSpyControlXPathProfilerTreeToolWnd = 15
XMLSpyControlXPathDialogToolWnd = 16
XMLSpyControlDBQueryManagerToolWnd = 17
XMLSpyControlInfoToolWnd = 18
XMLSpyControlXSLOutlineToolWnd = 19
XMLSpyControlSchemaFindToolWnd = 20
XMLSpyControlXBRLFindToolWnd = 21
XMLSpyControlChartsToolWnd = 22

2070 Appendices

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31 Appendices

These appendices contain technical information about XMLSpy and important licensing information. Each
appendix contains sub-sections as given below:

Engine Information

· XSLT and XQuery Engine Information
· XSLT and XQuery Extension Functions

Datatype Conversions between DBs and XML Schemas

· DBs to XML Schemas
· XML Schemas to DBs

Technical Data

· OS and memory requirements
· Altova XSLT and XQuery Engines
· Unicode support
· Internet usage

License Information

· Electronic software distribution
· Software activation and license metering
· End User License Agreement

2071

2071

2079

2186

2186

2192

2200

2200

2200

2201

2201

2202

2202

2203

2204

© 2018-2024 Altova GmbH

XSLT and XQuery Engine Information 2071Appendices

Altova XMLSpy 2024 Enterprise Edition

31.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of XMLSpy follow the W3C specifications closely and are therefore stricter than
previous Altova engines—such as those in previous versions of XMLSpy. As a result, minor errors that were
ignored by previous engines are now flagged as errors by XMLSpy.

For example:

· It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and non-nodes.
· It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a sequence of

nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance document as
appropriate.

This section describes implementation-specific features of the engines, organized by specification:

· XSLT 1.0
· XSLT 2.0
· XSLT 3.0
· XQuery 1.0
· XQuery 3.1

31.1.1 XSLT 1.0

The XSLT 1.0 Engine of XMLSpy conforms to the World Wide Web Consortium's (W3C's) XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999. Note the
following information about the implementation.

Notes about the implementation
When the method attribute of xsl:output is set to HTML, or if HTML output is selected by default, then special
characters in the XML or XSLT file are inserted in the HTML document as HTML character references in the
output. For instance, the character U+00A0 (the hexadecimal character reference for a non-breaking space) is
inserted in the HTML code either as a character reference (or) or as an entity reference,
 .

31.1.2 XSLT 2.0

This section:

· Engine conformance
· Backward compatibility
· Namespaces
· Schema awareness
· Implementation-specific behavior

2071

2071

2073

2074

2077

2072

2072

2072

2072

2073

https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xpath-19991116/

2072 Appendices XSLT and XQuery Engine Information

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Conformance
The XSLT 2.0 engine of XMLSpy conforms to the World Wide Web Consortium's (W3C's) XSLT 2.0
Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. Typically, the backwards compatibility of the XSLT 2.0 engine
comes into play when using the XSLT 2.0 engine to process an XSLT 1.0 stylesheet or instruction. Note that
there could be differences in the outputs produced by the XSLT 1.0 Engine and the backwards-compatible XSLT
2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to use the type
constructors and functions available in XSLT 2.0. The prefixes given below are conventionally used; you could
use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in the table
above) as its default functions namespace. So you can use XPath 2.0 and XSLT 2.0 functions in
your stylesheet without any prefix. If you declare the XPath 2.0 Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath 2.0 functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the xsl:validate
instruction.

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

© 2018-2024 Altova GmbH

XSLT and XQuery Engine Information 2073Appendices

Altova XMLSpy 2024 Enterprise Edition

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects of certain
XSLT 2.0 functions.

xsl:result-document

Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-base64tobinary.

function-available

The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

31.1.3 XSLT 3.0

The XSLT 3.0 Engine of XMLSpy conforms to the World Wide Web Consortium's (W3C's) XSLT 3.0
Recommendation of 8 June 2017 and XPath 3.1 Recommendation of 21 March 2017.

The XSLT 3.0 engine has the same implementation-specific characteristics as the XSLT 2.0 engine .
Additionally, it includes support for a number of new XSLT 3.0 features: XPath/XQuery 3.1 functions and
operators, and the XPath 3.1 specification.

Note: The optional streaming feature is not supported currently. The entire document will be loaded into
memory regardless of the value of the streamable attribute. If enough memory is available, then: (i) the
entire document will be processed—without streaming, (ii) guaranteed-streamable constructs will be
processed correctly, as if the execution used streaming, and (iii) streaming errors will not be detected.
In 64-bit apps, non-streaming execution should not be a problem. If memory does turn out to be an
issue, a solution would be to add more memory to the system.

Namespaces
Your XSLT 3.0 stylesheet should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XSLT 3.0. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

2071

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xpath-31/
http://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xslt-30/#streaming-feature
https://www.w3.org/TR/xslt-30/#dt-guaranteed-streamable

2074 Appendices XSLT and XQuery Engine Information

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath/XQuery 3.1
functions

fn: http://www.w3.org/2005/xpath-functions

Math functions math: http://www.w3.org/2005/xpath-functions/math

Map functions map: http://www.w3.org/2005/xpath-functions/map

Array functions array: http://www.w3.org/2005/xpath-functions/array

XQuery, XSLT, and XPath
Error Codes

err: http://www.w3.org/2005/xpath-functions/xqt-errors

Serialization functions output http://www.w3.org/2010/xslt-xquery-serialization

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="3.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 3.0 engine uses the XPath and XQuery Functions and Operators 3.1 namespace (listed in
the table above) as its default functions namespace. So you can use the functions of this
namespace in your stylesheet without any prefix. If you declare the Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath/XQuery functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

31.1.4 XQuery 1.0

This section:

· Engine conformance
· Schema awareness
· Encoding
· Namespaces
· XML source and validation
· Static and dynamic type checking
· Library modules
· External functions

2075

2075

2075

2072

2076

2076

2076

2076

© 2018-2024 Altova GmbH

XSLT and XQuery Engine Information 2075Appendices

Altova XMLSpy 2024 Enterprise Edition

· Collations
· Precision of numeric data
· XQuery instructions support
· Implementation-specific behavior

Conformance
The XQuery 1.0 Engine of XMLSpy conforms to the World Wide Web Consortium's (W3C's) XQuery 1.0
Recommendation of 14 December 2010. The XQuery standard gives implementations discretion about how to
implement many features. Given below is a list explaining how the XQuery 1.0 Engine implements these
features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

· The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

· Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes have been
moved, with the CRs of 23 January 2007, from the XPath Datatypes namespace to the XML Schema
namespace, so: xs:yearMonthDuration.

2076

2077

2077

2077

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/

2076 Appendices XSLT and XQuery Engine Information

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be well-formed.
However, they do not need to be valid according to an XML Schema. If the file is not valid, the invalid file is
loaded without schema information. If the XML file is associated with an external schema and is valid according
to it, then post-schema validation information is generated for the XML data and will be used for query
evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external references (e.g. for
modules) exist, whether invoked functions and variables are defined, and so on. If an error is detected in the
static analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is incompatible
with the requirement of an operation, an error is reported. For example, the expression xs:string("1") + 1
returns an error because the addition operation cannot be carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine supports modules
that are stored in a single external XQuery file. Such a module file must contain a module declaration in its
prolog, which associates a target namespace. Here is an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the module. The
module is used by importing it into an XQuery file with the import module statement in the query prolog. The
import module statement only imports functions and variables declared directly in the library module file. As
follows:

import module namespace modlib = "urn:module-library" at "modulefilename.xq";
if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of their Unicode
codepoint. Other supported collations are the ICU collations listed here . To use a specific collation, supply2079

http://site.icu-project.org/

© 2018-2024 Altova GmbH

XSLT and XQuery Engine Information 2077Appendices

Altova XMLSpy 2024 Enterprise Edition

its URI as given in the list of supported collations . Any string comparisons, including for the fn:max and
fn:min functions, will be made according to the specified collation. If the collation option is not specified, the
default Unicode-codepoint collation is used.

Precision of numeric types

· The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
· The xs:decimal datatype has a limit of 20 digits after the decimal point.
· The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback expression is evaluated.

Implementation-specific behavior
Given below is a description of how the XQuery and XQuery Update 1.0 engines handle implementation-specific
aspects of certain functions.

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

31.1.5 XQuery 3.1

The XQuery 3.1 Engine of XMLSpy conforms to the World Wide Web Consortium's (W3C's) XQuery 3.1
Recommendation of 21 March 2017 and includes support for XPath and XQuery Functions 3.1. The XQuery 3.1
specification is a superset of the 3.0 specification. The XQuery 3.1 engine therefore supports XQuery 3.0
features.

Namespaces
Your XQuery 3.1 document should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XQuery 3.1. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

2079

http://www.w3.org/TR/xquery-31/
http://www.w3.org/TR/xquery-31/

2078 Appendices XSLT and XQuery Engine Information

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath/XQuery 3.1
functions

fn: http://www.w3.org/2005/xpath-functions

Math functions math: http://www.w3.org/2005/xpath-functions/math

Map functions map: http://www.w3.org/2005/xpath-functions/map

Array functions array: http://www.w3.org/2005/xpath-functions/array

XQuery, XSLT, and XPath
Error Codes

err: http://www.w3.org/2005/xpath-functions/xqt-errors

Serialization functions output http://www.w3.org/2010/xslt-xquery-serialization

The following points should be noted:

· The XQuery 3.1 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

Implementation-specific behavior
Implementation-specific characteristics are the same as for XQuery 1.0 .

Additionally, the Altova-specific encoding x-base64tobinary can be used to create a binary result document,
such as an image.

2074

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2079Appendices

Altova XMLSpy 2024 Enterprise Edition

31.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in XPath and/or
XQuery expressions. Altova extension functions can be used with Altova's XSLT and XQuery engines, and
provide functionality additional to that available in the function libraries defined in the W3C standards.

This section mainly describes XPath/XQuery extension functions that have been created by Altova to provide
additional operations. These functions can be computed by Altova's XSLT and XQuery engines according to
the rules described in this section. For information about the regular XPath/XQuery functions, see Altova's
XPath/XQuery Function Reference.

General points
The following general points should be noted:

· Functions from the core function libraries defined in the W3C specifications can be called without a
prefix. That's because the Altova XSLT and XQuery engines read non-prefixed functions as belonging to
the namespace http://www.w3.org/2005/xpath-functions, which is the default functions
namespace specified in the XPath/XQuery functions specifications. If this namespace is explicitly
declared in an XSLT or XQuery document, the prefix used in the namespace declaration can also
optionally be used on function names.

· In general, if a function expects a sequence of one item as an argument, and a sequence of more than
one item is submitted, then an error is returned.

· All string comparisons are done using the Unicode codepoint collation.
· Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is required by the
specification. For division operations that produce a result of type xs:decimal, the precision is 19 digits after
the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezones of the values being compared
need to be known. When the timezone is not explicitly given in such a value, the implicit timezone is used. The
implicit timezone is taken from the system clock, and its value can be checked with the implicit-
timezone() function.

Collations
The default collation is the Unicode codepoint collation, which compares strings on the basis of their Unicode
codepoint. The engine uses the Unicode Collation Algorithm. Other supported collations are the ICU collations
listed below; to use one of these, supply its URI as given in the table below. Any string comparisons, including
for the max and min functions, will be made according to the specified collation. If the collation option is not
specified, the default Unicode-codepoint collation is used.

Language URIs

da: Danish da_DK

2080

https://www.altova.com/xpath-xquery-reference
https://www.altova.com/xpath-xquery-reference
http://site.icu-project.org/

2080 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

de: German de_AT, de_BE, de_CH, de_DE, de_LI, de_LU

en: English en_AS, en_AU, en_BB, en_BE, en_BM, en_BW, en_BZ, en_CA, en_GB,
en_GU, en_HK, en_IE, en_IN, en_JM, en_MH, en_MP, en_MT, en_MU,
en_NA, en_NZ, en_PH, en_PK, en_SG, en_TT, en_UM, en_US, en_VI,
en_ZA, en_ZW

es: Spanish es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC,
es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE, es_PR,
es_PY, es_SV, es_US, es_UY, es_VE

fr: French fr_BE, fr_BF, fr_BI, fr_BJ, fr_BL, fr_CA, fr_CD, fr_CF, fr_CG,
fr_CH, fr_CI, fr_CM, fr_DJ, fr_FR, fr_GA, fr_GN, fr_GP, fr_GQ,
fr_KM, fr_LU, fr_MC, fr_MF, fr_MG, fr_ML, fr_MQ, fr_NE, fr_RE,
fr_RW, fr_SN, fr_TD, fr_TG

it: Italian it_CH, it_IT

ja: Japanese ja_JP

nb: Norwegian Bokmal nb_NO

nl: Dutch nl_AW, nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt_AO, pt_BR, pt_GW, pt_MZ, pt_PT, pt_ST

ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however, supported. To
access namespace information with XPath 2.0 mechanisms, use the in-scope-prefixes(), namespace-
uri() and namespace-uri-for-prefix() functions.

31.2.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension
functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions,

and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace.

Note that, in future versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information about support for
Altova extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath expressions in
an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this documentation we indicate the
functions that can be used in the former context (XPath in XSLT) with an XP symbol and call them XPath
functions; those functions that can be used in the latter (XQuery) context are indicated with an XQ symbol; they
work as XQuery functions. The W3C's XSLT specifications—not XPath/XQuery Functions specifications—also

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2081Appendices

Altova XMLSpy 2024 Enterprise Edition

define functions that can be used in XPath expressions in XSLT documents. These functions are marked with
an XSLT symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function can be
used are indicated in the description of the function (see symbols below). Functions from the XPath/XQuery and
XSLT function libraries are listed without a prefix. Extension functions from other libraries, such as Altova
extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Usage of Altova extension functions
In order to use Altova extension functions, you must declare the Altova extension functions namespace (first
highlight in code listing below) and then use the extension functions so that they are resolved as belonging to
this namespace (see second highlight). The example below uses the Altova extension function named age.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:altova="http://www.altova.com/xslt-extensions">

<xsl:output method="text" encoding="ISO-8859-1"/>

<xsl:template match="Persons">

<xsl:for-each select="Person">

 <xsl:value-of select="concat(Name, ': ')"/>

 <xsl:value-of select="altova:age(xs:date(BirthDate))"/>

 <xsl:value-of select="' years
'"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

 XSLT functions
XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT 2.0's current-
group() or key() functions). These functions are not intended for, and will not work in, a non-XSLT context (for
instance, in an XQuery context). Note that XSLT functions for XBRL can be used only with editions of Altova
products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in XQuery
expressions:

· Date/Time
· Geolocation
· Image-related
· Numeric
· Sequence
· String

2082

2084

2101

2113

2118

2139

2147

2082 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Miscellaneous

Chart functions (Enterprise and Server Editions only)
Altova extension functions for charts are supported only in the Enterprise and Server Editions of Altova
products and enable charts to be generated from XML data.

31.2.1.1 XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not work in a non-
XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

General functions
distinct-nodes [altova:]

altova:distinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with duplicate
values. The comparison is done using the XPath/XQuery function fn:deep-equal.

Examples

· altova:distinct-nodes(country) returns all child country nodes less those having duplicate

values.

evaluate [altova:]

altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN]) XSLT1 XSLT2
XSLT3

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the output of the
evaluated expression. For example: altova:evaluate('//Name[1]') returns the contents of the first

Name element in the document. Note that the expression //Name[1] is passed as a string by enclosing it
in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments are the values

2154

2156

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2083Appendices

Altova XMLSpy 2024 Enterprise Edition

of in-scope variables that have the names p1, p2, p3... pN. Note the following points about usage: (i) The
variables must be defined with names of the form pX, where X is an integer; (ii) the altova:evaluate
function's arguments (see signature above), from the second argument onwards, provide the values of the
variables, with the sequence of the arguments corresponding to the numerically ordered sequence of
variables: p1 to pN: The second argument will be the value of the variable p1, the third argument that of the
variable p2, and so on; (iii) The variable values must be of type item*.

Example

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />

<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

· The second argument of the altova:evaluate expression is the value assigned to the
variable $p1, the third argument that assigned to the variable $p2, and so on.

· Notice that the fourth argument of the function is a string value, indicated by its being
enclosed in quotes.

· The select attribute of the xs:variable element supplies the XPath expression. Since this
expression must be of type xs:string, it is enclosed in single quotes.

Examples to further illustrate the use of variables

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />

Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath expression in the XSLT
stylesheet contains one or more parts that must be evaluated dynamically. For example, consider a
situation in which a user enters his request for the sorting criterion and this criterion is stored in the
attribute UserReq/@sortkey. In the stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The altova:evaluate()

function reads the sortkey attribute of the UserReq child element of the parent of the context node. Say
the value of the sortkey attribute is Price, then Price is returned by the altova:evaluate() function
and becomes the value of the select attribute: <xsl:sort select="Price" order="ascending"/>. If

this sort instruction occurs within the context of an element called Order, then the Order elements will
be sorted according to the values of their Price children. Alternatively, if the value of @sortkey were, say,
Date, then the Order elements would be sorted according to the values of their Date children. So the sort
criterion for Order is selected from the sortkey attribute at runtime. This could not have been achieved
with an expression like: <xsl:sort select="../UserReq/@sortkey" order="ascending"/>. In the

case shown above, the sort criterion would be the sortkey attribute itself, not Price or Date (or any other
current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—from the
calling environment. The base URI and default namespace are inherited.

More examples

mailto:.

2084 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

· Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

· Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

encode-for-rtf [altova:]

altova:encode-for-rtf(input as xs:string, preserveallwhitespace as xs:boolean,

preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved according to the
boolean value specified for their respective arguments.

[Top]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

xbrl-footnotes [altova:]

altova:xbrl-footnotes(node()) as node()* XSLT2 XSLT3

Takes a node as its input argument and returns the set of XBRL footnote nodes referenced by the input
node.

xbrl-labels [altova:]

altova:xbrl-labels(xs:QName, xs:string) as node()* XSLT2 XSLT3

Takes two input arguments: a node name and the taxonomy file location containing the node. The function
returns the XBRL label nodes associated with the input node.

[Top]

31.2.1.2 XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data held as XML Schema's various date and time datatypes. The functions in

2082

2082

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2085Appendices

Altova XMLSpy 2024 Enterprise Edition

this section can be used with Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery
contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Grouped by functionality

· Add a duration to xs:dateTime and return xs:dateTime
· Add a duration to xs:date and return xs:date
· Add a duration to xs:time and return xs:time
· Format and retrieve durations
· Remove timezone from functions that generate current date/time
· Return days, hours, minutes, and seconds from durations
· Return weekday as integer from date
· Return week number as integer from date
· Build date, time, or duration type from lexical components of each type
· Construct date, dateTime, or time type from string input
· Age-related functions
· Epoch time (Unix time) functions

Listed alphabetically

altova:add-days-to-date
altova:add-days-to-dateTime
altova:add-hours-to-dateTime
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova:add-months-to-date
altova:add-months-to-dateTime
altova:add-seconds-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova:add-years-to-dateTime
altova:age
altova:age-details
altova:build-date
altova:build-duration
altova:build-time
altova:current-dateTime-no-TZ
altova:current-date-no-TZ

2086

2088

2089

2089

2090

2092

2093

2093

2095

2097

2098

2100

2088

2086

2086

2089

2086

2089

2088

2086

2086

2089

2088

2086

2098

2098

2095

2095

2095

2090

2090

2086 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

altova:current-time-no-TZ
altova:date-no-TZ
altova:dateTime-from-epoch
altova:dateTime-from-epoch-no-TZ
altova:dateTime-no-TZ
altova:days-in-month
altova:epoch-from-dateTime
altova:hours-from-dateTimeDuration-accumulated
altova:minutes-from-dateTimeDuration-accumulated
altova:seconds-from-dateTimeDuration-accumulated
altova:format-duration
altova:parse-date
altova:parse-dateTime
altova:parse-duration
altova:parse-time
altova:time-no-TZ
altova:weekday-from-date
altova:weekday-from-dateTime
altova:weeknumber-from-date
altova:weeknumber-from-dateTime

[Top]

Add a duration to xs:dateTime XP3.1 XQ3.1

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type has a format

of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time formats separated by the
letter T. A timezone suffix (+01:00, for example) is optional.

add-years-to-dateTime [altova:]

altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in years to an xs:dateTime (see examples below). The second argument is the number of
years to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2024-

01-15T14:00:00
· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4) returns 2010-
01-15T14:00:00

add-months-to-dateTime [altova:]

altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in months to an xs:dateTime (see examples below). The second argument is the number
of months to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

2090

2090

2100

2100

2090

2092

2100

2092

2092

2092

2089

2097

2097

2089

2097

2090

2093

2093

2094

2094

2084

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2087Appendices

Altova XMLSpy 2024 Enterprise Edition

11-15T14:00:00
· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2) returns 2013-

11-15T14:00:00

add-days-to-dateTime [altova:]

altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as xs:dateTime

XP3.1 XQ3.1

Adds a duration in days to an xs:dateTime (see examples below). The second argument is the number of
days to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

01-25T14:00:00
· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8) returns 2014-

01-07T14:00:00

add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is the number of
hours to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), 10) returns 2014-

01-15T23:00:00
· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), -8) returns 2014-

01-15T05:00:00

add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime(DateTime as xs:dateTime, Minutes as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument is the number
of minutes to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), 45) returns

2014-01-15T14:55:00
· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), -5) returns

2014-01-15T14:05:00

add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime(DateTime as xs:dateTime, Seconds as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument is the

2088 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

number of seconds to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), 20) returns

2014-01-15T14:00:30
· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), -5) returns

2014-01-15T14:00:05

[Top]

Add a duration to xs:date XP3.1 XQ3.1

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of CCYY-MM-DD.

add-years-to-date [altova:]

altova:add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date XP3.1 XQ3.1

 Adds a duration in years to a date. The second argument is the number of years to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-years-to-date(xs:date("2014-01-15"), 10) returns 2024-01-15

· altova:add-years-to-date(xs:date("2014-01-15"), -4) returns 2010-01-15

add-months-to-date [altova:]

altova:add-months-to-date(Date as xs:date, Months as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in months to a date. The second argument is the number of months to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-months-to-date(xs:date("2014-01-15"), 10) returns 2014-11-15

· altova:add-months-to-date(xs:date("2014-01-15"), -2) returns 2013-11-15

add-days-to-date [altova:]

altova:add-days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in days to a date. The second argument is the number of days to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-days-to-date(xs:date("2014-01-15"), 10) returns 2014-01-25

· altova:add-days-to-date(xs:date("2014-01-15"), -8) returns 2014-01-07

[Top]

2084

2084

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2089Appendices

Altova XMLSpy 2024 Enterprise Edition

Format and retrieve durations XP3.1 XQ3.1

These functions parse an input xs:duration or xs:string and return, respectively, an xs:string or

xs:duration.

format-duration [altova:]

altova:format-duration(Duration as xs:duration, Picture as xs:string) as xs:string XP3.1

 XQ3.1

Formats a duration, which is submitted as the first argument, according to a picture string submitted as
the second argument. The output is a text string formatted according to the picture string.

Examples

· altova:format-duration(xs:duration("P2DT2H53M11.7S"), "Days:[D01] Hours:[H01]

Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns "Days:02 Hours:02 Minutes:53
Seconds:11 Fractions:7"

· altova:format-duration(xs:duration("P3M2DT2H53M11.7S"), "Months:[M01] Days:[D01]

Hours:[H01] Minutes:[m01]") returns "Months:03 Days:02 Hours:02 Minutes:53"

parse-duration [altova:]

altova:parse-duration(InputString as xs:string, Picture as xs:string) as xs:duration

XP3.1 XQ3.1

Takes a patterned string as the first argument, and a picture string as the second argument. The input
string is parsed on the basis of the picture string, and an xs:duration is returned.

Examples

· altova:parse-duration("Days:02 Hours:02 Minutes:53 Seconds:11 Fractions:7"),

"Days:[D01] Hours:[H01] Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns
"P2DT2H53M11.7S"

· altova:parse-duration("Months:03 Days:02 Hours:02 Minutes:53 Seconds:11

Fractions:7", "Months:[M01] Days:[D01] Hours:[H01] Minutes:[m01]") returns
"P3M2DT2H53M"

[Top]

Add a duration to xs:time XP3.1 XQ3.1

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical form of

hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated Universal Time
(UTC). All other time zones are represented by their difference from UTC in the format +hh:mm, or -hh:mm. If no
time zone value is present, it is considered unknown; it is not assumed to be UTC.

add-hours-to-time [altova:]

altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in hours to a time. The second argument is the number of hours to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-hours-to-time(xs:time("11:00:00"), 10) returns 21:00:00

· altova:add-hours-to-time(xs:time("11:00:00"), -7) returns 04:00:00

2084

2090 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

add-minutes-to-time [altova:]

altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in minutes to a time. The second argument is the number of minutes to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-minutes-to-time(xs:time("14:10:00"), 45) returns 14:55:00

· altova:add-minutes-to-time(xs:time("14:10:00"), -5) returns 14:05:00

add-seconds-to-time [altova:]

altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in seconds to a time. The second argument is the number of seconds to be added to the
xs:time supplied as the first argument. The result is of type xs:time. The Seconds component can be in
the range of 0 to 59.999.

Examples

· altova:add-seconds-to-time(xs:time("14:00:00"), 20) returns 14:00:20

· altova:add-seconds-to-time(xs:time("14:00:00"), 20.895) returns 14:00:20.895

[Top]

Remove the timezone part from date/time datatypes XP3.1 XQ3.1

These functions remove the timezone from the current xs:dateTime, xs:date, or xs:time values, respectively.

Note that the difference between xs:dateTime and xs:dateTimeStamp is that in the case of the latter the
timezone part is required (while it is optional in the case of the former). So the format of an xs:dateTimeStamp
value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm. or CCYY-MM-DDThh:mm:ss.sssZ. If the date and time is read from
the system clock as xs:dateTimeStamp, the current-dateTime-no-TZ() function can be used to remove the
timezone if so required.

current-date-no-TZ [altova:]

altova:current-date-no-TZ() as xs:date XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-date() (which is the current
date according to the system clock) and returns an xs:date value.

Examples

If the current date is 2014-01-15+01:00:

· altova:current-date-no-TZ() returns 2014-01-15

current-dateTime-no-TZ [altova:]

altova:current-dateTime-no-TZ() as xs:dateTime XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-dateTime() (which is the
current date-and-time according to the system clock) and returns an xs:dateTime value.

2084

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2091Appendices

Altova XMLSpy 2024 Enterprise Edition

Examples

If the current dateTime is 2014-01-15T14:00:00+01:00:

· altova:current-dateTime-no-TZ() returns 2014-01-15T14:00:00

current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:time XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-time() (which is the current
time according to the system clock) and returns an xs:time value.

Examples

If the current time is 14:00:00+01:00:

· altova:current-time-no-TZ() returns 14:00:00

date-no-TZ [altova:]

altova:date-no-TZ(InputDate as xs:date) as xs:date XP3.1 XQ3.1

This function takes an xs:date argument, removes the timezone part from it, and returns an xs:date
value. Note that the date is not modified.

Examples

· altova:date-no-TZ(xs:date("2014-01-15+01:00")) returns 2014-01-15

dateTime-no-TZ [altova:]

altova:dateTime-no-TZ(InputDateTime as xs:dateTime) as xs:dateTime XP3.1 XQ3.1

This function takes an xs:dateTime argument, removes the timezone part from it, and returns an
xs:dateTime value. Note that neither the date nor the time is modified.

Examples

· altova:dateTime-no-TZ(xs:date("2014-01-15T14:00:00+01:00")) returns 2014-01-

15T14:00:00

time-no-TZ [altova:]

altova:time-no-TZ(InputTime as xs:time) as xs:time XP3.1 XQ3.1

This function takes an xs:time argument, removes the timezone part from it, and returns an xs:time
value. Note that the time is not modified.

Examples

· altova:time-no-TZ(xs:time("14:00:00+01:00")) returns 14:00:00

[Top]
2084

2092 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Return the number of days, hours, minutes, seconds from durations XP3.1 XQ3.1

These functions return the number of days in a month, and the number of hours, minutes, and seconds,
respectively, from durations.

days-in-month [altova:]

altova:days-in-month(Year as xs:integer, Month as xs:integer) as xs:integer XP3.1 XQ3.1

Returns the number of days in the specified month. The month is specified by means of the Year and
Month arguments.

Examples

· altova:days-in-month(2018, 10) returns 31

· altova:days-in-month(2018, 2) returns 28

· altova:days-in-month(2020, 2) returns 29

hours-from-dayTimeDuration-accumulated

altova:hours-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as xs:integer

XP3.1 XQ3.1

Returns the total number of hours in the duration submitted by the DayAndTime argument (which is of type
xs:duration). The hours in the Day and Time components are added together to give a result that is an
integer. A new hour is counted only for a full 60 minutes. Negative durations result in a negative hour value.

Examples

· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5D")) returns 120, which

is the total number of hours in 5 days.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H")) returns 122,

which is the total number of hours in 5 days plus 2 hours.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H60M")) returns 123,

which is the total number of hours in 5 days plus 2 hours and 60 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H119M")) returns

123, which is the total number of hours in 5 days plus 2 hours and 119 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H120M")) returns

124, which is the total number of hours in 5 days plus 2 hours and 120 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("-P5DT2H")) returns -122

minutes-from-dayTimeDuration-accumulated

altova:minutes-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of minutes in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The minutes in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative minute value.

Examples

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT60M")) returns 60

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 60,

which is the total number of minutes in 1 hour.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H40M")) returns 100

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2093Appendices

Altova XMLSpy 2024 Enterprise Edition

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 1440,

which is the total number of minutes in 1 day.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("-P1DT60M")) returns -
1500

seconds-from-dayTimeDuration-accumulated

altova:seconds-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of seconds in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The seconds in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative seconds value.

Examples

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1M")) returns 60,

which is the total number of seconds in 1 minute.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 3600,

which is the total number of seconds in 1 hour.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H2M")) returns 3720

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 86400,

which is the total number of seconds in 1 day.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("-P1DT1M")) returns -
86460

Return the weekday from xs:dateTime or xs:date XP3.1 XQ3.1

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of the week are
numbered (using the American format) from 1 to 7, with Sunday=1. In the European format, the week starts with
Monday (=1). The American format, where Sunday=1, can be set by using the integer 0 where an integer is
accepted to indicate the format.

weekday-from-dateTime [altova:]

altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3.1 XQ3.1

Takes a date-with-time as its single argument and returns the day of the week of this date as an integer.
The weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1),
use the other signature of this function (see next signature below).

Examples

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00")) returns 2, which

would indicate a Monday.

altova:weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer) as

xs:integer XP3.1 XQ3.1

Takes a date-with-time as its first argument and returns the day of the week of this date as an integer. If
the second (integer) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the
second argument is an integer other than 0, then Monday=1. If there is no second argument, the function is
read as having the other signature of this function (see previous signature).

Examples

2094 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0) returns 2, which

would indicate a Monday.

weekday-from-date [altova:]

altova:weekday-from-date(Date as xs:date) as xs:integer XP3.1 XQ3.1

Takes a date as its single argument and returns the day of the week of this date as an integer. The
weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1), use
the other signature of this function (see next signature below).

Examples

· altova:weekday-from-date(xs:date("2014-02-03+01:00")) returns 2, which would indicate a

Monday.

altova:weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer XP3.1 XQ3.1

Takes a date as its first argument and returns the day of the week of this date as an integer. If the second
(Format) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second
argument is an integer other than 0, then Monday=1. If there is no second argument, the function is read as
having the other signature of this function (see previous signature).

Examples

· altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would indicate a

Monday.

[Top]

Return the week number from xs:dateTime or xs:date XP2 XQ1 XP3.1 XQ3.1

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-numbering is
available in the US, ISO/European, and Islamic calendar formats. Week-numbering is different in these calendar
formats because the week is considered to start on different days (on Sunday in the US format, Monday in the
ISO/European format, and Saturday in the Islamic format).

weeknumber-from-date [altova:]

altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as xs:integer XP2

XQ1 XP3.1 XQ3.1

Returns the week number of the submitted Date argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

2084

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2095Appendices

Altova XMLSpy 2024 Enterprise Edition

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12

· altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and Islamic
calendars are one week ahead of the European calendar on this day.

weeknumber-from-dateTime [altova:]

altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as xs:integer) as

xs:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted DateTime argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1) returns 12

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00")) returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

[Top]

Build date, time, and duration datatypes from their lexical components XP3.1 XQ3.1

The functions take the lexical components of the xs:date, xs:time, or xs:duration datatype as input
arguments and combine them to build the respective datatype.

build-date [altova:]

altova:build-date(Year as xs:integer, Month as xs:integer, Date as xs:integer) as

2084

2096 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

xs:date XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the year, month, and date. They are combined to
build a value of xs:date type. The values of the integers must be within the correct range of that particular
date part. For example, the second argument (for the month part) should not be greater than 12.

Examples

· altova:build-date(2014, 2, 03) returns 2014-02-03

build-time [altova:]

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer) as

xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. They are combined to build a value of xs:time type. The values of the integers must be
within the correct range of that particular time part. For example, the second (Minutes) argument should
not be greater than 59. To add a timezone part to the value, use the other signature of this function (see
next signature).

Examples

· altova:build-time(23, 4, 57) returns 23:04:57

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer,

TimeZone as xs:string) as xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. The fourth argument is a string that provides the timezone part of the value. The four
arguments are combined to build a value of xs:time type. The values of the integers must be within the
correct range of that particular time part. For example, the second (Minutes) argument should not be
greater than 59.

Examples

· altova:build-time(23, 4, 57, '+1') returns 23:04:57+01:00

build-duration [altova:]

altova:build-duration(Years as xs:integer, Months as xs:integer) as

xs:yearMonthDuration XP3.1 XQ3.1

Takes two arguments to build a value of type xs:yearMonthDuration. The first argument provides the
Years part of the duration value, while the second argument provides the Months part. If the second
(Months) argument is greater than or equal to 12, then the integer is divided by 12; the quotient is added to
the first argument to provide the Years part of the duration value while the remainder (of the division)
provides the Months part. To build a duration of type xs:dayTimeDuration., see the next signature.

Examples

· altova:build-duration(2, 10) returns P2Y10M

· altova:build-duration(14, 27) returns P16Y3M

· altova:build-duration(2, 24) returns P4Y

altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as xs:integer,

Seconds as xs:integer) as xs:dayTimeDuration XP3.1 XQ3.1

Takes four arguments and combines them to build a value of type xs:dayTimeDuration. The first
argument provides the Days part of the duration value, the second, third, and fourth arguments provide,

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2097Appendices

Altova XMLSpy 2024 Enterprise Edition

respectively, the Hours, Minutes, and Seconds parts of the duration value. Each of the three Time
arguments is converted to an equivalent value in terms of the next higher unit and the result is used for
calculation of the total duration value. For example, 72 seconds is converted to 1M+12S (1 minute and 12
seconds), and this value is used for calculation of the total duration value. To build a duration of type
xs:yearMonthDuration., see the previous signature.

Examples

· altova:build-duration(2, 10, 3, 56) returns P2DT10H3M56S

· altova:build-duration(1, 0, 100, 0) returns P1DT1H40M

· altova:build-duration(1, 0, 0, 3600) returns P1DT1H

[Top]

Construct date, dateTime, and time datatypes from string input XP2 XQ1 XP3.1 XQ3.1

These functions take strings as arguments and construct xs:date, xs:dateTime, or xs:time datatypes. The
string is analyzed for components of the datatype based on a submitted pattern argument.

parse-date [altova:]

altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date XP2 XQ1 XP3.1
XQ3.1

Returns the input string Date as an xs:date value. The second argument DatePattern specifies the

pattern (sequence of components) of the input string. DatePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

D Date

M Month

Y Year

The pattern in DatePattern must match the pattern in Date. Since the output is of type xs:date, the

output will always have the lexical format YYYY-MM-DD.

Examples

· altova:parse-date(xs:string("09-12-2014"), "[D]-[M]-[Y]") returns 2014-12-09

· altova:parse-date(xs:string("09-12-2014"), "[M]-[D]-[Y]") returns 2014-09-12

· altova:parse-date("06/03/2014", "[M]/[D]/[Y]") returns 2014-06-03

· altova:parse-date("06 03 2014", "[M] [D] [Y]") returns 2014-06-03

· altova:parse-date("6 3 2014", "[M] [D] [Y]") returns 2014-06-03

parse-dateTime [altova:]

altova:parse-dateTime(DateTime as xs:string, DateTimePattern as xs:string) as

xs:dateTime XP2 XQ1 XP3.1 XQ3.1

Returns the input string DateTime as an xs:dateTime value.The second argument DateTimePattern

specifies the pattern (sequence of components) of the input string. DateTimePattern is described with the

component specifiers listed below and with component separators that can be any character. See the
examples below.

D Date

2084

2098 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

M Month

Y Year

H Hour

m minutes

s seconds

The pattern in DateTimePattern must match the pattern in DateTime. Since the output is of type

xs:dateTime, the output will always have the lexical format YYYY-MM-DDTHH:mm:ss.

Examples

· altova:parse-dateTime(xs:string("09-12-2014 13:56:24"), "[M]-[D]-[Y] [H]:[m]:

[s]") returns 2014-09-12T13:56:24
· altova:parse-dateTime("time=13:56:24; date=09-12-2014", "time=[H]:[m]:[s];

date=[D]-[M]-[Y]") returns 2014-12-09T13:56:24

parse-time [altova:]

altova:parse-time(Time as xs:string, TimePattern as xs:string) as xs:time XP2 XQ1 XP3.1
XQ3.1

Returns the input string Time as an xs:time value.The second argument TimePattern specifies the

pattern (sequence of components) of the input string. TimePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

H Hour

m minutes

s seconds

The pattern in TimePattern must match the pattern in Time. Since the output is of type xs:time, the

output will always have the lexical format HH:mm:ss.

Examples

· altova:parse-time(xs:string("13:56:24"), "[H]:[m]:[s]") returns 13:56:24

· altova:parse-time("13-56-24", "[H]-[m]") returns 13:56:00

· altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s") returns 13:56:24

· altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h") returns 13:56:24

[Top]

Age-related functions XP3.1 XQ3.1

These functions return the age as calculated (i) between one input argument date and the current date, or (ii)
between two input argument dates. The altova:age function returns the age in terms of years, the

altova:age-details function returns the age as a sequence of three integers giving the years, months, and

days of the age.

age [altova:]

2084

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2099Appendices

Altova XMLSpy 2024 Enterprise Edition

altova:age(StartDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date submitted as the
argument and ending with the current date (taken from the system clock). If the input argument is a date
anything greater than or equal to one year in the future, the return value will be negative.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2013-01-15")) returns 1

· altova:age(xs:date("2013-01-16")) returns 0

· altova:age(xs:date("2015-01-15")) returns -1

· altova:age(xs:date("2015-01-14")) returns 0

altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date that is submitted as
the first argument up to an end-date that is the second argument. The return value will be negative if the
first argument is one year or more later than the second argument.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2000-01-15"), xs:date("2010-01-15")) returns 10

· altova:age(xs:date("2000-01-15"), current-date()) returns 14 if the current date is 2014-

01-15
· altova:age(xs:date("2014-01-15"), xs:date("2010-01-15")) returns -4

age-details [altova:]

altova:age-details(InputDate as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the date that is
submitted as the argument and the current date (taken from the system clock). The sum of the returned
years+months+days together gives the total time difference between the two dates (the input date and the
current date). The input date may have a value earlier or later than the current date, but whether the input
date is earlier or later is not indicated by the sign of the return values; the return values are always
positive.

Examples

If the current date is 2014-01-15:

· altova:age-details(xs:date("2014-01-16")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-14")) returns (0 0 1)

· altova:age-details(xs:date("2013-01-16")) returns (1 0 1)

· altova:age-details(current-date()) returns (0 0 0)

altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the two argument
dates. The sum of the returned years+months+days together gives the total time difference between the
two input dates; it does not matter whether the earlier or later of the two dates is submitted as the first
argument. The return values do not indicate whether the input date occurs earlier or later than the current
date. Return values are always positive.

Examples

2100 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16")) returns (0 0 1)

[Top]

Epoch time (Unix time) functions XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the number of
seconds that have elapsed since 00:00:00 UTC on 1 January 1970. Altova's Epoch time extension functions
convert xs:dateTime values to Epoch time values and vice versa.

dateTime-from-epoch [altova:]

altova:dateTime-from-epoch(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-epoch

function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local timezone, and

includes the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that includes a TZ

(timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time, and

adding to it the local timezone (taken from the system clock). For example, if the function is executed on
a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC dateTime

equivalent has been calculated, one hour will be added to the result. The timezone information, which is an
optional lexical part of the xs:dateTime result, is also reported in the dateTime result. Compare this

result with that of dateTime-from-epoch-no-TZ, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is reported in
the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34+01:00

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02+01:00

dateTime-from-epoch-no-TZ [altova:]

altova:dateTime-from-epoch-no-TZ(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-

epoch-no-TZ function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local

timezone, but does not include the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that does not includes a
TZ (timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time,

and adding to it the local timezone (taken from the system clock). For example, if the function is executed
on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC
dateTime equivalent has been calculated, one hour will be added to the result. The timezone information,

2084

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2101Appendices

Altova XMLSpy 2024 Enterprise Edition

which is an optional lexical part of the xs:dateTime result, is not reported in the dateTime result.

Compare this result with that of dateTime-from-epoch, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is not reported
in the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02

epoch-from-dateTime [altova:]

altova:epoch-from-dateTime(dateTimeValue as xs:dateTime) as xs:decimal XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The epoch-from-dateTime

function returns the Epoch time equivalent of the xs:dateTime that is submitted as the argument of the

function. Note that you might have to explicitly construct the xs:dateTime value. The submitted

xs:dateTime value may or may not contain the optional TZ (timezone) part.

Whether the timezone part is submitted as part of the argument or not, the local timezone offset (taken
from the system clock) is subtracted from the submitted dateTimeValue argument. This produces the

equivalent UTC time, from which the equivalent Epoch time is calculated. For example, if the function is
executed on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then one hour is
subtracted from the submitted dateTimeValue before the Epoch value is calculated. Also see the function

dateTime-from-epoch.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, one hour will be
subtracted from the submitted dateTime before the Epoch time is calculated.

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34+01:00")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("2021-04-01T11:22:33")) returns 1617272553

[Top]

31.2.1.3 XPath/XQuery Functions: Geolocation

The following geolocation XPath/XQuery extension functions are supported in the current version of XMLSpy and
can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova

2084

2102 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

format-geolocation [altova:]

altova:format-geolocation(Latitude as xs:decimal, Longitude as xs:decimal,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes the latitude and longitude as the first two arguments, and outputs the geolocation as a string. The
third argument, GeolocationOutputStringFormat, is the format of the geolocation output string; it uses

integer values from 1 to 4 to identify the output string format (see 'Geolocation output string formats'
below). Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:format-geolocation(33.33, -22.22, 4) returns the xs:string "33.33 -22.22"

· altova:format-geolocation(33.33, -22.22, 2) returns the xs:string "33.33N 22.22W"

· altova:format-geolocation(-33.33, 22.22, 2) returns the xs:string "33.33S 22.22E"

· altova:format-geolocation(33.33, -22.22, 1) returns the xs:string "33°19'48.00"S 22°

13'12.00"E"

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

2113

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2103Appendices

Altova XMLSpy 2024 Enterprise Edition

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

parse-geolocation [altova:]

altova:parse-geolocation(GeolocationInputString as xs:string) as xs:decimal+ XP3.1 XQ3.1

Parses the supplied GeolocationInputString argument and returns the geolocation's latitude and
longitude (in that order) as a sequence two xs:decimal items. The formats in which the geolocation input
string can be supplied are listed below.

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply the geolocation input string (see example below).

Examples

· altova:parse-geolocation("33.33 -22.22") returns the sequence of two xs:decimals

(33.33, 22.22)
· altova:parse-geolocation("48°51'29.6""N 24°17'40.2""") returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation('48°51''29.6"N 24°17''40.2"') returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation(image-exif-

data(//MyImages/Image20141130.01)/@Geolocation) returns a sequence of two xs:decimals

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by

2113 2113

2104 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2105Appendices

Altova XMLSpy 2024 Enterprise Edition

geolocation-distance-km [altova:]

altova:geolocation-distance-km(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in kilometers. The formats in which the geolocation
input string can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-km("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 4183.08132372392

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)

2113 2113

2106 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-distance-mi [altova:]

altova:geolocation-distance-mi(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in miles. The formats in which a geolocation input string
can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-mi("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 2599.40652340653

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and

2113 2113

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2107Appendices

Altova XMLSpy 2024 Enterprise Edition

second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocations-bounding-rectangle [altova:]

altova:geolocations-bounding-rectangle(Geolocations as xs:sequence,

2108 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes a sequence of strings as its first argument; each string in the sequence is a geolocation. The
function returns a sequence of two strings which are, respectively, the top-left and bottom-right geolocation
coordinates of a bounding rectangle that is optimally sized to enclose all the geolocations submitted in the
first argument. The formats in which a geolocation input string can be supplied are listed below (see
'Geolocation input string formats'). Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

The function's second argument specifies the format of the two geolocation strings in the output sequence.
The argument takes an integer value from 1 to 4, where each value identifies a different geolocation string
format (see 'Geolocation output string formats' below).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832"), 1) returns the sequence ("51°30'33.804"N 0°7'5.952"W", "48°12'51.67116"N
16°22'14.61576"E")

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832", "42.5584577 -70.8893334"), 4) returns the sequence ("51.50939 -70.8893334",
"42.5584577 16.3707266")

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional

2113

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2109Appendices

Altova XMLSpy 2024 Enterprise Edition

+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

2110 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-within-polygon [altova:]

altova:geolocation-within-polygon(Geolocation as xs:string, ((PolygonPoint as

xs:string)+)) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the polygonal area described by the

PolygonPoint arguments. If the PolygonPoint arguments do not form a closed figure (formed when the

first point and the last point are the same), then the first point is implicitly added as the last point in order
to close the figure. All the arguments (Geolocation and PolygonPoint+) are given by geolocation input
strings (formats listed below). If the Geolocation argument is within the polygonal area, then the function
returns true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24", "58 -

32")) returns true()

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24")) returns

true()
· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48°51'29.6""N

 24°17'40.2""")) returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

2113 2113

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2111Appendices

Altova XMLSpy 2024 Enterprise Edition

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-within-rectangle [altova:]

altova:geolocation-within-rectangle(Geolocation as xs:string, RectCorner-1 as

xs:string, RectCorner-2 as xs:string) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the rectangle defined by the second and

third arguments, RectCorner-1 and RectCorner-2, which specify opposite corners of the rectangle. All

the arguments (Geolocation, RectCorner-1 and RectCorner-2) are given by geolocation input strings

(formats listed below). If the Geolocation argument is within the rectangle, then the function returns
true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude values
range from +180 to -180 (E to W).

2112 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-rectangle("33 -22", "58 -32", "-48 24") returns true()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48 24") returns false()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48°51'29.6""S 24°

17'40.2""") returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

2113 2113

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2113Appendices

Altova XMLSpy 2024 Enterprise Edition

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

[Top]

31.2.1.4 XPath/XQuery Functions: Image-Related

The following image-related XPath/XQuery extension functions are supported in the current version of XMLSpy
and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery
document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

suggested-image-file-extension [altova:]

altova:suggested-image-file-extension(Base64String as string) as string? XP3.1 XQ3.1

Takes the Base64 encoding of an image file as its argument and returns the file extension of the image as
recorded in the Base64-encoding of the image. The returned value is a suggestion based on the image
type information available in the encoding. If this information is not available, then an empty string is
returned. This function is useful if you wish to save a Base64 image as a file and wish to dynamically
retrieve an appropriate file extension.

2101

2114 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Examples

· altova:suggested-image-file-extension(/MyImages/MobilePhone/Image20141130.01)

returns 'jpg'
· altova:suggested-image-file-extension($XML1/Staff/Person/@photo) returns ''

In the examples above, the nodes supplied as the argument of the function are assumed to contain a
Base64-encoded image. The first example retrieves jpg as the file's type and extension. In the second
example, the submitted Base64 encoding does not provide usable file extension information.

image-exif-data [altova:]

altova:image-exif-data(Base64BinaryString as string) as element? XP3.1 XQ3.1

Takes a Base64-encoded JPEG image as its argument and returns an element called Exif that contains

the Exif metadata of the image. The Exif metadata is created as attribute-value pairs of the Exif element.
The attribute names are the Exif data tags found in the Base64 encoding. The list of Exif-specification tags
is given below. If a vendor-specific tag is present in the Exif data, this tag and its value will also be returned
as an attribute-value pair. Additional to the standard Exif metadata tags (see list below), Altova-specific
attribute-value pairs are also generated. These Altova Exif attributes are listed below.

Examples

· To access any one attribute, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@GPSLatitude

image-exif-data(//MyImages/Image20141130.01)/@Geolocation

· To access all the attributes, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@*

· To access the names of all the attributes, use the following expression:
for $i in image-exif-data(//MyImages/Image20141130.01)/@* return name($i)

This is useful to find out the names of the attributes returned by the function.

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

Altova Exif Attribute: OrientationDegree

The Altova XPath/XQuery Engine generates the custom attribute OrientationDegree from the Exif

metadata tag Orientation.

OrientationDegree translates the standard Exif tag Orientation from an integer value (1, 8, 3, or

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2115Appendices

Altova XMLSpy 2024 Enterprise Edition

6) to the respective degree values of each (0, 90, 180, 270), as shown in the figure below. Note that
there are no translations of the Orientation values of 2, 4, 5, 7. (These orientations are obtained by
flipping image 1 across its vertical center axis to get the image with a value of 2, and then rotating
this image in 90-degree jumps clockwise to get the values of 7, 4, and 5, respectively).

Listing of standard Exif meta tags

· ImageWidth
· ImageLength
· BitsPerSample
· Compression
· PhotometricInterpretation
· Orientation
· SamplesPerPixel
· PlanarConfiguration
· YCbCrSubSampling
· YCbCrPositioning
· XResolution
· YResolution
· ResolutionUnit
· StripOffsets
· RowsPerStrip
· StripByteCounts
· JPEGInterchangeFormat
· JPEGInterchangeFormatLength
· TransferFunction
· WhitePoint
· PrimaryChromaticities

2116 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· YCbCrCoefficients
· ReferenceBlackWhite
· DateTime
· ImageDescription
· Make
· Model
· Software
· Artist
· Copyright

· ExifVersion
· FlashpixVersion
· ColorSpace
· ComponentsConfiguration
· CompressedBitsPerPixel
· PixelXDimension
· PixelYDimension
· MakerNote
· UserComment
· RelatedSoundFile
· DateTimeOriginal
· DateTimeDigitized
· SubSecTime
· SubSecTimeOriginal
· SubSecTimeDigitized
· ExposureTime
· FNumber
· ExposureProgram
· SpectralSensitivity
· ISOSpeedRatings
· OECF
· ShutterSpeedValue
· ApertureValue
· BrightnessValue
· ExposureBiasValue
· MaxApertureValue
· SubjectDistance
· MeteringMode
· LightSource
· Flash
· FocalLength
· SubjectArea
· FlashEnergy
· SpatialFrequencyResponse
· FocalPlaneXResolution
· FocalPlaneYResolution
· FocalPlaneResolutionUnit
· SubjectLocation
· ExposureIndex
· SensingMethod
· FileSource
· SceneType
· CFAPattern
· CustomRendered

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2117Appendices

Altova XMLSpy 2024 Enterprise Edition

· ExposureMode
· WhiteBalance
· DigitalZoomRatio
· FocalLengthIn35mmFilm
· SceneCaptureType
· GainControl
· Contrast
· Saturation
· Sharpness
· DeviceSettingDescription
· SubjectDistanceRange
· ImageUniqueID

· GPSVersionID
· GPSLatitudeRef
· GPSLatitude
· GPSLongitudeRef
· GPSLongitude
· GPSAltitudeRef
· GPSAltitude
· GPSTimeStamp
· GPSSatellites
· GPSStatus
· GPSMeasureMode
· GPSDOP
· GPSSpeedRef
· GPSSpeed
· GPSTrackRef
· GPSTrack
· GPSImgDirectionRef
· GPSImgDirection
· GPSMapDatum
· GPSDestLatitudeRef
· GPSDestLatitude
· GPSDestLongitudeRef
· GPSDestLongitude
· GPSDestBearingRef
· GPSDestBearing
· GPSDestDistanceRef
· GPSDestDistance
· GPSProcessingMethod
· GPSAreaInformation
· GPSDateStamp
· GPSDifferential

[Top]2113

2118 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31.2.1.5 XPath/XQuery Functions: Numeric

Altova's numeric extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Auto-numbering functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double, Increment as

xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1 XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated the first time
the function is called, is specified by the StartsWith argument. Each subsequent call to the function
generates a new number, this number being incremented over the previously generated number by the
value specified in the Increment argument. In effect, the altova:generate-auto-number function creates
a counter having a name specified by the ID argument, with this counter being incremented each time the
function is called. If the value of the ResetOnChange argument changes from that of the previous function
call, then the value of the number to be generated is reset to the StartsWith value. Auto-numbering can
also be reset by using the altova:reset-auto-number function.

Examples

· altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will return one

number each time the function is called, starting with 1, and incrementing by 1 with each call to
the function. As long as the fourth argument remains "SomeString" in each subsequent call, the
incrementing will continue. When the value of the fourth argument changes, the counter (called
ChapterNumber) will reset to 1. The value of ChapterNumber can also be reset by a call to the
altova:reset-auto-number function, like this: altova:reset-auto-number("ChapterNumber").

reset-auto-number [altova:]

altova:reset-auto-number(ID as xs:string) XP1 XP2 XQ1 XP3.1 XQ3.1

This function resets the number of the auto-numbering counter named in the ID argument. The number is
reset to the number specified by the StartsWith argument of the altova:generate-auto-number
function that created the counter named in the ID argument.

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2119Appendices

Altova XMLSpy 2024 Enterprise Edition

Examples

· altova:reset-auto-number("ChapterNumber") resets the number of the auto-numbering

counter named ChapterNumber that was created by the altova:generate-auto-number function.
The number is reset to the value of the StartsWith argument of the altova:generate-auto-
number function that created ChapterNumber.

[Top]

Numeric functions
hex-string-to-integer [altova:]

altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3.1 XQ3.1

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system (Base-10), and
returns the decimal integer.

Examples

· altova:hex-string-to-integer('1') returns 1

· altova:hex-string-to-integer('9') returns 9

· altova:hex-string-to-integer('A') returns 10

· altova:hex-string-to-integer('B') returns 11

· altova:hex-string-to-integer('F') returns 15

· altova:hex-string-to-integer('G') returns an error

· altova:hex-string-to-integer('10') returns 16

· altova:hex-string-to-integer('01') returns 1

· altova:hex-string-to-integer('20') returns 32

· altova:hex-string-to-integer('21') returns 33

· altova:hex-string-to-integer('5A') returns 90

· altova:hex-string-to-integer('USA') returns an error

integer-to-hex-string [altova:]

altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3.1 XQ3.1

Takes an integer argument and returns its Base-16 equivalent as a string.
Examples

· altova:integer-to-hex-string(1) returns '1'

· altova:integer-to-hex-string(9) returns '9'

· altova:integer-to-hex-string(10) returns 'A'

· altova:integer-to-hex-string(11) returns 'B'

· altova:integer-to-hex-string(15) returns 'F'

· altova:integer-to-hex-string(16) returns '10'

· altova:integer-to-hex-string(32) returns '20'

· altova:integer-to-hex-string(33) returns '21'

· altova:integer-to-hex-string(90) returns '5A'

[Top]

2118

2118

2120 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Number-formatting functions

[Top]

31.2.1.6 XPath/XQuery Functions: Schema

The Altova extension functions listed below return schema information. Given below are descriptions of the
functions, together with (i) examples and (ii) a listing of schema components and their respective properties.
They can be used with Altova's XPath 3.0 and XQuery 3.0 engines and are available in XPath/XQuery
contexts.

Schema information from schema documents
The function altova:schema has two arguments: one with zero arguments and the other with two arguments.

The zero-argument function returns the whole schema. You can then, from this starting point, navigate into the
schema to locate the schema components you want. The two-argument function returns a specific component
kind that is identified by its QName. In both cases, the return value is a function. To navigate into the returned
component, you must select a property of that specific component. If the property is a non-atomic item (that is,
if it is a component), then you can navigate further by selecting a property of this component. If the selected
property is an atomic item, then the value of the item is returned and you cannot navigate any further.

Note: In XPath expressions, the schema must be imported into the processing environment (for example, into
XSLT) with the xslt:import-schema instruction. In XQuery expressions, the schema must be

explicitly imported using a schema import.

Schema information from XML nodes
The function altova:type submits the node of an XML document and returns the node's type information from

the PSVI.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Schema (zero arguments)

altova:schema() as (function(xs:string) as item()*)? XP3.1 XQ3.1

2118

https://www.w3.org/TR/xslt-30/#element-import-schema
https://www.w3.org/TR/xquery-31/#prod-xquery31-SchemaImport

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2121Appendices

Altova XMLSpy 2024 Enterprise Edition

Returns the schema component as a whole. You can navigate further into the schema component by

selecting one of the schema component's properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

The properties of the schema component are:

"type definitions"
"attribute declarations"
"element declarations"
"attribute group definitions"
"model group definitions"
"notation declarations"
"identity-constraint definitions"

The properties of all other component kinds (besides schema) are listed below.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd"; for $typedef in altova:schema()

("type definitions")

return $typedef ("name") returns the names of all simple types or complex types in the
schema

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema() ("type definitions")[1]("name") returns the name of the first of all simple

types or complex types in the schema

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

2122 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2123Appendices

Altova XMLSpy 2024 Enterprise Edition

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type

2124 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2125Appendices

Altova XMLSpy 2024 Enterprise Edition

property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

2126 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2127Appendices

Altova XMLSpy 2024 Enterprise Edition

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Schema (two arguments)

altova:schema(ComponentKind as xs:string, Name as xs:QName) as (function(xs:string) as

item()*)? XP3.1 XQ3.1

Returns the component kind that is specified in the first argument which has a name that is the same as
the name supplied in the second argument. You can navigate further by selecting one of the component's
properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema("element declaration", xs:QName("OrgChart"))("type definition")

("content type")("particles")[3]!.("term")("kind")
returns the kind property of the term of the third particles component. This particles component
is a descendant of the element declaration having a QName of OrgChart

· import schema "" at "C:\Test\ExpReport.xsd";

let $typedef := altova:schema("type definition", xs:QName("emailType"))

for $facet in $typedef ("facets")

return [$facet ("kind"), $facet("value")]

returns, for each facet of each emailType component, an array containing that facet's kind and

value

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

2128 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2129Appendices

Altova XMLSpy 2024 Enterprise Edition

"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

2130 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2131Appendices

Altova XMLSpy 2024 Enterprise Edition

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

2132 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2133Appendices

Altova XMLSpy 2024 Enterprise Edition

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Type

altova:type(Node as item?) as (function(xs:string) as item()*)? XP3.1 XQ3.1

The function altova:type submits an element or attribute node of an XML document and returns the

node's type information from the PSVI.

Note: The XML document must have a schema declaration so that the schema can be referenced.

Examples

· for $element in //Email

let $type := altova:type($element)

return $type

returns a function that contains the Email node's type information

· for $element in //Email

let $type := altova:type($element)

return $type ("kind")

takes the Email node's type component (Simple Type or Complex Type) and returns the value of
the component's kind property

The "_props" parameter returns the properties of the selected component. For example:
· for $element in //Email

let $type := altova:type($element)

return ($type ("kind"), $type ("_props"))

takes the Email node's type component (Simple Type or Complex Type) and returns (i) the value of
the component's kind property, and then (ii) the properties of that component.

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

2134 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2135Appendices

Altova XMLSpy 2024 Enterprise Edition

"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if

2136 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2137Appendices

Altova XMLSpy 2024 Enterprise Edition

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

2138 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2139Appendices

Altova XMLSpy 2024 Enterprise Edition

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

31.2.1.7 XPath/XQuery Functions: Sequence

Altova's sequence extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

attributes [altova:]

altova:attributes(AttributeName as xs:string) as attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. This
means that the context node must be the parent element node.

Examples

· altova:attributes("MyAttribute") returns MyAttribute()*

altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as

attribute()* XP3.1 XQ3.1

2140 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. The
context node must be the parent element node. The second argument is a string containing option flags.
Available flags are:
r = switches to a regular-expression search; AttributeName must then be a regular-expression search

string;
f = If this option is specified, then AttributeName provides a full match; otherwise AttributeName need

only partially match an attribute name to return that attribute. For example: if f is not specified, then

MyAtt will return MyAttribute;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; AttributeName should then contain the namespace

prefix, for example: altova:MyAttribute.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument
(previous signature). However, an empty sequence is not allowed as the second argument.

Examples

· altova:attributes("MyAttribute", "rfip") returns MyAttribute()*

· altova:attributes("MyAttribute", "pri") returns MyAttribute()*

· altova:attributes("MyAtt", "rip") returns MyAttribute()*

· altova:attributes("MyAttributes", "rfip") returns no match

· altova:attributes("MyAttribute", "") returns MyAttribute()*

· altova:attributes("MyAttribute", "Rip") returns an unrecognized-flag error.

· altova:attributes("MyAttribute",) returns a missing-second-argument error.

elements [altova:]

altova:elements(ElementName as xs:string) as element()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The context
node must be the parent node of the element/s being searched for.

Examples

· altova:elements("MyElement") returns MyElement()*

altova:elements(ElementName as xs:string, SearchOptions as xs:string) as element()*

XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The
context node must be the parent node of the element/s being searched for. The second argument is a
string containing option flags. Available flags are:
r = switches to a regular-expression search; ElementName must then be a regular-expression search

string;
f = If this option is specified, then ElementName provides a full match; otherwise ElementName need only

partially match an element name to return that element. For example: if f is not specified, then MyElem will

return MyElement;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; ElementName should then contain the namespace prefix,

for example: altova:MyElement.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2141Appendices

Altova XMLSpy 2024 Enterprise Edition

(previous signature). However, an empty sequence is not allowed.
Examples

· altova:elements("MyElement", "rip") returns MyElement()*

· altova:elements("MyElement", "pri") returns MyElement()*

· altova:elements("MyElement", "") returns MyElement()*

· altova:elements("MyElem", "rip") returns MyElement()*

· altova:elements("MyElements", "rfip") returns no match

· altova:elements("MyElement", "Rip") returns an unrecognized-flag error.

· altova:elements("MyElement",) returns a missing-second-argument error.

find-first [altova:]

altova:find-first((Sequence as item()*), (Condition(Sequence-Item as xs:boolean)) as

item()? XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() is returned as the result of altova:find-first,

and the iteration stops.

Examples

· altova:find-first(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 6

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first is passed, in turn, to $a as its input value. The input value is tested on the condition in the

function definition ($a mod 2 = 0). The first input value to satisfy this condition is returned as the
result of altova:find-first (in this case 6).

· altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs:integer 4

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string C:\Temp\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string http://www.altova.com/index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

2142 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

(doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first, because it takes only one argument (arity=1), because it takes an item() as input (a
string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() evaluates to true() and that string is returned as

the result of the altova:find-first function. Note about the doc-available() function: Relative

paths are resolved relative to the the current base URI, which is by default the URI of the XML
document from which the function is loaded.

find-first-combination [altova:]

altova:find-first-combination((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs (one item from each sequence making up a

pair) as the arguments of the function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-combination. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-combination returns No

results; (ii) The result of altova:find-first-combination will always be a pair of items (of any datatype)

or no item at all.

Examples

· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns the sequence of xs:integers (11, 21)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns the sequence of xs:integers (11, 22)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 34})

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2143Appendices

Altova XMLSpy 2024 Enterprise Edition

returns the sequence of xs:integers (11, 23)

find-first-pair [altova:]

altova:find-first-pair((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-01-

Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-pair. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-pair returns No results;

(ii) The result of altova:find-first-pair will always be a pair of items (of any datatype) or no item at

all.

Examples

· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32}) returns

the sequence of xs:integers (11, 21)
· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33}) returns

No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). This is why the second example returns No results (because no ordered pair gives
a sum of 33).

find-first-pair-pos [altova:]

altova:find-first-pair-pos((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-

01-Item, Seq-02-Item as xs:boolean)) as xs:integer XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.

2144 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The index position of the first ordered pair that causes the Condition function to evaluate to true() is

returned as the result of altova:find-first-pair-pos. Note that if the Condition function iterates

through the submitted argument pairs and does not once evaluate to true(), then altova:find-first-

pair-pos returns No results.

Examples

· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns 1
· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). In the first example, the first pair causes the Condition function to evaluate to

true(), and so its index position in the sequence, 1, is returned. The second example returns No

results because no pair gives a sum of 33.

find-first-pos [altova:]

altova:find-first-pos((Sequence as item()*), (Condition(Sequence-Item as xs:boolean))

as xs:integer XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() has its index position in Sequence returned as the

result of altova:find-first-pos, and the iteration stops.

Examples

· altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 2

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first-pos is passed, in turn, to $a as its input value. The input value is tested on the condition in

the function definition ($a mod 2 = 0). The index position in the sequence of the first input value to
satisfy this condition is returned as the result of altova:find-first-pos (in this case 2, since 6,

the first value (in the sequence) to satisfy the condition, is at index position 2 in the sequence).

· altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns xs:integer 3

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 1

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2145Appendices

Altova XMLSpy 2024 Enterprise Edition

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 2

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first-pos, because it takes only one argument (arity=1), because it takes an item() as input
(a string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() function evaluates to true() and the index

position of that string in the sequence is returned as the result of the altova:find-first-pos

function. Note about the doc-available() function: Relative paths are resolved relative to the the
current base URI, which is by default the URI of the XML document from which the function is
loaded.

for-each-attribute-pair [altova:]

altova:for-each-attribute-pair(Seq1 as element()?, Seq2 as element()?, Function as

function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then the pair is "disjoint", meaning that it consists of one member only. The function
item (third argument Function) is applied separately to each pair in the sequence of pairs (joint and
disjoint), resulting in an output that is a sequence of items.

Examples

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, function($a, $b)

{$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />

2146 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 Note: The result (2, 6) is obtained by way of the following action: (1+1, ()+2, 3+3, 4+()). If

one of the operands is the empty sequence, as in the case of items 2 and 4, then the result of the
addition is an empty sequence.

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, concat#2) returns

...

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 2, 33, 4) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

for-each-combination [altova:]

altova:for-each-combination(FirstSequence as item()*, SecondSequence as item()*,

Function($i,$j){$i || $j}) as item()* XP3.1 XQ3.1

The items of the two sequences in the first two arguments are combined so that each item of the first
sequence is combined, in order, once with each item of the second sequence. The function given as the
third argument is applied to each combination in the resulting sequence, resulting in an output that is a
sequence of items (see example).

Examples

· altova:for-each-combination(('a', 'b', 'c'), ('1', '2', '3'), function($i, $j)

{$i || $j}) returns ('a1', 'a2', 'a3', 'b1', 'b2', 'b3', 'c1', 'c2', 'c3')

for-each-matching-attribute-pair [altova:]

altova:for-each-matching-attribute-pair(Seq1 as element()?, Seq2 as element()?,

Function as function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then no pair is built. The function item (third argument Function) is applied
separately to each pair in the sequence of pairs, resulting in an output that is a sequence of items.

Examples

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2147Appendices

Altova XMLSpy 2024 Enterprise Edition

function($a, $b){$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att3="1" />

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

concat#2) returns ...

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 33) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

substitute-empty [altova:]

altova:substitute-empty(FirstSequence as item()*, SecondSequence as item()) as item()*

XP3.1 XQ3.1

If FirstSequence is empty, returns SecondSequence. If FirstSequence is not empty, returns
FirstSequence.

Examples

· altova:substitute-empty((1,2,3), (4,5,6)) returns (1,2,3)

· altova:substitute-empty((), (4,5,6)) returns (4,5,6)

31.2.1.8 XPath/XQuery Functions: String

Altova's string extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

2148 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3.1 XQ3.1

Returns the input string InputString in CamelCase. The string is analyzed using the regular expression

'\s' (which is a shortcut for the whitespace character). The first non-whitespace character after a

whitespace or sequence of consecutive whitespaces is capitalized. The first character in the output string
is capitalized.

Examples

· altova:camel-case("max") returns Max

· altova:camel-case("max max") returns Max Max

· altova:camel-case("file01.xml") returns File01.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml -file02.xml") returns File01.xml -file02.xml

altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex as

xs:boolean) as xs:string XP3.1 XQ3.1

Converts the input string InputString to camel case by using SplitChars to determine the character/s

that trigger the next capitalization. SplitChars is used as a regular expression when IsRegex = true(),

or as plain characters when IsRegex = false(). The first character in the output string is capitalized.

Examples

· altova:camel-case("setname getname", "set|get", true()) returns setName getName

· altova:camel-case("altova\documents\testcases", "\", false()) returns
Altova\Documents\Testcases

char [altova:]

altova:char(Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
obtained by converting the value of the context item to xs:string. The result string will be empty if no
character exists at the index submitted by the Position argument.

Examples

If the context item is 1234ABCD:

· altova:char(2) returns 2

· altova:char(5) returns A

· altova:char(9) returns the empty string.

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2149Appendices

Altova XMLSpy 2024 Enterprise Edition

· altova:char(-2) returns the empty string.

altova:char(InputString as xs:string, Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
submitted as the InputString argument. The result string will be empty if no character exists at the index
submitted by the Position argument.

Examples

· altova:char("2014-01-15", 5) returns -

· altova:char("USA", 1) returns U

· altova:char("USA", 10) returns the empty string.

· altova:char("USA", -2) returns the empty string.

create-hash-from-string[altova:]

altova:create-hash-from-string(InputString as xs:string) as xs:string XP2 XQ1 XP3.1
XQ3.1

altova:create-hash-from-string(InputString as xs:string, HashAlgo as xs:string) as

xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a hash string from InputString by using the hashing algorithm specified by the HashAlgo
argument. The following hashing algorithms may be specified (in upper or lower case): MD5, SHA-1, SHA-

224, SHA-256, SHA-384, SHA-512. If the second argument is not specified (see the first signature above),

then the SHA-256 hashing algorithm is used.

Examples

· altova:create-hash-from-string('abc') returns a hash string generated by using the SHA-256

hashing algorithm.
· altova:create-hash-from-string('abc', 'md5') returns a hash string generated by using the

MD5 hashing algorithm.

· altova:create-hash-from-string('abc', 'MD5') returns a hash string generated by using the

MD5 hashing algorithm.

first-chars [altova:]

altova:first-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the first X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:first-chars(2) returns 12

· altova:first-chars(5) returns 1234A

· altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the first X-Number of characters of the string submitted as the InputString
argument.

Examples

2150 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

· altova:first-chars("2014-01-15", 5) returns 2014-

· altova:first-chars("USA", 1) returns U

format-string [altova:]

altova:format-string(InputString as xs:string, FormatSequence as item()*) as xs:string

XP3.1 XQ3.1

The input string (first argument) contains positional parameters (%1, %2, etc). Each parameter is replaced
by the string item that is located at the corresponding position in the format sequence (submitted as the
second argument). So the first item in the format sequence replaces the positional parameter %1, the
second item replaces %2, and so on. The function returns this formatted string that contains the
replacements. If no string exists for a positional parameter, then the positional parameter itself is returned.
This happens when the index of a positional parameter is greater than the number of items in the format
sequence.

Examples

· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe')) returns "Hello

Jane, John, Joe"
· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Joe"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Tom"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe')) returns "Hello
Jane, John, %4"

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the last X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:last-chars(2) returns CD

· altova:last-chars(5) returns 4ABCD

· altova:last-chars(9) returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the last X-Number of characters of the string submitted as the InputString
argument.

Examples

· altova:last-chars("2014-01-15", 5) returns 01-15

· altova:last-chars("USA", 10) returns USA

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, StringLength as xs:integer,

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2151Appendices

Altova XMLSpy 2024 Enterprise Edition

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the left of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad. has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-left('AP', 1, 'Z') returns 'AP'

· altova:pad-string-left('AP', 2, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'Z') returns 'ZAP'

· altova:pad-string-left('AP', 4, 'Z') returns 'ZZAP'

· altova:pad-string-left('AP', -3, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'YZ') returns a pad-character-too-long error

pad-string-right [altova:]

altova:pad-string-right(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the right of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-right('AP', 1, 'Z') returns 'AP'

· altova:pad-string-right('AP', 2, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'Z') returns 'APZ'

· altova:pad-string-right('AP', 4, 'Z') returns 'APZZ'

· altova:pad-string-right('AP', -3, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'YZ') returns a pad-character-too-long error

repeat-string [altova:]

altova:repeat-string(InputString as xs:string, Repeats as xs:integer) as xs:string XP2

XQ1 XP3.1 XQ3.1

Generates a string that is composed of the first InputString argument repeated Repeats number of
times.

Examples

· altova:repeat-string("Altova #", 3) returns "Altova #Altova #Altova #"

substring-after-last [altova:]

altova:substring-after-last(MainString as xs:string, CheckString as xs:string) as

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs after CheckString in MainString
is returned. If CheckString is not found in MainString, then the empty string is returned. If CheckString
is an empty string, then MainString is returned in its entirety. If there is more than one occurrence of

2152 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

CheckString in MainString, then the substring after the last occurrence of CheckString is returned.
Examples

· altova:substring-after-last('ABCDEFGH', 'B') returns 'CDEFGH'

· altova:substring-after-last('ABCDEFGH', 'BC') returns 'DEFGH'

· altova:substring-after-last('ABCDEFGH', 'BD') returns ''

· altova:substring-after-last('ABCDEFGH', 'Z') returns ''

· altova:substring-after-last('ABCDEFGH', '') returns 'ABCDEFGH'

· altova:substring-after-last('ABCD-ABCD', 'B') returns 'CD'

· altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD') returns ''

substring-before-last [altova:]

altova:substring-before-last(MainString as xs:string, CheckString as xs:string) as

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs before CheckString in MainString
is returned. If CheckString is not found in MainString, or if CheckString is an empty string, then the
empty string is returned. If there is more than one occurrence of CheckString in MainString, then the
substring before the last occurrence of CheckString is returned.

Examples

· altova:substring-before-last('ABCDEFGH', 'B') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BC') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BD') returns ''

· altova:substring-before-last('ABCDEFGH', 'Z') returns ''

· altova:substring-before-last('ABCDEFGH', '') returns ''

· altova:substring-before-last('ABCD-ABCD', 'B') returns 'ABCD-A'

· altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD') returns 'ABCD-ABCD-'

substring-pos [altova:]

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string) as

xs:integer XP3.1 XQ3.1

Returns the character position of the first occurrence of StringToFind in the string StringToCheck. The
character position is returned as an integer. The first character of StringToCheck has the position 1. If
StringToFind does not occur within StringToCheck, the integer 0 is returned. To check for the second or
a later occurrence of StringToCheck, use the next signature of this function.

Examples

· altova:substring-pos('Altova', 'to') returns 3

· altova:substring-pos('Altova', 'tov') returns 3

· altova:substring-pos('Altova', 'tv') returns 0

· altova:substring-pos('AltovaAltova', 'to') returns 3

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string, Integer as

xs:integer) as xs:integer XP3.1 XQ3.1

Returns the character position of StringToFind in the string, StringToCheck. The search for
StringToFind starts from the character position given by the Integer argument; the character substring
before this position is not searched. The returned integer, however, is the position of the found string within
the entire string, StringToCheck. This signature is useful for finding the second or a later position of a

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2153Appendices

Altova XMLSpy 2024 Enterprise Edition

string that occurs multiple times with the StringToCheck. If StringToFind does not occur within
StringToCheck, the integer 0 is returned.

Examples

· altova:substring-pos('Altova', 'to', 1) returns 3

· altova:substring-pos('Altova', 'to', 3) returns 3

· altova:substring-pos('Altova', 'to', 4) returns 0

· altova:substring-pos('Altova-Altova', 'to', 0) returns 3

· altova:substring-pos('Altova-Altova', 'to', 4) returns 10

trim-string [altova:]

altova:trim-string(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading and trailing whitespace, and returns a
"trimmed" xs:string.

Examples

· altova:trim-string(" Hello World ") returns "Hello World"

· altova:trim-string("Hello World ") returns "Hello World"

· altova:trim-string(" Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

trim-string-left [altova:]

altova:trim-string-left(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading whitespace, and returns a left-trimmed
xs:string.

Examples

· altova:trim-string-left(" Hello World ") returns "Hello World "

· altova:trim-string-left("Hello World ") returns "Hello World "

· altova:trim-string-left(" Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

trim-string-right [altova:]

altova:trim-string-right(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any trailing whitespace, and returns a right-trimmed
xs:string.

Examples

· altova:trim-string-right(" Hello World ")) returns " Hello World"

· altova:trim-string-right("Hello World ")) returns "Hello World"

· altova:trim-string-right(" Hello World")) returns " Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

2154 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31.2.1.9 XPath/XQuery Functions: Miscellaneous

The following general purpose XPath/XQuery extension functions are supported in the current version of
XMLSpy and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery
document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

decode-string [altova:]

altova:decode-string(Input as xs:base64Binary) as xs:string XP3.1 XQ3.1

altova:decode-string(Input as xs:base64Binary, Encoding as xs:string) as xs:string XP3.1

 XQ3.1

Decodes the submitted base64Binary input to a string using the specified encoding. If no encoding is
specified, then the UTF-8 encoding is used. The following encodings are supported: US-ASCII, ISO-
8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-
10646-UCS4

Examples

· altova:decode-string($XML1/MailData/Meta/b64B) returns the base64Binary input as a UTF-8

encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "UTF-8") returns the base64Binary

input as a UTF-8-encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "ISO-8859-1") returns the

base64Binary input as an ISO-8859-1-encoded string

encode-string [altova:]

altova:encode-string(InputString as xs:string) as xs:base64Binaryinteger XP3.1 XQ3.1

altova:encode-string(InputString as xs:string, Encoding as xs:string) as

xs:base64Binaryinteger XP3.1 XQ3.1

Encodes the submitted string using, if one is given, the specified encoding. If no encoding is given, then

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2155Appendices

Altova XMLSpy 2024 Enterprise Edition

the UTF-8 encoding is used. The encoded string is converted to base64Binary characters, and the
converted base64Binary value is returned. Initially, UTF-8 encoding is supported, and support will be
extended to the following encodings: US-ASCII, ISO-8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-
10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-10646-UCS4

Examples

· altova:encode-string("Altova") returns the base64Binary equivalent of the UTF-8 encoded

string "Altova"
· altova:encode-string("Altova", "UTF-8") returns the base64Binary equivalent of the UTF-8

encoded string "Altova"

get-temp-folder [altova:]

altova:get-temp-folder() as xs:string XP2 XQ1 XP3.1 XQ3.1

This function takes no argument. It returns the path to the temporary folder of the current user.
Examples

· altova:get-temp-folder() would return, on a Windows machine, something like C:

\Users\<UserName>\AppData\Local\Temp\ as an xs:string.

generate-guid [altova:]

altova:generate-guid() as xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a unique string GUID string.
Examples

· altova:generate-guid() returns (for example) 85F971DA-17F3-4E4E-994E-99137873ACCD

high-res-timer [altova:]

altova:high-res-timer() as xs:double XP3.1 XQ3.1

Returns a system high-resolution timer value in seconds. A high-resolution timer, when present on a
system, enables high precision time measurements when these are required (for example, in animations
and for determining precise code-execution time). This function provides the resolution of the system's
high-res timer.

Examples

· altova:high-res-timer() returns something like '1.16766146154566E6'

parse-html [altova:]

altova:parse-html(HTMLText as xs:string) as node() XP3.1 XQ3.1

The HTMLText argument is a string that contains the text of an HTML document. The function creates an
HTML tree from the string. The submitted string may or may not contain the HTML element. In either case,
the root element of the tree is an element named HTML. It is best to make sure that the HTML code in the

submitted string is valid HTML.
Examples

· altova:parse-html("<html><head/><body><h1>Header</h1></body></html>") creates an

2156 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

HTML tree from the submitted string

sleep[altova:]

altova:sleep(Millisecs as xs:integer) as empty-sequence() XP2 XQ1 XP3.1 XQ3.1

Suspends execution of the current operation for the number of milliseconds given by the Millisecs
argument.

Examples

· altova:sleep(1000) suspends execution of the current operation for 1000 milliseconds.

[Top]

31.2.1.10 Chart Functions

The chart functions listed below enable you to create, generate, and save charts as images. They are
supported in the current version of your Altova product in the manner described below. However, note that in
future versions of your product, support for one or more of these functions might be discontinued or the behavior
of individual functions might change. Consult the documentation of future releases for information about support
for Altova extension functions in that release.

Note: Chart functions are supported only in Altova's Server products and the Enterprise Editions of
Altova products.

Note: Supported image formats for charts in server editions are jpg, png, and bmp. The best option is png
because it is lossless and compressed. In Enterprise editions, the supported formats are jpg. png,
bmp, and gif.

Functions for generating and saving charts
These functions take the chart object (obtained with the chart creation functions) and either generate an image
or save an image to file

altova:generate-chart-image ($chart, $width, $height, $encoding) as atomic

where

· $chart is the chart extension item obtained with the altova:create-chart function
· $width and $height must be specified with a length unit
· $encoding may be x-binarytobase64 or x-binarytobase16

The function returns the chart image in the specified encoding.

altova:generate-chart-image ($chart, $width, $height, $encoding, $imagetype) as atomic

where

2154

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2157Appendices

Altova XMLSpy 2024 Enterprise Edition

· $chart is the chart extension item obtained with the altova:create-chart function
· $width and $height must be specified with a length unit
· $encoding may be x-binarytobase64 or x-binarytobase16
· $imagetype may be one of the following image formats: png, gif, bmp, jpg, jpeg. Note that gif is

not supported on server products. Also see note at top of page.

The function returns the chart image in the specified encoding and image format.

altova:save-chart-image ($chart, $filename, $width, $height) as empty() (Windows only)

where

· $chart is the chart extension item obtained with the altova:create-chart function
· $filename is the path to and name of the file to which the chart image is to be saved
· $width and $height must be specified with a length unit

The function saves the chart image to the file specified in $filename. Alternatively to this function, you
could also use the xsl:result-document function with encoding="x-base64tobinary", where the
image-data content is obtained via either the generate-chart-image() function or chart() function.

altova:save-chart-image ($chart, $filename, $width, $height, $imagetype) as empty()

(Windows only)

where

· $chart is the chart extension item obtained with the altova:create-chart function
· $filename is the path to and name of the file to which the chart image is to be saved
· $width and $height must be specified with a length unit
· $imagetype may be one of the following image formats: png, gif, bmp, jpg, jpeg. Note that gif is

not supported on server products. Also see note at top of page.

The function saves the chart image to the file specified in $filename in the image format specified.
Alternatively to this function, you could also use the xsl:result-document function with encoding="x-
base64tobinary", where the image-data content is obtained via either the generate-chart-image()
function or chart() function.

Functions for creating charts
The following functions are used to create charts.

altova:create-chart($chart-config, $chart-data-series*) as chart extension item

where

· $chart-config is the chart-config extension item obtained with the altova:create-chart-config
function or via the altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the altova:create-
chart-data-series function or altova:create-chart-data-series-from-rows function

The function returns a chart extension item, which is created from the data supplied via the arguments.

2158 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

altova:chart($chart-config, $chart-data-series*) as chart extension item

where

· $chart-config is the chart-config extension item. It is an unordered series of four key: value pairs,
where the four keys are "width", "height", "title", and "kind". The values of width and height
are integers and specify the width and height of the chart in pixels. The value of kind is one of: Pie,
Pie3d, BarChart, BarChart3d, BarChart3dGrouped, LineChart, ValueLineChart,

RoundGauge, BarGauge.
· $chart-data-series is each an array of size 3, where each array defines a chart-data-series. Each

array is composed of: (i) the name of the data series, (ii) the X-Axis values, (iii) the Y-Axis values.
Multiple data series may be submitted; in the example below, for example, the two arrays
respectively give data for monthly minimum and maximum temperatures.

The function returns an xs:base64Binary type item that contains the chart image. This image is created
from the data supplied via the arguments of the function. Note that, since this function uses arrays and
maps, it can be used only in XPath 3.1, XQuery 3.1, or XSLT 3.0.

Example: altova:chart(map{'width':800, 'height':600, "kind":"LineChart", "title":"Monthly
Temperatures"}, (['Min', $temps/Month, $temps/Month/@min], ['Max', $temps/Month,
$temps/Month/@max]))

altova:create-chart-config($type-name, $title) as chart-config extension item

where

· $type-name specifies the type of chart to be created: Pie, Pie3d, BarChart, BarChart3d,
BarChart3dGrouped, LineChart, ValueLineChart, RoundGauge, BarGauge

· $title is the name of the chart

The function returns a chart-config extension item containing the configuration information of the chart.

altova:create-chart-config-from-xml($xml-struct) as chart-config extension item

where

· $xml-struct is the XML structure containing the configuration information of the chart

The function returns a chart-config extension item containing the configuration information of the chart. This
information is supplied in an XML data fragment .

altova:create-chart-data-series($series-name?, $x-values*, $y-values*) as chart-data-series

extension item

where

· $series-name specifies the name of the series
· $x-values gives the list of X-Axis values
· $y-values gives the list of Y-Axis values

2160

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2159Appendices

Altova XMLSpy 2024 Enterprise Edition

The function returns a chart-data-series extension item containing the data for building the chart: that is,
the names of the series and the Axes data.

altova:create-chart-data-row(x, y1, y2, y3, ...) as chart-data-x-Ny-row extension item

where

· x is the value of the X-Axis column of the chart data row
· yN are the values of the Y-Axis columns

The function returns a chart-data-x-Ny-row extension item, which contains the data for the X-Axis column
and Y-Axis columns of a single series.

altova:create-chart-data-series-from-rows($series-names as xs:string*, $row*) as chart-

data-series extension item

where

· $series-name is the name of the series to be created
· $row is the chart-data-x-Ny-row extension item that is to be created as a series

The function returns a chart-data-series extension item, which contains the data for the X-Axis and Y-Axes
of the series.

altova:create-chart-layer($chart-config, $chart-data-series*) as chart-layer extension item

where

· $chart-config is the chart-config extension item obtained with the altova:create-chart-config
function or via the altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the altova:create-
chart-data-series function or altova:create-chart-data-series-from-rows function

The function returns a chart-layer extension item, which contains chart-layer data.

altova:create-multi-layer-chart($chart-config, $chart-data-series*, $chart-layer*)

where

· $chart-config is the chart-config extension item obtained with the altova:create-chart-config
function or or via the altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the altova:create-
chart-data-series function or altova:create-chart-data-series-from-rows function

· $chart-layer is the chart-layer extension item obtained with the altova:create-chart-layer
function

The function returns a multi-layer-chart item.

2160 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

altova:create-multi-layer-chart($chart-config, $chart-data-series*, $chart-layer*,

xs:boolean $mergecategoryvalues)

where

· $chart-config is the chart-config extension item obtained with the altova:create-chart-config
function or or via the altova:create-chart-config-from-xml function

· $chart-data-series is the chart-data-series extension item obtained with the altova:create-
chart-data-series function or altova:create-chart-data-series-from-rows function

· $chart-layer is the chart-layer extension item obtained with the altova:create-chart-layer
function

· $mergecategoryvalues merges the values of multiple data series if true, does not merge if false

The function returns a multi-layer-chart item.

31.2.1.10.1 Chart Data XML Structure

Given below is the XML structure of chart data, how it might appear for the Altova extension functions for
charts . This affects the appearance of the specific chart. Not all elements are used for all chart kinds, e.g.
the <Pie> element is ignored for bar charts.

Note: Chart functions are supported only in the Enterprise and Server Editions of Altova products.

<chart-config>

<General

SettingsVersion="1" must be provided
ChartKind="BarChart" Pie, Pie3d, BarChart, StackedBarChart, BarChart3d, BarChart3dGrouped,

LineChart, ValueLineChart, AreaChart, StackedAreaChart, RoundGauge, BarGauge, CandleStick
BKColor="#ffffff" Color
BKColorGradientEnd="#ffffff" Color. In case of a gradient, BKColor and BKColorGradientEnd

define the gradient's colors
BKMode="#ffffff" Solid, HorzGradient, VertGradient
BKFile="Path+Filename" String. If file exists, its content is drawn over the background.
BKFileMode="Stretch" Stretch, ZoomToFit, Center, Tile
ShowBorder="1" Bool
PlotBorderColor="#000000" Color
PlotBKColor="#ffffff" Color
Title="" String
ShowLegend="1" Bool
OutsideMargin="3.%" PercentOrPixel
TitleToPlotMargin="3.%" PercentOrPixel
LegendToPlotMargin="3.%" PercentOrPixel
Orientation="vert" Enumeration: possible values are: vert, horz
>

<TitleFont

Color="#000000" Color
Name="Tahoma" String
Bold="1" Bool

2156

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2161Appendices

Altova XMLSpy 2024 Enterprise Edition

Italic="0" Bool
Underline="0" Bool
MinFontHeight="10.pt" FontSize (only pt values)
Size="8.%" FontSize />

<LegendFont
Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.5%" />

<AxisLabelFont
Color="#000000"
Name="Tahoma"
Bold="1"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="5.%" />

</General>

<Line

ConnectionShapeSize="1.%" PercentOrPixel
DrawFilledConnectionShapes="1" Bool
DrawOutlineConnectionShapes="0" Bool
DrawSlashConnectionShapes="0" Bool
DrawBackslashConnectionShapes="0" Bool
/>

<Bar

ShowShadow="1" Bool
ShadowColor="#a0a0a0" Color
OutlineColor="#000000" Color
ShowOutline="1" Bool
/>

<Area

Transparency="0" UINT (0-255) 255 is fully transparent, 0 is opaque
OutlineColor="#000000" Color
ShowOutline="1" Bool
/>

<CandleStick

FillHighClose="0" Bool. If 0, the body is left empty. If 1, FillColorHighClose is used for the candle
body

FillColorHighClose="#ffffff" Color. For the candle body when close > open
FillHighOpenWithSeriesColor="1" Bool. If true, the series color is used to fill the candlebody when

open > close
FillColorHighOpen="#000000" Color. For the candle body when open > close and

FillHighOpenWithSeriesColor is false
/>

2162 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

<Colors User-defined color scheme: By default this element is empty except for the style and has no

Color attributes
UseSubsequentColors ="1" Boolean. If 0, then color in overlay is used. If 1, then subsequent colors

from previous chart layer is used
Style="User" Possible values are: "Default", "Grayscale", "Colorful", "Pastel", "User"
Colors="#52aca0" Color: only added for user defined color set
Colors1="#d3c15d" Color: only added for user defined color set
Colors2="#8971d8" Color: only added for user defined color set
...

ColorsN="" Up to ten colors are allowed in a set: from Colors to Colors9
</Colors>

<Pie

ShowLabels="1" Bool
OutlineColor="#404040" Color
ShowOutline="1" Bool
StartAngle="0." Double
Clockwise="1" Bool
Draw2dHighlights="1" Bool
Transparency="0" Int (0 to 255: 0 is opaque, 255 is fully transparent)
DropShadowColor="#c0c0c0" Color
DropShadowSize="5.%" PercentOrPixel
PieHeight="10.%" PercentOrPixel. Pixel values might be different in the result because of 3d tilting
Tilt="40.0" Double (10 to 90: The 3d tilt in degrees of a 3d pie)
ShowDropShadow="1" Bool
ChartToLabelMargin="10.%" PercentOrPixel
AddValueToLabel="0" Bool
AddPercentToLabel="0" Bool
AddPercentToLabels_DecimalDigits="0" UINT (0 – 2)
>

<LabelFont
Color="#000000"
Name="Arial"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="4.%" />

</Pie>

<XY>

<XAxis Axis
AutoRange="1" Bool
AutoRangeIncludesZero="1" Bool
RangeFrom="0." Double: manual range
RangeTill="1." Double : manual range
LabelToAxisMargin="3.%" PercentOrPixel
AxisLabel="" String
AxisColor="#000000" Color
AxisGridColor="#e6e6e6" Color
ShowGrid="1" Bool
UseAutoTick="1" Bool
ManualTickInterval="1." Double

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2163Appendices

Altova XMLSpy 2024 Enterprise Edition

AxisToChartMargin="0.px" PercentOrPixel
TickSize="3.px" PercentOrPixel
ShowTicks="1" Bool
ShowValues="1" Bool
AxisPosition="LeftOrBottom" Enums: "LeftOrBottom", "RightOrTop", "AtValue"
AxisPositionAtValue = "0" Double
>

<ValueFont
Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%" />

</XAxis>

<YAxis Axis (same as for XAxis)
AutoRange="1"
AutoRangeIncludesZero="1"
RangeFrom="0."
RangeTill="1."
LabelToAxisMargin="3.%"
AxisLabel=""
AxisColor="#000000"
AxisGridColor="#e6e6e6"
ShowGrid="1"
UseAutoTick="1"
ManualTickInterval="1."
AxisToChartMargin="0.px"
TickSize="3.px"

ShowTicks="1" Bool
ShowValues="1" Bool
AxisPosition="LeftOrBottom" Enums: "LeftOrBottom", "RightOrTop", "AtValue"
AxisPositionAtValue = "0" Double
>
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</YAxis>
</XY>

<XY3d

AxisAutoSize="1" Bool: If false, XSize and YSize define the aspect ration of x and y axis. If true,
aspect ratio is equal to chart window

XSize="100.%" PercentOrPixel. Pixel values might be different in the result because of 3d tilting and
zooming to fit chart

YSize="100.%" PercentOrPixel. Pixel values might be different in the result because of 3d tilting and
zooming to fit chart

SeriesMargin="30.%" PercentOrPixel. Pixel values might be different in the result because of 3d
tilting and zooming to fit chart

2164 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Tilt="20." Double. -90 to +90 degrees
Rot="20." Double. -359 to +359 degrees
FoV="50."> Double. Field of view: 1-120 degree
>
<ZAxis

AutoRange="1"
AutoRangeIncludesZero="1"
RangeFrom="0."
RangeTill="1."
LabelToAxisMargin="3.%"
AxisLabel=""
AxisColor="#000000"
AxisGridColor="#e6e6e6"
ShowGrid="1"
UseAutoTick="1"
ManualTickInterval="1."
AxisToChartMargin="0.px"
TickSize="3.px" >
<ValueFont

Color="#000000"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="3.%"/>

</ZAxis>
</XY3d>

<Gauge

MinVal="0." Double
MaxVal="100." Double
MinAngle="225" UINT: -359-359
SweepAngle="270" UINT: 1-359
BorderToTick="1.%" PercentOrPixel
MajorTickWidth="3.px" PercentOrPixel
MajorTickLength="4.%" PercentOrPixel
MinorTickWidth="1.px" PercentOrPixel
MinorTickLength="3.%" PercentOrPixel
BorderColor="#a0a0a0" Color
FillColor="#303535" Color
MajorTickColor="#a0c0b0" Color
MinorTickColor="#a0c0b0" Color
BorderWidth="2.%" PercentOrPixel
NeedleBaseWidth="1.5%" PercentOrPixel
NeedleBaseRadius="5.%" PercentOrPixel
NeedleColor="#f00000" Color
NeedleBaseColor="#141414" Color
TickToTickValueMargin="5.%" PercentOrPixel
MajorTickStep="10." Double
MinorTickStep="5." Double
RoundGaugeBorderToColorRange="0.%" PercentOrPixel
RoundGaugeColorRangeWidth ="6.%" PercentOrPixel
BarGaugeRadius="5.%" PercentOrPixel

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2165Appendices

Altova XMLSpy 2024 Enterprise Edition

BarGaugeMaxHeight="20.%" PercentOrPixel
RoundGaugeNeedleLength="45.%" PercentOrPixel
BarGaugeNeedleLength="3.%" PercentOrPixel
>

<TicksFont
Color="#a0c0b0"
Name="Tahoma"
Bold="0"
Italic="0"
Underline="0"
MinFontHeight="10.pt"
Size="4.%"

/>

<ColorRanges> User-defined color ranges. By default empty with no child element entries
<Entry

From="50. " Double
FillWithColor="1" Bool
Color="#00ff00" Color

/>
<Entry

From="50.0"
FillWithColor="1"
Color="#ff0000"

/>
...

</ColorRanges>
</Gauge>

</chart-config>

31.2.1.10.2 Example: Chart Functions

The example XSLT document below shows how Altova extension functions for charts can be used. Given
further below are an XML document and a screenshot of the output image generated when the XML document
is processed with the XSLT document using the XSLT 2.0 or 3.0 Engine.

Note: Chart functions are supported only in the Enterprise and Server Editions of Altova products.

Note: For more information about how chart data tables are created, see the documentation of Altova's
XMLSpy and StyleVision products.

XSLT document
This XSLT document (listing below) uses Altova chart extension functions to generate a pie chart. It can be
used to process the XML document listed further below.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:altovaext="http://www.altova.com/xslt-extensions"

exclude-result-prefixes="#all">

2156

http://www.altova.com
http://www.altova.com

2166 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

<xsl:output version="4.0" method="html" indent="yes" encoding="UTF-8"/>

<xsl:template match="/">

<html>

<head>

<title>

<xsl:text>HTML Page with Embedded Chart</xsl:text>

</title>

</head>

<body>

<xsl:for-each select="/Data/Region[1]">

<xsl:variable name="extChartConfig" as="item()*">

<xsl:variable name="ext-chart-settings" as="item()*">

<chart-config>

<General

SettingsVersion="1"

ChartKind="Pie3d"

BKColor="#ffffff"

ShowBorder="1"

PlotBorderColor="#000000"

PlotBKColor="#ffffff"

Title="{@id}"

ShowLegend="1"

OutsideMargin="3.2%"

TitleToPlotMargin="3.%"

LegendToPlotMargin="6.%"

>

<TitleFont

Color="#023d7d"

Name="Tahoma"

Bold="1"

Italic="0"

Underline="0"

MinFontHeight="10.pt"

Size="8.%" />

</General>

</chart-config>

</xsl:variable>

<xsl:sequence select="altovaext:create-chart-config-from-xml($ext-
chart-settings)"/>

</xsl:variable>

<xsl:variable name="chartDataSeries" as="item()*">

<xsl:variable name="chartDataRows" as="item()*">

<xsl:for-each select="(Year)">

<xsl:sequence select="altovaext:create-chart-data-row((@id),
(.))"/>

</xsl:for-each>

</xsl:variable>

<xsl:variable name="chartDataSeriesNames" as="xs:string*"
select=" (("Series 1"), '')[1]"/>

<xsl:sequence

select="altovaext:create-chart-data-series-from-
rows($chartDataSeriesNames, $chartDataRows)"/>

</xsl:variable>

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2167Appendices

Altova XMLSpy 2024 Enterprise Edition

<xsl:variable name="ChartObj" select="altovaext:create-
chart($extChartConfig, ($chartDataSeries), false())"/>

<xsl:variable name="sChartFileName" select="'mychart1.png'"/>

<img src="{$sChartFileName, altovaext:save-chart-image($ChartObj,
$sChartFileName, 400, 400) }"/>

</xsl:for-each>

</body>

</html>

</xsl:template>
</xsl:stylesheet>

XML document
This XML document can be processed with the XSLT document above. Data in the XML document is used to
generate the pie chart shown in the screenshot below.

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<ChartType>Pie Chart 2D</ChartType>

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

Output image
The pie chart show below is generated when the XML document listed above is processed with the XSLT
document.

2168 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31.2.2 Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are not available
as XQuery/XPath functions or as XSLT functions. A good example would be the math functions available in
Java, such as sin() and cos(). If these functions were available to the designers of XSLT stylesheets and
XQuery queries, it would increase the application area of stylesheets and queries and greatly simplify the tasks
of stylesheet creators. The XSLT and XQuery engines used in a number of Altova products support the use of
extension functions in Java and .NET , as well as MSXSL scripts for XSLT . This section describes
how to use extension functions and MSXSL scripts in your XSLT stylesheets and XQuery documents. The
available extension functions are organized into the following sections:

· Java Extension Functions
· .NET Extension Functions
· MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective libraries are called;
and (ii) what rules are followed for converting arguments in a function call to the required input format of the
function, and what rules are followed for the return conversion (function result to XSLT/XQuery data object).

2169 2177 2183

2169

2177

2183

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2169Appendices

Altova XMLSpy 2024 Enterprise Edition

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions) and .NET
Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine running the XSLT
transformation or XQuery execution, or must be accessible for the transformations.

31.2.2.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java constructor or
call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static or instance.
How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

· Java: Constructors
· Java: Static Methods and Static Fields
· Java: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to Java
· Datatypes: Java to XPath/XQuery

Note the following
· If you are using an Altova desktop product, the Altova application attempts to detect the path to the

Java virtual machine automatically, by reading (in this order): (i) the Windows registry, and (ii) the
JAVA_HOME environment variable. You can also add a custom path in the Options dialog of the

application; this entry will take priority over any other Java VM path detected automatically.
· If you are running an Altova server product on a Windows machine, the path to the Java virtual machine

will be read first from the Windows registry; if this is not successful the JAVA_HOME environment

variable will be used.
· If you are running an Altova server product on a Linux or macOS machine, then make sure that the

JAVA_HOME environment variable is properly set and that the Java Virtual Machines library (on Windows,

the jvm.dll file) can be located in either the \bin\server or \bin\client directory.

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part identifies the extension function as a Java function. It does so by associating the
extension function with an in-scope namespace declaration, the URI of which must begin with java:
(see below for examples). The namespace declaration should identify a Java class, for example:
xmlns:myns="java:java.lang.Math". However, it could also simply be:
xmlns:myns="java" (without a colon), with the identification of the Java class being left to the fname()
part of the extension function.

· The fname() part identifies the Java method being called, and supplies the arguments for the method
(see below for examples). However, if the namespace URI identified by the prefix: part does not
identify a Java class (see preceding point), then the Java class should be identified in the fname() part,
before the class and separated from the class by a period (see the second XSLT example below).

2174

2174

2175

2176

2177

2170 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class name
(java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname() part. In the
second example, the prefix: part supplies the prefix java: while the fname() part identifies the class as well
as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the name of a public
static method in the named Java class (java.lang.Math in the example above).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently according to: (i)
whether the classes are accessed via a JAR file or a class file, and (ii) whether these files (JAR or class) are
located in the current directory (the same directory as the XSLT or XQuery document) or not. How to locate
these files is described in the sections User-Defined Class Files and User-Defined Jar Files . Note that
paths to class files not in the current directory and to all JAR files must be specified.

31.2.2.1.1 User-Defined Class Files

If access is via a class file, then there are four possibilities:

· The class file is in a package. The XSLT or XQuery file is in the same folder as the Java package. (See
example below .)

· The class file is not packaged. The XSLT or XQuery file is in the same folder as the class file. (See
example below .)

· The class file is in a package. The XSLT or XQuery file is at some random location. (See example
below .)

· The class file is not packaged. The XSLT or XQuery file is at some random location. (See example
below .)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or XQuery
document. In this case, since all classes in the folder are found, the file location does not need to be specified.
The syntax to identify a class is:

2170 2173

2171

2171

2172

2172

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2171Appendices

Altova XMLSpy 2024 Enterprise Edition

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the current directory
will be loaded by default)

classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call.

Class file packaged, XSLT/XQuery file in same folder as Java package
The example below calls the getVehicleType()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is also in the folder
JavaProject.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file referenced, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class. Let us say that: (i) the Car class file
is in the following folder: JavaProject/com/altova/extfunc, and (ii) that this folder is the current folder in the
example below. The XSLT file is also in the folder JavaProject/com/altova/extfunc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

2172 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any location. In this case,
the location of the package must be specified within the URI as a query string. The syntax is:

java:classname[?path=uri-of-package]

where

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car?path=file:///C:/JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Class file referenced, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class. Let us say that the Car class file is in
the folder C:/JavaProject/com/altova/extfunc, and the XSLT file is at any location. The location of the
class file must then be specified within the namespace URI as a query string. The syntax is:

java:classname[?path=<uri-of-classfile>]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2173Appendices

Altova XMLSpy 2024 Enterprise Edition

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car?path=file:///C:/JavaProject/com/altova/extfunc/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

31.2.2.1.2 User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the class:
classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class
? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the syntax:

xmlns:ns1="java:docx.layout.pages?path=jar:file:///c:/projects/docs/docx.jar!/"
ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

2174 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />

 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

31.2.2.1.3 Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the pseudo-
function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes , then the Java
extension function will return a sequence that is an XPath/XQuery datatype. If the result of a Java constructor
call cannot be converted to a suitable XPath/XQuery datatype, then the constructor creates a wrapped Java
object with a type that is the name of the class returning that Java object. For example, if a constructor for the
class java.util.Date is called (java.util.Date.new()), then an object having a type java.util.Date is
returned. The lexical format of the returned object may not match the lexical format of an XPath datatype and
the value would therefore need to be converted to the lexical format of the required XPath datatype and then to
the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

· It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())" xmlns:date="java:java.util.Date" />

31.2.2.1.4 Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the method. Static
fields (methods that take no arguments), such as the constant-value fields E and PI, are accessed without
specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

2177

2175

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2175Appendices

Altova XMLSpy 2024 Enterprise Edition

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all three cases is
jMath:, which is associated with the namespace URI java:java.lang.Math. (The namespace URI must
begin with java:. In the examples above it is extended to contain the class name (java.lang.Math).) The
fname() part of the extension functions must match the name of a public class (e.g. java.lang.Math) followed
by the name of a public static method with its argument/s (such as cos(3.14)) or a public static field (such as
PI()).

In the examples above, the class name has been included in the namespace URI. If it were not contained in the
namespace URI, then it would have to be included in the fname() part of the extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

31.2.2.1.5 Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such a Java object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>

 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"

 type="{jlang:Object.toString(jlang:Object.getClass(date:new()))}">

 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the date:new()
constructor).

2176 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object per se that is
passed as an argument to the instance field. Instead, a parameter or variable is passed as the argument.
However, the parameter/variable may itself contain the value returned by a Java object. For example, the
parameter CurrentDate takes the value returned by a constructor for the class java.util.Date. This value is
then passed as an argument to the instance method date:toString in order to supply the value
of /enrollment/@date.

31.2.2.1.6 Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the function's
arguments is important in determining which of multiple Java classes having the same name is called.

In Java, the following rules are followed:

· If there is more than one Java method with the same name, but each has a different number of
arguments than the other/s, then the Java method that best matches the number of arguments in the
function call is selected.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding Java datatype. If the supplied XPath/XQuery type can be converted to more than one
Java type (for example, xs:integer), then that Java type is selected which is declared for the selected
method. For example, if the Java method being called is fx(decimal) and the supplied XPath/XQuery
datatype is xs:integer, then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to Java
datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as
java.lang.Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float,
double(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the Java type/s corresponding to that subtype's ancestor type.

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2177Appendices

Altova XMLSpy 2024 Enterprise Edition

In some cases, it might not be possible to select the correct Java method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error. However, note that in some cases, it might be possible to create the required Java type by using a Java
constructor.

31.2.2.1.7 Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean type, then it is
converted to the corresponding XPath/XQuery type. For example, Java's java.lang.Boolean and boolean
datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional arrays will not be
converted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you can ensure
conversion to the required XPath/XQuery type by first using a Java method (e.g toString) to convert the Java
object to a string. In XPath/XQuery, the string can be modified to fit the lexical representation of the required
type and then converted to the required type (for example, by using the cast as expression).

31.2.2.2 .NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions written in any
of the .NET languages (for example, C#). A .NET extension function can be used within an XPath or XQuery
expression to invoke a constructor, property, or method (static or instance) within a .NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

· .NET: Constructors
· .NET: Static Methods and Static Fields
· .NET: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to .NET
· Datatypes: .NET to XPath/XQuery

2179

2180

2181

2182

2183

2178 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part is associated with a URI that identifies the .NET class being addressed.
· The fname() part identifies the constructor, property, or method (static or instance) within the .NET

class, and supplies any argument/s, if required.
· The URI must begin with clitype: (which identifies the function as being a .NET extension function).
· The prefix:fname() form of the extension function can be used with system classes and with

classes in a loaded assembly. However, if a class needs to be loaded, additional parameters
containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If the
assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and omit the from
parameter.

A question mark must be inserted before the first parameter, and parameters must be separated by a semi-
colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2179Appendices

Altova XMLSpy 2024 Enterprise Edition

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;

ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

2. When the assembly is loaded from the DLL (complete and partial references below):
declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///C:/Altova
Projects/extFunctions/MyManagedDLL.dll;

declare namespace cs="clitype:MyManagedDLL.testClass?from=MyManagedDLL.dll;

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">

 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>

 <pi><xsl:value-of select="math:PI()"/></pi>

 <e><xsl:value-of select="math:E()"/></e>

 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>

 </math>
 </xsl:template>
</xsl:stylesheet>

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies either a
system class or a loaded class. The math: prefix in the XPath expressions associates the extension functions
with the URI (and, by extension, the class) System.Math. The extension functions identify methods in the class
System.Math and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">

 {math:Sqrt(9)}

</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this case a system
class. The XQuery expression identifies the method to be called and supplies the argument.

31.2.2.2.1 .NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the pseudo-
function new(). If there is more than one constructor for a class, then the constructor that most closely

2180 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

matches the number of arguments supplied is selected. If no constructor is deemed to match the supplied
argument/s, then a 'No constructor found' error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes , then the .NET
extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped .NET object with a type that is the name of the class returning that object. For
example, if a constructor for the class System.DateTime is called (with System.DateTime.new()), then an
object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath datatype. In such
cases, the returned value would need to be: (i) converted to the lexical format of the required XPath datatype;
and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

· It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"

xmlns:date="clitype:System.DateTime" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

xmlns:date="clitype:System.DateTime" />
· It can be converted to a string, number, or boolean:
· <xsl:value-of select="xs:integer(date:get_Month(date:new(2008, 4, 29)))"

xmlns:date="clitype:System.DateTime" />

31.2.2.2.2 .NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method. The name used
in the call must exactly match a public static method in the class specified. If the method name and the
number of arguments that were given in the function call matches more than one method in a class, then the
types of the supplied arguments are evaluated for the best match. If a match cannot be found unambiguously,
an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is called using
the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):
<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):

2177

2175

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2181Appendices

Altova XMLSpy 2024 Enterprise Edition

<xsl:value-of select="double:MaxValue()" xmlns:double="clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName()) (System.String()):
<xsl:value-of select="string:get_Length('my string')"
xmlns:string="clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):
<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

31.2.2.2.3 .NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This .NET object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"

 select="date:new(2008, 4, 29)"

 xmlns:date="clitype:System.DateTime"/>

 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a .NET object of
type System.DateTime. This object is created twice, once as the value of the variable releasedate, a second
time as the first and only argument of the System.DateTime.ToString() method. The instance method
System.DateTime.ToString() is called twice, both times with the System.DateTime constructor (new(2008,
4, 29)) as its first and only argument. In one of these instances, the variable releasedate is used to get the
.NET object.

2182 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance method, a .NET
object is directly passed as an argument; in an instance field, a parameter or variable is passed instead—
though the parameter or variable may itself contain a .NET object. For example, in the example above, the
variable releasedate contains a .NET object, and it is this variable that is passed as the argument of
ToString() in the second date element constructor. Therefore, the ToString() instance in the first date
element is an instance method while the second is considered to be an instance field. The result produced in
both instances, however, is the same.

31.2.2.2.4 Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the function's
arguments are important for determining which one of multiple .NET methods having the same name is called.

In .NET, the following rules are followed:

· If there is more than one method with the same name in a class, then the methods available for
selection are reduced to those that have the same number of arguments as the function call.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding .NET datatype. If the supplied XPath/XQuery type can be converted to more than one
.NET type (for example, xs:integer), then that .NET type is selected which is declared for the
selected method. For example, if the .NET method being called is fx(double) and the supplied
XPath/XQuery datatype is xs:integer, then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to .NET
datatypes.

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2183Appendices

Altova XMLSpy 2024 Enterprise Edition

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error.

31.2.2.2.5 Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean type, then it
is converted to the corresponding XPath/XQuery type. For example, .NET's decimal datatype is converted to
xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can ensure conversion
to the required XPath/XQuery type by first using a .NET method (for example System.DateTime.ToString())
to convert the .NET object to a string. In XPath/XQuery, the string can be modified to fit the lexical
representation of the required type and then converted to the required type (for example, by using the cast as
expression).

31.2.2.3 MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called from within
XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level element, that is, it must be a
child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt (see example
below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's language attribute
and the namespace to be used for function calls from XPath expressions is identified with the implements-
prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

2184 Appendices XSLT and XPath/XQuery Functions

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages that are
installed on your machine may be used within the <msxsl:script> element. The .NET Framework 2.0
platform or higher must be installed for MSXSL scripts to be used. Consequently, the .NET scripting
languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML <script> element. If
the language attribute is not specified, then Microsoft JScript is assumed as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace. This
namespace typically will be a user namespace that has been reserved for a function library. All functions and
variables defined within the <msxsl:script> element will be in the namespace identified by the prefix specified
in the implements-prefix attribute. When a function is called from within an XPath expression, the fully
qualified function name must be in the same namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a <msxsl:script>
element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">

 <![CDATA[

 ' Input: A currency value: the wholesale price

 ' Returns: The retail price: the input value plus 20% margin,

 ' rounded to the nearest cent

 dim a as integer = 13

 Function AddMargin(WholesalePrice) as integer

 AddMargin = WholesalePrice * 1.2 + a

 End Function

]]>

 </msxsl:script>

 <xsl:template match="/">

 <html>

 <body>

 <p>

 Total Retail Price =

 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =

 $<xsl:value-of select="50"/>

 </p>

 </body>

 </html>

© 2018-2024 Altova GmbH

XSLT and XPath/XQuery Functions 2185Appendices

Altova XMLSpy 2024 Enterprise Edition

 </xsl:template>

</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes. This restriction
does not apply to data passed among functions and variables within the script block.

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The assembly is identified

via a name or a URI. The assembly is imported when the stylesheet is compiled. Here is a simple
representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes to be written in

the script without their namespaces, thus saving you some tedious typing. Here is how the msxsl:using
element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

The value of the namespace attribute is the name of the namespace.

2186 Appendices Datatypes in DB-Generated XML Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31.3 Datatypes in DB-Generated XML Schemas

When an XML Schema is generated from a database (DB), the datatypes specific to that DB are converted to
XML Schema datatypes. The mappings of DB datatypes to XML Schema datatypes for commonly used DBs
are given in this Appendix. Select from the list below.

· ADO
· MS Access
· MS SQL Server
· MySQL
· ODBC
· Oracle
· Sybase

31.3.1 ADO

When an XML Schema is generated from an ADO database (DB), the ADO DB datatypes are converted to XML
Schema datatypes as listed in the table below.

ADO Datatype XML Schema Datatype

adGUID xs:ID

adChar xs:string

adWChar xs:string

adVarChar xs:string

adWVarChar xs:string

adLongVarChar xs:string

adWLongVarChar xs:string

adVarWChar xs:string

adBoolean xs:boolean

adSingle xs:float

adDouble xs:double

adNumeric xs:decimal

adCurrency xs:decimal

adDBTimeStamp xs:dateTime

adDate xs:date

adBinary xs:base64Binary

adVarBinary xs:base64Binary

2186

2187

2188

2188

2189

2190

2191

© 2018-2024 Altova GmbH

Datatypes in DB-Generated XML Schemas 2187Appendices

Altova XMLSpy 2024 Enterprise Edition

adLongVarBinary xs:base64Binary

adInteger xs:Integer

adUnsignedInt xs:unsignedInt

adSmallInt xs:short

adUnsignedSmallInt xs:unsignedShort

adBigInt xs:long

adUnsignedBigInt xs:unsignedLong

adTinyInt xs:byte

adUnsignedTinyInt xs:unsignedByte

31.3.2 MS Access

When an XML Schema is generated from an MS Access database (DB), the MS Access DB datatypes are
converted to XML Schema datatypes as listed in the table below.

MS Access Datatype XML Schema Datatype

GUID xs:ID

char xs:string

varchar xs:string

memo xs:string

bit xs:boolean

Number(single) xs:float

Number(double) xs:double

Decimal xs:decimal

Currency xs:decimal

Date/Time xs:dateTime

Number(Long Integer) xs:integer

Number(Integer) xs:short

Number(Byte) xs:byte

OLE Object xs:base64Binary

2188 Appendices Datatypes in DB-Generated XML Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31.3.3 MS SQL Server

When an XML Schema is generated from an MS SQL Server database (DB), the MS SQL Server DB datatypes
are converted to XML Schema datatypes as listed in the table below.

MS SQL Server Datatype XML Schema Datatype

uniqueidentifier xs:ID

char xs:string

nchar xs:string

varchar xs:string

nvarchar xs:string

text xs:string

ntext xs:string

sysname xs:string

bit xs:boolean

real xs:float

float xs:double

decimal xs:decimal

money xs:decimal

smallmoney xs:decimal

datetime xs:dateTime

smalldatetime xs:dateTime

binary xs:base64Binary

varbinary xs:base64Binary

image xs:base64Binary

integer xs:integer

smallint xs:short

bigint xs:long

tinyint xs:byte

31.3.4 MySQL

When an XML Schema is generated from a MySQL database (DB), the MySQL DB datatypes are converted to
XML Schema datatypes as listed in the table below.

© 2018-2024 Altova GmbH

Datatypes in DB-Generated XML Schemas 2189Appendices

Altova XMLSpy 2024 Enterprise Edition

MySQL Datatype XML Schema Datatype

char xs:string

varchar xs:string

text xs:string

tinytext xs:string

mediumtext xs:string

longtext xs:string

tinyint(1) xs:boolean

float xs:float

double xs:double

decimal xs:decimal

datetime xs:dateTime

blob xs:base64Binary

tinyblob xs:base64Binary

mediumblob xs:base64Binary

longblob xs:base64Binary

smallint xs:short

bigint xs:long

tinyint xs:byte

31.3.5 ODBC

When an XML Schema is generated from an ODBC database (DB), the ODBC DB datatypes are converted to
XML Schema datatypes as listed in the table below.

ODBC Datatype XML Schema Datatype

SQL_GUID xs:ID

SQL_CHAR xs:string

SQL_VARCHAR xs:string

SQL_LONGVARCHAR xs:string

SQL_BIT xs:boolean

SQL_REAL xs:float

2190 Appendices Datatypes in DB-Generated XML Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

SQL_DOUBLE xs:double

SQL_DECIMAL xs:decimal

SQL_TIMESTAMP xs:dateTime

SQL_DATE xs:date

SQL_BINARY xs:base64Binary

SQL_VARBINARY xs:base64Binary

SQL_LONGVARBINARY xs:base64Binary

SQL_INTEGER xs:integer

SQL_SMALLINT xs:short

SQL_BIGINT xs:long

SQL_TINYINT xs:byte

31.3.6 Oracle

When an XML Schema is generated from an Oracle database (DB), the Oracle DB datatypes are converted to
XML Schema datatypes as listed in the table below.

Oracle Datatype XML Schema Datatype

ROWID xs:ID

CHAR xs:string

NCHAR xs:string

VARCHAR2 xs:string

NVARCHAR2 xs:string

CLOB xs:string

NCLOB xs:string

NUMBER (with check
constraint applied)*

xs:boolean

NUMBER xs:decimal

FLOAT xs:double

DATE xs:dateTime

INTERVAL YEAR TO MONTH xs:gYearMonth

BLOB xs:base64Binary

* If a check constraint is applied to a column of datatype NUMBER, and the check constraint checks for

© 2018-2024 Altova GmbH

Datatypes in DB-Generated XML Schemas 2191Appendices

Altova XMLSpy 2024 Enterprise Edition

the values 0 or 1, then the NUMBER datatype for this column will be converted to an XML Schema
datatype of xs:boolean. This mechanism is useful for generating an xs:boolean datatype in the
generated XML Schema.

31.3.7 Sybase

When an XML Schema is generated from a Sybase database (DB), the Sybase DB datatypes are converted to
XML Schema datatypes as listed in the table below.

Sybase Datatype XML Schema Datatype

char xs:string

nchar xs:string

varchar xs:string

nvarchar xs:string

text xs:string

sysname-varchar(30) xs:string

bit xs:boolean

real xs:float

float xs:float

double xs:double

decimal xs:decimal

money xs:decimal

smallmoney xs:decimal

datetime xs:dateTime

smalldatetime xs:dateTime

timestamp xs:dateTime

binary<=255 xs:base64Binary

varbinary<=255 xs:base64Binary

image xs:base64Binary

integer xs:integer

smallint xs:short

tinyint xs:byte

2192 Appendices Datatypes in DBs Generated from XML Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31.4 Datatypes in DBs Generated from XML Schemas

When a DB structure is created from an XML Schema, the datatypes specific to that DB are generated from
XML Schema datatypes. The mappings of XML Schema datatypes to DB datatypes for commonly used DBs
are given in this Appendix. Select from the list below.

· MS Access
· MS SQL Server
· MySQL
· Oracle

31.4.1 MS Access

When an MS Access database (DB) is created from an XML Schema, the XML Schema datatypes are
converted to MS Access datatypes as listed in the table below.

XML Schema Datatype MS Access Datatype

xs:ID GUID

xs:string If no facets varchar (255)

Size = either length or maxLength

If Size <= 255 varchar (n)

else memo

xs:normalizedString Same as xs:string

xs:token Same as xs:string

xs:Name Same as xs:string

xs:NCName Same as xs:string

xs:anyURI Same as xs:string

xs:QName Same as xs:string

xs:NOTATION Same as xs:string

xs:boolean bit

xs:float Number (single)

xs:double Number (double)

xs:decimal Decimal

xs:duration Date/Time

xs:dateTime Date/Time

2192

2193

2195

2197

© 2018-2024 Altova GmbH

Datatypes in DBs Generated from XML Schemas 2193Appendices

Altova XMLSpy 2024 Enterprise Edition

xs:time Date/Time

xs:date Date/Time

xs:gYearMonth Date/Time

xs:gYear Date/Time

xs:gMonthDay Date/Time

xs:gDay Date/Time

xs:gMonth Date/Time

xs:hexBinary If no facets varbinary (255)

Size = either length or maxLength

If Size <= 8000 varbinary

else image (OLE Object)

xs:base64Binary Same as xs:hexBinary

xs:integer Number (Long Integer)

xs:int Number (Long Integer)

xs:negativeInteger Number (Long Integer); value constraint

xs:positiveInteger Number (Long Integer); value constraint

xs:nonNegativeInteger Number (Long Integer); value constraint

xs:nonPositiveInteger Number (Long Integer); value constraint

xs:unsignedInt Number (Long Integer)

xs:short -- no equivalent --

xs:unsignedShort -- no equivalent --

xs:long -- no equivalent --

xs:unsignedLong -- no equivalent --

xs:byte Number (Byte)

xs:unsignedByte Number (Byte)

31.4.2 MS SQL Server

When an XML Schema is generated from an MS SQL Server database (DB), the MS SQL Server DB datatypes
are converted to XML Schema datatypes as listed in the table below.

XML Schema Datatype MS SQL Server Datatype

ID uniqueidentifier

2194 Appendices Datatypes in DBs Generated from XML Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

xs:string If no facets

{ if UNICODE nvarchar (255)

else varchar (255) }

else

{ if UNICODE

(Size = either length or maxLength)

If Size <= 4000

if FacetLengthIsSet then nChar

else nVarChar

if Size <= 1073741823 then nText }

else

{ if NON-UNICODE

(Size = either length or maxLength)

If Size <= 8000

if FacetLengthIsSet then char

else varchar

if Size <= 2147483647 then text }

xs:normalizedString Same as xs:string

xs:token Same as xs:string

xs:Name Same as xs:string

xs:NCName Same as xs:string

xs:anyURi Same as xs:string

xs:QName Same as xs:string

xs:NOTATION Same as xs:string

xs:boolean bit

xs:float real

xs:double float

xs:decimal decimal

xs:duration datetime

xs:dateTime datetime

xs:time datetime

xs:date datetime

© 2018-2024 Altova GmbH

Datatypes in DBs Generated from XML Schemas 2195Appendices

Altova XMLSpy 2024 Enterprise Edition

xs:gYearMonth datetime

xs:gYear datetime

xs:gMonthDay datetime

xs:gDay datetime

xs:gMonth datetime

xs:hexBinary If no facets varbinary (255)

(Size = either length or maxLength

If Size <= 8000

if FacetLengthIsSet then binary

else varbinary

if Size <= 2147483647 then image

xs:base64Binary Same as xs:hexBinary

xs:integer int

xs:int int

xs:negativeInteger Int (constrained to {...,-2,-1})

xs:positiveInteger Int (constrained to {1,2,...})

xs:nonNegativeInteger int (constrained to {0,1,2,...})

xs:nonPositiveInteger int (constrained to {...,-2,-1,0})

xs:unsignedInt int (additional constraints)

xs:short smallint

xs:unsignedShort smallint (additional constraints)

xs:long bigint

xs:unsignedLong bigint (additional constraints)

xs:byte tinyint

xs:unsignedByte tinyint (additional constraints)

31.4.3 MySQL

When an XML Schema is generated from a MySQL database (DB), the MySQL DB datatypes are converted to
XML Schema datatypes as listed in the table below.

XML Schema Datatype MySQL Datatype

xs:ID varchar(255)

2196 Appendices Datatypes in DBs Generated from XML Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

xs:string If no facets then varchar (255)

else if facet length is set and <= 255
then char

else if facet maxLength set and <= 255
then varchar

else if maxLength is set and <= 65545
then text

else if maxlength is set and <= 16777215
then mediumtext

else if maxlength is set and <= 429496295
then longtext

xs:normalizedString Same as xs:string

xs:token Same as xs:string

xs:Name Same as xs:string

xs:NCName Same as xs:string

xs:anyURI Same as xs:string

xs:QName Same as xs:string

xs:NOTATION Same as xs:string

xs:boolean tinyint(1)

xs:float float

xs:double double

xs:decimal decimal

xs:duration timestamp

xs:dateTime datetime

xs:time time

xs:date date

xs:gYearMonth timestamp(4)

xs:gYear year(4)

xs:gMonthDay timestamp(8); constraints to check month, day

xs:gDay timestamp(8); constraints to check day

xs:gMonth timestamp(8); constraints to check month

xs:hexBinary If no facets then blob (255)

else if facet length is set and <= 255
then blob

© 2018-2024 Altova GmbH

Datatypes in DBs Generated from XML Schemas 2197Appendices

Altova XMLSpy 2024 Enterprise Edition

else if facet maxLength is set and <= 255
then tinyblob

else if maxlength is set and <= 65545
then blob

else if maxlength is set and <= 16777215
then mediumblob

else if maxlength is set and <= 429496295
then longblob

xs:base64Binary Same as xs:hexBinary

xs:integer Integer

xs:int int

xs:negativeInteger Integer (constrained to {...,-2,-1})

xs:positiveInteger Integer (constrained to {1,2,...})

xs:nonNegativeInteger Integer (constrained to {0,1,2,...})

xs:nonPositiveInteger Integer (constrained to {...,-2,-1,0})

xs:unsignedInt Int (additional constraints)

xs:short Smallint

xs:unsignedShort Smallint (additional constraints)

xs:long Bigint

xs:unsignedLong Bigint (additional constraints)

xs:byte Tinyint

xs:unsignedByte Tinyint (additional constraints)

31.4.4 Oracle

When an XML Schema is generated from an Oracle database (DB), the Oracle DB datatypes are converted to
XML Schema datatypes as listed in the table below.

XML Schema Datatype Oracle Datatype

xs:ID ROWID

xs:string If no facets

if UNICODE then NVARCHAR2 (255)

else VARCHAR2 (255)

else if UNICODE

(Size = either length or maxLength)

2198 Appendices Datatypes in DBs Generated from XML Schemas

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If Size <= 2000 then NCHAR

if Size <= 4000 then NVARHCAR2

if Size <= 4 Gigabytes then NCLOB

else if NON-UNICODE

(Size = either length or maxLength)

If Size <= 2000 then CHAR

if Size <= 4000 then VARCHAR2

if Size <= 4 Gigabytes then CLOB

xs:normalizedString Same as xs:string

xs:token Same as xs:string

xs:Name Same as xs:string

xs:NCName Same as xs:string

xs:anyURI Same as xs:string

xs:QName Same as xs:string

xs:NOTATION Same as xs:string

xs:boolean NUMBER with constraint Boolean

xs:float FLOAT

xs:double FLOAT

xs:decimal NUMBER

xs:duration TIMESTAMP

xs:dateTime TIMESTAMP

xs:time DATE

xs:date DATE

xs:gYearMonth INTERVAL YEAR TO MONTH

xs:gYear DATE

xs:gMonthDay DATE

xs:gDay DATE

xs:gMonth DATE

xs:hexBinary if no facets then RAW (255)

(Size = either length or maxLength)

If Size <= 2000 then RAW (X)

else Size <= 2 Gigabytes then LONG RAW (X)

© 2018-2024 Altova GmbH

Datatypes in DBs Generated from XML Schemas 2199Appendices

Altova XMLSpy 2024 Enterprise Edition

if Size <= 4 Gigabytes then BLOB (X)

xs:base64Binary BLOB

xs:integer NUMBER

xs:int NUMBER

xs:negativeInteger NUMBER (constrained to {...,-2,-1})

xs:positiveInteger NUMBER (constrained to {1,2,...})

xs:nonNegativeInteger NUMBER (constrained to {0,1,2,...})

xs:nonPositiveInteger NUMBER (constrained to {...,-2,-1,0})

xs:unsignedInt NUMBER (additional constraints)

xs:short NUMBER

xs:unsignedShort NUMBER (additional constraints)

xs:long NUMBER

xs:unsignedLong NUMBER (additional constraints)

xs:byte BLOB

xs:unsignedByte BLOB (additional constraints)

2200 Appendices Technical Data

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31.5 Technical Data

This section contains information on some technical aspects of your software. This information is organized
into the following sections:

· OS and Memory Requirements
· Altova Engines
· Unicode Support
· Internet Usage

31.5.1 OS and Memory Requirements

Operating System
Altova software applications are available for the following platforms:

· Windows 10, Windows 11
· Windows Server 2016 or newer

Memory
Since the software is written in C++ it does not require the overhead of a Java Runtime Environment and
typically requires less memory than comparable Java-based applications. However, each document is loaded
fully into memory so as to parse it completely and to improve viewing and editing speed. As a result, the
memory requirement increases with the size of the document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly cutting and pasting
large selections in large documents, available memory can rapidly be depleted.

31.5.2 Altova Engines

XML Validator
When opening an XML document, the application uses its built-in XML validator to check for well-formedness,
to validate the document against a schema (if specified), and to build trees and infosets. The XML validator is
also used to provide intelligent editing help while you edit documents and to dynamically display any validation
error that may occur.

The built-in XML validator implements the Final Recommendation of the W3C's XML Schema 1.0 and 1.1
specifications. New developments recommended by the W3C's XML Schema Working Group are continuously
being incorporated in the XML validator, so that Altova products give you a state-of-the-art development
environment.

XSLT and XQuery Engines
Altova products use the Altova XSLT 1.0, 2.0, and 3.0 Engines and the Altova XQuery 1.0 and 3.1 Engines. If
one of these engines is included in the product, then documentation about implementation-specific behavior for
each engine is given in the appendices of the documentation.

2200

2200

2201

2201

© 2018-2024 Altova GmbH

Technical Data 2201Appendices

Altova XMLSpy 2024 Enterprise Edition

Note: Altova MapForce generates code using the XSLT 1.0, 2.0 and XQuery 1.0 engines.

31.5.3 Unicode Support

Altova's XML products provide full Unicode support. To edit an XML document, you will also need a font that
supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and are therefore
typically targeted at the corresponding writing system. If some text appears garbled, the reason could be that
the font you have selected does not contain the required glyphs. So it is useful to have a font that covers the
entire Unicode range, especially when editing XML documents in different languages or writing systems. A
typical Unicode font found on Windows PCs is Arial Unicode MS.

In the /Examples folder of your application folder you will find an XHTML file called UnicodeUTF-8.html that
contains the following sentence in a number of different languages and writing systems:

· When the world wants to talk , it speaks Unicode
· Wenn die Welt miteinander spricht, spricht sie Unicode

·)

Opening this XHTML file will give you a quick impression of Unicode's possibilities and also indicate what
writing systems are supported by the fonts available on your PC.

31.5.4 Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

· If you click the "Request evaluation key-code" in the Registration dialog (Help | Software Activation),
the three fields in the registration dialog box are transferred to our web server by means of a regular
http (port 80) connection and the free evaluation key-code is sent back to the customer via regular
SMTP e-mail.

· In some Altova products, you can open a file over the Internet (File | Open | Switch to URL). In this
case, the document is retrieved using one of the following protocol methods and connections: HTTP
(normally port 80), FTP (normally port 20/21), HTTPS (normally port 443). You could also run an HTTP
server on port 8080. (In the URL dialog, specify the port after the server name and a colon.)

· If you open an XML document that refers to an XML Schema or DTD and the document is specified
through a URL, the referenced schema document is also retrieved through a HTTP connection (port 80)
or another protocol specified in the URL (see Point 2 above). A schema document will also be retrieved
when an XML file is validated. Note that validation might happen automatically upon opening a
document if you have instructed the application to do this (in the File tab of the Options dialog (Tools |
Options)).

· In Altova applications using WSDL and SOAP, web service connections are defined by the WSDL
documents.

· If you are using the Send by Mail command (File | Send by Mail) in XMLSpy, the current selection
or file is sent by means of any MAPI-compliant mail program installed on the user's PC.

· As part of Software Activation and LiveUpdate as further described in the Altova Software License
Agreement.

2202 Appendices License Information

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

31.6 License Information

This section contains information about:

· the distribution of this software product
· software activation and license metering
· the license agreement governing the use of this product

Please read this information carefully. It is binding upon you since you agreed to these terms when you
installed this software product.

To view the terms of any Altova license, go to the Altova Legal Information page at the Altova website.

31.6.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that provides the
following unique benefits:

· You can evaluate the software free-of-charge for 30 days before making a purchasing decision. (Note:
Altova MobileTogether Designer is licensed free of charge.)

· Once you decide to buy the software, you can place your order online at the Altova website and get a
fully licensed product within minutes.

· When you place an online order, you always get the latest version of our software.
· The product package includes an onscreen help system that can be accessed from within the

application interface. The latest version of the user manual is available at www.altova.com in (i) HTML
format for online browsing, and (ii) PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge. About 20 days
into the evaluation period, the software will start to remind you that it has not yet been licensed. The reminder
message will be displayed once each time you start the application. If you would like to continue using the
program after the 30-day evaluation period, you must purchase a product license, which is delivered in the form
of a license file containing a key code. Unlock the product by uploading the license file in the Software
Activation dialog of your product.

You can purchase product licenses at https://shop.altova.com/.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to use it on a PC that
is not connected to the Internet, you may distribute only the installer file, provided that this file is not modified in
any way. Any person who accesses the software installer that you have provided must request their own 30-
day evaluation license key code and after expiration of their evaluation period, must also purchase a license in
order to be able to continue using the product.

https://www.altova.com/legal
https://www.altova.com/
https://shop.altova.com/
https://www.altova.com/documentation
https://shop.altova.com/

© 2018-2024 Altova GmbH

License Information 2203Appendices

Altova XMLSpy 2024 Enterprise Edition

31.6.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet connection for
the purpose of transmitting license-related data at the time of installation, registration, use, or update to an
Altova-operated license server and validating the authenticity of the license-related data in order to protect
Altova against unlicensed or illegal use of the software and to improve customer service. Activation is based on
the exchange of license related data such as operating system, IP address, date/time, software version, and
computer name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any unintentional
violation of the End User License Agreement. Your product is licensed either as a single-user or multi-user
installation, and the license-metering module makes sure that no more than the licensed number of users use
the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between instances of the
application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a short broadcast
datagram to find any other instance of the product running on another computer in the same network segment.
If it doesn't get any response, it will open a port for listening to other instances of the application.

Multi-user license
If more than one instance of the application is used within the same LAN, these instances will briefly
communicate with each other on startup. These instances exchange key-codes in order to help you to better
determine that the number of concurrent licenses purchased is not accidentally violated. This is the same kind
of license metering technology that is common in the Unix world and with a number of database development
tools. It allows Altova customers to purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as to not put a
burden on your network. The TCP/IP ports (2799) used by your Altova product are officially registered with the
IANA (see the IANA Service Name Registry for details) and our license-metering module is tested and proven
technology.

If you are using a firewall, you may notice communications on port 2799 between the computers that are
running Altova products. You are, of course, free to block such traffic between different groups in your
organization, as long as you can ensure by other means, that your license agreement is not violated.

Note about certificates
Your Altova application contacts the Altova licensing server (link.altova.com) via HTTPS. For this
communication, Altova uses a registered SSL certificate. If this certificate is replaced (for example, by your IT
department or an external agency), then your Altova application will warn you about the connection being
insecure. You could use the replacement certificate to start your Altova application, but you would be doing this
at your own risk. If you see a Non-secure connection warning message, check the origin of the certificate and
consult your IT team (who would be able to decide whether the interception and replacement of the Altova
certificate should continue or not).

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

2204 Appendices License Information

© 2018-2024 Altova GmbHAltova XMLSpy 2024 Enterprise Edition

If your organization needs to use its own certificate (for example, to monitor communication to and from client
machines), then we recommend that you install Altova's free license management software, Altova
LicenseServer, on your network. Under this setup, client machines can continue to use your organization's
certificates, while Altova LicenseServer can be allowed to use the Altova certificate for communication with
Altova.

31.6.3 Altova End-User License Agreement

· The Altova End-User License Agreement is available here: https://www.altova.com/legal/eula
· Altova's Privacy Policy is available here: https://www.altova.com/privacy

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver
https://www.altova.com/legal/eula
https://www.altova.com/privacy

© 2018-2024 Altova GmbH

Index 2205

Index

$
$ref (JSON Schemas), 670

.

.docx, 318, 890

.NET,

and XMLSpy Debuggers, 1073

differences to XMLSpy standalone, 1071

integration of XMLSpy with, 1069

.NET extension functions,

constructors, 2179

datatype conversions (.NET to XPath/XQuery), 2183

datatype conversions (XPath/XQuery to .NET), 2182

for XSLT and XQuery, 2177

instance methods, instance fields, 2181

overview, 2177

static methods, static fields, 2180

.pptx, 318, 890

.xslx, 318, 890

A
AAIDC pane, 252

Activating the software, 1566

Active configuration,

for global resources, 1490

ActiveX,

integration at application level, 2010

integration at document level, 2012

integration prerequisites, 2007

ActiveX controls,

adding to the Visual Studio Toolbox, 2008

support, 1602

Add Child command,

in Grid View, 1266

ADO,

as data connection interface, 904

setting up a connection, 910

ADO.NET,

setting up a connection, 916

AI-Assistant,

OpenAI API key for, 1561

Alias,

see Global Resources, 991

Altova extensions,

chart functions (see chart functions), 2080

Altova Global Resources,

see under Global Resources, 991

Altova products, 133

Altova support, 133

Altova XML Parser,

about, 2200

Annotations in Schema View, 223

API,

documentation, 1616

JAVA, 1956

JAVA Classpath, 1956

overview, 1617

Append,

row (in Authentic View), 1352

Append command,

in Grid View, 1266

Application,

ActiveDocument, 1658

AddMacroMenuItem, 1658

AddXSLT_XQParameter, 1658

Application, 1659

ClearMacroMenu, 1659

CurrentProject, 1660

Dialogs, 1660

Documents, 1660

GetDatabaseImportElementList, 1661

GetDatabaseSettings, 1662

GetDatabaseTables, 1662

GetExportSettings, 1663

GetTextImportElementList, 1663

GetTextImportExportSettings, 1664

GetXSLT_XQParameterCount, 1664

GetXSLT_XQParameterName, 1664

GetXSLT_XQParameterXPath, 1665

ImportFromDatabase, 1665

ImportFromSchema, 1666

ImportFromText, 1667

ImportFromWord, 1668

NewProject, 1669

Index

© 2018-2024 Altova GmbH

2206

Application,

OnBeforeOpenDocument, 1655

OnBeforeOpenProject, 1656

OnDocumentOpened, 1657

OnProjectOpened, 1657

OpenProject, 1669

Parent, 1670

Quit, 1670

ReloadSettings, 1670

RemoveXSLT_XQParameter, 1671

RunMacro, 1671

ScriptingEnvironment, 1671

ShowApplication, 1672

ShowForm, 1672

URLDelete, 1673

URLMakeDirectory, 1673

WarningNumber, 1674

WarningText, 1674

Apply, 1513

Archive View, 318, 890

and EPUB files, 898

and OOXML files, 892

and ZIP files, 896

Arcroles in XBRL, 1447

area chart features, 380

Assertion messages, 278

Assertions in Schema View, 252, 256

Assertions of simple types, 273

Assign,

shortcut to a command, 1500

Assigning StyleVision Power Stylesheet to XML file,
1345

ATL,

plug-in sample files, 1605

Attribute, 73

in schema definitions, 73

toggle in Content model view, 73

Attribute groups in Schema View, 253

Attribute preview, 1528

Attribute value templates,

XPath intelligent editing in, 483

Attribute values,

entering in Authentic View, 595

AttributeFormDefault,

settings in Schema Design View, 1303

Attributes, 223

Attributes entry helper,

in Authentic View, 604

Attributes in Schema View, 252, 253

Authentic menu, 1343

dynamic table editing, 599

markup display, 599

Authentic Scripting,

security settings, 1353

trusted locations, 1353

Authentic View, 617

adding nodes, 590

applying elements, 590

CDATA sections in, 593

clearing elements, 590

context menu, 587

context menus, 608

data entry devices in, 593

displaying markup tags, 587

document display, 602

editing data in an XML DB, 1346

editing DB data in, 1345

editing XML in, 331

entering attribute values, 595

entering data in, 593

entities in, 593

entry helpers, 587

entry helpers in, 604

formating text in, 599

generating output documents from PXF file, 1353

inserting entities in, 596

inserting nodes, 590

main window in, 602

markup display in, 599, 602

markup in, 1351, 1352

opening an XML document in, 586

opening new XML file in, 1344

overview of GUI, 598

paste as XML/Text, 608

printing an XML document from, 597

removing nodes, 590

special characters in, 593

SPS Tables, 616

switching to, 1417

tables (SPS and XML), 616

tables in, 590

toolbar icons, 599

usage of important features, 611

usage of XML tables, 617

XML table icons, 621

XML tables, 617

© 2018-2024 Altova GmbH

Index 2207

Authentic View template, 586

Authentic XML, 583

AuthenticDataTransfer,

dropEffect, 1677

getData, 1677

ownDrag, 1677

type, 1678

AuthenticRange,

AppendRow, 1683

Application, 1684

CanPerformAction, 1684

CanPerformActionWith, 1684

Close, 1685

CollapsToBegin, 1685

CollapsToEnd, 1685

Copy, 1686

Cut, 1686

Delete, 1686

DeleteRow, 1687

DuplicateRow, 1687

ExpandTo, 1688

FirstTextPosition, 1688

FirstXMLData, 1689

FirstXMLDataOffset, 1690

GetElementAttributeNames, 1691

GetElementAttributeValue, 1692

GetElementHierarchy, 1692

GetEntityNames, 1693

Goto, 1694

GotoNext, 1694

GotoNextCursorPosition, 1695

GotoPrevious, 1696

GotoPreviousCursorPosition, 1696

HasElementAttribute, 1697

InsertEntity, 1697

InsertRow, 1698

IsCopyEnabled, 1698

IsCutEnabled, 1699

IsDeleteEnabled, 1699

IsEmpty, 1699

IsEqual, 1699

IsFirstRow, 1700

IsInDynamicTable, 1700

IsLastRow, 1700

IsPasteEnabled, 1700

IsTextStateApplied, 1701

LastTextPosition, 1701

LastXMLData, 1702

LastXMLDataOffset, 1703

MoveBegin, 1704

MoveEnd, 1704

MoveRowDown, 1705

MoveRowUp, 1705

Parent, 1705

Paste, 1705

PerformAction, 1706

Select, 1707

SelectNext, 1707

SelectPrevious, 1708

SetElementAttributeValue, 1709

SetFromRange, 1710

Text, 1710

AuthenticView, 1729

Application, 1721

AsXMLString, 1721

DocumentBegin, 1723

DocumentEnd, 1723

Event, 1724

Goto, 1725

IsRedoEnabled, 1726

IsUndoEnabled, 1726

MarkupVisibility, 1727

OnBeforeCopy, 1712

OnBeforeCut, 1713

OnBeforeDelete, 1713

OnBeforeDrop, 1714

OnBeforePaste, 1715

OnDragOver, 1715

OnKeyboardEvent, 1717

OnMouseEvent, 1718

OnSelectionChanged, 1718

Parent, 1727

Print, 1727

Redo, 1728

Selection, 1728

Undo, 1729

WholeDocument, 1730

XMLDataRoot, 1730

Auto-complete,

text view enable/disable, 1520

Auto-completion in SQL scripts, 1364

Auto-hiding windows, 113

Automatic Backup, 137

Automatic backup settings, 1514

Automatic validation, 1516

Avro,

Index

© 2018-2024 Altova GmbH

2208

Avro,

and RaptorXML, 714

data structures in binary, 720

data structures in JSON, 719

file types, 714

overview, 714

Avro binary files, 720

Avro Schema, 646

description, 716

terminology, 716

Avro View, 720

Azure SQL, 957

B
Back,

in Schema View, 288

Background Information, 2200

Backups, 137

bar chart features, 380

Base type,

modifying, 281

Base64-encoded images, 196

Big-endian, 1519

Bookmark margin, 1420

Bookmarks,

inserting and removing, 1233

navigating, 1233

Bookmarks in SQL scripts, 1364

Bookmarks in Text View, 142

Breakpoint,

dialog box, 1340

Breakpoints,

using in SOAP debugger, 757

using in XSLT/XQuery Debugger, 528

Breakpoints dialog, 526

Breakpoints in XPath/XQuery Debugger, 567

Browse,

Oracle XML Db, 1382

Browser, 1528

View, 1417

Browser pane,

in Database Query window, 1360

Browser View,

font size, 1422

moving back and forward, 1422

refresh content of, 1422

separate windows, 1422

stop loading page, 1422

BSON in MongoDB, 690

BSON schema editing, 690

Builder Mode, 575

Built-in templates,

in XSLT/XQuery Debugger, 538

C
C#,

integration of XMLSpy, 2015

reference to generated classes, 1145

C++,

reference to generated classes, 1130

Call stack (XPath/XQuery), 567

Call Stack Window,

in XSLT/XQuery Debugger, 538

Callgraph profiling, 543

Calling named templates, 489

candlestick chart features, 380

Carriage return key,

see Enter key, 635

Catalog,

Oasis XML, 1269

Catalog customization, 453

Catalog mechanism overview, 451

Catalogs, 451

Catalogs and envirnment variables, 455

Catalogs and intelligent editing, 453

Catalogs in XMLSpy, 452

CDATA sections,

inserting in Authentic View, 611

Certificate stores, 414

Certificates, 414

Changing view,

to Authentic View, 599

Character,

position, 1419

Character-Set,

encoding, 1519

Chart data table,

how it is constructed, 348

Chart functions,

chart data structure for, 2160

© 2018-2024 Altova GmbH

Index 2209

Chart functions,

example, 2165

listing, 2156

Charts,

3d settings, 391

adding legend, 378

appearance, 369

area chart features, 380

background color, 378

bar chart features, 380

candlestick chart features, 380

chart data, 364

chart settings, 366

color range, 384

color schema, 384

defining colors, 384

example (advanced), 396

example (candlestick), 402

example (simple), 394

exporting, 394

fonts, 393

gauge chart features, 380

grid lines, 386, 389, 390

in XSLT/XQuery Profiler, 555

line chart features, 380

margins, 391

multiple tabs for, 345

overlays, 365

overview, 345

pie chart features, 380

reloading, 345

removing legend, 378

series color, 384

sizes, 391

Source XPath, 352

tick size, 391

title, 378

X-axis, 386

X-Axis selection, 355

Y-axis, 389

Y-Axis selection, 360

Z-axis, 390

Charts in Grid View, 198

Charts Window, 126

Check,

spelling checker, 1471

Class,

JAVA, 1956

ClassPath statement, 1956

Code,

built in types, 1188

SPL, 1175

Code Generator, 1300

Code page, 1537

CodeGeneratorDlg,

Application, 1731

CPPSettings_DOMType, 1732

CPPSettings_LibraryType, 1733

CPPSettings_UseMFC, 1733

CSharpSettings_ProjectType, 1734

OutputPath, 1734

OutputPathDialogAction, 1734

OutputResultDialogAction, 1735

Parent, 1735

ProgrammingLanguage, 1735

PropertySheetDialogAction, 1736

TemplateFileName, 1736

Collapse,

unselected, 1418

Collapse markup (in Authentic View), 1352

Color, 1537

COM API,

in Scripting Editor, 1583

COM-API,

documentation, 1616

Command, 1504

add to toolbar/menu, 1495

context menu, 1504

delete from menu, 1504

reset menu, 1504

Command line actions, 1571

Command reference, 2028

Commands,

listing in key map, 1565

Commenting in and out,

in XML documents in Text View., 327

Commenting XML text in and out, 1234

Comments, 220

Comments in Schema View, 223

Comments in SQL scripts, 1364

Communication process,

SOAP debugger, 747

Comparing directories, 1483

Comparing files, 1479

options, 1486

Comparisons,

Index

© 2018-2024 Altova GmbH

2210

Comparisons,

of directories, 1042

of files, 1041

of files and directories, 1040

Complex type, 63

extending definition, 63

in schema definitions, 63

Complex types,

anonymous, 223

global, 223

named, 223

Component definition,

reusing, 63

Components entry helper, 267, 273

Compositor,

for sequences, 51

Compositors in Schema View, 233

Conditional type alternatives, 245

Conditional type assignments, 245

Configurations,

of a global resource, 992

Configurations in global resources, 1007

Configure,

XMLSPY UI, 1602

Configure view,

dialog for Content Model View, 1312

Connecting to SchemaAgent Server, 458, 1320

Content Model,

creating a basic model, 51

save diagram, 1306

toggle attributes, 73

Content Model View, 48

assigning conditional types, 245

compositors and components, 233

configuring, 1312

diagram objects, 233

editing in, 239

general description, 231

interface description, 233

Content models,

of schema components, 231

Context menu,

commands, 1504

for customization, 1509

Context menus,

in Authentic View, 608

Context Window,

in XSLT/XQuery Debugger, 536

Convert,

database data to XML, 1387

database schema to XML Schema, 1392

MS Word data to XML, 1392

Oracle XML Db, 1379

schema to DB structure, 1398

text file to XML, 1384

Convert menu, 1384

Convert to OIM xBRL-CSV, 1413

Convert to OIM xBRL-JSON, 1413

Convert to OIM xBRL-XML, 1413

Copy command, 1216

Copy Grid View text, 1217

Copy Grid View texxt as tab-structured text, 1218

Copy image in Grid View, 1218

Copy XPath, 1219

Copy XPointer, 1219

Copyright information, 2202

CoreCatalog.xml, 452

CR&LF, 1514

Create,

DB based on schema, 1398

CSS, 638

auto-completion, 641

document outline, 641

Info window, 641

properties, 641

syntax coloring, 641

CSS Info window, 641

CSV file,

import as XML, 1384

Custom dictionary, 1471

CustomCatalog, 1269

CustomCatalog.xml, 452

Customization, 130

Customize, 1504

context menu, 1504

Customize context menu, 1509

macros, 1506

menu, 1504

toolbar/menu commands, 1495

Cut command, 1216

D
Database,

© 2018-2024 Altova GmbH

Index 2211

Database,

create DB based on schema, 1398

editing records of, 1368

export of XML data to, 1404

import data as XML, 1387

import structure as XML Schema, 1392

Oracle XML Db, 1379

Database connection,

reusing from Global Resources, 934

setting up, 904

setup examples, 935

starting the wizard, 905

Database drivers,

overview, 907

Database Query,

Browser pane in DB Query window, 1360

Connecting to DB for query, 1357

creating the query, 1367

Editing results, 1368

Messages pane, 1368

Results of, 1368

Database Query window, 1355

Database/Table View,

how to use, 99

DatabaseConnection,

ADOConnection, 1737

AsAttributes, 1738

CreateMissingTables, 1738

CreateNew, 1738

DatabaseKind, 1739

ExcludeKeys, 1739

File, 1739

IncludeEmptyElements, 1740

NumberDateTimeFormat, 1741

ODBCConnection, 1741

SQLSelect, 1742

TextFieldLen, 1742

Databases,

and global resources, 1006

editing in Authentic View, 1345

see also DB, 623

support in XMLSpy, 990

Databases in XMLSpy, 902

DatabaseSpy,

3d charts, 391

area chart features, 380

bar chart features, 380

candlestick chart features, 380

chart background, 378

chart colors, 384

chart font options, 393

chart fonts, 393

chart grid, 386, 389, 390

chart legend, 378

chart title, 378

chart X-axis, 386

chart Y-axis, 389

chart Z-axis, 390

charts sizes, 391

gauge chart features, 380

line chart features, 380

pie chart features, 380

Date Picker,

using in Authentic View, 630

Dates,

changing manually, 631

DB, 623, 624

creating queries, 624

editing in Authentic View, 623, 628

filtering display in Authentic View, 624

navigating tables in Authentic View, 624

parameters in DB queries, 624

queries in Authentic View, 623

DB XML,

assigning XML Schemas to, for IBM DB2, 1375

managing XML Schemas, for IBM DB2, 1372

db2-fn:sqlquery, 518

db2-fn:xmlcolumn, 518

Debug points in XPath/XQuery Debugger, 567

Debugger,

breakpoints/tracepoints dialog box, 1340

debug windows, 1341

enable/disable breakpoint, 1340

enable/disable tracepoint, 1340

end session, 1338

for SOAP, 745, 1443

insert/remove breakpoint, 1339

insert/remove tracepoint, 1339

options for SOAP, 1445

restart XSLT Debugger, 1338

settings, 1342

show curr. exec. nodes, 1339

start XSLT Debugger, 1337

step into, 1338

step out, 1338

step over, 1339

Index

© 2018-2024 Altova GmbH

2212

Debugger,

stop XSLT Debugger, 1337

Debugging XPath/XQuery expressions, 567

Default,

encoding, 1519

menu, 1504

Default editor, 1516

Default open content models, 249

Default view,

setting in Main Window, 1516

defaultOpenContent, 223

Defining,

3d settings, 391

area chart features, 380

bar chart features, 380

candlestick chart features, 380

chart fonts, 393

charts colors, 384

charts sizes, 391

charts title, 378

color of charts, 384

fonts in charts, 393

gauge chart features, 380

grid lines, 386, 389, 390

line chart features, 380

pie chart features, 380

X-axis settings, 386

Y-axis settings, 389

Z-axis settings, 390

Definitions Overview Grid, 663

Delete, 1495

Application.URLDelete, 1673

command from context menu, 1504

command from toolbar, 1495

icon from toolbar, 1495

row (in Authentic View), 1352

shortcut, 1500

toolbar, 1497

Delete command, 1216

Delete row in Authentic View, 1352

Derived types,

modifying base type of, 281

Deriving a schema type, 282

Details entry helper, 51, 271

Dialogs,

Application, 1743

CodeGeneratorDlg, 1743

DTDSchemaGeneratorDlg, 1745

FileSelectionDlg, 1744

GenerateSampleXMLDlg, 1745

Parent, 1744

SchemaDocumentationDlg, 1745

Dictionary, 1471

adding custom, 1471

modifying existing, 1471

spelling checker, 1471

directories,

comparing two, 1483

creating with Application.URLMakeDirectory, 1673

Directory comparisons, 1040, 1042

Disable,

breakpoint - XSLT debugger, 1340

tracepoint - XSLT debugger, 1340

Disconnect XMLSpy from SchemaAgent, 1321

Display all globals, 1315

Display diagram, 1315

Distribution,

of Altova's software products, 2202

DocEditEvent (obsolete),

altKey (obsolete), 1906

altLeft (obsolete), 1907

button (obsolete), 1908

cancelBubble (obsolete), 1909

clientX (obsolete), 1910

clientY (obsolete), 1910

ctrlKey (obsolete), 1911

ctrlLeft (obsolete), 1912

dataTransfer (obsolete), 1912

fromElement (obsolete), 1913

keyCode (obsolete), 1914

propertyName (obsolete), 1914

repeat (obsolete), 1915

returnValue (obsolete), 1915

shiftKey (obsolete), 1915

shiftLeft (obsolete), 1916

srcElement (obsolete), 1917

type (obsolete), 1917

DocEditView (obsolete),

ApplyTextState (obsolete), 1921

CurrentSelection (obsolete), 1922

EditClear (obsolete), 1922

EditCopy (obsolete), 1923

EditCut (obsolete), 1923

EditPaste (obsolete), 1924

EditRedo (obsolete), 1924

EditSelectAll (obsolete), 1925

© 2018-2024 Altova GmbH

Index 2213

DocEditView (obsolete),

EditUndo (obsolete), 1925

event (obsolete), 1926

GetAllowedElements (obsolete), 1926

GetNextVisible (obsolete), 1928

GetPreviousVisible (obsolete), 1929

IsEditClearEnabled (obsolete), 1929

IsEditCopyEnabled (obsolete), 1930

IsEditCutEnabled (obsolete), 1930

IsEditPasteEnabled (obsolete), 1931

IsEditRedoEnabled (obsolete), 1931

IsEditUndoEnabled (obsolete), 1932

IsRowAppendEnabled (obsolete), 1932

IsRowDeleteEnabled (obsolete), 1933

IsRowDuplicateEnabled (obsolete), 1933

IsRowInsertEnabled (obsolete), 1934

IsRowMoveDOwnEnabled (obsolete), 1934

IsRowMoveUpEnabled (obsolete), 1934

IsTextStateApplied (obsolete), 1935

IsTextStateEnabled (obsolete), 1935

LoadXML (obsolete), 1936

RowAppend (obsolete), 1937

RowDelete (obsolete), 1937

RowDuplicate (obsolete), 1938

RowInsert (obsolete), 1938

RowMoveDown (obsolete), 1939

RowMoveUp (obsolete), 1939

SaveXML (obsolete), 1940

SelectionMoveTabOrder (obsolete), 1941

SelectionSet (obsolete), 1941

XMLRoot (obsolete), 1942

Docking windows, 113

Document, 1759

Application, 1752

AssignDTD, 1752

AssignSchema, 1752

AssignXSL, 1752

AssignXSLFO, 1753

AuthenticView, 1753

browse Oracle XML Db, 1382

Close, 1754

ConvertDTDOrSchema, 1754

CreateChild, 1756

CreateSchemaDiagram, 1757

CurrentViewMode, 1758

DataRoot, 1758

DocEditView, 1758

Encoding, 1758

EndChanges, 1759

ExecuteXQuery, 1759

ExportToDatabase, 1760

ExportToText, 1761

FullName, 1762

GenerateDTDOrSchema, 1763

GenerateProgramCode, 1764

GenerateSampleXML, 1764

GenerateSchemaDocumentation, 1765

GetExportElementList, 1767

GetPathName, 1768

GridView, 1768

IsModified, 1768

IsValid, 1768

IsWellFormed, 1771

Name, 1771

OnBeforeCloseDocument, 1750

OnBeforeSaveDocument, 1749

OnBeforeValidate, 1750

OnCloseDocument, 1751

OnViewActivation, 1751

Path, 1772

RootElement, 1772

Save, 1772

SaveAs, 1773

Saved, 1773

SaveInString, 1773

SaveToURL, 1774

SetActiveDocument, 1774

SetEncoding, 1774

SetExternalIsValid, 1775

SetPathName, 1776

Spelling checker, 1471

StartChanges, 1776

SwitchViewMode, 1776

Title, 1777

TransformXSL, 1777

TransformXSLFO, 1778

UpdateViews, 1779

UpdateXMLData, 1779

XQuery, 1759

Documentation,

for schema, 78

of WSDL files, 1431

of XBRL taxonomies, 1455

of XML Schema files, 1306

Document-level,

examples of integration of XMLSpy, 2015

Index

© 2018-2024 Altova GmbH

2214

Documents,

Count, 1781

Item, 1781

NewAuthenticFile, 1781

NewFile, 1782

NewFileFromText, 1782

OpenAuthenticFile, 1782

OpenFile, 1783

OpenURL, 1783

OpenURLDialog, 1784

Documents in Main Window, 114

Drag-and-drop in JSON Grid View, 183

Drag-and-drop in XML Grid View, 181

DTD,

assigning to XML document, 1285

converting to UML, 1295

converting to XML Schema, 1291

generate outline XML file from, 1296

generating code from, 1300

generating from XML document, 1289

generating from XML Schema (Enterprise and Professional
editions), 439

go to definition in from XML document, 1288

go to from XML document, 1288

including entities, 1287

menu commands related to, 1285

DTD/Schema menu, 1285

DTDs, 419, 1514, 1516

converting to XML Schemas (Enterprise and Professional
editions), 436

editing in Grid View (Enterprise and Professional editions),
436

editing in Text View, 436

generating XML document from, 436

DTDs and catalogs, 451

DTDSchemaGeneratorDlg,

Application, 1785

AttributeTypeDefinition, 1785

DTDSchemaFormat, 1785

FrequentElements, 1786

GlobalAttributes, 1786

MaxEnumLength, 1786

MergeAllEqualNamed, 1786

OnlyStringEnums, 1787

OutputPath, 1787

OutputPathDialogAction, 1787

Parent, 1788

ResolveEntities, 1788

TypeDetection, 1788

ValueList, 1788

Duplicate,

row (in Authentic View), 1352

Dynamic (SPS) tables in Authentic View,

usage of, 616

Dynamic tables,

editing, 599

E
Eclipse platform,

and XMLSpy, 1074

and XMLSpy Integration Package, 1075

XMLSpy Debugger perspectives, 1082

XMLSpy entry points in, 1080

XMLSpy Perspective in, 1077

EDGAR validation on server, 1468

Edit,

macro button, 1509

Edit as Raw Text,

in Grid View, 1266

Edit menu, 1215

Edited with XMLSPY, 1514

Editing database records, 1368

Editing in Text View, 145

Editing views, 135

Element, 59

making optional, 59

restricting content, 59

element type,

specifying in XML document, 85

ElementFormDefault,

settings in Schema Design View, 1303

ElementList,

Count, 1789

Item, 1789

RemoveElement, 1789

ElementListItem,

ElementKind, 1790

FieldCount, 1790

Name, 1790

RecordCount, 1790

Elements entry helper,

in Authentic View, 604

E-mail,

© 2018-2024 Altova GmbH

Index 2215

E-mail,

sending files with, 1210

Empty elements, 1516

Empty lines,

in XML documents in Text View, 327

Enable breakpoint - XSLT debugger, 1340

Enable tracepoint - XSLT debugger, 1340

Encoding,

default, 1519

of files, 1204

End,

debugger session, 1338

End User License Agreement, 2202, 2204

End-of-line markers, 1420

Enhanced Grid View, 1416

see Grid View, 87

Enter key,

effects of using, 635

Entities,

defining in Authentic View, 611, 631

in XML Schema-based XML, 325

inserting in Authentic View, 596, 611

Entities entry helper,

in Authentic View, 604

Entry Helper,

Details, 51

in Grid View, 97

Entry Helpers, 118

display of, 1562

for XQuery, 501

updating, 1275

Entry helpers (Text View, Authentic View), 333

Entry Helpers in Grid View, 171

Entry helpers in Schema View, 267

Entry helpers in Text View, 151

Enumeration,

defining for attributes, 73

Enumerations,

in XMLSpyControl, 2068

SPYAttributeTypeDefinition, 1943

SPYAuthenticActions, 1943

SPYAuthenticDocumentPosition, 1943

SpyAuthenticElementActions, 1943

SPYAuthenticElementKind, 1944

SPYAuthenticMarkupVisibility, 1944

SPYDatabaseKind, 1945

SPYDialogAction, 1945

SPYDOMType, 1945

SPYDTDSchemaFormat, 1946

SPYEncodingByteOrder, 1946

SPYExportNamespace, 1946

SPYFrequentElements, 1946

SPYKeyEvent, 1947

SPYLibType, 1948

SPYLoading, 1948

SPYMouseEvent, 1948

SPYNumberDateTimeFormat, 1949

SPYProgrammingLanguage, 1949

SPYProjectItemTypes, 1949

SPYProjectType, 1950

SPYSampleXMLGenerationOptimization, 1950

SPYSampleXMLGenerationSchemaOrDTDAssignment,
1951

SPYSchemaDefKind, 1951

SPYSchemaDocumentationFormat, 1952

SPYTextDelimiters, 1952

SPYTextEnclosing, 1953

SPYTypeDetection, 1953

SPYURLTapes, 1953

SPYViewModes, 1954

SPYVirtualKeyMask, 1955

SPYXMLDataKind, 1955

Enumerations of simple types, 273

Environment variables used in catalogs, 452

Environnment variables, 455

EPUB files, 898

Evaluating XPath, 121

Evaluation key,

for your Altova software, 1566

Evaluation period,

of Altova's software products, 2202

Event, 1655, 1656, 1657, 1712, 1713, 1714, 1715, 1717,
1718, 1749, 1750, 1751, 1813, 1814, 1815

Events, 1623

Excel 2007, 318, 890

Execute XULE, 1466

Exit mode, 1514

Expand,

fully, 1418

Expand markup (in Authentic View), 1352

Explorer, 1516

Exporting XML data to database, 1404

Exporting XML data to text files, 1401

ExportSettings,

CreateKeys, 1791

ElementList, 1791

Index

© 2018-2024 Altova GmbH

2216

ExportSettings,

EntitiesToText, 1792

ExportAllElements, 1792

FromAttributes, 1792

FromSingleSubElements, 1792

FromTextValues, 1792

IndependentPrimaryKey, 1793

Namespace, 1793

SubLevelLimit, 1793

Expression Builder, 575

Extended schema validation, 444

Extended validation, 465

in SchemaAgent, 1321

Extension functions for XSLT and XQuery, 2168

Extension Functions in .NET for XSLT and XQuery,

see under .NET extension functions, 2177

Extension Functions in Java for XSLT and XQuery,

see under Java extension functions, 2169

Extension Functions in MSXSL scripts, 2183

External applications,

opening files in, 1499

External JSON content,

copy to JSON Grid View, 183

drag-and-drop to JSON Grid View, 183

External parsed entites, 1516

External XML content,

copy to XML Grid View, 181

drag-and-drop to XML Grid View, 181

External XSL processor, 1544

F
Facets of simple types, 273

File, 1514

closing, 1205

creating new, 1194

default encoding, 1519

encoding, 1204

opening, 1199

opening options, 1514

printing options, 1211

saving, 1205

sending by e-mail, 1210

tab, 1514

File comparisons, 1040, 1041

File DSN,

setting up, 923

File extensions,

customizing, 1269

for XQuery files, 500

File menu, 1194

File paths,

inserting in XMl document, 327

File types, 1516

Files,

adding to source control, 1245

comparing two, 1479

comparison options, 1486

most recently used, 1214

FileSelectionDlg,

Application, 1794

DialogAction, 1794

FullName, 1794

Parent, 1795

Filters in Grid View, 193

settings of, 207

Find,

and replace text in document, 1230

text in document, 1224

using regular expressions, 1224

Find in Files command, 1231

Find in Files Window, 123

Find in Schemas, 468

executing Find and Replace commands, 477

executing Find command, 885

global components, 480

renaming global components, 480

replace term, 470

restricting search by property and property value, 473

restricting search to components, 471

results, 479

search term, 470

setting scope of, 476

window, 479

Find in Schemas Window, 125

Find in XBRL, 882

results, 887

search term, 882

window, 887

Find in XBRL Window, 125

Firebird,

Connecting through JDBC, 936

Connecting through ODBC, 937

Floating windows, 113

© 2018-2024 Altova GmbH

Index 2217

Folding margin, 1420

Font, 1539

schema, 1539

Schema Documentation, 1539

Fonts in Text View, 140

FOP,

fonts, 342

Foreign keys,

disable in SQLite, 933

Formatting in Text View, 140

Formulas,

building from Table Layout Preview, 871

Formulas in Grid View,

settings of, 207

Formulas in XML Grid View, 186, 189

Forward,

in Schema View, 288

G
gauge chart features, 380

Generate,

DB structure based on schema, 1398

Generate Sample XML, 1943, 1950, 1951

GenerateSampleXMLDlg,

Application, 1808

FillWithSampleData, 1809

NonMandatoryAttributes, 1810

NonMandatoryElements, 1810

Parent, 1811

RepeatCount, 1812

TakeFirstChoice, 1812

Global,

settings, 1513

Global attribute groups, 223

Global attributes, 223

Global comments,

line display of, 220

Global element,

using in XML Schema, 71

Global elements, 223

Global objects,

in SPL, 1179

Global resources, 991

active configuration for, 1490

changing configurations, 1007

defining, 992, 1489

defining database-type, 1001

defining file-type, 994

defining folder-type, 999

toolbar activation, 1497

using, 1003, 1006, 1007

using file-type and folder-type, 1003

Global Resources XML File, 992

Global schema components,

finding and renaming, 480

Go to File, 1419

Go to line/char, 1419

Grammar, 1516

Graphics formats,

in Authentic View, 634

Gray bar, 1418

Grid fonts, 1537

Grid view, 97, 155, 1416, 1418

adding, deleting nodes, 164

and Table View, 99

appending elements and attributes, 97

auto-completion, 165

context menu of, 204

creating charts in, 198

data-entry in, 87

document display, 156

editing document content in, 165

editing document structure, 164

editing node types, 165

entry helpers, 164

features of, 156

filters in, 193

find and replace, 165

header bars in, 156

images in, 196

scroll headers in, 156

Split View in, 169

using Entry Helpers, 97

validation, 165

Grid View (JSON),

drag-and-drop in, 183

formulas in, 189

see JSON Grid View, 660

Table Display in, 176

Grid View (XML), 330

drag-and-drop in, 181

formulas in, 186

Table Display in, 172

Index

© 2018-2024 Altova GmbH

2218

Grid View entry helpers, 171

Grid View of JSON documents,

see JSON Grid View, 660

Grid View settings, 207

Grid View tables,

copying as TSV or XML, 207

GridView,

CurrentFocus, 1816

Deselect, 1816

IsVisible, 1816

OnBeforeDrag, 1813

OnBeforeDrop, 1814

OnBeforeStartEditing, 1814

OnEditingFinished, 1815

OnFocusChanged, 1815

Select, 1816

SetFocus, 1816

GUI description, 113

H
Header bars in Grid View, 156

Help,

key map, 1565

Help menu, 1565

Hide markup, 599, 602

Hide markup (in Authentic View), 1351

Hit Count profiling, 543

Hotkey, 1500

HTML, 638

HTML documents,

editing, 639

Info window, 639

HTML Info window, 639

HTML output,

generating in Authentic View from PXF file, 1353

HTTP, 761

HTTP message window,

and Accept header, 769

and HTTP status codes, 769

and WADL, 767

HTTP methods, 762

importing a request into, 767

logs, 769

receiving a response, 769

sending the request, 762

I
IBM DB2,

assigning XML Schemas to XML file, 1375

connecting through JDBC, 940

connecting through ODBC, 942

managing XML Schemas, 1372

schema management and assignment, 1371

IBM DB2 for i,

connecting through JDBC, 948

connecting through ODBC, 949

IBM Informix,

connecting through JDBC, 951

Icon,

add to toolbar/menu, 1495

show large, 1509

Identity constraint,

toggle in Content model view, 73

Identity constraints in Schema View, 252, 260

Image formats,

in Authentic View, 634

Images in Grid View, 196

Import,

database data as XML, 1387

database data based on XML Schema, 1397

database structure as XML Schema, 1392

MS Word document as XML, 1392

text file as XML, 1384

Importing taxonomies, 1453

Indentation,

in Text View, 1224

Indentation guides, 1420

Indentation in Text View, 140

Info Window, 118

display of, 1562

for CSS documents, 641

for HTML documents, 639

in XSLT/XQuery Debugger, 539

Info window, XSLT tab,

and creating Zip folders, 492

and Projects, 492

and XSLT documents, 492

description of, 492

see also XSL Outline, 492

Inline XBRL,

© 2018-2024 Altova GmbH

Index 2219

Inline XBRL,

processing of, 1467

whitespace handling of, 1551

Inline XBRL in XMLSpy, 816

Insert,

breakpoint - XSLT debugger, 1339

row (in Authentic View), 1352

tracepoint - XSLT debugger, 1339

Insert After/Before command,

in Grid View, 1266

Integrating,

XMLSpy in applications, 2007

Integration Package for Eclipse,

installing, 1075

Intelligent Editing, 1520

Internet, 1570

Internet usage,

in Altova products, 2201

J
Java, 2018

API, 1956

ClassPath, 1956

reference to generated classes, 1160

Java extension functions,

constructors, 2174

datatype conversions, Java to Xpath/XQuery, 2177

datatype conversions, XPath/XQuery to Java, 2176

for XSLT and XQuery, 2169

instance methods, instance fields, 2175

overview, 2169

static methods, static fields, 2174

user-defined class files, 2170

user-defined JAR files, 2173

Java settings, 1549

Java virtual machine,

path setting, 1549

JDBC,

as data connection interface, 904

connect to Teradata, 983

setting up a connection (Windows), 926

JRE,

for XMLSpy Integration Package for Eclipse, 1075

JScript,

scripting with XMLSpy, 1574

JSON,

and XPath, 705

and XPath/XQuery Output Window, 705

and XQuery, 705

convert JSON instance to/from XML instance, 1407

convert JSON schema to/from XML schema, 1410

convert to/from YAML, 1413

XQuery expressions for, 707

JSON data,

arrays, 649

example, 649

objects, 649

types, 649

JSON document,

generating from JSON schema, 712

JSON documents,

converting to and from XML, 655, 713

converting to and from YAML, 730

creating new, 646

editing in Grid View, 660

editing in Text View, 655

opening in XMLSpy, 646

validating, 701

XQuery expressions for, 578

JSON Grid View, 660

add components a s child, 1282

append components, 1282

flip rows and columns of table, 1283

insert components, 1282

re-evaluate all fiters and formulas, 1284

see Grid View, 155

sort column in table, 1283

Table Display command, 1283

Type command, 1282

wrap component in array, 1282

wrap component in object, 1282

JSON Lines, 654

JSON menu, 1281

JSON Schema, 646, 654

adding global definitions, 666

allOf, 694

any, 688

anyOf, 694

arrays, 684

atomic types, 686

conditionals, 696

description, 652

forbidden, 688

Index

© 2018-2024 Altova GmbH

2220

JSON Schema, 646, 654

generating from JSON instance, 709

generating from YAML document, 726

if-then-else, 696

multiple, 688

not, 694

numeric definitions, 686

object properties, 673

objects, 673, 677

objects and dependencies, 680

oneOf, 694

operators, 694

primitive types, 686

simple types, 686

string definitions, 686

terminology, 652

type selectors (any, multiple), 688

type selectors (unconstrained, forbidden), 688

unconstrained, 688

unspecified properties, 677

JSON Schema version, 664

JSON Schema View, 663

$ref, 670

adding external schemas, 667

configuring, 697

Constraints entry helper, 667

Design View, 672

Details entry helper, 667

entry helpers, 667

extended references to JSON Schemas, 670

global and local definitions, 670

JSON text from external sources,

adding quickly to document, 703

JSON transformations with XSLT/XQuery, 705

JSONSchemaDocumentationDlg,

AllDetails, 1818

Application, 1818

IncludeAll, 1820

IncludeAttributeGroups, 1820

IncludeComplexTypes, 1820

IncludeGlobalElements, 1821

IncludeGroups, 1821

IncludeIndex, 1822

IncludeLocalElements, 1822

IncludeRedefines, 1822

OptionsDialogAction, 1823

OutputFile, 1823

OutputFileDialogAction, 1824

OutputFormat, 1824

Parent, 1824

ShowAnnotations, 1825, 1827, 1828, 1829

ShowConstraints, 1825

ShowDiagram, 1825

ShowEnumerations, 1825

ShowNamespace, 1826

ShowProgressBar, 1826

ShowProperties, 1826

ShowResult, 1827

ShowSingleFacets, 1827

ShowSourceCode, 1828

ShowType, 1828

ShowUsedBy, 1829

K
Key map, 1565

Keyboard shortcut, 1500

Key-codes,

for your Altova software, 1566

L
Large markup (in Authentic View), 1351

Legal information, 2202

Library, 1189

License, 2204

information about, 2202

License metering,

in Altova products, 2203

Licenses,

for your Altova software, 1566

Line,

go to, 1419

line chart features, 380

Line length,

word wrap in text view, 1419

Line margin, 1420

Line numbering in Text View, 142

Line-breaks, 1514

Linkbases,

referencing, 1453

Linkbases in taxonomies, 800

© 2018-2024 Altova GmbH

Index 2221

Linkroles in XBRL, 1449

Linkroles in XBRL taxonomies, 806

Links,

following in Authentic View, 611

Little-endian, 1519

loading, 1783

M
Macro,

add to menu/toolbar, 1506

edit button, 1509

Macros,

developing, 1574, 1579

enabling, 1586, 1598

running, 1599

running application macros, 1478

Main Window, 114

MainCatalog, 1269

MapForce, 1296

MariaDB,

connect through ODBC, 953

connecting natively, 933

Markup,

in Authentic View, 599, 602

Markup (in Authentic View),

collapse/expand, 1352

hide, 1351

show small/large/mixed, 1351

Maximum cell width, 1528

Memory,

storage of schema information, 1302

Memory requirements, 2200

Menu, 1504

add macro to, 1506

add/delete command, 1495

Authentic, 1343

Convert, 1384

customize, 1504

Default/XMLSPY, 1504

delete commands from, 1504

DTD/Schema, 1285

Edit, 1215

Help, 1565

JSON, 1281

Project, 1235

Schema Design, 1303

SOAP, 1436

Tools, 1470

View, 1415

WSDL, 1423

XML, 1265

XSL/XQuery, 1325

Menu Bar, 128

Messages Window, 119

display of, 1562

in XSLT/XQuery Debugger, 540

Metadata file for formulas, 186, 189

Microsoft Access,

connecting through ADO, 910, 955

Microsoft Azure SQL, 957

Microsoft Office 2007, 318, 890

Microsoft SQL Server,

connecting through ADO, 958

connecting through ODBC, 960

Microsoft® SharePoint® Server, 1256

MIME, 1516

Mixed markup (in Authentic View), 1351

Model groups, 223

Modes of templates,

in XSLT/XQuery Debugger, 538

MongoDB and BSON, 690

Mostly recently used files,

list of, 1214

Move commands,

in Grid View, 1267

Move row in Authentic View, 1352

MS SQL Server,

schema extensions, 1318

schema settings, 1319

MSXML, 1544

msxsl:script, 2183

Multi-user, 1514

MySQL,

connecting natively, 933

connecting through ODBC, 966

N
Named schema relationships,

MS SQL Server schema settings, 1319

Named templates, 489

Index

© 2018-2024 Altova GmbH

2222

Namepsaces,

in WSDL documents, 732

Namespace,

in schemas, 50

Namespace Prefix,

inserting in Grid View, 1275

Namespaces,

in XBRL taxonomies, 798

settings in Schema Design View, 1303

Namespaces in XBRL, 1451

Native connections, 933

Navigation,

shortcuts in schema design, 76

Navigation history, 288

Network proxy, 1559

Network settings, 1558

New features, 29

New file,

creating, 1194

New XML document,

creating, 83

Node,

show curr. exec. node, 1339

Non-XML files, 1516

Notations in Schema View, 223

O
OASIS,

XML catalog, 1269

Object Locator,

in Database Query window, 1360

Occurrences,

number of, 51

ODBC,

as data connection interface, 904

connect to MariaDB, 953

connect to Teradata, 985

setting up a connection, 923

ODBC Drivers,

checking availability of, 923

Office Open XML, 318, 890

OIM, 888, 1413

OLE DB,

as data connection interface, 904

Online Help, 1561, 1565

OOXML,

see under Office Open XML, 318, 890

Open,

file, 1199

Open content models, 249

Open Office XML,

creating in Archive View, 892

editing in Archive View, 892

example files, 894

OpenAI API key, 1561

openContent, 223

Opening options,

file, 1514

OpenJDK,

as Java Virtual Machine, 926

Optimal Widths, 1418, 1528

Optional element,

making, 59

Options,

3d charts, 391

area chart features, 380

bar chart features, 380

candlestick chart features, 380

chart colors, 384

chart fonts, 393

chart grid, 386, 389, 390

chart legend, 378

chart title, 378

chart X-axis, 386

chart Y-axis, 389

chart Z-axis, 390

charts background, 378

charts sizes, 391

gauge chart features, 380

line chart features, 380

pie chart features, 380

Oracle,

schema extensions, 1316

schema settings, 1317

Oracle database,

connecting through JDBC, 968

connecting through ODBC, 970

Oracle XML Db, 1379

Browse database, 1382

manage XML Schemas, 1379

Ordering Altova software, 1566

OS,

for Altova products, 2200

© 2018-2024 Altova GmbH

Index 2223

Output formatting, 1514

Output Windows,

display of, 1562

Overrides, 223

Overview,

of XMLSpy API, 1617

P
Parameters,

in DB queries, 624

passing to stylesheet via interface, 1329

Parent, 1771

Parser,

built into Altova products, 2200

XSLT, 1544

Paste,

as Text, 611

as XML, 611

Paste As,

Text, 608

XML, 608

Paste command, 1216

Patterns of simple types, 273

PDF,

transforming to in XMLSpy, 485

PDF fonts, 342

PDF Help, 1561, 1565

PDF output,

generating in Authentic View from PXF file, 1353

Pending Update List (PUL), 511

pie chart features, 380

Pie charts, 360

Platforms,

for Altova products, 2200

Plug-in,

ATL sample files, 1605

registration, 1601

User interface configuration, 1602

XMLSPY, 1601

Position, 1419

Character, 1419

Line, 1419

PostgreSQL,

connecting natively, 933

connecting through ODBC, 974

PowerPoint 2007, 318, 890

Presentation, 1528

Pretty-print,

in Text View, 1224

Print setup, 1213

Printing,

from Authentic View, 597

Printing options, 1211

Priority of templates,

in XSLT/XQuery Debugger, 538

Private key of certificates, 414

Processing Instructions in Schema View, 223

Profiler, 543, 1335

Profiling, 543

Callgraph, 543

Hit Count, 543

Program settings, 1513

Programmers' Reference, 1572

Progress OpenEdge database,

connecting through JDBC, 977

connecting through ODBC, 978

Project,

properties, 1261

Project management in XMLSpy, 108

Project menu, 1235

Project Window, 116

display of, 1562

Projects, 1253

adding active files to, 1253

adding external folders to, 1254

adding external Web folders to, 1256

adding files to, 1252

adding folders to, 1254

adding global resources to, 1253

adding related files to, 1253

adding to source control, 1245

adding URL to, 1253

batch processing with, 1014

benefits of using, 1014

closing, 1238

creating new, 1237

how to create and edit, 1010

most recently used, 1264

naming, 1010

opening, 1238

overview, 1235

overview of, 1009

properties of, 1010

Index

© 2018-2024 Altova GmbH

2224

Projects, 1253

reloading, 1238

saving, 1010, 1238

using, 1014

Projects in XMLSpy,

benefits of, 108

how to create, 108

Proxy settings, 1559

PUBLIC,

identifier - catalog, 1269

Public key of certificates, 414

PUL in XQuery Update, 511

PXF file,

generating output documents from Authentic View, 1353

Q
Queries,

for DB display in Authentic View, 624

Query,

see under Database Query window, 1355

see under Query Database, 1355

see under XQuery, 1355

Query Database command, 1355

Query pane,

in Database Query window, 1364

R
Redefines, 223

Redo command, 1216

Referencing JSON Schemas, 670

Regions in SQL scripts, 1364

Register,

plug-in, 1601

Registering your Altova software, 1566

Registry,

settings, 1513

Regular expressions, 1231

find and replace using, 1224

in search string, 1224

Relatinships in Taxonomies, 806, 807, 810

Reload, 1514

Reloading,

changed files, 1204

Remove,

breakpoint - XSLT debugger, 1339

tracepoint - XSLT debugger, 1339

Repeated elements, 1520

Replace, 123

text, 1224

text in document, 1230

text in multiple files, 1231

using regular expressions, 1224

Reset,

menu commands, 1504

shortcut, 1500

toolbar & menu commands, 1497

Restart,

XSLT debugger, 1338

Return key,

see Enter key, 635

RichEdit, 1351

RootCatalog.xml, 452

Row,

append (in Authentic View), 1352

delete, 1352

delete (in Authentic View), 1352

duplicate (in Authentic View), 1352

insert (in Authentic View), 1352

move up/down, 1352

RTF output,

generating in Authentic View from PXF file, 1353

Rules,

for schema validation (see Schema Rules), 444

S
Sample values of simple types, 273

save, 1774

Save as image, 1223

Saving files,

encoding of, 1204

schema, 1666

also see XML Schema, 1285

assigning to DB XML, 1375

converting to UML, 1295

create DB based on schema, 1398

Design view, 1416

documentation, 78

© 2018-2024 Altova GmbH

Index 2225

schema, 1666

Documentation font, 1539

management and assignment in IBM DB2 databases, 1371

open WSDL schema, 738

see XML Schema, 48

settings, 1514

Schema Design menu, 1303

Schema Design View,

Display all globals, 1315

Display diagram, 1315

zoom feature, 1315

Schema editing,

content models, 231

Schema fonts, 1539

Schema Manager,

CLI Help command, 429

CLI Info command, 430

CLI Initialize command, 430

CLI Install command, 431

CLI List command, 431

CLI overview, 429

CLI Reset command, 432

CLI Uninstall command, 433

CLI Update command, 434

CLI Upgrade command, 434

how to run, 423

installing a schema, 427

listing schemas by status in, 425

overview of, 420

patching a schema, 427

resetting, 428

status of schemas in, 425

uninstalling a achema, 428

upgrading a schema, 427

Schema Overview, 48

and Content Model View, 219, 220

and global comments, 220

and line display of global comments, 220

editing in, 220

icons in, 220

sorting components in, 220

Schema Rules, 444

adding Rule Sets to a schema, 444

defining, 446

Schema Subsets, 440, 1322, 1323

Schema View, 213

Components entry helper, 267, 273

configuring the view, 57

Details entry helper, 271

entry helpers, 267

moving back and forward, 288

Schema View, searching in,

see Find in Schemas, 468

SchemaAgent,

connect to server from XMLSpy, 1320

disconnect from server, 1321

display schemas in, 1321

extended validation, 1321

opening schemas from XMLSpy, 465

working with, 460, 461, 465

SchemaAgent in XMLSpy, 457

SchemaAgent Server,

connecting to, 458

SchemaDocumentationDlg,

AllDetails, 1831

Application, 1831

IncludeAll, 1833

IncludeAttributeGroups, 1833

IncludeComplexTypes, 1834

IncludeGlobalElements, 1834

IncludeGroups, 1835

IncludeIndex, 1835

IncludeLocalElements, 1836

IncludeRedefines, 1836

IncludeSimpleTypes, 1836

OptionsDialogAction, 1837

OutputFile, 1837

OutputFileDialogAction, 1838

OutputFormat, 1838

Parent, 1838

ShowAnnotations, 1839

ShowAttributes, 1839

ShowChildren, 1839

ShowConstraints, 1840

ShowDiagram, 1840

ShowEnumerations, 1840

ShowNamespace, 1841

ShowPatterns, 1841

ShowProgressBar, 1841

ShowProperties, 1841

ShowResult, 1842

ShowSingleFacets, 1842

ShowSourceCode, 1842

ShowType, 1843

ShowUsedBy, 1843

schemanativetype, 1176

Index

© 2018-2024 Altova GmbH

2226

Schemas,

in memory, 1302

looking up via catalogs, 453

managing for IBM DB2, 1372

Schemas and catalogs, 451

Schemas, finding in,

see Find in Schemas, 468

Script language, 1556

Scripting, 1556

Scripting Editor,

overview, 1574, 1576

starting, 1478

Scripts in XSLT/XQuery,

see under Extension functions, 2168

Scroll headers in Grid View, 156

Search,

see Find, 1230

Searching in schemas,

see Find in Schemas, 468

Searching in XBRL,

see Find in XBRL, 882

Select All command, 1224

Sequence compositor,

using, 51

Settings, 130, 1513

3d charts, 391

area chart features, 380

bar chart features, 380

candlestick chart features, 380

chart background, 378

chart colors, 384

chart fonts, 393

chart grid, 386, 389, 390

chart legend, 378

chart title, 378

chart X-axis, 386

chart Y-axis, 389

chart Z-axis, 390

charts sizes, 391

gauge chart features, 380

line chart features, 380

overview of, 46

pie chart features, 380

scripting, 1556

XSLT Debugger, 1342

Settings for file comparison, 1486

SharePoint® Server, 1256

Shortcut, 1500

assigning/deleting, 1500

show in tooltip, 1509

Shortcuts, 320

Show curr. exec. nodes,

XSLT debugger, 1339

Show large markup, 599, 602

Show mixed markup, 599, 602

Show small arkup, 602

Show small markup, 599

Sibling groups in Grid View, 207

Side-by-side, 1528

Signature,

see XML Signature, 1275

Signatures,

see XML signatures, 406

Simple type,

assertions on, 273

defining facets of, 273

enumerations of, 273

in schema definitions, 63

patterns of, 273

sample values of, 273

Simple type derivations, 271

Simple types,

anonymous, 223

global, 223

named, 223

Small markup (in Authentic View), 1351

Smart Fix for XML Schemas, 277

Smart Restrictions, 282

SOAP, 731, 744, 1438

create new request, 1436

debugger options, 1445

debugger session, 1443

request, 1445

request parameters, 1439

requests, 1438, 1445

send request to server, 1438

sending request from WSDL, 740

start proxy server, 1444

stop proxy server, 1445

SOAP communication process, 747

SOAP Debugger, 745

in Visual Studio .NET, 1073

setting breakpoints, 757

SOAP menu, 1436

SOAP validation, 744

Software product license, 2204

© 2018-2024 Altova GmbH

Index 2227

Sorting in Tables (XML Grid View), 1267

Source control, 1556

add to source control, 1245

changing provider, 1251

checking out, 1242

enabling, disabling, 1240

get latest version, 1241

getting files, 1241

installing a source-control plug-in, 1044

open project, 1239

properties, 1250

refresh status, 1251

removing from, 1246

sharing from, 1246

show differences, 1249

show history, 1248

supported providers, 1239

undo check out, 1244

Source control manager, 1251

Source folding in Text View, 142

Spelling checker, 1471

custom dictionary, 1471

Spelling options, 1474

SPL, 1175

code blocks, 1176

conditions, 1183

foreach, 1184

global objects, 1179

subroutines, 1185

using files, 1180

variables, 1178

Splash screen, 1528

Split View in Grid View, 169

Split View in Text View, 152

SPP file locations, 1235

SPS,

assigning to new XML file, 1194

SPS file,

assigning to XML file, 1345

SPS tables,

editing dynamic tables, 599

SPS tables in Authentic View,

usage of, 616

SpyProject,

CloseProject, 1844

ProjectFile, 1845

RootItems, 1845

SaveProject, 1845

SaveProjectAs, 1845

SpyProjectItem,

ChildItems, 1846

FileExtensions, 1846

ItemType, 1846

Name, 1846

Open, 1846

ParentItem, 1847

Path, 1847

ValidateWith, 1847

XMLForXSLTransformation, 1847

XSLForXMLTransformation, 1847

XSLTransformationFileExtension, 1847

XSLTransformationFolder, 1848

SpyProjectItems,

AddFile, 1848

AddFolder, 1848

AddURL, 1849

Count, 1849

Item, 1849

RemoveItem, 1849

SQL Azure, 957

SQL Editor,

creating query in, 1367

description of, 1364

in Database Query window, 1364

SQL Server,

connecting through ADO, 910

connecting through ADO.NET, 916

connecting via JDBC, 926

manage XML Schemas, 1377

SQLite,

connecting natively, 933

disable foreign keys, 933

setting up a connection (Windows), 933

Start,

XSLT debugger, 1337

Start group,

add (context menu), 1509

Static (SPS) tables in Authentic View,

usage of, 616

Status Bar, 128

Step into,

XSLT debugger, 1338

Step out,

XSLT debugger, 1338

Step over,

XSLT debugger, 1339

Index

© 2018-2024 Altova GmbH

2228

Stop,

XSLT debugger, 1337

Strip whitespace, 1224

Structured text, 1520

Style, 1537

Stylesheet PI, 1335, 1336

StyleVision, 1296

and XBRL, 1459, 1460

for editing StyleVision Power Stylesheet, 1345

StyleVision Power Stylesheet,

assigning to XML file, 1345

editing in StyleVision, 1345

Support Center, 1570

Support options, 133

Sybase,

connecting through JDBC, 981

Syntax checking of JSON documents, 655, 660

Syntax coloring,

for XQuery, 501

Syntax-coloring, 1516, 1528

System DSN,

setting up, 923

T
Tab characters, 1514

Tab size,

and pretty-printing, 1420

setting, 1420

Table,

build automatically, 1516

Table Display commands (JSON Grid View), 1283

Table Display commands (XML Grid View), 1267

Table Display of JSON Grid View,

editing in, 176

import/export to spreadsheets, 176

Table Display of XML Grid View,

editing in, 172

import/export to spreadsheets, 172

Table Layout Preview, 869

building formulas from, 871

Table parameters, 865

Table View, 1520

how to use, 99

Tables,

editing dynamic (SPS) tables, 599

in Authentic View, 590

Tables in Authentic View,

icons for editing XML tables, 621

usage of, 616

using SPS (static and dynamic) tables, 616

using XML tables, 617

Tables in Grid View,

copying as TSV or XML, 207

Target namespaces in XBRL, 1452

Taxonomies,

adding elements to, 802

and linkbases, 800

and linkroles, 806

and New Taxonomy Wizard, 793

creating new, 793

files in, 791, 800

importing, 795, 1453

namespaces in, 798, 1451

relationships in, 806, 807, 810

steps for creating, 790

target namespace of, 798

target namespaces in, 1452

Taxonomies in XBRL, 790, 791

Taxonomy Manager,

CLI Help command, 784

CLI Info command, 784

CLI Initialize command, 785

CLI Install command, 785

CLI List command, 786

CLI overview, 783

CLI Reset command, 787

CLI Uninstall command, 787

CLI Update command, 788

CLI Upgrade command, 789

how to run, 777

installing a taxonomy, 781

listing taxonomies by status in, 780

overview of, 774

patching a taxonomy, 781

resetting, 782

status of taxonomies in, 780

uninstalling a taxonomy, 782

upgrading a taxonomy, 781

Technical Information, 2200

Technical Support, 1570

Template files,

for new documents, 1194

Template XML File,

© 2018-2024 Altova GmbH

Index 2229

Template XML File,

in Authentic View, 586

Templates,

of XML documents in Authentic View, 1344

Templates Window,

in XSLT/XQuery Debugger, 538

Teradata,

connect through JDBC, 983

connect through ODBC, 985

terminate, 1670

Text,

editing in Authentic View, 611

find and replace, 1230

finding in document, 1224

formatting in Authentic View, 611

pretty-printing, 1224

Text file,

export of XML data to, 1401

import as XML, 1384

Text view, 139, 1415

and commenting in XML documents, 327

and empty lines in XML documents, 327

auto-complete enable/disable, 1520

bookmarks in, 142

editing in, 88

Entry helpers in, 151

font properties, 140

formatting of text, 140

indentation, 140

indentation in, 142

intelligent editing features, 145

keyboard shortcuts, 153

line numbering in, 142

schema fonts, 1539

source folding in, 142

special editing features for XML documents, 327

Split View in, 152

word-wrapping, 140

Text View Settings dialog, 1420

TextImportExportSettings,

DestinationFolder, 1850

EnclosingCharacter, 1850

Encoding, 1851

EncodingByteOrder, 1851

FieldDelimiter, 1851

FileExtension, 1851

HeaderRow, 1851

ImportFile, 1851

Theme selection for XMLSpy in Eclipse, 1080

Toolbar, 128, 1497

activate/deactivate, 1497

add command to, 1495

add macro to, 1506

create new, 1497

reset toolbar & menu commands, 1497

show large icons, 1509

Tools,

see also External applications, 1499

Tools menu, 1470

Tooltip, 1509

show, 1509

show shortcuts in, 1509

Trace points in XPath/XQuery Debugger, 567

Trace Window, 530

in XSLT/XQuery Debugger, 540

Tracepoint,

dialog box, 1340

Tracepoints, 540

using in XSLT/XQuery Debugger, 530

Transformation,

see XSLT transformation, 1328

Trusted locations for Authentic scripts, 1353

TSV,

copying Grid View tables as, 207

Turn off automatic validation, 1516

Tutorial,

for WSDL, 732

type,

extension in XML document, 85

Types,

built in, 1188

U
UCS-2, 1519

UML,

converting schemas to, 1295

Undo command, 1216

Unicode support,

in Altova products, 2201

Unnamed element relationships,

MS SQL Server schema settings, 1319

Unsaved changes, 1514

Unselected, 1418

Index

© 2018-2024 Altova GmbH

2230

Update Entry Helpers command, 1275

URL, 1673, 1774, 1783, 1784

sending by e-mail, 1210

User DSN,

setting up, 923

User interface,

configure using plug-in, 1602

User interface description, 113

User manual, 28, 1561, 1565

User Reference, 1193

UTF-16, 1519

V
Validate,

WSDL file, 738

Validate EDGAR, 1468

Validate on modification command, 1275

Validating,

XML documents, 93

Validating XML documents, 325

Validation, 130, 1269

assigning DTD to XML document, 1285

assigning XML Schema to XML document, 1286

extending with Schema Rules, 444

of related schemas using SchemaAgent, 465

WSDL files, 1274

Validation messages, 119

Validation of XML Schemas, 277

Validation settings, 1514

Validator,

in Altova products, 2200

Value templates (XSLT 3.0),

XPath intelligent editing in, 483

Variables,

in SPL, 1178

Variables in XPath/XQuery Debugger, 567

Variables Window,

in XSLT/XQuery Debugger, 537

VBScript,

scripting with XMLSpy, 1574

View,

Browser view, 1417

Collapse, 1418

Enhance Grid view, 1416

Expand, 1418

Go to File, 1419

Go to line/char, 1419

Optimal widths, 1418

Schema Design view, 1416

Text View, 1415

View menu, 1415

Visual Studio,

adding the XMLSpy ActiveX Controls to the toolbox, 2008

Visual Studio .Net,

and XMLSpy, 1069

and XMLSpy Debuggers, 1073

and XMLSpy differences, 1071

VS .NET,

and XMLSpy Integration Package, 1070

W
WADL,

using for HTTP requests, 767

Watch expressions in XPath/XQuery Debugger, 567

Watch for changes, 1514

Web Server, 1570

web service,

connecting to, 738

Well-formed test of JSON documents, 655, 660

Well-formedness check, 1268

for XML document, 93

Well-formedness of XML documents, 325

Whitespace,

removing, 1224

Whitespace handling, 336

Whitespace in Inline XBRL, 1551

Whitespace markers, 1420

Window menu, 1562

Windows,

arranging, 1562

auto-hiding, 113

cascading, 1562

floating, docking, tabbing, 113

managing display of, 113

support for Altova products, 2200

tiling, 1562

turning display on/off, 1562

Wizard for new taxonomies, 793

Word 2007, 318, 890

Word 2007+ output,

© 2018-2024 Altova GmbH

Index 2231

Word 2007+ output,

generating in Authentic View from PXF file, 1353

Word document,

import as XML, 1392

Word wrap,

enable/disable, 1419

Word-wrapping in Text View, 140

Wrap,

word wrap enable/disable, 1419

Wrap in Element command,

in Grid View, 1266

WSDL, 731, 738

1.1 components, 1423

2.0 components, 1426

binding in 1.1, 1425

binding in 2.0, 1428

connecting to a web service, 738

converting from 1.1 to 2.0, 1435

create documentation, 741

create new document, 732

creating bindings, 735

creating messages, 733

creating operations, 733

creating parameters, 733

creating ports, 737

creating PortTypes, 733

creating services, 737

generate documentation, 1431

interface in 2.0, 1427

messages in 1.1, 1424

namespaces, 732

open schema, 738

operations in 1.1, 1424

portType in 1.1, 1425

reparse document, 1435

sending SOAP request, 740

service in 1.1, 1426

service in 2.0, 1429

SOAP debugger, 745

types, 1430

using for HTTP requests, 767

validating, 738

web service, 1436

WSDL Design View,

Bindings, 291

description of, 290

file viewing in, 290

functionality, 290

Main Window, 291

PortTypes, 291

Services, 291

WSDL files,

extensibility elements, 1274

Validation, 1274

WSDL fonts, 1542

WSDL menu, 1423

WSDL tutorial, 732

WSDL View,

Details entry helper, 295

entry helpers, 295

importing into WSDL document, 295

Overview entry helper, 295

X
XBRL, 773

and MapForce, 1459

and StyleVision, 1460

arcroles, 1447

generate documentation, 1455

linkroles, 1449

namespaces, 1451

target namespaces, 1452

validation, 889

XULE, 874

XBRL fonts, 1543

XBRL Formula Editor, 817

XBRL menu, 1447

xBRL OIM formats, 888

XBRL Report Package options, 1555

XBRL Table Definitions Editor, 841

XBRL taxonomies, 790

see also Taxonomies, 791

XBRL validation options, 1550

XBRL View, 302

Calculation tab in main window, 306

Definition tab in main window, 306

Elements tab in main window, 302

entry helpers in, 309

Presentation tab in main window, 306

settings, 1458

XBRL View, searching in,

see Find in XBRL, 882

xBRL-CSV (OIM), 1413

Index

© 2018-2024 Altova GmbH

2232

xBRL-JSON (OIM), 1413

xBRL-XML (OIM), 1413

XInclude,

inserting in Grid View, 1219

inserting in Text View, 1219

inserting in XML document, 327

XML,

convert XML instance to/from JSON/YAML instance, 1407

Oasis catalog, 1269

spelling checker, 1471

XML data,

exporting to database, 1404

exporting to text file, 1401

XML DB,

loading new data row into Authentic View, 1346

loading new XML data row, 624

XML Diff,

comparing directories, 1483

comparing files, 1479, 1486

XML document,

assigning to XSLT stylesheet, 1336

browse Oracle XML Db, 1382

creating new, 83

editing in Text View, 88

generating from DTD, 436

generating from XML Schema (Enterprise and Professional
editions), 439

opening in Authentic View, 586

XML document creation,

tutorial, 83

XML documents, 322

and commenting in Text View, 327

and empty lines in Text View, 327

and XPath expression of a node, 327

and XQuery, 340

assigning schemas (incl. DTDs), 325

automatic validation, 323

automating XQuery executions of, 340

automating XSLT transformations of, 340

checking validity of, 93

checking well-formedness, 325

converting to and from YAML, 730

default views of, 323

editing in Authentic View, 331

editing in Grid View, 330

encoding of, 418

evaluating XPath expressions on, 418

generating schemas from, 418

importing and exporting text, 418

inserting file paths in, 327

inserting XInclude, 327

opening, 323

saving, 323

searching and replacing in, 418

Text View editing features for, 327

transforming with XSLT, 340

validating, 325

XML file,

generate from DTD or XML Schema, 1296

XML Grid View,

see Grid View, 155, 330

XML Import,

based on schema, 1397

XML menu, 1265

XML Parser,

about, 2200

XML Schema, 48, 1285, 1303

<alternative> element, 245

adding components, 51

adding elements with, 56

also see Schema, 1285

assigning to DB XML, 1375

assigning to XML document, 1286

configuring Content Model View, 1312

configuring the view, 57

content model diagram, 1306

convert to/from JSON Schema, 1410

converting to DTD, 1291

creating a basic schema, 48

creating a new file, 48

defining namespaces in, 50

editing content models, 231

generate outline XML file from, 1296

generating code from, 1300

generating documentation of, 1306

generating from DTD (Enterprise and Professional editions),
436

generating from XML document, 1289

global components, 223

go to definition in from XML document, 1288

go to from XML document, 1288

management and assignment in IBM DB2 databases, 1371

managing for IBM DB2, 1372

menu commands related to, 1285

modifying while editing XML document, 102

MS SQL Server extensions, 1318

© 2018-2024 Altova GmbH

Index 2233

XML Schema, 48, 1285, 1303

MS SQL Server schema settings, 1319

namespaces settings in Schema Design View, 1303

navigation in design view, 76

Oracle extensions, 1316

Oracle schema settings, 1317

settings in Schema Design View, 1303

Smart Fix, 277

tutorial, 48

validation, 277

XML schema definitions,

advanced, 63

XML Schemas, 419

and global resources, 325

converting to DTD (Enterprise and Professional editions),
439

editing in Grid View (Enterprise and Professional editions),
439

editing in Schema View (Enterprise and Professional
editions), 439

editing in Text View, 439

generating XML document from, 439

plus DTDs, 325

XML Signature, 1347

XML Signatures, 406, 633

creating, 408, 1275

verifying, 411, 1278

XML tables in Authentic View,

icons for editing, 621

usage of, 617

XML text from external sources,

adding quickly to document, 338

xml:base, 287

xml:id, 287

xml:lang, 287

xml:space, 287

XML-Conformance, 1516

XMLData,

AppendChild, 1894

EraseAllChildren, 1896

EraseCurrentChild, 1896

GetChild, 1897

GetChildKind, 1898

GetCurrentChild, 1899

GetFirstChild, 1899

GetNextChild, 1900

HasChildren, 1901

HasChildrenKind, 1902

InsertChild, 1902

IsSameNode, 1903

Kind, 1903

MayHaveChildren, 1904

Name, 1904

Parent, 1904

TextValue, 1905

XMLSchemas,

flattening included schemas, 440, 1323

including other schemas in, 440

splitting into subsets, 1322

XMLSpy, 1193

features, 133

help, 133

integration, 2007

plug-in registration, 1601

XMLSpy API,

documentation, 1616

overview, 1617

XMLSpy Debugger perspectives in Eclipse, 1082

XMLSpy Enterprise Edition,

user manual, 28

XMLSpy in Eclipse, 1074

XMLSpy Integration Package, 1070

XMLSpy perspective in Eclipse, 1077

XMLSPY plug-in, 1601

XMLSpy Plugin for Eclipse,

see Integration Package for Eclipse, 1075

XMLSpy Plugin for VS .NET,

installing, 1070

XMLSpyCommand,

in XMLSpyControl, 2048

XMLSpyCommands,

in XMLSpyControl, 2050

XMLSpyControl, 2051

documentation of, 2007

examples of integration at document level, 2015

integration using C#, 2015

object reference, 2047

XMLSpyControlDocument, 2059

XMLSpyControlPlaceHolder, 2066

XMLSpyDocumentEditor,

MarkUpView, 1936

XMLSpyLib, 1616, 1617

Application, 1654

AuthenticDataTransfer, 1676

AuthenticRange, 1681

AuthenticSelection (obsolete), 1918

Index

© 2018-2024 Altova GmbH

2234

XMLSpyLib, 1616, 1617

AuthenticView, 1711

CodeGeneratorDlg, 1730

DatabaseConnection, 1736

Dialogs, 1743

DocEditEvent (obsolete), 1905

DocEditView (obsolete), 1920

Document, 1747

Documents, 1780

DTDSchemaGeneratorDlg, 1784

ElementList, 1789

ElementListItem, 1790

ExportSettings, 1791

FileSelectionDlg, 1793

GenerateSampleXMLDlg, 1807

GridView, 1813

ProjectItem, 1845

SchemaDocumentationDlg, 1830

SpyProject, 1844

SpyProjectItems, 1848

TextImportExportSettings, 1850

XMLData, 1893

XML-Text, 1520

XPath,

evaluating, 121

generating of a node in an XML document, 327

XPath 1.0,

in XPath Evaluator, 1268

XPath 2.0,

in XPath Evaluator, 1268

XPath Evaluator,

usage, 1268

XPath intelligent editing, 483

XPath of selected node in XML document,

copying to the clipborad, 1219

XPath to selected node, 598

XPath Window, 121

XPath/XQuery expressions,

building in XPath/XQuery Window, 575

debugging, 567

evaluating, 561

evaluating and debugging, 558

for JSON documents, 578

in XPath/XQuery Window, 581

XPath/XQuery Window, 558, 559

XPaths,

setting for tracepoints, 530

XPath-Watch Window,

in XSLT/XQuery Debugger, 537

XPointer,

generating of a node in an XML document, 327

XPointer of selected node in XML document,

copying to the clipborad, 1219

XQuery, 507

DB support, 518

document validation, 507

editing in Text View, 497

entry helpers, 501

execution, 507

Extension functions, 2168

for querying XML databases, 518

functions for IBM DB2, 518

intelligent editing features, 503

opening file, 500

passing variables to the XQuery document, 1329

syntax coloring, 501

XQuery Debugger,

see XSLT/XQuery Debugger, 523

XQuery documents,

analyzing execution time of, 543, 1335

XQuery Execution, 508, 1332

XQuery expressions for JSON, 707

XQuery files,

setting file extensions in XMLSpy, 500

XQuery options, 1547

XQuery Profiler,

charts of results, 555

XQuery Update, 508

previewing, 511

PUL, 511

XQuery Update Facility, 511

XQuery Update in XMLSpy, 511

XQuery Update options, 1547

XSD 1.0 and 1.1,

editing modes, 215

XSD mode, 215

XSD validation, 277

xsi:type,

usage, 85

XSL,

see XSLT, 1336

XSL Outline, 488

XSL Outline window, 122, 489

XSL Speed Optimizer, 495, 1327

XSL Speed Optimizer options, 1547

XSL transformation,

© 2018-2024 Altova GmbH

Index 2235

XSL transformation,

see XSLT, 104

XSL/XQuery menu, 1325

xsl:call-template, 489

XSL:FO,

and XSLT transformations, 485

xsl:param, 489

xsl:with-param, 489

XSLT, 1419

and batch transformations, 485

auto-completion in Text View, 483

documents, 483

entry helpers for, 483

Extension functions, 2168

functionality in XMLSpy, 482

modifying in XMLSpy, 106

processor, 1544

transformations in XMLSpy, 485

validating, 483

XSLT Debugger,

breakpoints/tracepoints dialog box, 1340

debug windows, 1341

enable/disable breakpoint, 1340

enable/disable tracepoint, 1340

end debugger session, 1338

in Visual Studio .NET, 1073

insert/remove breakpoint, 1339

insert/remove tracepoint, 1339

restart debugger, 1338

settings, 1342

show curr. exec. nodes, 1339

start debugger, 1337

step into, 1338

step out, 1338

step over, 1339

stop debugger, 1337

XSLT document structure, 122

XSLT documents,

and Info window, 492

editing and managing with XSL Outline, 488

XSLT functions,

in XSL Outline window, 489

XSLT parameters,

passing to stylesheet via interface, 1329

XSLT Profiler,

charts of results, 555

XSLT stylesheet,

assigning to XML document, 1335

assigning XML document to, 1336

opening, 1336

XSLT stylesheet for FO,

assigning to XML document, 1336

XSLT stylesheets,

analyzing execution time of, 543, 1335

XSLT templates,

in XSL Outline window, 489

XSLT transformation, 1327, 1328

assigning XSLT file, 104

in XMLSpy, 105

to FO, 1328

to PDF, 1328

tutorial, 104

XSLT/XQuery Debugger, 524

breakpoints usage, 528

built-in templates, 538

Call Stack Window, 538

Context window, 536

description of interface, 524

description of mechanism, 524

features and usage, 523

Info Window, 539

information windows, 534

matched templates, 538

Messages Window, 540

named templates, 538

settings, 541

template modes, 538

template priority, 538

Templates Window, 538

toolbar icons, 526

Trace Window, 540

tracepoints usage, 530

Variables Window, 537

XPath-Watch Window, 537

XSLT/XQuery debugging,

files used, 523

XSLT/XQuery Profiler, 543

XULE documents,

and conformant filetypes, 874

and taxonomy for auto-completion, 874

and XMLSpy projects, 874

auto-completion, 874

editing support for, 874

validation of, 874

XULE execution,

how to, 880

Index

© 2018-2024 Altova GmbH

2236

XULE execution,

options, 880

XULE for XBRL, 874

XULE options, 1555

XULE processing, 1466

XULE Window, 128

for interactive querying of XBRL instances, 877

Y
YAML, 722

convert to/from JSON, 1413

convert YAML instance to/from XML instance, 1407

YAML document,

generating from JSON schema, 729

YAML documents,

converting to and from JSON, 730

converting to and from XML, 730

creating, 723

font colors of, 725

in Text View, 725

indentation in, 725

locator expressions for nodes in, 725

pretty printing, 725

text folding in, 725

validating, 723

Z
ZIP files, 318, 890

creating in Archive View, 896

editing in Archive View, 896

Zoom feature,

in Schema Design View, 1315

Zooming in Text View, 142

	Altova XMLSpy 2024 Enterprise Edition User Manual
	Table of Contents
	About XMLSpy and This Documentation
	New Features 2024
	Version 2023
	Version 2022
	Version 2021
	Version 2020

	Windows File Paths
	About RaptorXML Server

	XMLSpy Tutorial
	XMLSpy Interface
	The Views
	The Windows
	Menus and Toolbars
	Text View Settings
	Application Options

	XML Schemas: Basics
	Creating a New XML Schema File
	Defining Namespaces
	Defining a Content Model
	Adding Elements with Drag-and-Drop
	Configuring the Content Model View
	Completing the Basic Schema

	XML Schemas: Advanced
	Working with Complex Types and Simple Types
	Referencing Global Elements
	Attributes and Attribute Enumerations

	XML Schemas: XMLSpy Features
	Schema Navigation
	Schema Documentation

	XML Documents
	Creating a New XML File
	Specifying the Type of an Element
	Entering Data in Grid View
	Entering Data in Text View
	Validating the Document
	Adding Elements and Attributes
	Editing in Table Display
	Modifying the Schema

	XSLT Transformations
	Assigning an XSLT File
	Transforming the XML File
	Modifying the XSL File

	Project Management
	Benefits of Projects
	Building a Project

	That's It

	GUI and Environment
	The Graphical User Interface (GUI)
	Main Window
	Project Window
	Info Window
	Entry Helpers
	Output Window: Messages
	Output Window: XPath/XQuery
	Output Window: XSL Outline
	Output Window: HTTP
	Output Window: Find in Files
	Output Window: Find in Schemas
	Output Window: Find in XBRL
	Output Window: Charts
	Output Window: XULE
	Menu Bar, Toolbars, Status Bar

	The Application Environment
	Settings and Customization
	Tutorials, Projects, Examples
	XMLSpy Features and Help, and Altova Products

	Editing Views
	Automatic Backup of Files
	Text View
	Formatting in Text View
	Displaying the Document
	Editing in Text View
	Navigating the Document
	Entry Helpers in Text View
	Split View
	Text View Shortcuts

	Grid View
	Document Display
	Document Structure
	Document Content
	Split View
	Entry Helpers
	Table Display (XML)
	Table Display (JSON)
	Drag-and-Drop (XML)
	Drag-and-Drop (JSON)
	Formulas (XML)
	Formulas (JSON)
	Filters
	Images
	Charts
	Context Menu
	Grid View Settings

	Schema View
	XSD Mode: XSD 1.0 or 1.1
	Schema Overview
	GUI Mechanisms
	Global Components

	Content Model View
	Content Model Objects
	Editing in Content Model View
	Conditional Type Assignment
	Open Content Models

	Attributes, Assertions, and Identity Constraints
	Attributes, Attribute Groups, Attribute Wildcards
	Assertions
	Identity Constraints

	Entry Helpers in Schema View
	Components
	Details
	Facets

	Validation and Smart Fixes
	Assertion Messages
	Base Type Modification
	Smart Restrictions
	xml:base, xml:id, xml:lang, xml:space
	Back and Forward: Moving through Positions

	WSDL View
	Main Window
	Overview Entry Helper
	Details Entry Helper

	XBRL View
	Main Window: Elements Tab
	Main Window: Definitions, Presentation, Calculation, Formula, Table Tabs
	Entry Helpers in XBRL View
	XBRL View Settings

	Authentic View
	Browser View
	Archive View
	Common Shortcuts

	XML
	Creating, Opening, and Saving XML Documents
	Assigning Schemas and Validating
	XML in Text View
	XML in Grid View
	XML in Authentic View
	Entry Helpers (Text View, Authentic View)
	Validating XML Documents
	Whitespace
	Inserting XML Fragments
	Processing with XSLT and XQuery
	PDF Fonts
	Charts
	Creating a Chart
	Source XPath
	X-Axis Selection
	Y-Axis Selection
	Chart Data
	Overlays
	Chart Settings: Quick Reference
	Chart Settings and Appearance
	Basic Chart Settings
	Advanced Chart Settings
	General
	Type-Related Features
	Colors
	X-Axis
	Y-Axis
	Z-Axis
	3D Angles
	Sizes
	Fonts

	Export
	Chart Example: Simple
	Chart Example: Advanced
	Chart Example: Candlestick

	XML Signatures
	Creating XML Signatures
	Verifying XML Signatures
	Working with Certificates

	Additional Features

	DTDs and XML Schemas
	Schema Manager
	Run Schema Manager
	Status Categories
	Patch or Install a Schema
	Uninstall a Schema, Reset
	Command Line Interface (CLI)
	help
	info
	initialize
	install
	list
	reset
	uninstall
	update
	upgrade

	DTDs
	XML Schemas
	Schema Subsets
	Schema Rules
	Managing Rule Sets
	Defining a Rule Set

	Catalogs in XMLSpy
	How Catalogs Work
	Catalog Structure in XMLSpy
	Customizing Your Catalogs
	Environment Variables

	Working with SchemaAgent
	Connecting to SchemaAgent Server
	Opening Schemas Found in the Search Path
	Using IIRs
	Viewing Schemas in SchemaAgent
	SchemaAgent Validation

	Find in Schemas
	Search Term
	Components
	Properties
	Scope
	Find and Replace Commands
	Results and Information
	Finding and Renaming Globals

	XSLT
	XSLT Documents
	XSLT Processing
	XSL Outline
	XSL Outline Window
	Info Window

	XSL Speed Optimizer

	XQuery
	Editing XQuery Documents
	XQuery Documents
	XQuery Entry Helpers
	XQuery Syntax Coloring
	XQuery Intelligent Editing

	XQuery Evaluation
	XQuery Validation
	XQuery/Update Execution
	XQuery Update Facility
	Previewing and Applying Updates
	Update Operations and Syntax
	Delete Nodes
	Insert Nodes
	Rename Node
	Replace Node
	Replace Value of Node
	The fn:put Function

	XQuery and XML Databases

	XSLT/XQuery Debugger and Profiler
	XSLT and XQuery Debugger
	Mechanism and Interface
	Commands and Toolbar Icons
	Breakpoints
	Tracepoints
	Information Windows
	Context Window
	Variables Window
	XPath-Watch Window
	Call Stack Window
	Templates Window
	Info Window
	Messages Window
	Trace Window

	Debugger Settings

	XSLT and XQuery Profiler
	XSLT Profiling
	XQuery Profiling
	Profiler Results: Exports and Charts

	XPath/XQuery Expressions
	About the XPath/XQuery Window
	Evaluating the Expression
	Debugging the Expression
	Expression Builder
	XQuery Expressions for JSON
	Points to Note

	Authentic
	Authentic View Tutorial
	Opening an XML Document in Authentic View
	The Authentic View Interface
	Node Operations
	Entering Data in Authentic View
	Entering Attribute Values
	Adding Entities
	Printing the Document

	Authentic View Interface
	Overview of the GUI
	Authentic View Toolbar Icons
	Authentic View Main Window
	Authentic View Entry Helpers
	Authentic View Context Menus

	Editing in Authentic View
	Basic Editing
	Tables in Authentic View
	SPS Tables
	CALS/HTML Tables
	CALS/HTML Table Editing Icons

	Editing a DB
	Navigating a DB Table
	DB Queries
	Modifying a DB Table

	Working with Dates
	Date Picker
	Text Entry

	Defining Entities
	XML Signatures
	Images in Authentic View
	Keystrokes in Authentic View

	Authentic Scripting

	HTML and CSS
	HTML
	CSS

	JSON, JSON Schema
	JSON Data
	JSON Schema
	JSON Lines and JSON Comments
	JSON Text View
	JSON Grid View
	JSON Schema View
	JSON Schema Version
	Adding Global Definitions
	Entry Helpers: Overview, Details, Constraints
	Global and Local Definitions
	Design View
	Objects and Properties
	Unspecified Properties
	Objects and Dependencies
	Arrays
	Atomic Types
	Type Selectors (Any, Multiple, etc)
	BSON (Binary JSON) for MongoDB
	Operators
	Conditionals
	Configuring Design View
	Generating JSON Schema Documentation

	Validate JSON Documents
	Insert JSON Fragments
	JSON Transformations with XSLT/XQuery
	XQuery Expressions for JSON
	Generate JSON Schema from JSON Instance
	Generate JSON Instance from JSON Schema
	Convert between JSON and XML

	Avro, Avro Schema
	Avro Schema
	Avro Data in JSON Format
	Avro View: a Grid View of Avro Binaries

	YAML
	Create and Validate YAML Documents
	YAML Text View
	Generate JSON Schema from YAML Document
	Generate YAML Document from JSON Schema
	Convert between YAML and JSON/XML

	WSDL and SOAP
	WSDL Tutorial
	Creating a New Document
	Creating a PortType
	Creating a Binding
	Creating a Service and Ports
	Validating the WSDL Document
	Connecting to a Web Service and Opening Files
	Sending a SOAP Request from the WSDL File
	Creating WSDL Documentation
	Converting to WSDL 2.0

	SOAP
	SOAP Validation
	SOAP Debugger
	SOAP Communications Process
	SOAP Debugger Options
	Starting a Debugger Session
	SOAP-Request Entry-Point
	Setting Breakpoints
	Debugging
	Analyzing Results and Fixing Errors
	More About Breakpoints

	HTTP
	Sending the Request
	Importing a Request to Send
	Receiving the Response

	XBRL
	Taxonomy Manager
	Run Taxonomy Manager
	Status Categories
	Patch or Install a Taxonomy
	Uninstall a Taxonomy, Reset
	Command Line Interface (CLI)
	help
	info
	initialize
	install
	list
	reset
	uninstall
	update
	upgrade

	Basic Procedures
	Taxonomies: New and Existing
	Taxonomy Files Overview
	Create a New Taxonomy
	Import a Base Taxonomy
	Namespaces
	Taxonomy Files
	Add Elements to a Taxonomy
	Relationships and Linkroles
	Creating Relationships: Part 1
	Creating Relationships: Part 2

	Additional Procedures
	Preferred Labels
	Typed Domains
	Duplicate Detection and De-Duplication
	Inline XBRL

	XBRL Formula Editor
	Formula Linkbases and Link Roles
	Formula Components
	Assertions and Assertion Sets
	Formulas
	Parameters
	Variables
	Filters
	Preconditions
	Functions
	Equality Definitions

	Editing Component Properties and Content
	Formula Component Relationships
	Formula Parameters
	Finding Formula Components

	XBRL Table Definitions Editor
	Table Linkbases and Link Roles
	Table Structure
	X and Y Axes
	Definition Nodes
	Rule Nodes
	Relationship Nodes
	Aspect Nodes

	Z Axis

	Table Components
	Table
	Breakdown
	Definition Node: Rule
	Definition Node: Concept Relationship
	Definition Node: Dimension Relationship
	Definition Node: Aspect

	Editing Component Properties and Content
	Table Component Relationships
	Table Parameters
	Table Layout Preview
	Building Formulas in Table Layout Preview

	Finding Table Components

	XULE
	XULE Documents
	XULE Window
	XULE Execution

	Find in XBRL
	Search Term
	Command Execution
	Results and Information

	OIM
	Validating XBRL Instances and Taxonomies

	Office Open XML, ZIP, EPUB
	Working with OOXML Files
	OOXML Example Files
	ZIP Files
	EPUB Files

	Databases
	Connecting to a Data Source
	Start Database Connection Wizard
	Database Drivers Overview
	ADO Connection
	Connecting to an Existing Microsoft Access Database
	Creating a New Microsoft Access Database
	Setting up the SQL Server Data Link Properties
	Setting up the Microsoft Access Data Link Properties

	ADO.NET Connection
	Creating a Connection String in Visual Studio
	Sample ADO.NET Connection Strings
	ADO.NET Support Notes

	ODBC Connection
	Available ODBC Drivers

	JDBC Connection
	Configuring the CLASSPATH

	SQLite Connection
	Connect to an Existing SQLite Database
	Create a New SQLite Database
	Foreign Key Constraints

	Native Connection
	Global Resources
	Database Connection Examples
	Firebird (JDBC)
	Firebird (ODBC)
	IBM DB2 (JDBC)
	IBM DB2 (ODBC)
	IBM DB2 for i (JDBC)
	IBM DB2 for i (ODBC)
	IBM Informix (JDBC)
	MariaDB (ODBC)
	Microsoft Access (ADO)
	Microsoft Azure SQL (ODBC)
	Microsoft SQL Server (ADO)
	Microsoft SQL Server (ODBC)
	MySQL (ODBC)
	Oracle (JDBC)
	Oracle (ODBC)
	PostgreSQL (ODBC)
	Progress OpenEdge (JDBC)
	Progress OpenEdge (ODBC)
	Sybase (JDBC)
	Teradata (JDBC)
	Teradata (ODBC)

	Supported Databases

	Altova Global Resources
	Defining Global Resources
	Files
	Folders
	Databases

	Using Global Resources
	Assigning Files and Folders
	Assigning Databases
	Changing the Active Configuration

	Projects
	Creating and Editing Projects
	Using Projects

	RaptorXML(+XBRL) Server
	Adding Servers and Server Configurations
	Validating with RaptorXML Server
	Validation Options
	Common Options
	XML with DTD
	DTD
	XML with W3C Schema
	W3C Schema
	Inline XBRL Instance
	XBRL Instance
	XBRL Taxonomy
	XBRL Taxonomy Package
	XBRL Versioning Report
	XSLT
	XQuery
	JSON
	JSON Schema
	AVRO
	AVRO JSON
	AVRO Schema
	EDGAR

	XSLT and XQuery with RaptorXML Server

	File/Directory Comparisons
	File Comparisons
	Directory Comparisons

	Source Control
	Setting Up Source Control
	Supported Source Control Systems
	Local Workspace Folder
	Application Project
	Add to Source Control
	Working with Source Control
	Add to, Remove from Source Control
	Check Out, Check In
	Getting Files as Read-Only
	Copying and Sharing from Source Control
	Changing Source Control

	Source Control with Git
	Enabling Git Source Control with GIT SCC Plug-in
	Adding a Project to Git Source Control
	Cloning a Project from Git Source Control

	XMLSpy in Visual Studio
	Installing the XMLSpy Plugin
	Differences with XMLSpy Standalone
	XMLSpy's Debuggers in Visual Studio

	XMLSpy in Eclipse
	Install the Integration Package for Eclipse
	XMLSpy Perspective in Eclipse
	Other XMLSpy Entry Points in Eclipse
	XMLSpy's Debugger Perspectives

	Code Generator
	Generate Code from XML Schemas or DTDs
	About Schema Wrapper Libraries (C++)
	About Schema Wrapper Libraries (C#)
	About Schema Wrapper Libraries (Java)
	Integrate Schema Wrapper Libraries
	Example: Book Library
	Reading and Writing XML Documents (C++)
	Reading and Writing XML Documents (C#)
	Reading and Writing XML Documents (Java)

	Example: Purchase Order
	XML Namespaces and Prefixes (C++)
	XML Namespaces and Prefixes (C#)
	XML Namespaces and Prefixes (Java)

	Generated Classes (C++)
	altova::DateTime
	altova::Duration
	altova::DayTimeDuration
	altova::YearMonthDuration
	altova::meta::Attribute
	altova::meta::ComplexType
	altova::meta::Element
	altova::meta::SimpleType
	[YourSchema]::[CDoc]
	[YourSchema]::[ElementType]
	[YourSchema]::MemberAttribute
	[YourSchema]::MemberElement

	Generated Classes (C#)
	Altova.Types.DateTime
	Altova.Types.DateTimeFormat
	Altova.Types.Duration
	Altova.Xml.Meta.Attribute
	Altova.Xml.Meta.ComplexType
	Altova.Xml.Meta.Element
	Altova.Xml.Meta.SimpleType
	[YourSchema].[Doc]
	[YourSchema].[ElementType]
	[YourSchemaType].MemberAttribute
	[YourSchemaType].MemberElement

	Generated Classes (Java)
	com.altova.types.DateTime
	com.altova.types.Duration
	com.altova.xml.meta.Attribute
	com.altova.xml.meta.ComplexType
	com.altova.xml.meta.Element
	com.altova.xml.meta.SimpleType
	com.[YourSchema].[Doc]
	com.[YourSchema].[ElementType]
	com.[YourSchema].[YourSchemaType].MemberAttribute
	com.[YourSchema].[YourSchemaType].MemberElement

	SPL Reference
	Basic SPL structure
	Declarations
	Variables
	Predefined variables
	Creating output files
	Operators
	Conditions
	Collections and foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation
	Subroutine example

	Built in Types
	Library
	Namespace
	Type
	Member
	NativeBinding
	Facets

	Menu Commands
	File Menu
	New
	Open
	Reload
	Encoding
	Close, Close All, Close All But Active
	Save, Save As, Save All
	Send by Mail
	Print
	Print Preview, Print Setup
	Recent Files, Exit

	Edit Menu
	Undo, Redo
	Cut, Copy, Paste, Delete
	Copy as XML/JSON Text
	Copy as Tab-Separated Text
	Copy as Image
	Copy XPath
	Copy XPointer/JSON-Pointer
	Insert
	Save as Image
	Pretty-Print
	Strip Whitespaces
	Select All
	Find, Find Next
	Replace
	Find in Files
	Bookmark Commands
	Comment In/Out

	Project Menu
	New Project
	Open Project
	Reload Project
	Close Project
	Save Project, Save Project As
	Source Control
	Open from Source Control
	Enable Source Control
	Get Latest Version
	Get, Get Folders
	Check Out, Check In
	Undo Check Out
	Add to Source Control
	Remove from Source Control
	Share from Source Control
	Show History
	Show Differences
	Show Properties
	Refresh Status
	Source Control Manager
	Change Source Control

	Add Files to Project
	Add Global Resource to Project
	Add URL to Project
	Add Active File to Project
	Add Active And Related Files to Project
	Add Project Folder to Project
	Add External Folder to Project
	Add External Web Folder to Project
	Script Settings
	Properties
	Most Recently Used Projects

	XML Menu
	Type
	Insert After/Before
	Append, Add Child
	Wrap in Element
	Edit as Raw Text
	Move Up/Down/Left/Right
	Display as Table
	Ascending/Descending Sort
	Flip Rows/Columns
	Evaluate XPath
	Check Well-Formedness
	Validate XML
	Validate XML on Server (high-performance)
	Validating WSDL Files
	Validate on Edit
	Update Entry Helpers
	Namespace Prefix
	Create XML Signature
	Verify XML Signature

	JSON Menu
	Type
	Insert After/Before, Append, Add Child
	Wrap in Array/Object
	Move
	Display as Table
	Ascending/Descending Sort
	Flip Rows/Columns
	Remove Comments, Re-evaluate All

	DTD/Schema Menu
	Assign DTD
	Assign Schema
	Include Another DTD
	Go to DTD
	Go to Schema
	Go to Definition
	Generate DTD/Schema
	Flatten DTD
	Convert DTD to Schema
	Flatten Schema
	Convert Schema to DTD
	Convert to UML
	Generate XML from DB, Excel, EDI with MapForce
	Design HTML/PDF/Word Output with StyleVision...
	Generate Sample XML/JSON File
	Generate Program Code
	Flush Memory Cache

	Schema Design Menu
	Schema Settings
	Save Diagram
	Generate Documentation
	Documentation Options
	User-Defined Design

	Configure View
	Zoom
	Display All Globals
	Display Diagram
	Schema Extensions for Databases
	Enable Oracle Schema Extensions
	Oracle Schema Settings
	Enable Microsoft SQL Server Schema Extensions
	Named Schema Relationships
	Unnamed Element Relationships

	Connect to SchemaAgent Server
	Disconnect from SchemaAgent Server
	Show in SchemaAgent
	SchemaAgent Validation
	Create Schema Subset
	Flatten Schema

	XSL/XQuery Menu
	XSL Transformation
	XSL Speed Optimizer
	XSL-FO Transformation
	XSL Parameters / XQuery Variables
	XQuery/Update Execution
	Enable Back-Mapping
	Enable XSLT/XQuery Profiling
	Assign XSL
	Assign XSL-FO
	Assign Sample XML File
	Go to XSL
	Go to Source Instruction
	Go to Context Node
	Start Debugger / Go
	Stop Debugger
	Restart Debugger
	End Debugger Session
	Step Into
	Step Out
	Step Over
	Show Current Execution Node
	Insert/Remove Breakpoint
	Insert/Remove Tracepoint
	Enable/Disable Breakpoint
	Enable/Disable Tracepoint
	Breakpoints/Tracepoints
	Debug Windows
	Debug Settings

	Authentic Menu
	New Document
	Edit Database Data
	Assign a StyleVision Stylesheet
	Edit StyleVision Stylesheet
	Select New Row with XML Data for Editing
	XML Signature
	Define XML Entities
	View Markup
	RichEdit
	Append/Insert/Duplicate/Delete Row
	Collapse/Expand Markup
	Move Row, Delete Row
	Generate HTML, RTF, PDF, Word 2007+ Document
	Trusted Locations

	DB Menu
	Query Database
	Data Sources
	Browser Pane: Viewing the DB Objects
	Query Pane: Description and Features
	Query Pane: Working with Queries
	Results and Messages

	IBM DB2
	Manage XML Schemas
	Assign XML Schema

	SQL Server
	Manage XML Schemas

	Oracle XML DB
	Manage XML Schemas
	Browse Oracle XML Documents

	Convert Menu
	Import Text File
	Import Database Data
	Import Microsoft Word Document
	Create XML Schema from DB Structure
	DB Import Based on XML Schema
	Create DB Structure from XML Schema
	Export to Text Files
	Export to a Database
	Convert XML Instance to/from JSON/YAML
	Convert XML Schema to/from JSON Schema
	Convert JSON to/from YAML
	Convert to OIM xBRL-XML
	Convert to OIM xBRL-JSON
	Convert to OIM xBRL-CSV

	View Menu
	Text View
	Enhanced Grid View
	Schema Design View
	WSDL Design View
	XBRL Taxonomy View
	Authentic View
	Browser View
	Expand
	Collapse
	Expand Fully
	Collapse Unselected
	Optimal Widths
	Word Wrap
	Go to Line/Character
	Go to File
	Text View Settings

	Browser Menu
	WSDL Menu
	WSDL 1.1 Components
	Messages
	Operations
	PortType
	Binding
	Service

	WSDL 2.0 Components
	Interface
	Binding
	Service

	Types, Save Diagram
	Generate Documentation
	Documentation Options
	User-Defined Design

	Reparse WSDL Document
	Convert to WSDL 2.0
	Generate WSDL Program Code with MapForce

	SOAP Menu
	Create New SOAP Request
	Send Request to Server
	SOAP Request Settings
	SOAP Debugger Session
	Go
	Single Step
	Break on Next Request
	Break on Next Response
	Stop the Proxy Server
	SOAP Debugger Options

	XBRL Menu
	Arcroles
	Linkroles
	Namespace Prefixes
	Set Target Namespace
	Parameter Values
	Import/Reference
	Find Component by ID
	Generate Documentation
	Documentation Options
	User-Defined Design

	View Settings
	Generate XBRL from DB, Excel, CSV with MapForce
	Present XBRL as HTML/PDF/Word with StyleVision
	Execute Formula (on Server)
	Generate Table (on Server)
	Detect Duplicates (on Server)
	Execute XULE
	Transform Inline XBRL
	Validate EDGAR on Server
	Processing Options

	Tools Menu
	Spelling
	Spelling Options
	Scripting Editor
	Macros
	Comparisons
	Compare Open File With
	Compare Directories
	Compare Options

	User-Defined Tools
	Global Resources
	Active Configuration
	Manage Raptor Servers
	Raptor Servers and Configurations
	XBRL Taxonomy Manager
	XML Schema Manager
	Customize
	Commands
	Toolbars
	Tools
	Keyboard
	Menu
	Macros
	Plug-Ins
	Options
	Customize Context Menu

	Restore Toolbars and Windows
	Options
	File
	File Types
	Encoding
	Editing
	Pretty Printing
	Validation
	View
	Fonts and Colors
	Text View
	Grid View
	Schema Design View
	WSDL Design View
	XBRL Taxonomy View

	XSL
	Speed Optimizer

	XQuery
	Java
	XBRL
	Calculations
	Inline XBRL
	Taxonomy Packages
	XULE
	Report Packages

	Scripting
	Source Control
	Network
	Network Proxy
	AI-Assistant
	Help

	Window Menu
	Help Menu
	Help
	Keyboard Map
	Activation, Order Form, Registration, Updates
	Other Commands

	Command Line

	Programmers' Reference
	Scripting Editor
	Creating a Scripting Project
	Overview of the Environment
	Global Declarations
	Macros
	Forms
	Events
	JScript Programming Tips
	Example Scripting Project

	Built-in Commands
	alert
	confirm
	CLR.Create
	CLR.Import
	CLR.LoadAssembly
	CLR.ShowImports
	CLR.ShowLoadedAssemblies
	CLR.Static
	CreateForm
	doevents
	lastform
	prompt
	ShowForm
	watchdog

	Enabling Scripts and Macros
	Running Macros

	IDE Plugins
	Registration of IDE PlugIns
	ActiveX Controls
	Configuration XML
	ATL Sample Files
	Interface description (IDL)
	Class definition
	Implementation

	IXMLSpyPlugIn
	OnCommand
	OnUpdateCommand
	OnEvent
	GetUIModifications
	GetDescription

	Application API
	Overview
	Object Model
	Programming Languages
	JScript
	Start Application
	Simple Document Access
	Iteration
	Error Handling
	Events
	Import and Export of Data
	Import from Database
	Export to Database
	Import from Text
	Export to Text

	VBScript
	Events
	Example: Using Events

	C#
	Add Reference to XMLSpy API
	Application Startup and Shutdown
	Opening Documents
	Iterating through Open Documents
	Errors and COM Output Parameters
	Events

	Java
	Example Java Project
	Application Startup and Shutdown
	Simple Document Access
	Iterations
	Use of Out-Parameters
	Event Handlers

	The DOM and XMLData
	Obsolete: Authentic View Row operations
	Obsolete: Authentic View Editing operations

	Interfaces
	Application
	Events
	OnBeforeOpenDocument
	OnBeforeOpenProject
	OnDocumentOpened
	OnProjectOpened

	ActiveDocument
	AddMacroMenuItem
	AddXSLT_XQParameter
	Application
	ClearMacroMenu
	CreateXMLSchemaFromDBStructure
	CurrentProject
	Dialogs
	Documents
	Edition
	FindInFiles
	GetDatabaseImportElementList
	GetDatabaseSettings
	GetDatabaseTables
	GetExportSettings
	GetTextImportElementList
	GetTextImportExportSettings
	GetXSLT_XQParameterCount
	GetXSLT_XQParameterName
	GetXSLT_XQParameterXPath
	ImportFromDatabase
	ImportFromSchema
	ImportFromText
	ImportFromWord
	IsAPISupported
	MajorVersion
	MinorVersion
	NewProject
	OpenProject
	Parent
	Quit
	ReloadSettings
	RemoveXSLT_XQParameter
	RunMacro
	ScriptingEnvironment
	ServicePackVersion
	ShowApplication
	ShowFindInFiles
	ShowForm
	Status
	URLDelete
	URLMakeDirectory
	Visible
	WarningNumber
	WarningText

	AuthenticContextMenu
	CountItems
	DeleteItem
	GetItemText
	InsertItem
	SetItemText

	AuthenticDataTransfer
	dropEffect
	getData
	ownDrag
	type

	AuthenticEventContext
	EvaluateXPath
	GetEventContextType
	GetNormalizedTextValue
	GetVariableValue
	GetXMLNode
	IsAvailable
	SetVariableValue

	AuthenticRange
	AppendRow
	Application
	CanPerformAction
	CanPerformActionWith
	Clone
	CollapsToBegin
	CollapsToEnd
	Copy
	Cut
	Delete
	DeleteRow
	DuplicateRow
	EvaluateXPath
	ExpandTo
	FirstTextPosition
	FirstXMLData
	FirstXMLDataOffset
	GetElementAttributeNames
	GetElementAttributeValue
	GetElementHierarchy
	GetEntityNames
	GetVariableValue
	Goto
	GotoNext
	GotoNextCursorPosition
	GotoPrevious
	GotoPreviousCursorPosition
	HasElementAttribute
	InsertEntity
	InsertRow
	IsCopyEnabled
	IsCutEnabled
	IsDeleteEnabled
	IsEmpty
	IsEqual
	IsFirstRow
	IsInDynamicTable
	IsLastRow
	IsPasteEnabled
	IsSelected
	IsTextStateApplied
	LastTextPosition
	LastXMLData
	LastXMLDataOffset
	MoveBegin
	MoveEnd
	MoveRowDown
	MoveRowUp
	Parent
	Paste
	PerformAction
	Select
	SelectNext
	SelectPrevious
	SetElementAttributeValue
	SetFromRange
	SetVariableValue
	Text

	AuthenticView
	Events
	OnBeforeCopy
	OnBeforeCut
	OnBeforeDelete
	OnBeforeDrop
	OnBeforePaste
	OnBeforeSave
	OnDragOver
	OnKeyboardEvent
	OnLoad
	OnMouseEvent
	OnSelectionChanged
	OnToolbarButtonClicked
	OnToolbarButtonExecuted
	OnUserAddedXMLNode

	Application
	AsXMLString
	ContextMenu
	CreateXMLNode
	DisableAttributeEntryHelper
	DisableElementEntryHelper
	DisableEntityEntryHelper
	DocumentBegin
	DocumentEnd
	DoNotPerformStandardAction
	EvaluateXPath
	Event
	EventContext
	GetToolbarButtonState
	Goto
	IsRedoEnabled
	IsUndoEnabled
	MarkupVisibility
	Parent
	Print
	Redo
	Selection
	SetToolbarButtonState
	Undo
	UpdateXMLInstanceEntities
	WholeDocument
	XMLDataRoot

	CodeGeneratorDlg
	Application
	CompatibilityMode (obsolete)
	CPPSettings_DOMType
	CPPSettings_GenerateVC6ProjectFile
	CPPSettings_GenerateGCCMakefile
	CPPSettings_GenerateVSProjectFile
	CPPSettings_LibraryType
	CPPSettings_UseMFC
	CSharpSettings_ProjectType
	OutputPath
	OutputPathDialogAction
	OutputResultDialogAction
	Parent
	ProgrammingLanguage
	PropertySheetDialogAction
	TemplateFileName

	DatabaseConnection
	ADOConnection
	AsAttributes
	CommentIncluded
	CreateMissingTables
	CreateNew
	DatabaseKind
	DatabaseSchema
	ExcludeKeys
	File
	ForeignKeys
	ImportColumnsType
	IncludeEmptyElements
	NullReplacement
	NumberDateTimeFormat
	ODBCConnection
	PrimaryKeys
	SchemaExtensionType
	SchemaFormat
	SQLSelect
	TextFieldLen
	UniqueKeys

	Dialogs
	Application
	CodeGeneratorDlg
	FileSelectionDlg
	JSONSchemaDocumentationDlg
	Parent
	SchemaDocumentationDlg
	GenerateSampleXMLDlg
	DTDSchemaGeneratorDlg
	FindInFilesDlg
	WSDLDocumentationDlg
	WSDL20DocumentationDlg
	XBRLDocumentationDlg

	Document
	Events
	OnBeforeSaveDocument
	OnBeforeCloseDocument
	OnBeforeValidate
	OnCloseDocument
	OnViewActivation

	Application
	AssignDTD
	AssignSchema
	AssignXSL
	AssignXSLFO
	AsXMLString
	AuthenticView
	Close
	ConvertDTDOrSchema
	ConvertDTDOrSchemaEx
	ConvertToWSDL20
	ConvertXMLToFromJSON
	CreateChild
	CreateDBStructureFromXMLSchema
	CreateSchemaDiagram
	CurrentViewMode
	DataRoot
	DocEditView
	Encoding
	EndChanges
	ExecuteXQuery
	ExportToDatabase
	ExportToText
	FlattenDTDOrSchema
	FullName
	GenerateDTDOrSchema
	GenerateDTDOrSchemaEx
	GenerateJSONSchemaDocumentation
	GenerateProgramCode
	GenerateSampleXML
	GenerateSchemaDocumentation
	GenerateWSDL20Documentation
	GenerateWSDLDocumentation
	GenerateXBRLDocumentation
	GetDBStructureList
	GetExportElementList
	GetPathName (obsolete)
	GridView
	IsModified
	IsValid
	IsValidEx
	IsWellFormed
	Name
	Parent
	Path
	RootElement
	Save
	SaveAs
	Saved
	SaveInString
	SaveToURL
	Selection
	SetActiveDocument
	SetEncoding (obsolete)
	SetExternalIsValid
	SetPathName (obsolete)
	StartChanges
	Suggestions
	SwitchViewMode
	TextView
	Title
	TransformXSL
	TransformXSLEx
	TransformXSLFO
	TransformXSLFOEx
	TreatXBRLInconsistenciesAsErrors
	UpdateViews
	UpdateXMLData
	ValidateOnServer

	Documents
	Count
	Item
	NewAuthenticFile
	NewFile
	NewFileFromText
	OpenAuthenticFile
	OpenFile
	OpenURL
	OpenURLDialog

	DTDSchemaGeneratorDlg
	Application
	AttributeTypeDefinition
	DTDSchemaFormat
	FrequentElements
	GlobalAttributes
	MaxEnumLength
	MergeAllEqualNamed
	OnlyStringEnums
	OutputPath
	OutputPathDialogAction
	Parent
	ResolveEntities
	TypeDetection
	ValueList

	ElementList
	Count
	Item
	RemoveElement

	ElementListItem
	ElementKind
	FieldCount
	Name
	RecordCount

	ExportSettings
	CreateKeys
	ElementList
	EntitiesToText
	ExportAllElements
	ExportCompleteXML
	FromAttributes
	FromSingleSubElements
	FromTextValues
	IndependentPrimaryKey
	Namespace
	StartFromElement
	SubLevelLimit

	FileSelectionDlg
	Application
	DialogAction
	FullName
	Parent

	FindInFilesDlg
	AdvancedXMLSearch
	Application
	DoReplace
	FileExtension
	Find
	IncludeSubfolders
	MatchCase
	MatchWholeWord
	Parent
	RegularExpression
	Replace
	ReplaceOnDisk
	SearchInProjectFilesDoExternal
	SearchLocation
	ShowResult
	StartFolder
	XMLAttributeContents
	XMLAttributeNames
	XMLCData
	XMLComments
	XMLElementContents
	XMLElementNames
	XMLPI
	XMLRest

	FindInFilesResult
	Application
	Count
	Document
	Item
	Parent
	Path

	FindInFilesResultMatch
	Application
	Length
	Line
	LineText
	Parent
	Position
	Replaced

	FindInFilesResults
	Application
	Count
	Item
	Parent

	GenerateSampleXMLDlg
	Application
	ChoiceMode
	ConsiderSampleValueHints
	ContentOfNillableElementsIsNonMandatory
	FillAttributesWithSampleData
	FillElementsWithSampleData
	FillWithSampleData - obsolete
	LocalNameOfRootElement
	NamespaceURIOfRootElement
	NonMandatoryAttributes
	NonMandatoryElements
	Optimization - obsolete
	OptionsDialogAction
	Parent
	RepeatCount
	SampleValueHints
	SchemaOrDTDAssignment
	TakeFirstChoice - obsolete
	TryToUseNonAbstractTypes

	GridView
	Events
	OnBeforeDrag
	OnBeforeDrop
	OnBeforeStartEditing
	OnEditingFinished
	OnFocusChanged

	CurrentFocus
	Deselect
	IsVisible
	Select
	SetFocus

	JSONSchemaDocumentationDlg
	AllDetails
	Application
	CreateDiagramsFolder
	DiagramFormat
	EmbedCSSInHTML
	EmbedDiagrams
	GenerateRelativeLinks
	IncludeAll
	IncludeArrayItems
	IncludeDefinitions
	IncludeExternalSchemas
	IncludeOperatorSubschemas
	IncludeOverview
	IncludePatternProperties
	IncludeProperties
	IncludePropertyWildcards
	IncludeSchemaDependencies
	MultipleOutputFiles
	OptionsDialogAction
	OutputFile
	OutputFileDialogAction
	OutputFormat
	Parent
	ShowArrayItems
	ShowDiagram
	ShowEnumerations
	ShowLocation
	ShowOperators
	ShowProgressBar
	ShowProperties
	ShowPropertyDetails
	ShowResult
	ShowSchemaDetails
	ShowSourceCode
	ShowSpecifying
	ShowType
	ShowTypeConstraints
	ShowUsedBy
	SPSFile
	UseFixedDesign

	SchemaDocumentationDlg
	AllDetails
	Application
	CreateDiagramsFolder
	DiagramFormat
	EmbedCSSInHTML
	EmbedDiagrams
	GenerateRelativeLinks
	IncludeAll
	IncludeAttributeGroups
	IncludeComplexTypes
	IncludeGlobalAttributes
	IncludeGlobalElements
	IncludeGroups
	IncludeIndex
	IncludeLocalAttributes
	IncludeLocalElements
	IncludeRedefines
	IncludeReferencedSchemas
	IncludeSimpleTypes
	MultipleOutputFiles
	OptionsDialogAction
	OutputFile
	OutputFileDialogAction
	OutputFormat
	Parent
	ShowAnnotations
	ShowAttributes
	ShowChildren
	ShowDiagram
	ShowEnumerations
	ShowIdentityConstraints
	ShowNamespace
	ShowPatterns
	ShowProgressBar
	ShowProperties
	ShowResult
	ShowSingleFacets
	ShowSourceCode
	ShowType
	ShowUsedBy
	SPSFile
	UseFixedDesign

	SpyProject
	CloseProject
	ProjectFile
	RootItems
	SaveProject
	SaveProjectAs

	SpyProjectItem
	ChildItems
	FileExtensions
	ItemType
	Name
	Open
	ParentItem
	Path
	ValidateWith
	XMLForXSLTransformation
	XSLForXMLTransformation
	XSLTransformationFileExtension
	XSLTransformationFolder

	SpyProjectItems
	AddFile
	AddFolder
	AddURL
	Count
	Item
	RemoveItem

	TextImportExportSettings
	CommentIncluded
	DestinationFolder
	EnclosingCharacter
	Encoding
	EncodingByteOrder
	FieldDelimiter
	FileExtension
	HeaderRow
	ImportFile
	RemoveDelimiter
	RemoveNewline

	TextView
	Events
	OnBeforeShowSuggestions
	OnChar

	Application
	GetRangeText
	GoToLineChar
	Length
	LineCount
	LineFromPosition
	LineLength
	MoveCaret
	Parent
	PositionFromLine
	ReplaceText
	SelectionEnd
	SelectionStart
	SelectText
	SelText
	Text

	WSDLDocumentationDlg
	AllDetails
	Application
	CreateDiagramsFolder
	DiagramFormat
	EmbedCSSInHTML
	EmbedDiagrams
	GlobalElementsAndTypesOnly
	IncludeAll
	IncludeBinding
	IncludeImportedWSDLFiles
	IncludeMessages
	IncludeOverview
	IncludePortType
	IncludeService
	IncludeTypes
	MultipleOutputFiles
	OptionsDialogAction
	OutputFile
	OutputFileDialogAction
	OutputFormat
	Parent
	SeparateSchemaDocument
	ShowBindingDiagram
	ShowExtensibility
	ShowMessageParts
	ShowPort
	ShowPortTypeDiagram
	ShowPortTypeOperations
	ShowProgressBar
	ShowResult
	ShowServiceDiagram
	ShowSourceCode
	ShowTypesDiagram
	ShowUsedBy
	UseFixedDesign
	SPSFile

	WSDL20DocumentationDlg
	AllDetails
	Application
	CreateDiagramsFolder
	DiagramFormat
	EmbedCSSInHTML
	EmbedDiagrams
	GlobalElementsAndTypesOnly
	IncludeAll
	IncludeBinding
	IncludeImportedWSDLFiles
	IncludeInterface
	IncludeOverview
	IncludeService
	IncludeTypes
	MultipleOutputFiles
	OptionsDialogAction
	OutputFile
	OutputFileDialogAction
	OutputFormat
	Parent
	SeparateSchemaDocument
	ShowBindingDiagram
	ShowEndpoint
	ShowExtensibility
	ShowFault
	ShowInterfaceDiagram
	ShowOperation
	ShowProgressBar
	ShowResult
	ShowServiceDiagram
	ShowSourceCode
	ShowTypesDiagram
	ShowUsedBy
	SPSFile
	UseFixedDesign

	XBRLDocumentationDlg
	AllDetails
	Application
	CreateDiagramsFolder
	DiagramFormat
	EmbedCSSInHTML
	EmbedDiagrams
	IncludeAll
	IncludeCalculationLinkroles
	IncludeDefinitionLinkroles
	IncludeGlobalElements
	IncludeNamespacePrefixes
	IncludeOverview
	IncludePresentationLinkroles
	OptionsDialogAction
	OutputFile
	OutputFileDialogAction
	OutputFormat
	Parent
	ShortQualifiedName
	ShowAbstract
	ShowBalance
	ShowDiagram
	ShowImportedElements
	ShowItemtype
	ShowLabels
	ShowLinkbaseReferences
	ShowNillable
	ShowPeriod
	ShowProgressBar
	ShowReferences
	ShowResult
	ShowSubstitutiongroup
	SPSFile
	UseFixedDesign

	XMLData
	AppendChild
	CountChildren
	CountChildrenKind
	EraseAllChildren
	EraseChild
	EraseCurrentChild
	GetChild
	GetChildAttribute
	GetChildElement
	GetChildKind
	GetCurrentChild
	GetFirstChild
	GetNamespacePrefixForURI
	GetNextChild
	GetTextValueXMLDecoded
	HasChildren
	HasChildrenKind
	InsertChild
	InsertChildAfter
	InsertChildBefore
	IsSameNode
	Kind
	MayHaveChildren
	Name
	Parent
	SetTextValueXMLEncoded
	TextValue

	Interfaces (obsolete)
	AuthenticEvent (obsolete)
	altKey (obsolete)
	altLeft (obsolete)
	button (obsolete)
	cancelBubble (obsolete)
	clientX (obsolete)
	clientY (obsolete)
	ctrlKey (obsolete)
	ctrlLeft (obsolete)
	dataTransfer (obsolete)
	fromElement (obsolete)
	keyCode (obsolete)
	propertyName (obsolete)
	repeat (obsolete)
	returnValue (obsolete)
	shiftKey (obsolete)
	shiftLeft (obsolete)
	srcElement (obsolete)
	type (obsolete)

	AuthenticSelection (obsolete)
	End (obsolete)
	EndTextPosition (obsolete)
	Start (obsolete)
	StartTextPosition (obsolete)

	OldAuthentictView (obsolete)
	ApplyTextState (obsolete)
	CurrentSelection (obsolete)
	EditClear (obsolete)
	EditCopy (obsolete)
	EditCut (obsolete)
	EditPaste (obsolete)
	EditRedo (obsolete)
	EditSelectAll (obsolete)
	EditUndo (obsolete)
	event (obsolete)
	GetAllowedElements (obsolete)
	GetNextVisible (obsolete)
	GetPreviousVisible (obsolete)
	IsEditClearEnabled (obsolete)
	IsEditCopyEnabled (obsolete)
	IsEditCutEnabled (obsolete)
	IsEditPasteEnabled (obsolete)
	IsEditRedoEnabled (obsolete)
	IsEditUndoEnabled (obsolete)
	IsRowAppendEnabled (obsolete)
	IsRowDeleteEnabled (obsolete)
	IsRowDuplicateEnabled (obsolete)
	IsRowInsertEnabled (obsolete)
	IsRowMoveDownEnabled (obsolete)
	IsRowMoveUpEnabled (obsolete)
	IsTextStateApplied (obsolete)
	IsTextStateEnabled (obsolete)
	LoadXML (obsolete)
	MarkUpView (obsolete)
	RowAppend (obsolete)
	RowDelete (obsolete)
	RowDuplicate (obsolete)
	RowInsert (obsolete)
	RowMoveDown (obsolete)
	RowMoveUp (obsolete)
	SaveXML (obsolete)
	SelectionMoveTabOrder (obsolete)
	SelectionSet (obsolete)
	XMLRoot (obsolete)

	Enumerations
	ENUMApplicationStatus
	SPYAttributeTypeDefinition
	SPYAuthenticActions
	SPYAuthenticDocumentPosition
	SPYAuthenticElementActions
	SPYAuthenticElementKind
	SPYAuthenticMarkupVisibility
	SPYAuthenticToolbarButtonState
	SPYDatabaseKind
	SPYDialogAction
	SPYDOMType
	SPYDTDSchemaFormat
	SPYEncodingByteOrder
	SPYExportNamespace
	SPYFindInFilesSearchLocation
	SPYFrequentElements
	SPYImageKind
	SPYImportColumnsType
	SPYKeyEvent
	SPYKeyStatus
	SPYLibType
	SPYLoading
	SPYMouseEvent
	SPYNumberDateTimeFormat
	SPYProgrammingLanguage
	SPYProjectItemTypes
	SPYProjectType
	SpySampleXMLGenerationChoiceMode
	SPYSampleXMLGenerationOptimization (Obsolete)
	SpySampleXMLGenerationSampleValueHints
	SPYSampleXMLGenerationSchemaOrDTDAssignment
	SPYSchemaDefKind
	SPYSchemaDocumentationFormat
	SPYSchemaExtensionType
	SPYSchemaFormat
	SPYTextDelimiters
	SPYTextEnclosing
	SPYTypeDetection
	SPYURLTypes
	SPYValidateXSDVersion
	SPYValidateErrorFormat
	SPYViewModes
	SPYVirtualKeyMask
	SPYXMLDataKind

	Application API for Java (obsolete)
	Sample source code (obsolete)
	SpyApplication (obsolete)
	SpyCodeGeneratorDlg (obsolete)
	SpyDatabaseConnection (obsolete)
	SpyDialogs (obsolete)
	SpyDoc (obsolete)
	SpyDocuments (obsolete)
	SpyDTDSchemaGeneratorDlg (obsolete)
	SpyElementList (obsolete)
	SpyElementListItem (obsolete)
	SpyExportSettings (obsolete)
	SpyFileSelectionDlg (obsolete)
	SpyFindInFilesDlg (obsolete)
	SpyFindInFilesMatch (obsolete)
	SpyFindInFilesResult (obsolete)
	SpyFindInFilesResults (obsolete)
	SpyGenerateSampleXMLDlg (obsolete)
	SpyGridView (obsolete)
	SpyProject (obsolete)
	SpyProjectItem (obsolete)
	SpyProjectItems (obsolete)
	SpySchemaDocumentationDlg (obsolete)
	SpyTextImportExportSettings (obsolete)
	SpyTextView (obsolete)
	SpyWSDL20DocumentationDlg (obsolete)
	SpyWSDLDocumentationDlg (obsolete)
	SpyXBRLDocumentationDlg (obsolete)
	SpyXMLData (obsolete)
	Authentic (obsolete)
	SpyAuthenticRange (obsolete)
	SpyAuthenticView (obsolete)
	SpyDocEditSelection (obsolete)
	SpyDocEditView (obsolete)

	Predefined constants (obsolete)
	SPYApplicationStatus (obsolete)
	SPYAttributeTypeDefinition (obsolete)
	SPYAuthenticActions (obsolete)
	SPYAuthenticDocumentPosition (obsolete)
	SPYAuthenticElementKind (obsolete)
	SPYAuthenticMarkupVisibility (obsolete)
	SPYDatabaseKind (obsolete)
	SPYDialogAction (obsolete)
	SPYDOMType (obsolete)
	SPYDTDSchemaFormat (obsolete)
	SPYEncodingByteOrder (obsolete)
	SPYExportNamespace (obsolete)
	SPYFindInFilesSearchLocation (obsolete)
	SPYFrequentElements (obsolete)
	SPYImageKind (obsolete)
	SPYImportColumnsType (obsolete)
	SPYLibType (obsolete)
	SPYLoading (obsolete)
	SPYNumberDateTimeFormat (obsolete)
	SPYProgrammingLanguage (obsolete)
	SPYProjectItemTypes (obsolete)
	SPYProjectType (obsolete)
	SPYSampleXMLGenerationOptimization (obsolete)
	SPYSampleXMLGenerationSchemaOrDTDAssignment (obsolete)
	SPYSchemaDefKind (obsolete)
	SPYSchemaDocumentationFormat (obsolete)
	SPYSchemaExtensionType (obsolete)
	SPYSchemaFormat (obsolete)
	SPYTextDelimiters (obsolete)
	SPYTextEnclosing (obsolete)
	SPYTypeDetection (obsolete)
	SPYURLTypes (obsolete)
	SpyViewModes (obsolete)
	SPYWhitespaceComparison (obsolete)
	SPYXMLDataKind (obsolete)

	ActiveX Integration
	Prerequisites
	Adding the ActiveX Controls to the Toolbox
	Integration at Application Level
	Integration at Document Level
	ActiveX Integration Examples
	C#
	Running the Sample C# Solution

	Java
	Example Java Project
	Creating the ActiveX Controls
	Loading Data in the Controls
	Basic Event Handling
	Menus
	UI Update Event Handling
	Creating an XML Tree

	Command Reference
	"File" Menu
	"Edit" Menu
	"Project" Menu
	"XML" Menu
	"DTD/Schema" Menu
	"Schema design" Menu
	"XSL/XQuery" Menu
	"Authentic" Menu
	"DB" Menu
	"Convert" Menu
	"View" Menu
	"Browser" Menu
	"WSDL" Menu
	"SOAP" Menu
	"XBRL" Menu
	"Tools" Menu
	"Window" Menu
	"Help" Menu

	Object Reference
	XMLSpyCommand
	Accelerator
	ID
	IsSeparator
	Label
	Name
	StatusText
	SubCommands
	ToolTip

	XMLSpyCommands
	Count
	Item

	XMLSpyControl
	Properties
	Appearance
	Application
	BorderStyle
	CommandsList
	EnableUserPrompts
	IntegrationLevel
	MainMenu
	Toolbars

	Methods
	Exec
	Open
	QueryStatus

	Events
	OnCloseEditingWindow
	OnContextChanged
	OnDocumentOpened
	OnFileChangedAlert
	OnLicenseProblem
	OnOpenedOrFocused
	OnToolWindowUpdated
	OnUpdateCmdUI
	OnValidationWindowUpdated

	XMLSpyControlDocument
	Properties
	Appearance
	BorderStyle
	Document
	IsModified
	Path
	ReadOnly

	Methods
	Exec
	New
	Open
	QueryStatus
	Reload
	Save
	SaveAs

	Events
	OnActivate
	OnContextChanged
	OnDocumentClosed
	OnDocumentOpened
	OnDocumentSaveAs
	OnFileChangedAlert
	OnModifiedFlagChanged
	OnSetEditorTitle

	XMLSpyControlPlaceHolder
	Properties
	Label
	PlaceholderWindowID
	Project

	Methods
	OpenProject
	CloseProject

	Events
	OnModifiedFlagChanged
	OnSetLabel

	Enumerations
	ICActiveXIntegrationLevel
	XMLSpyControlPlaceholderWindow

	Appendices
	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XSLT 3.0
	XQuery 1.0
	XQuery 3.1

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: Geolocation
	XPath/XQuery Functions: Image-Related
	XPath/XQuery Functions: Numeric
	XPath/XQuery Functions: Schema
	XPath/XQuery Functions: Sequence
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous
	Chart Functions
	Chart Data XML Structure
	Example: Chart Functions

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	Datatypes in DB-Generated XML Schemas
	ADO
	MS Access
	MS SQL Server
	MySQL
	ODBC
	Oracle
	Sybase

	Datatypes in DBs Generated from XML Schemas
	MS Access
	MS SQL Server
	MySQL
	Oracle

	Technical Data
	OS and Memory Requirements
	Altova Engines
	Unicode Support
	Internet Usage

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Altova End-User License Agreement

	Index

